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Statistical analysis of initial-state and final-state response in heavy-ion collisions
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We develop a general decomposition of an ensemble of initial density profiles in terms of an average state and a
basis of modes that represent the event-by-event fluctuations of the initial state. The basis is determined such that
the probability distributions of the amplitudes of different modes are uncorrelated. Based on this decomposition,
we quantify the different types and probabilities of event-by-event fluctuations in Glauber and Saturation models
and investigate how the various modes affect different characteristics of the initial state. We perform simulations
of the dynamical evolution with KøMPøST and MUSIC to investigate the impact of the modes on final-state
observables and their correlations.
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I. INTRODUCTION

Experiments with relativistic heavy-ion collisions at facil-
ities like the Relativistic Heavy Ion Collider and the Large
Hadron Collider provide the opportunity to study deconfined
QCD matter which is dynamically evolving in an out-of-
equilibrium state. Over the last years it has become emergent
that the bulk dynamics of the evolving QCD matter can be
described by relativistic dissipative fluid dynamics [1–3].

Evidently, the description of the Quark Gluon Plasma
(QGP) as a relativistic viscous fluid requires the knowledge of
an initial condition for fluid-dynamical fields, as well as the
QCD equation of state and transport coefficients to close the
system of equations. While the QCD equation of state can be
obtained from lattice QCD simulations [4–7], a first-principles
calculation of QCD transport coefficients represents an out-
standing theoretical challenge, as does the calculation of the
initial energy deposition in high-energy heavy-ion collisions.

Generally, this so-called initial state in heavy-ion collisions
is obtained from theoretical models [8–15], which ultimately
provide profiles of the hydrodynamic fields that fluctuate on
an event-by-event basis, with a varying degree of sophisti-
cation and rooting in the underlying theory of QCD. During
the early pre-equilibrium stage, where the system approaches
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local thermal equilibrium to assure the subsequent applica-
bility of fluid dynamics, these initial-state fluctuations get
modified, which despite the short duration of this period of
�1 fm/c can have an impact on the observables in the final
state [16–18]. Subsequently, over the course of the nonlinear
hydrodynamic evolution, the fluctuations in the initial state
can again either be washed out or intensified [19,20], before
eventually leaving an experimentally observable imprint on
the final-state observables.

Since neither the QCD transport properties nor the initial
state can be directly inferred from experimental observations,
it has thus become customary to simultaneously extract prop-
erties of the initial state and QCD transport properties from
statistical model against data comparisons [21–27]. However,
it is intuitively clear and empirically proven, that in such
global analyses, the different aspects are strongly correlated
[22,23] and different assumptions about the properties of the
initial state can lead to different extractions of QCD transport
properties (see, e.g., Ref. [28] for a recent example).

By now there exist a sizable number of different initial-
state models, which are based on different underlying degrees
of freedom, ranging from models derived within effective
theories of high-energy QCD, such as IP-Glasma [12,29]
or EKRT [30,31], to purely parametric models, such as the
Monte Carlo Glauber model [8] or TRENTo [14]. How-
ever, despite this plethora of choice, up to now there exists
no systematic framework for the general characterization of
these models. While for some specific observables, such
as, e.g., the flow harmonics vn [32,33], characterizations of
the initial state or initial-state estimators of these quantities,
such as the eccentricities εn have been empirically derived
[34–41], it is often times not clear what aspect of a partic-
ular model is favored or disfavored by certain experimental
observations [42].

Beyond such event-by-event hydrodynamic simulations of
final-state observables from fluctuating initial states, some
effort has been invested to describe the initial state in terms of
fluctuations around an average profile [43–49], which allows
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us to scrutinize the effects of different kinds of initial-state
fluctuations on final-state observables [50]. While this mode-
by-mode approach can also reduce the computational cost of
the analysis, in practice it is typically limited to the linear
response and has not been systematically tested against event-
by-event simulations.

The central objective of this paper is to develop an optimal
decomposition of the initial state into fluctuations around an
average background, which can serve as a systematic frame-
work for the characterization of the initial-state and final-state
response in high-energy heavy-ion collisions. By performing a
diagonalization of the covariance matrix of different fluctuat-
ing modes, this framework serves to quantify the structure and
statistical importance of different types of fluctuations. Since
the construction of this basis is in a certain sense optimized
for the mode-by-mode approach, it also allows us to calculate
the linear and quadratic response of initial- and final-state
observables. We will exemplify the use of this framework
with the example of two different initial-state models—a
Glauber model and a Saturation model—which further gives
us the possibility to study their differences within our frame-
work. By performing state-of-the-art dynamical simulations in
KøMPøST [51] and MUSIC [52–54], we further investigate the
impact of the mode-by-mode linear and quadratic response
on final-state observables, and further compare the results
of the mode-by-mode approach to the more commonly used
event-by-event simulations.

This paper is organized as follows: In Sec. II we introduce
the theoretical framework of the density-matrix formalism,
as well as the two models used in the following. Then we
present the results of the statistical characterization of the
background and the fluctuating modes and possible char-
acterization schemes thereof. In Sec. III we introduce the
(non-)linear response theory for the fluctuation modes and
our simulation setup for the dynamical system evolution. We
present our results for the linear and quadratic mode-by-mode
response, in particular the responses of the flow coefficients
to the initial-state eccentricities. In Sec. IV we turn to the
variances and correlations of different characteristics. We
introduce a prediction of joint probability distributions for
observables using a Gaussian statistics ansatz within the
mode-by-mode approach and compare it to the event-by-event
results. In Sec. V we draw our conclusions.

II. STATISTICAL CHARACTERIZATION
OF THE INITIAL STATE

Below we introduce our decomposition of initial states in
terms of an average state and fluctuation modes, and we apply
the decomposition to initial states from two different models.
The construction of a basis of uncorrelated fluctuation modes
about an average event, starting from a random sample of
events, is explained in Sec. II A. We then describe in Sec. II B
the two initial-state models that will be used as illustrations
in this paper, namely, a Monte Carlo Glauber model and a
saturation model. For both models and collisions at fixed
parameter, namely, either b = 0 or b = 9 fm, we present in
Sec. II C the respective average states and fluctuation modes.
A few global characteristics of the latter are then introduced

and discussed (Sec. II D), first in terms of eccentricities and
angular-integrated radial profiles, then with a Bessel–Fourier
decomposition.

A. Mode decomposition of the initial state

The starting point of our analysis is a set of i = 1, . . . , Nev

configurations {�(i)} from a given initial-state model, that
includes fluctuations on an event-by-event basis. The config-
urations �(i) may for instance be energy or entropy density
profiles, i.e., a function of the position x, corresponding either
to events at a fixed impact parameter b or within a certain
centrality class. We show that one can introduce an average
configuration �̄ and appropriate set of modes {�l} such that
every configuration �(i) can be written as the sum of �̄ and a
linear combination of the modes:

�(i)(x) = �̄(x) +
∑

l

c(i)
l �l (x), (1)

with expansion coefficients {c(i)
l } that are realizations of cen-

tered, uncorrelated random variables with unit variance, i.e.,

〈cl〉 = 0, (2)

〈cl cl ′ 〉 = δll ′ , (3)

where 〈· · · 〉 denotes a statistical average over events. For
brevity we shall omit the position variable x in the remainder
of this section. We assume for simplicity that the {�(i)} are
real-valued, as holds for thermodynamical densities.

