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Helicity and vorticity in heavy-ion collisions at energies available
at the JINR Nuclotron-based Ion Collider facility
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Heavy-ion collisions at center-of-mass nucleon collision energies 4.5–11.5 GeV are analyzed within the
parton-hadron-string dynamics (PHSD) transport model. Spectator nucleons are separated, and the transfer of
the initial angular momentum of colliding nuclei to the fireball formed by participants is studied. The maximal
angular momentum is carried by the fireball in gold-gold collisions with the impact parameter about 5 fm
corresponding to centrality class 10–20%. The obtained participant distributions were fluidized and the energy
and baryon number densities, temperature, and velocity fields are obtained in the Landau frame. It is shown that
the velocity field has dominantly Hubble-like transversal and longitudinal expansion with the vortical motion
being only a small correction on top of it. The vorticity field is calculated and illustrated in detail. The formation
of two oppositely rotating vortex rings moving in opposite directions along the z axis is demonstrated. Other
characteristics of the vortical motion such as the Lamb vector field and the kinematic vorticity number are
considered. The magnitude of the latter one is found to be smaller than that for the Poiseuille flow and close to
the pure shear deformation corresponding to just a flattening of fluid cells. The field of hydrodynamic helicity,
which is responsible for the axial vortex effect, is calculated. The separation of positive and negative helicities
localized in upper and lower semiplanes with respect to the reaction plane is shown. It is proved that the areas
with various helicity signs can be probed by the selection of � hyperons with positive and negative projections
of their momenta orthogonal to the reaction plane.

DOI: 10.1103/PhysRevC.107.034906

I. INTRODUCTION

Hyperons, being registered via their weak decays, are
“self-analyzing” particles, and the asymmetry in momentum
distributions of the decay products tells about the averaged
spin orientation of the hyperons. The first report about an
observation of a nonzero averaged � polarization in heavy-ion
collisions (HICs) is related to early Bevalac experiments with
an argon beam colliding with a KCl target at the incident
energy 1.8 GeV per nucleon [1]. The observed significant
polarization of order (10 ± 5)% was obtained on a sample of
just 70 �’s. This result was questioned in Refs. [2], where the
zero results for the � polarization were obtained for various
light-light and light-heavy nucleus collisions at 4.5 GeV/c
momentum per incident nucleon. At the same time signifi-
cant polarization of produced �’s was routinely observed in
proton-proton and proton-nucleus reactions at incident pro-
ton momenta from 12 GeV/c to ≈1000 GeV/c; see [3–6]
and references therein. So, the question remained whether
the polarization signal is indeed completely washed out in
nucleus-nucleus collisions or some signal survives. With the
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construction of new high statistic heavy-ion experiments at
the BNL Relativistic Heavy Ion Collider (RHIC) facility, the
� polarization can be reliably measured. The STAR Collabo-
ration published in [7] the results of the hyperon polarization
measurements demonstrating net � polarization on the level
of 1–2% in gold-gold collision in the range of center-of-mass
energies of two colliding nucleons between

√
sNN = 7.7 and

60 GeV. Thereby the polarization increases with a decrease in
the collision energy. At lower collision energy the � polariza-
tion was measured by the HADES Collaboration in Au+Au
and Ag+Ag collisions at

√
sNN = 2.4 and 2.55 GeV [8], and

even larger degrees of polarization were observed, ≈5 and
3%, respectively.

Surprisingly, antihyperons � turn out to be also polarized
in HICs in contrast to proton-proton and proton-nucleus colli-
sions [5]. Moreover, the � polarization rises with the lowering
of the collision energy much faster than for �, reaching
(7.6 ± 3.3)%1 for

√
sNN = 7.7 GeV.

The spin polarization of emitted particles is believed to
be induced by the coupling of the initial orbital (“mechan-
ical”) angular momentum of two nuclei colliding with a

1The value of the polarization is recalculated according to the
recent measurement of the hyperon decay constant α� [6,9], which
is about 17% higher than what was used before.
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nonvanishing impact parameter and the spin distributed in
the matter created in the collision. This is in analogy to
the Barnett effect observed more than a century ago [10]
when an electrically neutral unmagnetized metallic object
became spontaneously magnetized after being set in rotation.
The orbital angular momentum per nucleon in the system of
two nuclei A colliding with the impact parameter b and the
center-of-mass energy of two nucleons

√
sNN can be easily

estimated as

l = L
A

= ey
b

2

√
sNN − 4m2

N . (1)

(Here and below, we use in equations the system of units
with the Planck constant h̄ and the speed of light c taken
as unity. However, given the numerical values of physical
quantities we will retain these constants for the sake of clarity.
Temperature will be measured in the energy units.) The vector
l is directed along the y axis if the nuclei collide along the z
axis in the xz plane; ey is the unit vector in the y direction. For√

sNN = 2.5 GeV we have |l | ≈ 42h̄(b/10 fm), for
√

sNN =
5 GeV, |l | ≈ 117h̄(b/10 fm), and for

√
sNN = 11 GeV we

have |l | ≈ 275h̄(b/10 fm). These numbers are very large,
exceeding substantially momenta carried by the highest spin
nuclei [11]. Several mechanisms of the conversion of this
angular momentum to the spin alignment are discussed in the
literature.

The general thermodynamic description of the link be-
tween the vorticity of the fermionic fluid and its spin polar-
ization was developed in Refs. [12–15]. The vorticity-induced
spin polarization mechanism implemented in hydrodynamic
[16–21] and transport models [22–27] allowed one to gener-
ally reproduce the measured � polarization. However, most
of the above-mentioned works were not able to explain the
larger polarization of � compared to �. Work [27] argued
that the stronger polarization of � could be explained by
the different space-time distributions of � and � and by
different freeze-out conditions of both hyperons. An addi-
tional mechanism for spin alignment, which distinguishes
hyperons and antihyperons, was proposed in Ref. [28] and
is related to the interaction of baryons with vector-meson
mean fields, which received magnetic vector components
due to vorticity of baryon currents. This mechanism was
realized in hydrodynamical codes [21,28,29] that allowed
for partial explanation of the experimental splitting in �–�

polarizations.
An alternative approach not related to the equilibrium of

spin degrees of freedom is based on the axial vortical ef-
fect (AVE) or chiral vortical effect (CVE) [30–34]. In the
AVE, the local spin polarization of hyperons (anti-hyperons)
is determined by the zero component of the axial current for
strange (antistrange) quarks. The latter one is generated by
the hydrodynamic helicity, i.e., the projection of the velocity
to the vorticity. The AVE was used in Ref. [35] for the first
rough estimation of the polarization effect in heavy-ion col-
lisions at energies available at the JINR Nuclotron-based Ion
Collider facility (NICA); see also Ref. [36]. In the CVE the
contribution to the axial current is generated by hydrodynamic
vorticity. An interesting link between CVE and vortices in the

pion superfluid was considered in Ref. [37]. The axial vortical
and similar chiral kinetic mechanisms for the � polarization
were realized in Refs. [23,38] within the quark-gluon string
model (QGSM) [39–41] and a multiphase transport model
(AMPT) [42–44]. Within the hydrodynamic approach, this
mechanism was investigated in Ref. [45].

Thus, vorticity and helicity are the main hydrodynamic
characteristics of the medium created in heavy-ion collisions,
and are responsible for the formation of the hyperon po-
larization signals. The structure of the vorticity field was
analyzed in [46] for Au-Au collisions at higher RHIC and
LHC (Large Hadron Collider) energies in the framework
of AMPT. The circular structure of the transverse vortic-
ity around the beam direction and the quadrupole pattern
of the longitudinal vorticity in the transverse plane were
found. The other analysis was performed using the QGSM in
Refs. [35,47] for noncentral (impact parameter 8 fm) Au+Au
collisions at

√
sNN = 5 GeV and using the hadron-string dy-

namics (HSD) model [48] in Ref. [49]. It was argued that
the vorticity is predominantly localized in a relatively thin
layer at the boundary between participants and spectators.
Also, noticeable hydrodynamical helicity was observed to
manifest specific mirror behavior with respect to the reaction
plane. However, there are still open questions concerning the
fluidization of particle distribution generated in the transport
code: the separation of spectator nucleons and the used defini-
tion of the flow velocity; see discussion in [50]. Some of these
problems are naturally solved in the three-fluid hydrodynamic
approach [18], within which a particular structure consisting
of two vortex rings is found [51] in the Au+Au collisions
at

√
sNN = 39 GeV.

In this paper, we want to consider in detail the struc-
ture and evolution of vorticity and helicity fields created in
HICs at various energies in the range accessible for the fu-
ture NICA collider using the parton-hadron-string dynamics
(PHSD) model [52,53].

In Sec. II we discuss the separation of spectator nucleons
from the nucleons forming a fireball and the transfer of the
angular momentum from two initial nuclei to the fireball
medium. Fluidization of the test-particle distributions gen-
erated by the PHSD transport code is discussed in Sec. III.
The obtained temperature and the particle and energy density
fields are described in Sec. IV. The structure of the velocity
field created in collisions at various energies is discussed in
Sec. V. In Sec. VI we calculate the vorticity field. The helicity
field is analyzed in Sec. VII. Conclusions are formulated in
Sec. VIII.

II. SPECTATOR SEPARATION AND ANGULAR
MOMENTUM TRANSFER

The PHSD model proved to be a reliable tool for the quanti-
tative description of multiplicities and momenta distributions
of particles in heavy-ion collisions in a broad energy range
from SIS to upper RHIC energies [52,53]. As a transport
model it traces momenta and coordinates of all particles at
each moment of time. The formal phase-space distribution
function for particles (test particles) of type h can be written
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as

f (h)
t.p. (t, r, p0, p) =

∑
ih

(2π )4δ(3)(p − pih (t ))

× δ
(
p0 −

√
m2

h + p 2
)
δ(3)(r − rih (t )), (2)

where r, p is a point of the coordinate-momentum space, and
rih (t ) and pih (t ) are the coordinate and the momentum of
the ihth particle that depend on time, t . The δ function with
p0 keeps the particle on mass shell specified by a hadron
mass mh. The code is able to treat particles with contin-
uum mass spectra (broad resonances) where the mass-shell
δ function is replaced with a dynamically varying spectral
function; see, e.g., [53,54]. In practice, each resonance par-
ticle is now represented by an ensemble of particles with
various masses populated and interacting according to the
spectral function weight. The spectral functions are used also
for the description of partons in the deconfined phase. The
relative volume occupied by the partonic phase is small at en-
ergies

√
sNN

<∼ 12 GeV. For instance, at
√

sNN = 11.5 GeV in
Au+Au collisions at b = 2 fm, the fraction of the deconfined
phase in the full volume does not exceed 20% for times at
the maximum overlap [55,56]. However, for the most central
collisions the parton fraction can reach ≈40% in the midrapid-
ity region. After the maximal overlap the fireball expands and
the partonic fraction decreases rapidly and is insignificant for
later times. For larger impact parameters the partonic fraction
decreases also. We apply the version with particles moving
freely between two successive collisions without influence of
mean fields; however, the chiral symmetry breaking effects
introduced in Ref. [57] are included to provide the correct
strange particle multiplicities.

As in many transport codes, PHSD uses the parallel en-
semble method, that consists of the parallel simulation of N
collision events. This allows computing with good accuracy
collective quantities, e.g., energy and particle densities, since
the statistical fluctuations are reduced by averaging over N
events. This ensemble average we will not indicate explic-
itly, assuming that all physical quantities calculated with the
particles distributions (2) are ensemble-averaged. In our cal-
culation we use N = 100 for energies

√
sNN > 5 GeV and

N = 200 for
√

sNN
<∼ 5 GeV. The code was re-initialized

200–250 time so that, finally, statistics with ≈(2–5) × 104

collisions are collected for each impact parameter, collision
energy, and other varied parameter.

Particles of colliding nuclei are usually divided in spec-
tators and participants where the former ones do not suffer
violent collisions; therefore their rapidities do not differ much
from the initial rapidity of colliding nuclear beams,

yb = 1

2
ln

√
sNN +

√
sNN − 4m2

N√
sNN −

√
sNN − 4m2

N

.

Rapidities of participants, in contrast, decrease fast due
to collisions and quickly form a thermal distribution cen-
tered at midrapidity (y = 0) with the width ∼√

2T/mN ≈
0.6

√
T/150 MeV. Thus, typical rapidities of participants,

|ypart| � 0 + 0.6, are several times smaller than the beam ra-

FIG. 1. (a) The projection of the angular momentum orthogo-
nal to the reaction plane, which is transferred to the medium, as
a function of time for Au+Au collisions at

√
sNN = 7.7 GeV and

various impact parameters indicated by labels. The momentum is
normalized to the maximal value corresponding to the given impact
parameter (1), Ly,max/A = 189h̄ (b/10 fm). (b) The y component of
the angular momentum stored in the medium as a function of the
impact parameter for two moments of time.

pidities, yb = 1.5 for collisions at
√

sNN = 4.5 GeV and yb =
2.5 at

√
sNN = 11.5 GeV. Using this criterion we separate the

spectator part in the distribution function (2), defined as

f (h,spec)
t.p. (t, r, p0, p)=

∑
q=±

f (h)
t.p. (t, r, p0, p)θ (�yb−|q y − yb|),

(3)

and count the remaining particles,

f (h,part)
t.p. (t, r, p0, p) = f (h)

t.p. (t, r, p0, p) − f (h,spec)
t.p. (t, r, p0, p),

(4)

as the participants. The rapidity width of the spectator dis-
tribution is controlled by the parameter �yb = 0.27, which
takes into account the Fermi motion of nucleons in the nucleus
(pF = 0.25 GeV/c in rest frame of nuclei).

The total angular momentum carried by the particles can
be calculated as

L(t ) =
∑

h

∫
d3r

d4 p

(2π )4
[r × p] f (h)

t.p. (t, r, p0, p), (5)

where the sum over h goes over all particle (hadron) types.
We verified that for all considered collision energies and im-
pact parameters the value of L calculated by this expression
coincides with that given by Eq. (1) with the precision <∼ 1%
and stays constant during the whole duration of the collision
up to times 50 fm/c. The question now is, which part of this
total angular momentum, L(med), is transferred to the medium?
To calculate this quantity we replace the distribution function
in (5) as f (h)

t.p. → f (h),part
t.p. . The evolution of L(med)

y for a fixed
impact parameter is shown in Fig. 1(a) for Au+Au collisions
at

√
sNN = 7.7 GeV. Other components of the vector L(med)

are proved to fluctuate strongly from event to event and are
very small on average, |L(med)

x,z |/|L(med)
y | < 10−3. On the time

axis the zero time corresponds to the initialization of nuclei in
the PHSD model before their collision. The touching time of
nuclei is � 2.2 fm/c for

√
sNN = 7.7 GeV and b = 7 fm. The
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FIG. 2. The transferred angular momentum at time t = 20 fm/c
normalized by the initial angular momentum of colliding nuclei (for
b = 10 fm) at various colliding energies.

overlap time interval for two nuclei of radius R is

δtover = 2R

γb
= 4RmN√

sNN
, (6)

where γb = √
sNN/2mN is the Lorentz factor of colliding nu-

clei, that makes δtover � 3.6 fm/c in our case. So, during the
first 4–6 fm/c, when the nuclei approach and overlap, the
momentum distribution of nucleons is represented by two
counterstreaming flows of spectator nucleons. Then stating
from t ≈ 3–4 fm/c the number of participants starts rapidly
growing, and so does the angular momentum of the medium.

In Fig. 1(a) we see that the transfer of the angular
momentum to the medium occurs over the timescale of
≈(5–10) fm/c, and L(med) does not change significantly, while
slightly growing, at t >∼ 10 fm/c. Also, we observe that only
a small part of the total angular momentum is, actually, trans-
ferred to the medium. So, for impact parameters b > 2.5 fm
it less than 50% and decreases with the increase of b since
the overlap of colliding nuclei decreases. The dependence of
the transferred momentum, L(med)

y , on the impact parameter
is shown in Fig. 1(b). It essentially differs from the linear
proportionality with b and shows a clear maximum for b ≈
5 fm. Similar behavior of the transferred angular momentum
was obtained in Ref. [58] within the Glauber model. We
see also that after t = 10 fm/c the b dependence does not
change much, not more than be 10–15% [compare solid and
dashed curves in Fig. 1(b)], and saturates for t >∼ 20 fm/c
[see Fig. 1(a)]. The dependence L(med)(b) weakly varies with
the collision energy. Figure 2 shows the function L(med)(b)
normalized by the maximum available angular momentum of
colliding nuclei, Eq. (1), at the impact parameter b = 10 fm
for several colliding energies. We see that the result for√

sNN = 11.5 GeV (solid line) almost perfectly coincides with
the result for 7.7 GeV (dashed line) and, at a lower energy,√

sNN = 4.5 GeV, the function (dash-dotted line) is smaller
by 7% around maximum at b ≈ 5 fm but coincides with the
results for other energies at b < 2 fm and b > 8 fm.

Physical quantities measured in heavy-ion experiments are
averaged within some centrality class. To get a feeling about
the transferred angular momentum in the collision with spe-
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15
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 11.5 GeV
  4.5 GeV
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FIG. 3. The impact parameter weighted with the probability that
the nucleus-nucleus interaction occurs at impact parameter b [see
Eq. (7)], bweight (b) = b peven(b), as a function of b for two collision
energies. The solid line shows the parametrization (8).

cific centrality selection we have to average L(med)(b) over the
impact parameter with the weight 2πb pevent (b). Here pevent (b)
stands for the probability density that the nucleus-nucleus
interaction has occurred at a given impact parameter, which
can be expressed through the differential number of collision
events, dNevent, that occurred for given b normalized to the
total number of events, Nevent:

pevent (b)db = dNevent

Nevent
. (7)

The distributions of the “weighted impact parameter”
bweight (b) = b pevent (b) are calculated in PHSD for two colli-
sion energies,

√
sNN = 4.5 and 11.5 GeV, and shown in Fig. 3.

As we see, the distributions weakly depend on the collision
energy and can be parametrized by the expression

bweight (b) =
{

b, b � bd,

12.6 fm × e0.31(b/fm−12.6)2
, bd < b < bmax.

(8)

Here the maximum impact parameter for the Au+Au colli-
sions is bmax = 16 fm and bd = 12.6 fm. The rapid smooth
dropoff of the function bweight (b) for b > bd is determined by
the diffuseness of the density distribution in the nucleus. Now
the averaged transferred angular momentum corresponding to
the impact factor range b1 < b < b2 is then defined as

〈L(med)〉b2
b1

=
∫ b2

b1
L(med)(b′)bweight (b′)db′∫ b2

b1
bweight (b′)db′

. (9)

The relation between the centrality of collision and the impact
parameter is

C(b) =
∫ b

0 bweight (b′)db′∫ bmax

0 bweight (b′)db′
. (10)

With this definition the most central collisions (small b) cor-
respond to small values of C. In Fig. 4 we show the averaged
transferred angular momentum as a function of centrality
for various centrality binnings. For a fine centrality bin-
ning, �C <∼ 10%, one can resolve a maximum in the angular
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FIG. 4. Averaged angular momentum carried by the medium as a
function of centrality for the Au+Au collision at

√
sNN = 7.7 GeV.