The “background” or “average event” is most naturally
defined by averaging the individual configurations {�(i)} over
the Nev events, i.e.,

�̄ ≡ 1

Nev

Nev∑
i=1

�(i). (4)

The “events” {�(i)} can be viewed as elements of a Hilbert
space of functions of x1 on which we consider an arbitrary
orthonormal basis {χ̃l}. In principle, the Hilbert space is
infinite-dimensional, but in practice we shall discretize the
energy density on a finite grid, in which case the Hilbert
space is finite-dimensional. In that case, we consider the trivial
basis of grid points, that is χ̃l (x) = δl,x, with the standard
inner product

∑
x f (x)g(x). Each event, or more precisely its

deviation from the average event, can be decomposed over
that basis:

�(i) = �̄ +
∑

l

c̃(i)
l χ̃l . (5)

Clearly, the expansion coefficients obey

1

Nev

Nev∑
i=1

c̃(i)
l = 0. (6)

If we now view the events {�(i)} as equiprobable states,
then for every l the coefficients {c̃(i)

l } can be interpreted as

1The inner product is the usual one for square-integrable functions,
namely, their overlap integral over the whole space.
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realizations of a random variable c̃l , with 〈c̃l〉 = 0 thanks
to Eq. (6). To those equiprobable states one can associate a
density matrix

1

Nev

∑
i

�(i)�(i)T, (7)

which according to Eqs. (5) and (6) equals

1

Nev

∑
i

�(i)�(i)T = �̄�̄T +
∑
l,l ′

〈c̃l c̃l ′ 〉χ̃l χ̃
T
l ′ . (8)

To obtain a density matrix ρ reflecting solely the fluctuations
about the average event, we consider

ρ ≡ 1

Nev

∑
i

�(i)�(i)T − �̄�̄T =
∑
l,l ′

〈c̃l c̃l ′ 〉χ̃l χ̃
T
l ′ . (9)

Next, we diagonalize the density matrix

ρ�̃l = λl�̃l (10)

and sort the (orthonormal) basis vectors {�̃l} according to the
magnitude of their eigenvalues λl . The latter quantifies the
relative weight of the contribution of �̃l to the Nev random
events. The spectral decomposition of the density matrix thus
reads

ρ =
∑

l

λl�̃l�̃
T
l . (11)

Comparing Eqs. (9) and (11), we see that choosing the basis of
eigenvectors {�̃l} of ρ as arbitrary basis {χ̃l} in decomposition
(5), the random variables defined by the expansion coefficients
obey

〈c̃l c̃l ′ 〉 = λlδll ′ (12)

for all l and l ′, in addition to the property 〈c̃l〉 = 0 mentioned
above.

As final step, we rescale each eigenvector of ρ by a factor
determined by the associated eigenvalue:

�l ≡
√

λl�̃l , (13)

such that the “modes” {�l} form an orthogonal basis but are
not uniformly normalized to unity. Physically they represent
the fluctuation modes contributing to initial-state configura-
tions, and the normalization

√
λl measures by how much �̃l

typically contributes to a configuration. Redefining in parallel
the expansion coefficients as

cl ≡ c̃l√
λl

, (14)

so that the decomposition (5) of the ith event takes the form
(1), the property 〈c̃l〉 = 0 becomes at once Eq. (2), while
relation (12) yields Eq. (3). Thus we have attained our goal.

We note that, in practice, one can directly process a set of
“events”—in the following energy density profiles—to com-
pute the average state (4) and the density matrix via Eqs. (4)
and (9). Subsequently, the density matrix is diagonalized,
from where one obtains the modes {�l} and the eigenvalues
λl . We further note that the average event is not part of the
basis of modes, which means that �̄ can be decomposed over
this basis if needed.

In the present paper we only investigate energy den-
sity profiles in the transverse plane to reduce the numerical
complexity. It is a straightforward procedure to extend the
decomposition method to a third spatial dimension just by
introducing an additional index in the numerical computation
of the average state and the density matrix for the longitudinal
direction. However, this increases substantially the amount
of computing power required. The current derivation of our
decomposition method includes a single scalar field density
for the initial state. From a purely hydrodynamic point of
view, one could also consider initial conditions involving the
entire energy-momentum tensor in the same manner as a
third dimension by introducing more indices in the numerical
computation for the different tensor entries. Any nontrivial
rotational properties of the latter quantities do not require
modifications of the decomposition because they emerge nat-
urally in the procedure.

B. Models

While the mode decomposition in Eqs. (1)–(3) is com-
pletely general, we now apply it to the study of profiles of the
initial energy density in the transverse plane of a heavy-ion
collision. We illustrate this at the example of two different
models for the initial state of Pb-Pb collisions at

√
sNN = 5.02

TeV, namely, a Glauber model and a saturation model, which
we now briefly introduce.

Both models rely on a Monte Carlo (MC) sampling of
the Pb nuclei from a spherically symmetric Woods–Saxon
distribution [55] with half-density radius R = 6.62 fm and
diffusivity a = 0.546 fm. The two nuclei generated for one
Pb-Pb event are then shifted by the impact parameter of the
collisions, which is in all our simulations oriented along the x
axis and has a fixed value, mostly either b = 0 or b = 9 fm.
The center of each nucleus is defined by the center of mass of
the resulting nucleon configuration. In this exploratory study
we consider fixed impact parameters to study the effects of
a rotationally symmetric average state and one with broken
rotational symmetry. It is also straightforward to apply the
same procedure on centrality-selected events.

With these MC models we produce two-dimensional
energy-density profiles e(x) that are suitable as initialization
for longitudinally boost invariant dynamics as will be pre-
sented in Sec. III. For the present exploratory study we did
not try to optimize the choice of parameters of the models
such that they yield the same value for a given quantity under
identical conditions, e.g., the same average total energy or
multiplicity in collisions at b = 0.

1. Glauber model

We use a MC Glauber model in which we sample the
positions of nucleons. To mimic their Fermi repulsion, we
implemented a minimum nucleon separation of 0.4 fm.

To generate the energy density profiles in the overlap re-
gion of the two sampled Pb nuclei, we compute the local
number Npart (x) of participants and the local number Ncoll(x)
of binary collisions. For the collision between two nucleons
we use a geometric criterion, namely, the distance between
their transverse positions has to be less than (σ NN

inel/π )1/2.
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Since in this paper we only consider nuclear collisions at√
sNN = 5.02 TeV, we take σ NN

inel = 67.6 mb for the inelastic
nucleon-nucleon cross section.

The values of the numbers of participants and binary col-
lisions are stored on a two-dimensional grid with a spacing
of 0.1 fm. For Npart (x) we use the grid points closest to the
respective positions of the nucleon centers, while for Ncoll(x)
the grid point closest to the halfway point between the two
nucleons is used. In a second step, the initial energy density
profile is assumed to be given by a linear combination of
contributions from soft processes, represented by Npart (x), and
hard processes, represented by Ncoll(x) [56]:

ed (x) ∝ (1 − α)
Npart (x)

2
+ αNcoll(x), (15)

with a fraction from binary scatterings α = 0.2. To obtain a
smooth profile, we redistribute the energy density ed at each
grid point (xi, y j ) in its vicinity using a Gaussian smearing
∝e[(x−xi )2+(y−y j )2]/2σ 2

with width σ = 0.4 fm [57]. The overall
normalization factor (1246 GeV/fm2) of the energy density
in Eq. (15) was roughly matched to obtain the charged hadron
multiplicity at midrapidity for central events. This gives us
our profile e(x), which we identify with the energy density at
midrapidity

e(x) ≡ dE

τ0d2xdy

∣∣∣∣
y=0

, (16)

where τ0 is the initialization time of the system, which later on
in Sec. III will be the starting time of the KøMPøST evolution,
and y denotes the spatial rapidity.