Panels (a), (b), and (c) show the results for various centrality bin-
nings: �C = 5%, 10%, and 20%, respectively.

momentum transfer at C ≈ 10–20%; see panels (a) and (b)
in Fig. 4. For a coarser binning, see Fig. 4(c), the maximum
disappears and the magnitude of the averaged angular momen-
tum is slightly reduced for the smallest centrality bin. From
calculations shown in Fig. 4 we see that the transferred an-
gular momentum decreases with an increase of parameter C,
i.e., with increase of the impact parameter, when C > 10–20%
(depending on the binning step). Interestingly, the centrality
dependence of hyperon polarization shows the opposite trend
and increases with the C increase. This is observed both
at high collision energies [59] and at low ones [60]. This
means that the formation of polarization signal of hyperons
has more complicated nature than a direct transformation of
the initial angular momentum and depends on the production
mechanism of hyperons and, thereby, on their phase-space
distributions.

III. FLUIDIZATION

Our next task is to obtain the hydrodynamical characteris-
tics of the medium (fluid) created in the heavy-ion collision.
In other words, we have to fluidize the test-particle distri-
butions generated by the transport code and determine local
energy and baryon densities and velocities of the fluid. The
flow velocity, uμ, we define in the Landau frame where the
four-velocity is the eigenvector of the full energy-momentum
tensor, T μν ,

T μν uμ = ε uν, (11)

and the corresponding eigenvalue, ε, is then local energy den-
sity. The four-velocity is normalized as uμuμ = 1 and can be
written as uμ = γ (1, v) through the three-velocity v and γ =
(1 − v2)−1/2. When the flow velocity is determined, the local
baryon density can be computed from the baryon current, Jμ

B ,
as nB = uμJμ

B . To determine the local temperature one has use
the equation of state (EoS) of the medium and solve the equa-
tion ε(nB, T ) = ε. We use the EoS of [61], which includes all
known hadrons with masses up to 2 GeV/c2 in the zero-width
approximation. The equation of state of the hadron resonance
gas at finite temperature and baryon density is calculated
thermodynamically, taking into account a density-dependent

mean field that guarantees the nuclear matter saturation. This
EoS was used in the hydrodynamic calculations [62,63]. For
the detailed description of the EoS, see Ref. [62].

Now we specify how we calculate the energy-momentum
tensor Tμν and the baryon current Jμ

B at each space-time point
(t, r). First, in order to make the transition from discrete parti-
cles to continuous medium we introduce a smearing function
�(r, ri(t )) instead of the spatial δ function in (2):

ft.p.(t, r, p0, p) =
∑
h,ih

(2π )4

N δ(3)(p − pih (t ))

× δ
(
p0 −

√
m2

h + p 2
)
�(r, rih (t )), (12)

where N = ∫
d3r �(r, rih (t )) is the normalization factor.

Then, the energy-momentum tensor looks as follows:

T μν (t, r) =
∫

d4 p

(2π )3

pμ pν

p0
ft.p.(t, r, p0, p)

= 1

N
∑
h,ih

pμ
ih

(t )pν
ih

(t )

p0
ih

(t )
�(r, rih (t )), (13)

where pμ
ih

= (p0
ih , pih ) – 4-momentum of particle ih of type h.

Similarly, the baryon current is given by

Jμ
B (t, r) = 1

N
∑
h,ih

Bih

pμ
ih

(t )

p0
ih

(t )
�(r, rih (t )), (14)

where Bih is the baryon charge of particle ih.
The smearing kernel �(x, xi(t )) is often taken in a Gaus-

sian form. We will follow the particle-in-cell (PIC) method
well known in hydrodynamics and plasma physics. Namely,
we will use a square-law spline kernel (the cloud-in-cell
method) as a smearing kernel [64]. It is fast and provides
continues distributions of considered quantities. In contrast to
the Gaussian kernel it corresponds to particles with a finite
size. For a one-dimensional grid in the x direction with step
�x, for any coordinate x the nearest grid point is xa = ax �x,
where ax = [x/�x] (here [x] is the floor of x). Thereby, the
contribution of each particle to three nearest grid points xa

and xa±1 is defined by the following functions:

�(xa, xi ) = 1

�x
W0(xa/�x − [xi/�x]),

�(xa±1, xi ) = 1

�x
W±1(xa/�x − [xi/�x]), (15)

where

Wk (x) =
{

3
4 − x2, k = 0,

1
2

(
1
2 ± x

)2
, k = ±1.

(16)

Note, that W0(x) + W+1(x) + W−1(x) = 1. In the three-
dimensional case, the grid points are ra = (ax�x,

ay�y, az�z ), and the full smearing function is just a product
of the one-dimensional functions for each space direction:

�(ra, ri ) = �(xa, xi ) �(ya, yi ) �(za, zi ). (17)

All numerical calculations are done on the space grid with
{�x,�y,�z} = {1, 1, 1/γb} fm. For each cell of the grid we
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calculate contributions to the T μν tensor and the Jμ
B vector

from 27 neighboring cells. Then one can analytically solve
Eq. (11) and obtain velocity, energy density, and temperature
of fluid for each central point of the cell. When further spatial
derivatives has to be calculated, e.g., for vorticity, we use the
formula

∂iu
j
ra

≈ u j
ra+i − u j

ra−i

2 �i
, i, j = x, y, z, (18)

where we denote the position of neighboring cells as ra±i =
ra ± (δix�x + δiy�y + δiz�z ).

After all necessary quantities are defined on the grid (let
us denote them generically Ara ), the same smearing function
(17) is used for continuous interpolation of the considered
quantities at any point inside a grid. So, the value A(x) at any
point r in the vicinity of the nearest grid knot ra is given by

A(r) =
∑

i, j,k=±1,0

Ara+(i�x, j�y,k�z ) �(r, ra)�x �y �z. (19)

As the result of the high collision statistics and the inter-
polation procedure described in this section, we obtain very
smooth distributions of the velocity, the temperature, and the
energy and particle density fields.

IV. T , n, ε PROFILES

The evolutions of energy density, baryon density, and cor-
responding temperature fields in the y = 0 plane are shown
in Fig. 5 for Au+Au collisions at

√
sNN = 7.7 GeV and im-

pact parameter b = 7.5 fm. Only participants are shown here,
while the spectator nucleons are separated as discussed in
Sec. II. The earliest time corresponds to the maximum overlap
moment t � 5 fm/c. The energy and baryon densities and the
temperature have maximal values and the hot fluidized zone
of the fireball has the shape of a slightly tilted pill with radius
≈4 fm in the xy plane and thickness 4 fm in the z direction.
It starts longitudinal and transversal expansion, forming after
roughly 7 fm/c a tilted cylinder similar to the Bjorken ex-
pansion model. After 9 fm/c the densities and temperature
fields form two maxima moving in opposite directions and
corresponding to the excited fragments of nuclei that passed
through each other. Black solid lines on the plots show the
contour in the xz plane outside of which the energy density is
smaller than 0.05 GeV/fm3. This was suggested in Ref. [65]
as a criterion of applicability of the hydrodynamics descrip-
tion. We see that at time 13 fm/c the central part of the
fireball is substantially disintegrated (freeze-out stage). The
full disintegration of the fireball fluid occurs at ≈15–16 fm/c.

For better visualisation of the distribution of the thermo-
dynamic quantities shown in Fig. 5, in Fig. 6 we present
profiles of this quantities along the x and z axes (shown in
the first and second columns) in the plane y = 0 fm. After
the nucleus overlapping is completed at 5 fm/c, all profiles
have maxima for the center cell at x = z = 0 fm. Note that
the some differences in the maxima of the x and z profiles
occur because they are obtained after the summation over the
final intervals of coordinates |z| < 0.5 fm and |x| < 0.5 fm
for the first and second profiles, respectively. The difference
is more pronounced if one profile is much sharper than the
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FIG. 5. Time dependence of energy density, baryon density, and
temperature for Au+Au collisions at

√
sNN = 7.7 GeV at impact pa-

rameter b = 7.5 fm. Solid lines indicate the contour of the condition
εc = 0.05 GeV/fm3. Light grey fields show cells containing at least
one particle in one of the simulated collision events.

other one; compare distributions for the temperature and for
the energy and baryon densities. If one integrates the x profile
for |x| < 0.5 fm and the z profile for |z| < 0.5 fm one obtain
exactly the same value. In the next 2 fm/c the hight of the ε

and n profiles drops by factor 4. Thereby, the profiles of the
energy and baryon densities (upper and lower rows) broaden
slowly in the x direction and fast in the z directions, in which
their widths become almost twice larger. At the later times z
profiles exhibit two symmetric maxima for positive and nega-
tive z moving away with the speed close to c. The temperature
profiles decreases slower than those for ε and n and broaden
similarly in both x and z directions.

Next we consider how the thermodynamical characteris-
tics of the fireball changes with the variation of the collision
energy. In Fig. 7 we show the x and y profiles of ε, T , and nB

for the Au+Au collisions at
√

sNN = 4.5 GeV and b = 7.5 fm.
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FIG. 6. Profiles of the energy density (upper row), the temper-
ature (middle row), and the baryon density (lower row) plotted for
y = 0 fm along the x axis and integrated over the interval |z| < 0.5
(first column) and plotted along the z axis and integrated for |x| < 0.5
(second column). The third column shows the maxima of the x
and z profiles by points A and B correspondingly. Calculations are
done for Au+Au collisions at

√
sNN = 7.7 GeV, impact parameter

b = 7.5 fm, and five moments of time. Time of the maximum overlap
is about 4.9 fm/c.

The striking difference seen in the profiles of all quantities is
the slow-down of the evolution. The compression phase lasts
now till ≈7 fm/c, and the expansion phase from 7 fm/c to
13 fm/c. The double-hump structures in the z profiles of ε

and n clearly seen in Fig. 6 are barely seen in Fig. 7. Maxima
of all thermodynamical quantities are smaller for collisions at√

sNN = 4.5 GeV than for collisions at
√

sNN = 7.7 GeV.
Consider now higher energies. In Fig. 8 we show profiles

for collisions at
√

sNN = 11.5 GeV. The evolution of the sys-
tem in the transversal direction is similar to that for 7.7 GeV.
In the z direction the system expands very rapidly and the
double-hump structure appears also.