2. Saturation model

The second model that we consider for the initial state
is based on the color glass condensate (CGC) effective field
theory for QCD at high energies [58,59]. To compute the
initial energy deposition in the collision between nuclei A and
B, we start from the kT factorization formula [60,61]

dNg

d2xd2PdY dy

= g2Nc

4π5P2
(
N2

c − 1
)δ(Y − y)

×
∫

d2k

(2π )2 �A

(
x + b

2
, k
)

�B

(
x − b

2
, P − k

)
(17)

for the initial transverse momentum P spectrum of gluons
produced per unit rapidity Y at transverse position x. Here
g is the Yang–Mills coupling, Nc = 3 the number of colors, b
is the impact parameter of the nucleus-nucleus collision, and
�A/B(x, k) the unintegrated gluon distribution of nucleus A
or B. Within the Golec-Biernat and Wüsthoff (GBW) model
[62], the latter is parametrized as

�A/B(x, k) = 4π2 N2
c − 1

g2Nc

k2

Q2
s,A/B

e−k2/Q2
s,A/B , (18)

where Q2
s,A/B = Q2

s,A/B(x, x) is the (adjoint) saturation scale
[63] for the nucleus, which depends on the transverse position

x and the longitudinal momentum fraction x ≡ |P|e±Y /
√

sNN .
From Eqs. (17) and (18) we can analytically derive the gluon
spectrum within the GBW model and compute the initial
transverse energy density per unit rapidity in a heavy-ion
collision via

[e(x)τ ]0 =
∫

dY
∫

d2P|P| dNg

d2xd2PdY dy
. (19)

By assuming that the energy density is dominated by |P| 	
Qs,A/B, i.e.,

x = Qs,A/B(x, x)e±Y

√
sNN

, (20)

the integrals in the GBW model can be evaluated analytically
and yield

[e(x)τ ]0 = N2
c − 1

4g2Nc
√

π

Q2
s,AQ2

s,B(
Q2

s,A + Q2
s,B

)5/2

× [
2Q4

s,A + 7Q2
s,AQ2

s,B + 2Q4
s,B

]
. (21)

We can then compute the energy density at each point in the
transverse plane from the saturation scales of the nuclei at the
given position.

We parametrize the latter as

Q2
s,A/B(x, x) = Q2

s,p(x)σ0TA/B(x), (22)

where σ0TA/B(x) effectively counts the number of nucleons at
transverse position x, with TA/B(x) the nuclear thickness func-
tion and σ0 = 2πBG where the nucleon size BG = 4 GeV−2 is
determined from fits [64,65] to HERA data. For the thickness
function we use a MC Glauber sampling of nucleon positions
xi inside each nucleus and summing over all nucleons we
compute

TA/B(x) =
∑

i∈A/B

Tp(x − xi ), (23)

with a Gaussian proton thickness function Tp(x) [66]:

Tp(x) = 1

2πBG
e−x2/2BG . (24)

For the average saturation scale Q2
s,p(x) of the proton in

Eq. (22), we use

Q2
s,p(x) = Q2

s,0x−λ(1 − x)δ, (25)

with Q2
s,0 = 0.63 GeV2, λ = 0.36 and δ = 1. We solve

Eqs. (20) and (22) self-consistently in the limit x � 1, yield-
ing

x =
(

Q2
s,0σ0TA/B(x)e±2Y

sNN

) 1
2+λ

, (26)

which can then be inserted in Eq. (22) to obtain the saturation
scale of the respective nucleus, and thereby the initial-state
energy density in Eq. (21). Since the energy density in Eq. (21)
is computed at leading order, we allow for an additional
rescaling of the energy density of order one to reproduce the
charged hadron multiplicity at midrapidity in central events.
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FIG. 1. Energy density profiles of the average event �̄ for different impact parameters (from left to right: b = 0, 3, 6, 9 fm) in the Glauber
(top) and Saturation (bottom) models.

C. Mode decomposition for the Glauber and Saturation models

To apply the mode decomposition introduced in Sec. II A to
energy density profiles obtained within the models described
in Sec. II B, we generated for each model and for each impact-
parameter value Nev = 221 random profiles. This large number
of “events” allows us to reduce statistical uncertainties and
also to better assess the possible degeneracy between modes
with closely lying eigenvalues.

From each set of random events we computed the cor-
responding average state �̄ [Eq. (4)] and density matrix ρ

[Eq. (9)]. To decompose the latter on a finite basis, we in-
troduce a new orthogonal spatial grid with N2

s = 128 × 128
sites with a spacing of 0.19 (0.21) fm for the Glauber (satu-
ration model).2 The density matrix ρ is then constructed on
the trivial orthonormal basis whose N2

s elements have a unit
weight localized at a single grid site and vanish elsewhere,
that is χ̃l = δl,x. Diagonalizing this (N2

s × N2
s )-dimensional

representation of ρ is the most time-intensive step in the
calculation of the modes {�l}, which are thereby determined
together with their respective eigenvalues {λl}.

In Fig. 1 we show energy density profiles of the average
event �̄, Eq. (4), computed for both models at four different
values of the impact parameter. We emphasize that in our
study the impact parameter is always oriented along the x
direction. Alternatively, one could let the orientation vary
randomly on an event-by-event basis, such that the average
state would always have an azimuthal rotation symmetry.

2Due to the high computational demand for the generation of the
profiles, especially for diagonalizing the density matrix, we decided
to coarse grain the resolution of the Glauber model using a bilinear
interpolation, and we set the resolution of the saturation model ac-
cordingly.

By fixing the direction of the impact parameter, the leading
contributions to (anisotropic) flow observables are captured
by the average state, such that the fluctuations on top of this
state are small in size and perturbation theory for observables
can be applied without the need to go to high orders in the
expansion. Conversely, in an expansion around an azimuthally
symmetric average event for collisions at nonzero impact pa-
rameter, the large elliptic deformation of the initial profiles
has to be entirely captured by the fluctuation modes, whose
relative contribution to the total energy density of each in-
dividual event is thus much more important. Accordingly, a
decomposition around a rotationally symmetric average state
would complicate the perturbation theory of the observables
introduced later on. Here and in later figures, the coordinates
are given in units of the radius of the Pb nucleus used for
nucleon sampling, i.e., R = 6.62 fm. As was to be expected,
these profiles are azimuthally symmetric at b = 0 and become
more and more elliptic with increasing b. In fact, the average
event seems to be more elliptic in the saturation model than
in the Glauber model, which will be confirmed hereafter. The
energy density at the center takes larger values in the Glauber
model, yet this is not really significant since the parameters of
the two models were not calibrated so as to yield equal results
for a global quantity like the total energy of �̄—accordingly,
when we compare the radial profiles in Sec. II D below, we
rescale the average events by their respective total energies.

Interestingly, the average event �̄ in the MC Glauber
model at a given impact parameter is almost identical to the
energy density profile given by an optical Glauber model with
the same scaling with Npart and Ncoll and the same parameters.
A qualitative check done by plotting the two densities on
top of each other reveals only small differences in the outer
regions of the profile. This was confirmed more quantitatively
by a Bessel–Fourier expansion of the densities, which will be
described in Sec. II D 2 in further detail.
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FIG. 2. Relative frequency of the expansion coefficients cl (histograms) computed from 8192 events in the Glauber model at b = 0 (left)
and b = 9 fm (right), compared with a standard Gaussian distribution (full black line).

Before we present the fluctuation modes and their eigenval-
ues, let us discuss the expansion coefficients {cl}. We picked
8192 random events among the Nev used to determine the aver-
age event and the modes, and we decomposed them according
to Eq. (1). For each value of l � 0, which labels the modes
in order of decreasing eigenvalue λl , we thus obtained 8192
values of the expansion coefficients cl . In Fig. 2 we show
relative frequency histograms for the coefficients cl of the 15
modes (0 � l � 14) with the largest eigenvalues and of a few
higher modes (l ∈ {200, 201, 202}), computed for the Glauber
model at impact parameters b = 0 (left panel) and b = 9 fm
(right).3 We also display a Gaussian distribution with unit
variance for comparison.

At vanishing impact parameter, the probability distribu-
tions p(cl ) of all modes, irrespective of l , are very close
to being Gaussian. Indeed, the residual difference between
the relative frequencies and the standard normal distribution
is at most about 0.05 in absolute value. At b = 9 fm, the
expansion coefficients cl are still almost Gaussian-distributed,
although the deviations are larger than at b = 0, with residual
differences ranging up to 0.1 for the shown modes. Some
distributions, as, e.g., p(c0), seem to be skewed even for small
l values. In turn, the tails of the modes around l = 200 are
thinner than that of the Gaussian distribution, hinting at a
positive excess kurtosis.

For a more quantitative comparison to the standard normal
distribution, we computed the first four moments of the p(cl )
distributions obtained from the 8192 events. These moments
are presented in Appendix A for both Glauber and Saturation
models at b = 0 and b = 9 fm.

A natural measure of the relative importance of the fluctu-
ation modes {�l} is via the eigenvalues {λl}, which quantify
their contributions to the density matrix ρ, Eq. (11): more pre-
cisely, ‖�l‖ = √

λl by construction. To include the average

3Results for the saturation model are very similar and not shown.

event �̄, which is not an eigenvector of ρ, in the comparison,
we define

wl ≡
√

λl∑
l

√
λl + ‖�̄‖ and w̄ ≡ ‖�̄‖∑

l

√
λl + ‖�̄‖ , (27)

where the denominator is the sum of the norms of all modes—
in our calculation we sum over all 16 384 eigenvalues—and
of the average event. By construction, the weights {wl} and
w̄ sum up to unity, such that each one can be regarded as a
measure of the relative importance of a given mode.

In Fig. 3 we show the first 256 (i.e., the 256 largest) relative
weights wl and that of the average event for both initial-state
models at b = 0 and b = 9 fm. At both impact-parameter val-
ues the contribution of �̄ is w̄ = 13% in the Glauber model,
w̄ = 8% in the saturation model. At b = 0, the fluctuation
modes have a relative weight of less than about 1%, which
decreases quickly with increasing mode number l . At b = 9
fm the relative weights wl of the first modes are slightly larger
than at b = 0, ranging up to around 2%–3%. Events at large
impact parameters have larger density fluctuations compared
with the average event which is precisely what we find here.

Comparing both models, in the Glauber model the relative
weights wl fall off with a steeper slope while the average
event has in general a larger contribution than in the saturation
model. This reflects the fact that the energy density has a more
detailed, finer structure in the saturation model, which makes
higher-order perturbations more probable. How much this re-
sult is affected by the smearing radius in the Glauber model, or
if one applies the Glauber picture at the valence-quark level,
is not further investigated in this paper.

Eventually, one sees that, at b = 0, there often come pairs
of degenerate modes with the same eigenvalue, for instance
(1,2), (3,4), (5,6), and so on. Since this degeneracy can be
attributed to the rotational symmetry of the system at zero im-
pact parameter, it is partially lifted at finite impact parameter
b = 9 fm, as will be discussed in more detail in Sec. II D.
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FIG. 3. Relative weights (27) of fluctuation modes (wl for 0 � l � 255) and of the average event (w̄, larger symbols at l = −1) at impact
parameter b = 0 (left) and b = 9 fm (right) in the Glauber (squares) and the saturation (circles) models.

By construction, the modes {�l} represent the event-by-
event fluctuations of the initial state about the average event
�̄. Thus they indicate which random fluctuations of the energy
density profile are more or less likely to occur. In Fig. 4 we
show three examples (l = 0, 1, 3) of modes at b = 0 in the
Glauber (top row) and saturation (bottom row) models. The

first mode (l = 0) is radially symmetric, the second one (l =
1) has a dipole structure and the mode l = 3 has a quadrupole
structure.

We note that although the energy density of each mode
can take both positive and negative values, this is in itself
unproblematic. They contribute “in addition” to the average
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FIG. 4. Density plots of modes l = 0, 1, 3 at impact parameter b = 0 in the Glauber (top) and saturation (bottom) models. Note that the
overall sign of the mode is arbitrary.
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event, which is significantly larger in absolute value, so that
the sum of �̄ and cl times �l is non-negative everywhere as
long as cl is not much larger than one. This explains why
the modes take smaller values in the saturation model than
in the Glauber model, since the same ordering holds for the
respective average events of the two models.

Since the negative −�l is an eigenvector of the density
matrix ρ with the same eigenvalue (and the same norm) as �l ,
the overall sign of a mode has no physical meaning. This holds
in particular for the apparent opposite signs of the modes
l = 0 in the two models in Fig. 4.

D. Characterization of the average event and the modes
for the Glauber and saturation models

Now that we have established the basic features of the
decomposition, we will move on to discuss the structure
of the modes, and in particular characterize their geometric
shapes. In Appendix B we show the first 60 eigenvectors
of the density matrix for the Glauber (Figs. 30 and 31) and
saturation (Figs. 32 and 33) models at b = 0 and b = 9 fm.
To allow a better comparison between the eigenvectors, they
all have the same norm, i.e., they correspond to the {�̃l} of
Sec. II A.

At b = 0 one clearly observes eigenvectors with rotational
invariance, like l = 0, 7, 18, or 33 (in the Glauber model).
For the same eigenvectors, one also sees that the number of
zero crossings with increasing distance from the center differs,
growing with l . In turn, there are pairs of eigenvectors that
can be deduced from each other by a rotation by a integer
fraction of 180◦, e.g., for l = 1 and 2 (rotation by π/2),
l = 3, 4 (rotation by π/4), l = 5, 6 (rotation by π/6), and
so on. Each of these pairs consists of degenerate orthogonal
eigenvectors with the same eigenvalue, see Fig. 3, which
span a two-dimensional space of eigenvectors with arbitrary
orientation.4

Conversely, at finite impact parameter, rotational symmetry
is broken, and the eigenvectors are no longer radially sym-
metric. Instead, most of the eigenvectors now admit the x and
y directions as reflection-symmetry or antisymmetry axes. In
parallel, the degeneracy of the eigenvalues at b = 0 is partially
lifted. Overall, the profiles at b = 9 fm look significantly more
complicated than at b = 0, which is why we now introduce a
number of quantities to characterize their profiles as well as
those of the average event.

1. Azimuthal and radial dependence

To characterize the modes more precisely, we introduce
several quantities. The first one is the total energy of a mode

4Some of the eigenvectors have a more complicated profile, like l =
40 in the Glauber model or l = 33 in the saturation model. Generally,
this happens when more than two eigenvectors are degenerate (within
statistical uncertainty), such as, for instance, the eigenvector l = 33
of the saturation model is a radial one (like in the Glauber model)
with a small admixture of eigenvectors invariant under rotations by
π/4 like those with l = 34, 35.

TABLE I. Eccentricities of the average states in both models at
b = 0 and b = 9 fm.

|ε1| |ε2| |ε3| |ε4| |ε5|
Glauber b = 0
3.0 × 10−5 3.9 × 10−5 1.1 × 10−4 3.3 × 10−5 4.5 × 10−5

Saturation b = 0
6.0 × 10−5 9.3 × 10−5 5.5 × 10−5 4.7 × 10−5 3.9 × 10−5

Glauber b = 9 fm
5.7 × 10−5 0.29 2.6 × 10−4 9.4 × 10−2 9.0 × 10−5

Saturation b = 9 fm
1.7 × 10−4 0.40 7.4 × 10−5 0.20 1.7 × 10−4

�l (r, θ ) given by

El ≡ τ0

∫
�l (r, θ )rdrdθ. (28)

Since the modes represent fluctuations about the average state,
they should have a small amount of energy in comparison with
the latter. Similarly, to describe the overall azimuthal depen-
dence of the modes we introduce complex “eccentricities”

ε̃1(�l ) ≡ −
∫

r3eiθ�l (r, θ )rdrdθ∫
r3�̄(r, θ )rdrdθ

for n = 1 (29)

and

ε̃n(�l ) ≡ −
∫

rneinθ�l (r, θ )rdrdθ∫
rn�̄(r, θ )rdrdθ

for n � 2. (30)

We denote by |ε̃n|l the modulus of these eccentricities for
mode �l . Note that the definitions differ from the usual ones
(45) and (46) for initial-state eccentricities, in that we use the
average state �̄ instead of �l in the denominator. This ensures
that the latter is always nonzero. Definition (30) also makes
sense with n = 0, yielding the ratio |ε̃0|l = El/Ē of the energy
of mode �l to that of the average state.

Evaluating ε̃n(�̄ ) gives the traditional eccentricities of the
average event, whose values we give in Table I for our two
models at b = 0 and 9 fm. At b = 0, rotational symmetry
should result in vanishing spatial anisotropies. However, due
to limited numerical precision and the finite number of events,
the values are not exactly zero, but of the order 10−4 or
smaller.