V. VELOCITY FIELD

We turn now to the velocity field created in the collisions.
We concentrate on the collision energy of 7.7 GeV. In Fig. 9
we show the transverse velocity

vT =
√

v2
x + v2

y (20)

as a function of the transverse radius rT =
√

x2 + y2 for var-
ious z slices (z � 0) at various moments of time. We see that
after ≈9 fm/c the profile vT ∝ rT , almost independent of z, is
formed for z � 2 fm, and after ≈11 fm/c this dependence gets
extended for z <∼ 4 fm. At earlier times, the Hubble-like flow
is not yet formed completely and the transverse velocity has a
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FIG. 7. The same as in Fig. 6 but for collision energy 4.5 GeV.
Time of the maximum overlap is about 7.5 fm/c.

steeper dependence on rT and is not extended to z > 0.5 fm,
decreasing with a z increase. At times >11 fm/c the outer
regions start freezing out and the region of the collective flow
shrinks as we do not take into account fluids with the energy
density ε < 0.05 GeV/fm3.
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FIG. 8. The same as in Fig. 6 but for collision energy 11.5 GeV.
Time of the maximum overlap is about 3.8 fm/c. The maximum of
the energy density is 12 GeV/fm3 at t = 3.3 fm/c. The maximum of
the baryon number density is 2.1/fm3 at t = 3.4 fm/c.
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FIG. 9. Transverse velocity (20) as a function of transverse radius for various values of z and various moments of time. Cut ε >

0.05 GeV/fm3 is applied.

We have to note that the Hubble-like expansion does not
necessarily happen around the central cell. Only for z = 0 the
radial expansion of the fluid occurs around the point (x0 =
y0 = z0 = 0), whereas for z >∼ 1 fm the center of the expansion
is shifted to x0 > 0, but y0 = 0 because we consider noncen-
tral collisions. The position of the center changes with time
from x0 � 0.5 and 1.5 fm for z = 1 and 2 fm, respectively, at
t = 5 fm/c, to smaller values x0 � 0.25 fm for z < 4 fm and
0.5 fm for z ≈ 4 fm at t = 13 fm/c. The coordinate of the
center is a asymmetric function of z.

The profile of the longitudinal direction, vz, is shown in
Fig. 10. The Hubble-like behavior, vz = α‖z is established
already at earlier times.

Thus, the structure of the velocity field after the fluidization
of the particle distributions obtained in the PHSD transport
model has mainly the Hubble-like structure for each moment
of time,

vH = αT rβT
T eT + α‖ zβ‖ ez, (21)

where αT , βT and α‖, β‖ do not depend on coordinates
(but, maybe, on time) and we introduced the unit vectors
in the transverse and longitudinal directions, eT = rT /rT =
(x, y, 0)/rT and ez = (0, 0, 1). Here and below we do not in-
dicate the time dependence of velocity components explicitly.
From Figs. 9 and 10 we conclude that β‖ ≈ 1 and βT ≈ 2

b=7.5fm
AuAu@7.7GeV

t= 5fm/c
t= 7fm/c
t= 9fm/c
t=11fm/c
t=13fm/c

V z
 [c

]

−1
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FIG. 10. Profiles of the longitudinal velocity vz as a function of
z for rT = 0 and several moments of time. Cut ε > 0.05 GeV/fm3 is
applied.

for earlier times and βT ≈ 1 for later times. The dependence
of the parameters of transverse and longitudinal expansions
in Eq. (21) on time and the collision energy is illustrated in
Fig. 11. For the collision energy

√
s = 7.7 GeV, the parameter

αT [see panel (a) in Fig. 11] increases with time between t � 5
and 11 fm/c and the transverse flow propagates from lower
|z| to larger |z| so that a common (weakly z independent)
transverse motion is formed for |z| <∼ 3 fm at t � 10–11 fm/c.
At later times the transverse flow starts decelerating. The
coefficient of the longitudinal expansion, α‖, is shown in
Fig. 11(b). It depends very weakly on z and decreases with
a time increase.

For higher energy,
√

sNN = 11.5 GeV, the picture is
qualitatively similar, only the transverse flow parameter,
αT , reaches slightly higher values and varies on a smaller
timescale. The longitudinal flow parameter, α‖, is smaller than
for the collision energy 7.7 GeV.

The situation is qualitatively different for lower collision
energy,

√
sNN = 4.5 GeV. The transverse flow parameter in-

creases with time for much longer, between t = 5 fm/c and
t � 13 fm/c. The longitudinal flow parameter first increases
reaching values higher than for

√
sNN = 7.7 and 11.5 GeV

at t � 9 fm/c, and then decreases for later times. One could
expect that the drastic changes in the flow pattern between√

sNN = 4.5 GeV and 7.7 GeV can manifest in the changes of
particle flow pattern observed experimentally.
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FIG. 11. Evolution of the parameters of the Hubble-like
parametrization of the velocity field (21) with βT = β‖ = 1 for vari-
ous collision energies. Panel (a) shows the transverse flow parameter
αT for the various z slices. Panel (b) shows the longitudinal flow
parameter α‖, which is almost z independent.
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There are two types of corrections to Eq. (21):

v = vH + δv + δvasym. (22)

One is axially symmetric but mixes rT and z dependence of
transverse and longitudinal components of velocities in (21):

δv = δαT (rT , z)eT + δα‖(rT , z)ez. (23)

The other type of correction is responsible for violation of the
axial symmetry. There is the term related to the shift of the
center of the Hublle-like expansion: −αT (x0(z), 0, 0). We put
βT = 1. Additionally, one can add a term responsible for an
elliptic flow (the term linear in x and y). So the symmetry
breaking term can be written as δvasym = −αT (x0(z), 0, 0) +
δαT,as(rT , z)(x,−y, 0)/2. In terms of the unit vectors eT and
ez we have

δvasym = − αT x0(z)

(
x

rT
eT + y

rT
[eT × ez]

)

+ δαT,as(rT , z)

(
x2 − y2

2rT
eT + xy

rT
[eT × ez]

)
. (24)

The hydrodynamic directed, v
(hydro)
1 , and elliptic, v

(hydro)
2 ,

flows can be expressed for such a parametrization as follows:

v
(hydro)
1 =

∫ 2π

0

dφ

2π
(v)x = −αT x0(z),

v
(hydro)
2 =

∫ 2π

0

dφ

2π

(v)2
x − (v)2

y√
(v)2

x + (v)2
y

≈ rT δαT,as(rT , z)
(

1 + δαT

αT rT

)
, x0 � rT . (25)

The analysis of the velocity fields generated with the flu-
idized PHSD model shows that on average the correction
terms are numerically much smaller than the Hubble-like
term:

|δv + δvasym| � |vH|. (26)

Any vector field can be decomposed into irrotational and
solenoidal components (the Helmholtz decomposition) and
one can write the velocity field in terms of the scalar and vec-
tor potentials, v = gradφ − rotψ, where only two components
of the vector potential are independent and they can be fixed
by the gauge condition divψ = 0. The potentials obey the
Poisson equations �φ = divv and �ψ = −rotv. The quantity
θ = divv is called the dilation of the velocity field, which
measures the isotropic expansion or compression of the fluid.
The other quantity, which is of our primary interest, is the
vorticity of the fluid,

ω = rotv, (27)

which measures the rotation of fluid particles. Thus, the vor-
ticity defines the solenoidal part of the velocity field.

The local variation of the velocity field in the vicinity of
point r0 can be written for r ∼ r0 as

vi(r) = vi(r0) + (r − r0) j∂ jvi(r0) + O(|r − r0|2). (28)

The gradient tensor can be decomposed into symmetric and
antisymmetric tensors as

∂iv j = ξ+,i j + ξ−,i j,

ξ+,i j = 1
2 (∂iv j + ∂ jvi ), ξ−,i j = 1

2 (∂iv j − ∂ jvi ). (29)

The symmetric one is the strain rate tensor which character-
izes isotropic expansion as well as stretching and shearing
deformations of the fluid. Its trace is the dilation scalar, ξ+,ii =
θ . The antisymmetric one, which can be expressed through
the vorticity vector ξ−,i j = 1

2εi jkωk , describes the rigid-body
rotation of the fluid element. It indicates both the direction
and rate of rotation of the fluid at a point. Finally, Eq. (28) can
be written as

v(r) ≈ v(r0) + 1
2 gradD(r, r0) + 1

2 [ω(r0) × (r − r0)], (30)

where we introduce the deformation scalar D(r, r0) =∑
i j (r − r0)iξ+,i j (r0)(r − r0) j .

The Hubble-like flow (21) is irrotational, rotvH ≡ 0. Hence
the vorticity is determined by the symmetry violating terms as,
e.g., given in Eqs. (23) and (24) above. Therefore only a small
fraction of the velocity flow generated in heavy-ion collision
possesses a nonvanishing vorticity:

ω = rot(δv + δvasym )

=
(

∂δα‖
∂rT

z − ∂δαT

∂z
rT

)
[eT × ez]

− ∂δαT,as

∂z

x2 − y2

2rT
[eT × ez]

+ xy

rT

(
∂δαT,as

∂z
eT − ∂δαT,as

∂rT
ez

)

− αT
∂x0(z)

∂z

(
y

rT
eT − x

rT
[eT × ez]

)
. (31)

Here we put βT = β‖ = 1 in Eq. (21). We see that the axially
symmetric part (23) produces vorticity directed only in the
azimuthal direction (terms ∝ [eT × ez]). The asymmetric part
(24) induces the dependence of the azimuthal component of
vorticity on the azimuthal angle and the transverse and longi-
tudinal components of vorticity.

VI. VORTICITY FIELD

A. Vorticity, Lamb vector, and helicity

As demonstrated in Refs. [12–14] within a statistical ap-
proach, the particle with mass m, spin s, and four-momentum
pμ acquires in the presence of the thermal vorticity �μν =
1
2 [∂ν (uμ/T ) − ∂μ(uν/T )] an average spin polarization char-
acterized by the spin four-vector

Sμ(x, p) = − 1
6 s (s + 1)εμνλδ�νλ pδ/m. (32)

If we neglect the gradient of the temperature, which has
weaker spatial and time dependence than energy density
and velocity (see Figs. 6–8), the thermal vorticity can be
expressed as �μν ≈ ωμν/2T through the kinematic vortic-
ity tensor ωμν = (∂νuμ − ∂μuν ). The latter tensor provides a
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natural relativistic generalization2 for the nonrelativistic vor-
ticity ω:

ω̄μ = εμνρσ uν∂ρuσ = − 1
2εμνρσ uνωρσ , (33)

or, inversely,

ωμν = −εμνρσ uρω̄σ . (34)

The components of the vorticity vector are

ω̄μ = γ 2((vω),ω + [v × ∂tv]). (35)

Thus, in the nonrelativistic limit we have ω̄μ ≈ ((vω),ω),
where the relativistic subleading term is a pseudoscalar,

h = (ωv), (36)

called the helicity density of the flow [66,67]. The kinetic
vorticity tensor ωμν contains also information about the ac-
celeration of the fluid:

Aμ = ωμνuν = uν∂
νuμ = γ (∂t − (v∇))uμ. (37)

Since the bulk of the fluid in the fireball moves with
velocities smaller than 0.5c–0.6c (see Figs. 10 and 11), we
will consider the nonrelativistic hydrodynamics. In the non-
relativistic limit we have Aμ = (0, a), where the acceleration
a = ∂tv + (v∇ )v can be written with the help of Eq. (A12) as
follows:

a = ∂v

∂t
+ λω + 1

2
gradv2, (38)

where

λω = [ω × v] (39)

is the Lamb vector, also known as the vortex force transverse
to the fluid motion. It is a measure of the Coriolis acceleration
of a velocity field under the effect of its own rotation.

Substituting Eq. (34) in Eq. (32) and neglecting the tem-
perature gradients we find

Sμ ≈ s(s + 1)

6mT
[ω̄μ(u · p) − uμ(ω̄ · p)]

≈ s(s + 1)

6mT
((ωp), Eω − [p × λω]) + O(v2). (40)

In the rest frame of the particle, which is used for experimen-
tal identification of the fermion polarization, this four-vector
becomes S∗μ = (0, S∗), where in the nonrelativistic limit of
the fermion (p � m) we have [24]

S∗ ≈ S − p
2m

S0 ≈ s(s + 1)

6

(
ω

T
−

[
p
m

× λω

T

])

+ O(v2, p2/m2). (41)

We see that the Lamb vector is responsible for coupling of the
particle velocity with the polarization. The helicity provides
only relativistic correction to the polarization (32).

2It should be mentioned that neither thermal nor kinematic vor-
ticities enjoy the conservation properties as in, e.g., the Helmholtz-
Kelvin theorem even for an ideal barotropic fluid. Alternative
definitions of relativistic vorticities are discussed in Ref. [50].

The helicity density and the Lamb vector are of crucial
importance in vorticity dynamics. For example, they deter-
mine the decomposition of the velocity in two orthogonal
components,

ω2v = h ω − [ω × λω]. (42)

Multiplying this relation by v we find ω2v2 = h2 + λ2
ω.

Hence, if a local ω and v are very slowly varying then an
increase of the angle between ω and v implies an increase
of the Lamb vector and decrease of the helicity density. The
Lamb vector is maximized for a flow confined to the plane
with (ω · v) = 0, implying a maximum local transverse force
for fixed u2 and ω; see Eq. (38). In the alternative situation,
if the Lamb vector vanishes, λω = 0 but h �= 0, we deal with
the situation when the vorticity is parallel to the flow velocity,
ω = hv. This means that v is an eigenvector of the rot operator
with eigenvalue h, rotv = hv. This type of flow is called the
Beltrami flow or helical flow. It is a stationary flow with finite
extensive helicity, i.e., scaling with the volume of the system.
The Beltrami flows play an important role in the study of
turbulent and chaotic flows in hydrodynamics. Reference [68]
suggested that, in various regions of space, turbulent flows
organize into a coherent hierarchy of weakly interacting su-
perimposed approximate Beltrami flows; see also Refs. [69].
The properties of the Beltrami flow were investigated, e.g., in
Refs. [70–72].

The concept of the integral helicity of a fluid volume V

H =
∫

V
(ω · v)d3x (43)

has gained interest since 1961, when Moreau showed in
Ref. [66] that helicity is an invariant of Euler equations of
ideal fluid motion. A similar conserving quantity was found
also in magnetohydrodynamics [73], where the role of vortic-
ity is played by magnetic field B and velocity is replaced by
the corresponding vector potential A, B = rotA. In contrast
to other conservative quantities, like momentum and energy,
helicity does not correspond to any space-time symmetry.
Rather, as shown in Ref. [67], it is related to the topology of
the flow. This quantity measures the state of “knottedness” of
vortex filaments.

The Lamb vector characterizes not only the essential non-
linearity of the convective fluid acceleration, Eq. (38), in the
hydrodynamic equations, but also was found to be instrumen-
tal in the analysis of coherent motion in fluids (e.g., large
stable vortical structures as the Great Red Spot of Jupiter)
[74].

In the simplest case of an incompressible fluid, the hydro-
dynamic equation describing the evolution of velocity field is
(see the Appendix)

∂v

∂t
+ λω = −∇

(
p

ρ
+ v2

2

)
+ ν∇2v. (44)

Here p(r, t ) is the pressure, ν is the kinematic shear viscosity
(A9), and ρ stands for the mass density, ρ = ε/c2. whereby ν

and ρ are constant. Then, the continuity equation (A1) implies
divv = 0. Applying the divergence operator to Eq. (A2), we
obtain that the divergency of the Lamb vector is the source
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term in a Poisson equation for the Bernoulli function � = p
ρ

+
v2

2 :

divλω = −∇2�. (45)

In derivation we use that divv = 0. The divergency of the
Lamb vector is called the hydrodynamic charge [75], qH =
divλω. From Eq. (45) we see that regions with qH > 0 cor-
respond to regions where � is concentrated, while in regions
with qH < 0 function � is depleted [74]. In Refs. [76,77] it
was shown that one can construct the hydrodynamic analog of
the Maxwell equations, where the hydrodynamic charge plays
a role of the electric charge.

Using the Helmholtz theorem the Lamb vector can be
decomposed as λω = λω,⊥ + λω,‖ in irrorational, λω,⊥, and
solenoidal, λω,‖ parts, with rotλω,⊥ = 0 = divλω,‖. From
Eqs. (45) and (44) we find

λω,⊥ = −∇�, λω,‖ = −∂v

∂t
− ν∇2v. (46)

This decomposition shows that, in the particular case of a sta-
tionary flow and when the viscous effects are negligible, i.e.,
λω,‖ = 0, the Lamb vector λω = −∇� constitutes the direc-
tional normal to the surface of constant �, which is called the
Lamb surface and is formed by streamlines and vortex lines
since at each point velocity and vorticity are orthogonal to
this normal, (v∇�) = (v λω ) ≡ 0 and (v∇�) = (v λω ) ≡ 0.
These properties of the Lamb vector allowed Ref. [75] to use
the Lamb vector and the hydrodynamic charge to locate and
characterize coherent structures such as vortices in experi-
mental data.

Applying the circulation operation to Eq. (44) and taking
into account that for incompressible or weakly compressible
flow the entropy gradient can be neglected and the fluid is
nearly barotropic,3 we obtain the Helmholtz equation for vor-
ticity,

∂ω

∂t
+ [∇ × λω] = ν�ω. (47)

Here the solenoidal part of the Lamb vector is responsible for
the nonlinear coupling of the vorticity with the velocity field
in the system. It describes the torque exerted by the Coriolis
force. The viscous term on the right-hand side is responsible
for the decay of the vorticity due to diffusion. Note that in
the approximation of the incompressible fluid the Helmholtz
equation has the trivial solution ω = 0, since in (47) there
is no term responsible for the generation of vorticity. Taking
into account the density gradients (but still assuming that ν

is constant) we obtain the extended vorticity equation [see
Eq. (A14)]

∂ω

∂t
+ [∇ × λω] = 1

ρ2
[∇ρ × ∇p] + ν�ω, (48)

3For the barotropic equation of state, the pressure is a function of
only density ε or matter density ρ = ε/c2. In general pressure as
well es the entropy are functions of both density and temperature,
p = p(ρ, T ) and s = s(ρ, T ). The constancy of the entropy implies
the connection of the temperature and density.

where the first term on the right-hand side is the vorticity
source term. This term is called the Biermann battery fol-
lowing Ref. [78], where a similar term was considered as
a source of magnetic fields in stars. The equation for the
vorticity becomes more involved if the density dependence of
the kinematic vorticity is taken into account; see the derivation
in the Appendix. We cast it here in the compact form(

∂ω

∂t
+ [∇ × λω] − 1

ρ2
[∇ρ × ∇p] − ν�ω

)
i

= −ν�
[νρ]
i j ω j − νD[νρ]

i jk ∇ jωk + S[νρ]
i . (49)

We see that there appear new structures that control evolution
of vorticity in time: the “width” term, �[νρ]

i j given in Eq. (A16);

and in space: the diffusion tensor, D[νρ]
i jk , given in Eq. (A17),

and the new source terms, S[νρ] given in Eq. (A18).