In contrast, at b = 9 fm the average state has clearly
nonzero eccentricities with even n, namely ε2 and ε4 of order
10−1, in both models. The eccentricities with odd n are of the
same magnitude as in the case b = 0, i.e., due to numerical
fluctuations. Comparing the models, ε2 in the saturation model
is about 40% larger and ε4 is more than twice as large as in the
Glauber model. Larger average eccentricities in the saturation
model based on kT factorization compared with the Glauber
model have been observed before and reflect the sharper edges
of the density distribution in the former model [67,68].

Turning to the modes, we display in Fig. 5 the absolute
values |ε̃n|l of their five first eccentricities (29) and (30) and
the ratio |ε̃0|l of their energy content compared with that of
the average state.
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FIG. 5. Mode eccentricities (29) and (30) and relative energy content for both models at b = 0 (left) and b = 9 fm (right).

At zero impact parameter, the modes with a clear non-
vanishing energy, of the order of 1% of that of the average
state, are those with rotational invariance (see Fig. 4, l =
0), simultaneously characterized by very small eccentricities
|ε̃n|l � 10−3 for n � 1. Apart from these “radial modes,” the
other ones contain roughly hundred times less energy, |ε̃0|l <

10−4. This corresponds most probably to a vanishing energy
content, the finite value being due to numerical precision like
grid artifacts that make it impossible to resolve the modes
exactly.

At b = 0 the eccentricities with a given n � 1 occur in
mode pairs: for example, modes l = 1, 2 have a sizable ε̃1 fol-
lowed by l = 3, 4 with a finite ε̃2. This reflects the existence
of (quasi-)degenerate modes with a nearly identical profile up
to a rotation and is actually required to respect the absence of
a preferred direction at b = 0. The eccentricities of the two
members of a mode pair sometimes slightly differ, which can
again be ascribed to numerical (in)accuracy. Another point
one can notice is that some modes, e.g., modes 27 and 28
in either the Glauber or the saturation model, at first seem to
have neither an eccentricity nor to contain energy. However,
looking at the eigenvectors themselves in Fig. 30 or Fig. 32,
one sees that in fact these modes have a rotational symmetry
of order seven, i.e., a nonzero ε̃7, which is not shown in
Fig. 5. Eventually, let us also note that the eccentricities in
the Glauber model are in general larger compared with those
in the saturation model but the structure of the modes is the
same in both models.

For collisions at b = 9 fm in the right panel of Fig. 5, the
breaking of rotational symmetry has several consequences.
First of all, the modes no longer come in pairs with regard to
the eccentricities |ε̃n|l with n � 1, which reflects the lifting of
the degeneracy of their eigenstates. Second, the lack of rota-
tional symmetry leads to the absence of purely radial modes.
This is also visible in the density plots shown in Fig. 31 or
Fig. 33 for b = 9 fm: the modes are elongated along the x
or the y direction, so that there are more modes which have

a nonzero ε2. In fact, the modes seem to have not a single
nonzero eccentricity as is generally the case at b = 0, but
rather either all odd or all even eccentricities. Namely, a single
mode has sizable ε1, ε3, ε5 and zero ε2 and ε4, or the other
way around.5 This property reflects the overall invariance of
the system under parity such that each individual mode must
have a definite parity, if there is no degeneracy. The typical
eccentricity values are almost twice as large as at b = 0.
Simultaneously, many modes now contain up to a few percent
of the average-state energy. Eventually, comparing the two
models we observe that the order of the modes is no longer
the same as it was in the rotational symmetric case.

To assess the transverse profiles of the average state and the
modes, we rotate each of them such that the argument of the
complex eccentricity ε̃n [Eqs. (29) and (30)] with the largest
modulus lies along the x direction, thereby maximizing the
real part of ε̃n while the imaginary part of ε̃n vanishes (up to
numerical fluctuations). With the rotated mode—and with the
average state (denoted with a subscript l = �̄)—, we define

Cl (r) ≡ −τ0

Ē
∫

�l (r, θ ) cos (nθ )dθ, (31)

Sl (r) ≡ −τ0

Ē
∫

�l (r, θ ) sin (nθ )dθ, (32)

where the angle θ is measured from the x axis while Ē is the
energy of the average state. We note that these definitions can
be regarded as differential version of the spatial eccentricities
ε̃n in Eq. (30), which can be obtained (up to a factor) from

5Once again there are some exceptions, such as, e.g., l = 15 for
the Glauber model, for which both odd and even eccentricities can
be clearly seen. By going back to the right panel of Fig. 3, one sees
that the corresponding eigenvalue is (within statistical uncertainty)
degenerate with a neighboring mode, which results in some mixing
between the eigenvectors.
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FIG. 6. Radial profile C�̄ (r), Eq. (31), of the average states in the
Glauber (full lines) and the saturation model (dotted lines) at b = 0
and 9 fm.

the quantities Cl (r) and Sl (r) by radial integration with a
weight rn.

Figure 6 shows C�̄ (r) for the average states in the two
models. These radial profiles are positive everywhere, as they
should be. The average states have a similar extent in the radial
direction in both models. The profiles slightly differ: at b = 0
the Glauber model has more energy at the center and drops
faster for larger r, while the reverse behavior is found at finite
impact parameter.

Turning to the radial profiles Cl (r) of the modes, we find
that they may now change sign with r—which they indeed
should, if two modes with the same rotational symmetry are
to be orthogonal. We shall call “kth excitation” (for a given
rotational symmetry) the modes for which Cl (r) changes sign
k − 1 times.

Figure 7 shows the radial profiles of the first five modes
with rotational symmetry found at b = 0 in both initial-state
models. For better readability, we multiplied by −1 the modes
that have a negative value at r = 0 in Figs. 30 and 32—for in-
stance the mode �0 of the saturation model. All radial modes
shown have a finite value at r = 0 and change sign at least
once: the profiles Cl=0 have a single zero, those with l = 7
two zeros, three zeros for Cl=18, and so on. Within a given
model, the values Cl (r = 0) decrease with growing l , which
is partly due to the decreasing norm ‖�l‖ = √

λl quantifying
the importance of the modes.

In Fig. 8 we show the transverse profiles of first excitation
modes, with constant sign, whose largest ε̃n is that of order
n ∈ {1, . . . , 5}. At b = 0, these modes (for n ranging from
2 to 5) happen to have the same label l in the two models;
no mode with n = 1 and no sign change along the radial
direction was found in either model. At b = 9 fm there is
a mode with constant-sign radial profile and n = 1 in the
saturation model, but not in the Glauber model. In addition,
no mode with n = 5 and constant sign Cl was found. At
both impact-parameter values, the maximum of Cl moves
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FIG. 7. Radial profile Cl (r) of the rotationally invariant modes
in the Glauber (full lines) and saturation (dashed lines) models at
b = 0 fm.

to increasingly larger radius r and its value decreases with
increasing n (and l) within a given model.

The latter behavior also generally holds for the positions
of the local extrema and the hierarchy of the corresponding
absolute values of Cl for the second excitation modes shown
in Fig. 9, with the exception of the modes whose largest
eccentricity is ε̃1. The latter also differ from the modes with
n ∈ {2, . . . , 5} in that their second extremum—the maximum,
for the convention on the sign of �l used in the figure—is
much smaller in amplitude than the first extremum. In con-
trast, for the modes with n ∈ {2, . . . , 5} the values of Cl at the
minimum and the maximum are similar in magnitude.

Eventually, the values of Sl (r) we found are at least one
order of magnitude smaller than those of Cl (r), and thus much
more affected by numerical precision which is the reason why
they are not presented here.

2. Comparison with Bessel–Fourier decomposition

As an alternative to the characteristics introduced in the
previous section, one can also decompose the average event �̄

and the modes {�l} found in a given model on a basis chosen a
priori, i.e., not “optimized” as is that consisting of the modes.