B. Vorticity in heavy-ion collisions

In this section we illustrate the vorticity field created in
the heavy-ion collision as modeled by the PHSD transport
code. We start with Au+Au collisions at

√
sNN = 7.7 GeV

and the impact parameter b = 7.5. In Fig. 12 we show (ωx, ωy)
components of the vorticity field in the x-y plane for various
z- slices and at various moments of time. The arrows show the
local direction of the vorticity field and magnitude is given
by color code. For time t = 5 fm/c we show slices for both
positive and negative values of z to illustrate the symmetry
the vorticity field under simultaneous replacements z → −z,
x → −x and ωx → −ωx. Taking this symmetry into account,
we will show only the positive-z slices on other plots of the
vorticity field. In Fig. 12 we see that at the moment of the
maximal overlap of nuclei (t = 5 fm/c) the maximum vortic-
ity lies in the central slice z = 0 and is almost homogeneously
oriented in the −y direction. The sign is related to the initial
relative position of colliding nuclei with respect to impact
parameter. With an increase of z the vorticity field becomes
weaker (smaller magnitude) and the field orientation gets de-
formed, building a hole at small x and y. At z ≈ 1–1.5 fm the
vorticity field takes the form of a deformed bublik. For larger
z this structure fades away. As time passes (see the frame
strip for 7 fm/c), the maximum of the vorticity shifts from
slice z = 0 to slices with z = 1 and 2 fm where two ringlike
structures are distinctly seen. At t = 11 fm/c the structure has
moved to z = 5–6 fm. At the same time the vorticity field in
the center at |z| <∼ 1 fm becomes very weak and disoriented.
Note that the same bublik exists symmetrically at negative
z and propagates in the −z direction. The vorticity field for
z >∼ 1 fm is oriented mainly clockwise and for z <∼ −1 fm
counterclockwise. Comparing the obtained results with Fig. 5,
it can be seen that the vorticity field has an ordered structure
around hot matter and reaches the largest value at the outer
boundary of the hot clusters.

In the outer layers the vorticity fields become weak (lilac
arrows) and disordered. We obtain this behavior because in
calculations of vorticities on the fireball border we formally
take into account also the cells where the energy density is
below the imposed minimal value εc = 0.05 GeV/fm3. The
collected collision statistics is high enough to obtain smooth
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t = 5fm/c

t = 7fm/c

t = 11fm/c

FIG. 12. Vorticity field (ωx, ωy) in the x-y plane at various z slices for Au+Au collisions at
√

sNN = 7.7 GeV with the impact parameter
b = 7.5 fm at times t = 5, 7, and 11 fm/c. All arrows are of equal length. The magnitude of the vorticity is indicated by the colored scale in
units c/fm. For t = 5 fm/c (the moment of the maximum overlap of colliding nuclei) we show both positive and negative z to visualized the
symmetry of the vorticity field. For later times only z � 0 are plotted.

nonfluctuating values of fluid velocities. As the result we
have vanishing vorticity on the fluid boundary ω|S = 0. The
cut in ε is applied after velocity gradients are evaluated and
only cells with ε > εc are shown. If we would first artificially
cut away the low-energy-density cells we would obtain large
velocity gradients on the boundary, which is defined by the
cutoff condition. In this case the boundary condition would
be (ω nS ) = 0, where nS is the local normal vector to the
boundary. Such an enhanced vorticity field on the boundary
will look like a vortex sheet/blanket around the fireball as seen
in Refs. [35,47].

Thus, we may conclude that within the PHSD code calcula-
tions we observe the formation of two (deformed) vortex rings
in heavy-ion collisions at

√
sNN = 7.7 GeV. Similarly, two

vortex rings were predicted Ref. [51] for collisions at higher
energy,

√
sNN = 39 GeV.

To illustrate the structure of the vortex rings seen in the
vorticity distribution in Fig. 12, we show in panel (a) of Fig. 13

the ωy component of vorticity as a function of x for y = 0 and
various z slices. The results are shown for t = 11 fm/c. At
this time the significant vorticity is located at z = 5 ± 1 fm,
as seen in Fig. 13(a), with a maximum at z � 5 fm and
x � 5 fm. The asymmetry of the ring thickness is clearly
visible. In panel (b) of Fig. 13 we show the minimum of ωy

as function of z for various times. One can see how the vortex
ring propagates in the z direction: for t = 5 fm/c the ring is at
z ≈ 0 fm, for t = 7 fm/c at z � 1.5 fm, and for t = 11 fm/c at
z � 5 fm. The ring thickness in the z direction increases with
time. The same quantities calculated for collisions at lower
energy

√
sNN = 4.5 GeV are presented in panels (c) and (d)

in Fig. 13. We see that the ring structure is more diffuse and
its evolution in the z direction looks more like diffusion of vor-
ticity to higher z while the peak at z � 1 remains but decreases
in height. The peak hight at 4.5 GeV is smaller than that at the
collision energy 7.7 GeV. For higher collision energies, see
panels (e) and (f) calculated for

√
sNN = 11.5 GeV, the ring
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FIG. 13. (a), (c), (e) The ωy component of the vorticity field as
function of x at y = 0 for various values of z. (b), (d), (f) Position
of the minimum of the ωy component as a function of z for various
times. Calculations are done for various collision energies:

√
sNN =

7.7 GeV shown on panels (a) and (b),
√

sNN = 4.5 GeV shown on
panels (c) and (d), and

√
sNN = 11.5 GeV shown on panels (e) and

(f). On all plots we apply the cut ε > 0.05 GeV/fm3.

is more pronounced and narrow and move moves fast in the z
directions, keeping its narrow structure.

It is interesting to look at the flow pattern created in the
collision from the point of view of the Lamb vector. We see in
Fig. 12 for t = 11 fm/c that for z � 5 ± 1 fm the vorticity is
mainly oriented as ω = ωφ[eT × ez], where ωφ > 0. Note that
on each plot in Fig. 5 the z axis is oriented towards the reader.
Using the main components of the velocity v � vT eT + vzez

we can estimate the direction of the Lamb vector

λω � ωφ (−vzeT + vT ez ). (50)

In Fig. 14 we depict the projection of the Lamb vector on
the x-y plane. The Lamb vector as expected [75] points to the
center of the vortex.

In Figs. 15 and 16 we show the vorticity field for the same
collisions as in Fig. 12 but for smaller impact parameters, b =
5.0 fm and 2.5 fm, respectively. With a decrease of the impact
parameter, the vortex rings become more symmetric and the
magnitude of the vorticity field increases.

FIG. 14. Lamb vector field (λωx , λωy ) in the x-y plane at various
z slices for Au+Au collisions at

√
sNN = 7.7 GeV with the impact

parameter b = 7.5 fm at time t = 11 fm/c. The arrows are of equal
length. The color scale is given in units c2/fm.

C. Measure of rotationality

Significant hyperon polarization in heavy-ion collisions
was discovered by the STAR Collaboration [7], and the

√
sNN -

averaged vorticity of the fluid created in the collision was
estimated to be of the order 〈|ω|〉exp ≈ 1022 s. That leads to
the conclusion that the collision created the fastest-spinning
fluid ever observed in nature [79]. In more natural units this
value would be equal to 〈|ω|〉exp ≈ 0.03 c/fm or in the energy
units 〈|ω|〉exp ≈ 6 MeV/h̄, that is nevertheless a typical tem-
perature of the matter in collisions, T >∼ 100 MeV; see Fig. 7.
The instantaneous magnitude of the vorticity could be much
larger in the course of a collision. So, for Au+Au collisions
at

√
sNN = 7.7 GeV at the impact parameter b = 7.5 fm it

reaches the value |ω| = 0.23 c/fm = 47 MeV/h̄ in the center
slice z = 0 at t = 5 fm/c, while at t = 7 fm/c the maximum
vorticity is 0.34 c/fm = 67 MeV/h̄ in the slices |z| = 1–2 fm.

To compare the vorticity values obtained in the PHSD cal-
culations with the experimental estimations, we calculate the
average vorticity of the fireball. For example, at t = 5 fm/c
and t = 7 fm/c we obtain |〈ωy〉| = 9.3 MeV/h̄ and |〈ωy〉| ≈
7.3 MeV/h̄, respectively. So, the averaged vorticity at times
t = 5–13 fm/c, corresponding to most of the detected � and
�̄ hyperons, is 6.1 MeV/h̄, which is close to the value 〈|ω|〉exp

quoted in Ref. [7].
However, the value of vorticity itself cannot be a basis for

conclusion about degree of rotationality of the medium. As
pointed out by Truesdell in [80,81] the magnitude of vorticity
ω as a dimensional quantity is an arbitrary quantity, being
dependent on the choice of the unit used. The measure of
rotationality, he argued, should indicate not the relative an-
gular speed but the rotational quality or degree. The trivial
limiting cases are easy to identify: if |ω| = 0 the motion is not
rotational; if |ω| �= 0 the motion is rotational. But the desired
measure, for instance, should have the same value for all rigid
rotations, which are qualitatively identical; i.e., it should be
constant in time and independent of the angular speed.