For the two-dimensional energy-density profiles with finite
support given by the two models of Sec. II B, a convenient
basis is that underlying the Bessel–Fourier decomposition,
which was already used in the context of initial-state char-
acterization in the past [43,44,47,69]. An advantage of such
a decomposition is data reduction: anticipating the following,
we shall see that at least the first modes can be to a very good
approximation characterized by O(10) expansion coefficients
each, which is significantly less expensive to store than the
O(104) values per mode on the “trivial” basis attached to the
computational grid. Additionally, the Bessel-Fourier decom-
position is also well suited for (semi-)analytical calculations
in a mode-by-mode approach [43–45].
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The basis underlying the Bessel–Fourier decomposition
consists of the functions

χn,k (r, θ ) = 1

J|n|+1( jn,k )
Jn

(
r

r0
jn,k

)
einθ , (33)

with n ∈ Z that characterizes the angular dependence and k
a positive integer that determines the granularity of the radial
profile. Jn denotes the nth Bessel function of first kind and
jn,k its kth zero. Eventually, r0 is the radius of the domain
to which the expansion is restricted, such that the function to
be decomposed vanishes at every point with r = r0. In our
calculations we take r0 = 12 fm, equal to half of the grid
width. Every function f (r, θ ) on the transverse plane can then

be decomposed in the form

f (r, θ ) =
∑
n,k

An,kχn,k (r, θ ), (34)

with the complex expansion coefficients

An,k = 1

πr2
0

∫
f (r, θ )χ∗

n,k (r, θ )rdrdθ. (35)

If f is real-valued, as is the case of the energy-density
distributions we consider, then An,k = A∗

−n,k . Hereafter we
only present coefficients |An,k| for the average event and
modes computed within the Glauber model as an illustration.
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FIG. 10. Absolute values |An,k | of the Bessel–Fourier expansion coefficients for the average states at b = 0 (left) and b = 9 fm (right) in
the Glauber model.

Similar results regarding the Bessel–Fourier decomposition
were found within the saturation model.

We first show in Fig. 10 the absolute values of the expan-
sion coefficients for the average states at b = 0 and b = 9
fm of Fig. 1. As was to be anticipated, at vanishing impact
parameter the average state consists of radially symmetric
components only, with coefficients A0,k that decrease rapidly
with k. Going to b = 9 fm, the description of the average state
necessitates more sizable coefficients. These include first a
large contribution with n = 0, similar to that at b = 0, with
the interesting difference that the maximum coefficient is no
longer that with k = 1 but rather A0,2. Additionally, there
are smaller but still sizable coefficients with n = 2 and 4,

corresponding to the nonzero ε2 and ε4 of the average state
at b = 9 fm reported in Table I.

In Figs. 11 and 12 we show the absolute values |An,k| of the
Bessel–Fourier coefficients for a few chosen modes at b = 0
and b = 9 fm, respectively. At vanishing impact parameter
we saw previously that there are radially symmetric modes,
as well as modes with a single nonvanishing eccentricity ε̃n.
We start with radially symmetric modes in the left panels of
Fig. 11, namely, the coefficients for the mode l = 0 (l = 7)
in the top (bottom) panel. Only coefficients with n = 0 are
sizable. In addition, the largest coefficient (in absolute value)
lies at higher k than for the average state: the maximum is at
larger k for mode l = 7, which changes sign twice along the
radial direction, than for mode l = 0, which changes sign only
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FIG. 11. Absolute values |An,k | of the Bessel–Fourier expansion coefficients for radial modes (left), ε1 modes (center), and ε2 modes
(right) at b = 0 in the Glauber model. The upper panels show the lowest-excitation modes, the lower panels the next excited modes in the
corresponding harmonic.
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FIG. 12. Absolute values |An,k | of the Bessel–Fourier expansion coefficients for a few modes at b = 9 fm in the Glauber model.

once. The latter property means that higher-excited modes
have more structure on smaller length scales, reflecting their
sign changes, and thus more weight |An,k| at higher k values.
Accordingly, it also holds when one looks at modes with a
dipole structure, i.e., a sizable ε̃1 (middle panels of Fig. 11) or
modes with an ε̃2 (right panels). Quite normally, these modes
only have sizable coefficients A±1,k or A±2,k , respectively.
Eventually, one can note that for the modes in the lower panels
the |An,k| have two successive maxima as k increases.

At b = 9 fm we have seen that the modes typically have
several nonzero eccentricities ε̃n. This reflects itself in that
the Bessel–Fourier coefficients An,k are now sizable for sev-
eral values of n, as illustrated in Fig. 12. Calling for brevity
“mostly εn” a mode whose largest eccentricity is that in the
nth harmonic, we show a mostly ε1 mode (middle upper
panel), two mostly ε2 modes (right panels), and a mostly ε3

mode (middle lower panel). We also show the {|An,k|} for
“quasiradial” modes, for which the maximum coefficients are
with n = 0 (left). Although all these modes are low-lying
ones, with l � 10, their description necessitates significantly
more expansion coefficients than at b = 0. This holds not only
for the azimuthal dependence (n), but also radially (k), which
shows that there is more structure at smaller length scales.

III. MODE-BY-MODE RESPONSE

The fluctuation modes introduced above generally influ-
ence the systems characteristics, be it in the initial state, where
the modes are defined, or in the final state following some
dynamical evolution. To describe this influence, we introduce
in Sec. III A coefficients quantifying the linear and quadratic
effects of a given mode on an arbitrary observable. After
specifying in Sec. III B the observables we shall investigate
in the following, we briefly describe in Sec. III C our setup

for the system evolution using KøMPøST and MUSIC. We
then present in Sec. III D the mode-by-mode response of the
system characteristics, both at linear and quadratic order, for
initial conditions from the MC Glauber model. Eventually,
we focus on the linear and nonlinear dynamic response of
anisotropic-flow coefficients to the asymmetry in the initial-
state geometry in Sec. III E.

A. Linear and quadratic response of observables

Consider a generic set of observables {Oα}, where
the index α labels different observables, such as, e.g.,
vn, dNch/dη, . . . . Energy density profiles � of every event can
be decomposed according to Eq. (1) into an average state �̄

and fluctuation modes {�l}

� = �̄ +
∑

l

cl�l , (36)

where the expansion coefficients cl are typically of order
unity. By performing a Taylor expansion of an observable Oα

around the average state �̄, we can then express the value of
an observable Oα (�) in a given event as

Oα (�) = Oα (�̄ ) +
∑

l

∂Oα

∂cl

∣∣∣∣
�̄

cl

+ 1

2

∑
l,l ′

∂2Oα

∂cl∂cl ′

∣∣∣∣
�̄

clcl ′ + O(c3
l

)

≡ Ōα +
∑

l

Lα,l cl + 1

2

∑
l,l ′

Qα,ll ′cl cl ′ + O(c3
l

)
,

(37)
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where Ōα = Oα (�̄ ) denotes the value of the observable Oα

in the average state �̄, while Lα,l = ∂Oα

∂cl
|�̄ (Qα,ll ′ = ∂2Oα

∂cl ∂cl′
|�̄)

is the linear (quadratic)-response coefficient of Oα to mode l
(modes l and l ′).

By truncating the Taylor expansion at second order, the
statistical average of an observable Oα over events then reads

〈Oα〉 	
〈

Ōα +
∑

l

Lα,l cl + 1

2

∑
l,l ′

Qα,ll ′clcl ′

〉

= Ōα + 1

2

∑
l

Qα,ll , (38)

where we used 〈Ōα〉 = Ōα and the properties (2) and (3) of
the statistics of the coefficients {cl}. Interestingly, this average
value does not involve the linear-response coefficients Lα,l ,
nor the quadratic coefficients with l �= l ′. In turn, the covari-
ance of two observables Oα and Oβ at quadratic order in {cl}
also follows naturally from Eq. (37). Invoking Eq. (48) one
finds

〈(Oα − 〈Oα〉)(Oβ − 〈Oβ〉)〉 	
∑

l

L
α,lLβ,l . (39)

In particular setting β = α yields the variance of Oα . That is,
the covariances are entirely determined by the linear-response
coefficients L

α,l (up to corrections of order c3
l ).

To compute the linear and quadratic-response coefficients,
which are first and second derivatives respectively, we intro-
duce for every mode �l the states

�+
l ≡ �̄ + δ�l , �−

l ≡ �̄ − δ�l , (40)

where δ is a small parameter. Correspondingly, we compute
the observables for these states: O±

α,l ≡ Oα (�±
l ), and then

estimate

Lα,l = O+
α,l − O−

α,l

2δ
, (41)

Qα,ll = O+
α,l + O−

α,l − 2Ōα

δ2
, (42)

by finite difference formulas for the first-order and second-
order centered derivatives.

As a final remark, Eqs. (37)–(39) can naturally be extended
to higher orders in the coefficients {cl}, which could make
sense since in practice these coefficients are by construction
of order unity. However, when going to higher order in cl

one encounters three-point averages (or higher) of the {cl},
which in contrast to Eqs. (2) and (3) are not directly fixed
by our construction and have to be extracted from the sample
of events. We shall see hereafter that restricting oneself to
order c2

l is already a sufficient approximation for a number
of observables for which the quadratic response is already
subleading with respect to the linear response. The reason is
that the {cl} are of order unity because we have absorbed the
magnitude and thereby the importance of the fluctuations in
the normalization of the modes by scaling with

√
λl . Physi-

cally, the actual expansion can be understood to proceed in
terms of c̃l = √

λl cl , so that higher modes typically contribute
less (see Fig. 3). Similarly, higher orders in the {c̃l} generally

correspond to small contributions compared with that of the
average state.

B. System characteristics

In our investigations of mode-by-mode response we con-
sider multiple observables, which we now list.

We first compute a number of characteristics of the initial
state, from the centered energy density e(r, θ ). For the latter,
we consider either the average state �̄ or the states �+

l , �−
l

defined in Eq. (40) for the first 256 modes and for a few values
of δ that are specified in Sec. III D 1, or “full” initial states as
given by the Glauber or saturation model. From the calcula-
tions with �̄ and �±

l we obtain the response coefficients (41)
and (42).

Integrating e(r, θ ) over the whole transverse plane yields
the total energy per unit rapidity dE/dy:

dE

dy
≡ τ0

∫
e(r, θ )rdrdθ, (43)

where the notation anticipates the fact that we consider a
longitudinally boost-invariant system. Note that, from this
definition, it is obvious that the response of dE/dy to the
addition of a fluctuation mode is purely linear, so that we can
already anticipate that the corresponding quadratic-response
coefficients Qα,ll will vanish.

Next is the average square radius {r2}, where the curly
brackets {. . . } denote an average over the centered energy
density:

{r2} ≡
∫

r2e(r, θ )rdrdθ∫
e(r, θ )rdrdθ

. (44)

To characterize the asymmetry of the energy density profiles,
we compute the spatial eccentricities [36,37]

ε1ei�1 ≡ −
∫

r3eiθ e(r, θ )rdrdθ∫
r3e(r, θ )rdrdθ

for n = 1, (45)

εnein�n ≡ −
∫

rneinθ e(r, θ )rdrdθ∫
rne(r, θ )rdrdθ

for n � 2, (46)

which we will quantify in terms of the cosine and sine parts
εn,c, εn,s given by

εnein�n = εn,c + iεn,s (47)

for n ∈ {1, . . . , 5}. We note that, in contrast with the “mode
eccentricities” ε̃n introduced in Sec. II D, the energy density
in Eqs. (44)–(46) is the same in the numerator and denomi-
nator. Since the full energy density enters the denominators
of Eqs. (44)–(46), {r2}, the eccentricities do not necessarily
respond linearly to the addition of a fluctuation mode and the
nonvanishing quadratic-response coefficients Qα,ll become
possible.

After letting the system evolve from the initial state as
we describe in Sec. III C, we obtain a final state consist-
ing of hadrons. All final-state observables are computed at
midrapidity, namely, over the pseudorapidity range |η| � 0.5.
From the charged hadron distribution dNch/pTd pTdϕpdη of
each event, we compute first the charged multiplicity per unit
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pseudorapidity:

dNch

dη
=
∫

dNch

pTd pTdϕpdη
pTd pTdϕp, (48)

with ϕp being the particle momentum azimuth. Here and be-
low the integral over transverse momentum pT is performed
in the range 0.01–3 GeV/c.

Next we compute the event-by-event average transverse
momentum [pT] of particles:

[pT] ≡
∫

pT
dNch

pTd pTdϕpdη
pTd pTdϕp∫ dNch

pTd pTdϕpdη
pTd pTdϕp

. (49)

The last type of observables we consider are the integrated
anisotropic flow coefficients [32]

vnein�n ≡
∫

einϕp dNch
pTd pTdϕpdη

pTd pTdϕp∫ dNch
pTd pTdϕpdη

pTd pTdϕp
. (50)

Consistent with the initial-state observables, we also consider
the cosine and sine parts vn,c, vn,s according to vnein�n =
vn,c + ivn,s. In fact, considering the sine and cosine parts
separately also has the advantage that they behave more
smoothly around δ = 0, since they can take both positive
or negative values. In contrast, the absolute values εn =
[(εn,c)2 + (εn,s)2]1/2 or vn = [(vn,c)2 + (vn,s)2]1/2 are by defi-
nition always non-negative, such that their first derivative with
respect to some of the cl may be undefined at δ = 0.

C. Time evolution of the system

We let the system evolve from the initial energy density
profile using two numerical successive frameworks. For the
pre-equilibrium evolution we use the effective kinetic descrip-
tion KøMPøST [51] and for the subsequent evolution we
employ the relativistic dissipative hydrodynamics code MUSIC

[52–54].
With the energy density profiles obtained from the Glauber

or saturation models we generate an initial energy-momentum
tensor

T μν (τ0, x, y) = diag
(
e(x, y), 1

2 e(x, y), 1
2 e(x, y), 0

)
,

as in Ref. [51] and assume longitudinal boost invariance. The
points with coordinates (x, y) are now the nodes of a grid with
spacing 0.1 fm: to obtain the corresponding values of the en-
ergy density, we used a bilinear interpolation scheme to reduce
the coarser grids on which we computed the average events
and the modes. We start the pre-equilibrium stage at τ0 = 0.2
fm/c and let the system evolve with an effective shear viscos-
ity to entropy density ratio η/s = 0.16 until τhydro = 1.1 fm/c.

The output energy momentum tensor of KøMPøST
is then used as initial condition for the fluid-dynamical
evolution. MUSIC is run in its boost-invariant mode, so
effectively it is a (2 + 1)-dimensional evolution. The equa-
tion of state is taken from lattice QCD results by the
hotQCD collaboration [6]. For the first-order transport co-
efficients we use a constant value of η/s = 0.16 and
vanishing bulk viscosity. Particlization is performed at
the level of the distribution function with the Cooper–
Frye prescription at a fixed temperature Tfo = 155 MeV,

using the Cornelius algorithm [70] to find the hypersurface
and including δ f corrections in the MUSIC code. For this step
we include 320 particle species and compute their momentum
distributions. The particles are then allowed to further decay,
but further hadronic interactions are not included. At the end
of the resonance decays, all observables are computed from
the charged-hadron single-particle distribution using the equa-
tions presented in Sec. III B.

D. Response of observables in the Glauber model

1. Linearity check

As a first assessment of how the observables Oα vary
when fluctuation modes �l are added to the average state,
we compute O+

α,l − Ōα ≡ Oα (�̄ + δ�l ) − Oα (�̄ ) for various
values of δ ranging between −2 and 2 and a number of modes.
In Fig. 13 we show the dependence on δ of O+

α,l − Ōα for
initial-state (left) and final-state (right) characteristics in the
Glauber model,6 for collisions at b = 0 (top) and b = 9 fm
(bottom). As examples, we chose the first (full symbols) and
second (open symbols) modes with a nonzero contribution
to dE/dy, {r2}, ε1,c and ε2,c in the initial state. These result
in a nonvanishing response for dNch/dη, [pT], v1,c, and v2,c

in the final state. For each observable and mode, we also
display straight lines obtained by fitting the points with δ ∈
{0,±0.001,±0.01}.