In [80] a convenient dimensionless measure of rotationality
was proposed; see also Sec. 55 in [81]. One starts with the
decomposition of ∂iv j = ξi j,+ + ξi j,− into symmetric and an-
tisymmetric tensors; see Eq. (29). The symmetric tensor ξi j,+
is the strain rate tensor and constitutes a measure of the rate at
which the squared element of arc length is changing. It van-
ishes if and only if the motion is locally and instantaneously
like the rigid body motion. The quantity ξ 2

+ = ξ
i j
+ ξi j,+, which
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t = 5fm/c

t = 7fm/c

t = 11fm/c

FIG. 15. The same as in Fig. 12 but for the impact parameter b = 5.0 fm.

is called the intensity of deformation and represents the total
amount of deformation. It is essentially positive and cannot
be zero unless every component of ξi j,+ vanishes. Reference
[80] suggests comparing the norms of antisymmetric and sym-
metric tensors ‖ξi j,−‖/‖ξi j,+‖. Then one defines the kinematic
vorticity number

Wk =
√

ξ
i j
− ξi j,−

ξ kl+ ξkl,+
= |ω|√

2ξ+
, (51)

where we used here that ξ
i j
− ξi j,− = ω2/2. For the pure rigid

rotation at a given point we have ξ+ = 0 and ω �= 0, what
corresponds to Wk = ∞, while an irrotational motion is char-
acterized by ω = 0 and ξ+ �= 0 and, consequently, Wk = 0.
Thus, all possible motions with the sole exception of rigid
translations are assigned a numerical degree of rotationality
on a scale from 0 to ∞, a rigid motion being the most rota-
tional type of motion possible. To distinguish between almost
irrotational motion, Wk � 1, and a strong-rotationality case
Wk � 1, Refs. [80,81] suggest taking the “dividing” value
Wk = W(div)

k = 1. Such a value of the kinematic vorticity
number corresponds to a generalized Poiseuille motion, and
a simple shearing motion belongs to this class.

The kinematic vorticity number is broadly used in hy-
drodynamics [82], geology [83], and meteorology [84] for
identification of vortices and their centers, where Wk would
be maximal.

In numerical calculations it is convenient to reduce the
scale of Wk variation to a finite interval, and replace Wk by
the quantity

Vk = 2

π
arctanWk, (52)

which takes the value Vk = 0 for the irrotational case and
Vk = 1 for the rigid rotation. The dividing value W(div)

k cor-
responds now to V(div)

k = 1
2 .

It is interesting to quantify the degree of rotationality of
the medium created in collisions using the kinematic vorticity
number. In Fig. 17 we plot the kinematic vorticity number
for the time t = 7 fm/c of the Au+Au collisions at

√
sNN =

7.7 GeV for three z slices at z = 1, 2, and 3 fm and the impact
parameters b = 2.5 and 7.5 fm, the vorticity fields for which
are explicitly shown in Fig. 12 for b = 2.5 fm and Fig. 16 for
b = 7.5 fm. For the chosen z slices, the vortex structure is well
developed, and the vorticity magnitudes reach maximal values
for each impact parameters. For b = 2.5 fm the maximum of
kinematic vorticity number forms the nice ring structure both
for z = 2 fm and for z = 3 fm, whereas for the latter slice
the vorticity ring in Fig. 16 is already less pronounced. The
maximum values of Vk reached in slices with z = 1, 2, and 3
fm are 0.14, 0.21, and 0.21, respectively. For impact parameter
b = 7.5, the rings are deformed into ellipses. The maximum
values of Vk in the same slices are higher, Vk (z = 1 fm) =
0.20, Vk (z = 2 fm) = 0.25, and Vk (z = 3 fm) = 0.23.
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t = 5fm/c

t = 7fm/c

t = 11fm/c

FIG. 16. The same as in Fig. 12 but for the impact parameter b = 2.5 fm.

In Fig. 18 we show the kinematic number distribution for
a later moment of time, t = 11 fm/c. We show here slices
with z = 4, 5, and 6 fm since the maximum of vorticity is
shifted now to slices with larger z; cf. Figs. 12 and 16. The
picture is qualitatively similar to that we see for t = 7 fm/c,
only the kinematic vorticity number reaches higher values:

FIG. 17. Kinematic vorticity number Vk [see Eqs. (51) and (52)]
for Au+Au collisions at

√
sNN = 7.7 GeV at t = 7 fm/c and the

impact factors b = 2.5 fm (upper row) and 7.5 fm (lower row).

we have Vk (z = 4 fm) = 0.14, Vk (z = 5 fm) = 0.24, and
Vk (z = 6 fm) = 0.29 for b = 2.5 fm, and Vk (z = 4 fm) =
0.20, Vk (z = 5 fm) = 0.31, and Vk (z = 6 fm) = 0.31 for
b = 7.5 fm.

The maximum values of the kinematic vorticity number
for various collision energies are illustrated in Fig. 19 as
functions of time for various impact parameters and z slices.
The common picture for all three energies is that max{Vk}
moves with time from slices with smaller z to those with larger

FIG. 18. The same as in Fig. 17 but for t = 11 fm/c.
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FIG. 19. Maximum kinematic vorticity number Vk as a func-
tion of time for various z slices for Au+Au collisions at energies√

sNN = 4.5, 7.7, and 11.5 GeV with impact parameters b = 2.5, 5.0,
and 7.5 fm.

z and increases in magnitude. The largest values of max{Vk}
are realized for largest z, except for collisions with

√
sNN =

4.5 GeV where for impact parameters b = 5.0 and 7.5 fm the
maxima correspond to z = 0 and smallest times. From Fig. 19
we conclude that for

√
sNN = 4.5 GeV max{Vk} < 0.35. For√

sNN = 7.7 GeV we have max{Vk} < 0.32 and for
√

sNN =
11.5 GeV we find max{Vk} < 0.38. The maxima correspond
to collisions with the impact parameter b = 7.5 fm

We see that the fireball medium created in the collisions in
the energy range 4.5–11.5 GeV has rather mediocre degree of
rationality, max{Vk} < V(div)

k = 1/2, which smaller than for
the Poiseuille flow and is close to the pure shear deformation
corresponding to just a flattening of fluid cells.

VII. HELICITY SEPARATION

The integral hydrodynamic helicity (43) was suggested in
Ref. [35] to be a source of a nonvanishing strange chiral
charge, which would be carried by the strange quarks and
antiquarks determining the finite average spin orientation of
� and � hyperons. Therefore, it is interesting to look at
the helicity field generated in heavy-ion collisions within the
PHSD transport approach.

Using Eqs. (22), (21), (23), and (24) for the velocity and
corresponding Eq. (31) for the vorticity, and dropping sub-
leading terms responsible for the axial symmetry violation,
δαT,as, we obtain the following expression for the helicity:

h = −αT
y

rT

[
(αT rT + δαT (rT , z))

∂x0(z)

∂z

+ x0(z)

(
∂δα‖
∂rT

z − ∂δαT

∂z
rT

)]
. (53)

We see that the main source of the helicity is the offset of the
Hubble expansion field of the velocity, i.e., terms ∝ x0(z) in
(24). The expression in the square brackets is axially symmet-
ric and the dependence on the azimuthal angle is determined
solely by the prefactor y. Hence, for y > 0 the helicity is
negative, whereas for y < 0 it is positive. This expectation

FIG. 20. Hydrodynamic helicity field (36) created in Au+Au at√
sNN = 7.7 GeV and the impact factor b = 7.5 fm at the moment

t = 11 fm/c for various values of z. The colore scale is in units of
c2/fm.

is confirmed by our calculation shown in Fig. 20, where we
can see the clear separation of the helicity. This separation is
stronger, the smaller the z value is. So for slices with z � 7 fm
it is almost washed out. In Fig. 21 we present the z-integrated
helicity field, which shows the sharp separation of the regions
of positive and negative helicity. A similar pattern was found
in Ref. [50] for heavy-ion collisions at LHC energies.

The offset of the transversal velocity field x0(z) determines
not only the hydrodynamic helicity field (53) but also the
directed hydrodynamic flow (25). Thus, one can expect that
the helicity field will change sign at the energy where the
directed flow for the fluid v

(hydro)
1 changes sign.

Although, in the course of the collision, large parts of the
fireball develop a nonvanishing helicity, the integral helicity
of the whole fireball remains strictly zero, since no nontrivial
topological structures are expected to develop in the course of
heavy-ion collisions. At least they cannot be formed within
the transport code operating on a finite mesh. Figures 20
and 21 support this expectation. To illustrate the dynamical
evolution of local helicity fields of various signs, Ref. [35]
suggested plotting separately the integral helicity from the
areas with positive and negative values of vy. The results
obtained within our approach are shown in Fig. 22. Thin lines
show the integral helicity for regions with vy < 0 as a function
of time for various impact parameters and collision energies,
and thick lines show it for regions with vy > 0. Thin and thick
lines are specular symmetric with respect to the x axis, so that
their sum is zero. For

√
sNN = 7.7 GeV, the magnitudes of

the integral helicity in both regions increase with time over

FIG. 21. Hydrodynamic helicity field integrated over z for
Au+Au collisions at

√
sNN = 7.7 GeV, with the impact factor b =

7.5 fm at t = 11 fm/c. The color scale is in units of c2.
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FIG. 22. Evolution of the hydrodynamic helicity integrated over the regions with vy < 0 (thin lines) and vy > 0 (thick lines) for Au+Au
collision at energies

√
sNN = 4.5, 7.7, and 11.5 GeV and different impact parameters. The cut ε > 0.05 GeV/fm3 is applied.

the first 9–13 fm/c (depending on the impact parameters)
and drop then to zero at 27 fm/c; see the solid thin and
thick lines. The growth time becomes shorter for collisions
with the larger impact parameter. The maximum value of the
integrated vorticity depends also on the impact parameter, and
is maximal for b � 5 fm with H (vy < 0) = −H (vy > 0) �
4.7 c2fm2. This behavior can be confronted against the results
of Ref. [35] obtained with QGSM [39–41]; see Fig. 3 there.
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FIG. 23. The rapidity spectrum of � and �̄ for different signs of
hydrodynamic helicity density h > 0 (h < 0) and pT -spectrum cuts
in Au+Au collisions at

√
sNN = 7.7 GeV with the centrality range

20–50%.

The time interval shown there is short, so that only those part
are visible where the integral helicities are increasing.

For the smaller collision energy
√

sNN = 4.5 GeV (see
dashed lines in Fig. 22), the increase times of |H (vy < 0)| and
|H (vy > 0)| becomes shorter, the maximal values are smaller,
and the H decay time longer than for collisions with

√
sNN =

7.7 GeV. So, the maxima of |H | are reached at earlier times.
The maximal value is H (vy < 0, b � 5) � 6.2 c2fm2. For
larger collision energy

√
sNN = 11.5 GeV, the overall evolu-

tion time of H is shorter but the maximum value is reached
at later times than for collisions with

√
sNN = 7.7 GeV. The

maximum is |H (vy < 0, b � 5)| � 3.5 c2fm2. Thus the maxi-
mum helicity increases with a decrease of collision energy.

The question remains if one can get some experimental
access to the fireball regions with various helicities. From
the hydrodynamics point of view, particles from the fluid
cells involved in the transversal Hubble-like motion will
be predominantly emitted in the positive y direction, i.e.,
py > 0 if they originate from the fluids moving in the positive
y directions and therefore having negative helicity. Oppo-
sitely, particles with py < 0 will more probably stem from
fluids with positive helicity. In Fig. 23 we illustrate this
by direct calculations. We show rapidity distributions of �

(upper plane) and � (lower plane) selected by the condi-
tion py > 0. Solid lines corresponding to the emission from
fluids with h < 0 lie above the dotted lines corresponding
to h > 0. The relative strength of the enhancement is about
20% percent for � and 40% for �. The enhancement gets
reduced when one imposes cuts in the hyperon transverse
momentum pT ; see the difference between the dashed and
short-dotted lines.

Thus we conclude that selecting hyperons with positive and
negative projections of the momentum, py, one can enhance
the polarization signal of hyperons if it is related to the axial
vortex effect as proposed in Refs. [34] and implemented in
Refs. [35,38,45,47].

VIII. CONCLUSIONS

We applied the PHSD transport code [52,53] to the anal-
ysis of the formation and evolution of the vorticity and
hydrodynamic helicity fields in Au+Au collisions at NICA
energies

√
sNN = 4.5–11.5 GeV. First, in Sec. II we argued
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that it is necessary to separate properly the spectator nucleons,
which should not be involved in the determinations of the
hydrodynamic parameters of the fluid as they experienced no
interaction and cannot be equilibrated with the medium. The
spectators are selected as the particles whose rapidities do
not differ from the beam rapidity by more than �yb = 0.27,
the rapidity uncertainty due to the Fermi motion of a nu-
cleon inside the colliding nucleus. Applying this criterion, we
studied the transfer of the angular momentum to the fireball
created in the collision. It lasts for about 10 fm/c and the
maximum fraction of the angular momentum is transferred
in collisions with impact parameter b � 5 fm, independently
of the energy. We showed that the collisions with the highest
transferred angular momentum can be selected by choosing
a sufficiently narrow centrality window, C = 10 ± 5%; see
Fig. 4.

The method of fluidization of particle distributions gen-
erated by the transport code is presented Sec. III. We used
the cloud-in-cell method with a parabolic smearing function,
with the help of which we identify contributions of every
particle to the energy-momentum tensor and the baryon cur-
rent in grid points. Then, we smoothly interpolated them to
any point of the fluid from the neighboring 27 cells. The
hydrodynamic velocity was determined as the velocity of the
energy transfer (the Landau frame). The resulting temperature
and baryon density were presented in Sec. IV, and velocity
fields were presented in Sec. V. The velocity field has, to a
large extent, the Hubble-like structure in transverse and longi-
tudinal directions. The non-Hubble corrections are relatively
small, but these corrections are the source of hydrodynamic
vorticity. Parameters of the Hubble-like expansion were deter-
mined and their time evolutions for various collision energies
were investigated. Evolution of transverse and longitudinal
parameters for collisions at

√
sNN = 4.5 GeV is found to be

quite different from that for higher collision energies, 7.7 and
11.5 GeV.

The vorticity field is studied in Sec. VI. We demonstrated
that in collisions two asymmetric vortex rings are formed,
which are moving along the z axis in opposite directions.
For smaller impact parameter the rings become more sym-
metric. For small energy, 4.5 GeV, the ring is more diffuse,
and becomes more pronounced at higher energies, and the
vorticity magnitude increases also. Also, we demonstrated
that the vortex ring center can be also identified with the help
of the Lamb vector distribution.

In Sec. VI C, the degree of the rotationality of the fluid is
evaluated with the help of the hydrodynamic invariant pro-
posed by Truesdell in [80]: the kinematic vorticity number.
Variation of the spatial distribution of this number over the
collision time (see Figs. 17 and 18) indicates that the degree
of vorticity is rather moderate and does not reach even the ro-
tationality of the Poiseuille flow. The z and time dependences
of the maximum vorticity number shown in Fig. 19 confirm
the structure of the vortex rings seen in the vorticity field.

In Sec. VII we study the hydrodynamic helicity distribu-
tion. We support the conclusion drawn in Refs. [35,47,50]
about the separation of the positive and negative helicity fields
on different side of the reaction plane (the xz plane), which can
be selected according to the sign of the y component of the

fluid velocity. We showed that selecting particles with the par-
ticular sign of the y projection of the momentum, say py > 0,
one would detect more particles from the area with negative
helicity than from those with positive helicity. Thereby one
could enhance a signal of the axial vortical effect.

Finally we conclude that the proposed scheme of the
spectator separation, fluidization, and the determination of
thermodynamic variables provides a smooth weakly fluctu-
ating velocity field which can be used for calculations of
hyperon polarization in heavy-ion collisions.
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APPENDIX: EQUATION FOR THE VORTICITY

The evolution of the nonrelativistic fluid is described by the
set of two equations. One is the continuity (Euler) equation

∂ρ

∂t
+ (v · ∇)ρ + ρ θ = 0, (A1)

where v is the velocity field and ρ stands for the matter
density, ρ = ε/c2 with ε being the energy density, and θ =
divv is the dilation. The second equation is the Navier-Stokes
equation

a = ∂v

∂t
+ (v · ∇)v = −∇p

ρ
+ τ, (A2)

where the acceleration of the fluid is determined by the gradi-
ent of the pressure, p, and the viscosity force

(ρ τ)i = ∂ j
(
η(∂iv j + ∂ jvi ) + δi j

(
ζ − 2

3η
)
θ
)
. (A3)

Here η and ζ are the shear and bulk viscosities, respectively.
Using the relations

∇θ = �v + rotω, (A4)

(∂ jη)(∂iv j ) = ∂i(v j (∂ jη)) − v j∂ j∂iη, (A5)

we can write the viscous force in the vector form

ρτ = (
4
3η + ζ

)
�v + (

1
3η + ζ

)
rotω

+ ∇(v · ∇η) − (v · ∇)∇η + ((∇η) · ∇)v − θ∇η

+ θ ∇(
1
3η + ζ

)
. (A6)

Using the relation

∇(v · ∇η) = (v · ∇)∇η + ((∇η) · ∇)v + [(∇η) × ω] (A7)

we can cast

ρτ = (
4
3η + ζ

)
�v + (

1
3η + ζ

)
rotω + [(∇η) × ω]

+ 2[(∇η) · ∇]v − θ∇η + θ ∇(
1
3η + ζ

)
. (A8)
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To eliminate ρ on the left-hand side of this equation one
introduces kinematic viscosities

ν = η

ρ
, ν̄ = 1

ρ

(
1

3
η + ζ

)
(A9)

and obtains

τ = (ν + ν̄)�v + ν̄rotω + τνρ. (A10)

Here we separated terms depending on the gradients of kinetic
viscosities and density,

τνρ = θ (ν̄ − ν)∇ ln[(ν̄ − ν)ρ] + ν{[∇ ln(νρ)] × ω}
+ 2ν{[∇ ln(νρ)] · ∇}v. (A11)

Finally, using the relation
1
2∇v2 = (v · ∇)v + [v × ω], (A12)

the Navier-Stokes equation (A2) can be written in the follow-
ing from:

∂v

∂t
+ [ω × v] = −∇

(
p

ρ
+ v2

2

)
+ (ν + ν̄)�v

+ ν̄rotω − p

ρ2
∇ρ + τνρ. (A13)

For the case of incompressible fluid, ρ = const and divv = 0,
this equation turns into Eq. (44), taking into account Eq. (A4).

To obtain the equation for the viscosity it is convenient
to use Eq. (A13). Taking circulation from both sides of this

equation, we find

∂ω

∂t
+ rotλω − ν�ω = + 1

ρ2
[(∇ρ) × (∇p)] + f νρ,

f νρ = rotτνρ. (A14)

Without two terms on the right-hand side which disappear
in the case of barotropic fluid and the constant (density and
temperature independent) kinematic viscosities, we would re-
cover the Helmholtz equation (47) for the vorticity. The new
term on the right-hand side induced by density and viscosity
gradients can be written in the following form:

( f νρ )i = −ν�
[νρ]
i j ω j − νD[νρ]

i jk ∇ jωk + S[νρ]
i , (A15)

where

�
[νρ]
i j = [∇i ln(νρ)](∇ j ln ν) + ∇ j∇i ln(νρ)

− δi j ({(∇ ln ν) · [∇ ln(νρ)]}+ � ln(νρ)g), (A16)

D[νρ]
i jk = −δik∇ j ln(νρ) + δi j∇k ln ν − δik∇ j ln ν, (A17)

S[νρ] = 2[(∇ν) × ∇θ ] + (ν̄ − ν)[(∇θ ) × ∇ ln ρ]

+ θ [(∇(ν̄+ ν)) × ∇ ln ρ] + 2[(∇ν) × v]� ln(νρ)

− 2[(∇ν)× (v · ∇)]∇ ln(νρ)

− 2ν[∇× (v · ∇)]∇ ln(νρ). (A18)
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