At b = 0 the initial-state characteristics mostly depend lin-
early on δ. The only exception is the average squared radius
{r2}, which slightly deviates from the linear fit at the largest
values of |δ|. This departure from linearity reflects the fact that
the denominator in Eq. (44) is itself dependent of δ, making
the ratio nonlinear. In the final state, the flow coefficients also
depend linearly on δ. In contrast the charged hadron multi-
plicity and the average transverse momentum show a marked
departure from the linear behavior, to which we shall come
back in the next section.

Very similar results hold at finite impact parameter b = 9
fm. In the initial state, the nonlinearity in {r2} is larger than at
b = 0 and there is also a small nonlinearity in ε2,c. Looking at
the final-state observables, the nonlinearity of ε2,c translates
into a slightly nonlinear v2,c, less striking than for dNch/dη

or [pT].

2. Linear and quadratic-response coefficients

For a more quantitative description of the linear and
nonlinear contributions of fluctuation modes to system
characteristics, we now discuss the linear and (diagonal)
quadratic-response coefficients {Lα,l }, {Qα,ll} introduced in
Eq. (37) and computed via Eqs. (41) and (42) with δ = 0.1.
In this section we show results for collisions with initial states
from the Glauber model, while those obtained with the satura-
tion model—which are qualitatively similar—are presented in
Appendix C 2.

6The corresponding investigation for observables with initial states
from the saturation model are presented in Appendix C 1, with simi-
lar results.
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FIG. 13. Variation with δ of O+
α,l − Ōα for initial-state (left) and final-state (right) observables, together with linear fits to the points with

|δ| � 0.01, using the Glauber model at b = 0 (top) and b = 9 fm (bottom). Closed symbols and full lines correspond to the first modes
contributing to the respective observable, while open symbols and dashed lines are for the second modes.

The linear (quadratic)-response coefficients are shown in
Fig. 14 (Fig. 15). In both figures, the top panels are for colli-
sions at b = 0 and the bottom panels for b = 9 fm. In turn, the
panels on the left display response coefficients for initial-state
characteristics, while those on the right correspond to final-
state observables. We have divided the coefficients {Lα,l},
{Qα,ll} for the dimensionful observables (dE/dy, {r2}, [pT])
and the multiplicity by the value Ōα of the observable in the
average state to obtain dimensionless “reduced” coefficients
of the same magnitude as those for the eccentricities or flow
coefficients. When showing either linear or quadratic response
for a given set of observables, we deliberately use the same
scale for the coefficients at both impact-parameter values to
allow for a direct comparison. This explains why, for example,
the upper left plot of Fig. 15 (or equivalently Fig. 36 in
Appendix C 2 for the saturation model) looks almost empty:
the respective response coefficients at b = 0 are significantly
smaller than those at b = 9 fm displayed in the lower-left
panel. Eventually, remember that the response coefficients
will multiply expansion coefficients cl (or their square) of
order one when contributing to an observable, see Eq. (37).
Since the linear coefficients (Fig. 14) are typically one order
of magnitude larger than the quadratic ones (Fig. 15), the

contribution from quadratic response is generally smaller than
that from linear response.

Let us begin with the initial-state characteristics at b =
0 (upper left). Each fluctuation mode generally contributes
either to the eccentricities εn,c/s in a single harmonic,7 in
which case the response is purely linear, or to the system
energy and mean square transverse radius, where the latter
shows a small quadratic response. For instance, adding mode
l = 1 to the average state contributes both ε1,c and ε1,s, while
mode l = 0 affects dE/dy and {r2}. Note that no response
coefficient is visible for a few modes, like, e.g., l = 19 and
20, which in fact turn out to have only an ε6 or higher-order
eccentricity.

Since the average state at b = 0 is radially symmetric, the
coefficients {Lα,l} for a given eccentricity directly yield (up
to multiplication by cl of order one) the eccentricity of the
initial state �̄ + cl�l , which is thus of the order of a few

7An exception is mode l = 40, which contributes to both ε1 and
ε2: as was already noted at the beginning of Sec. II D, this mostly ε1

mode is quasidegenerate with several others, including some (l = 42
and 43) with a quadrupolar structure, i.e., an ε2.
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FIG. 14. Linear-response coefficients Lα,l for initial-state characteristics (left) and final-state observables (right) in the Glauber model at
b = 0 (top) and b = 9 fm (bottom). The coefficients for dimensionful observables and multiplicity have been divided by Ōα .

percent. In turn, the coefficients for energy density and {r2}
yield the relative change of the corresponding quantity, which
is also of a few percent, with respect to its value in the average
state.

The linear-response coefficients for eccentricities show a
marked feature: pairs of neighboring fluctuation modes show
both εn,c and εn,s for a given n, three of which have the same
sign while the fourth has the opposite sign. This 2 × 2 struc-
ture reflects the arbitrary orientation of the symmetry-plane
angle �n, which need not be along the x or y axis due to
the rotational symmetry at b = 0 and is rotated by π/2n for
degenerate modes with otherwise the same profile. It would
in principle be possible to rotate simultaneously both modes
such that one only contributes to εn,c and the other to εn,s

with equal response coefficients (in absolute value, since the
overall sign of a mode is arbitrary).

Eventually, the absence of sizable quadratic-response co-
efficients for the eccentricities tells us that the contribution
of the nonradially symmetric modes to the denominators of
Eqs. (45) and (46) must be very small. This is consistent with
the fact that the azimuthal modulation of the corresponding
eigenvectors in Fig. 30 seem to be oscillating about zero, so
that the integral of rn�l (r, θ ) over θ at fixed r already vanishes
for any n.

Turning to the response coefficients for final-state ob-
servables at b = 0 (top right panel), they now include the
dynamical response of the system to the initial-state character-
istics. The linear coefficients follow a similar pattern as those
for the initial characteristics, in that the modes contribute
either to the multiplicity and the average momentum, or the
anisotropic-flow coefficients vn,c/s in a single harmonic. In
fact, only the modes with an initial contribution to dE/dy
and {r2} (some εn,c/s) contribute linearly to dNch/dη and [pT]
(vn,c/s).

For a given mode, the linear-response coefficient for
dNch/dη has the same sign as that for dE/dy, while the
coefficient for [pT] has the opposite sign to that for {r2}.8
Note that the latter result also holds for initial states from the
saturation model, but not the former (see Fig. 35). Regarding
the anisotropic-flow harmonics, the 2 × 2-structure observed
in the initial state is translated by the evolution into the final
state. Yet one sees that the response becomes increasingly
weaker for higher harmonics (with n � 3), which reflects the

8The sign of a single Lα,l is not really meaningful, since it changes
when replacing �l by −�l . However, the relative sign of two coeffi-
cients Lα,l , Lβ,l is not affected by this change.
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FIG. 15. Diagonal quadratic-response coefficients Qα,ll for initial-state (left) and final-state observables (right) in the Glauber model at
b = 0 (top) and b = 9 fm (bottom). The coefficients for dimensionful observables and multiplicity have been divided by Ōα .

well-known effect of viscosity, which damps more strongly
the finer spatial structures. This viscous damping also explains
the comparatively weaker final-state response of the modes
with higher l , which, as discussed in Sec. II D, typically have
more structure along the radial direction.

In general the sign of the linear-response coefficient for a
flow harmonic vn,c/s is the same as that of the corresponding
εn,c/s. However, this does not hold for n = 1, where the re-
sponse coefficients of ε1 and v1 have opposite signs (Fig. 14).
Indeed, the sign of ε1, with its peculiar r3 weight, yields the
sign of v1 at high pT, which is opposite (to fulfill transverse
momentum conservation) to the sign of v1 at low pT, which is
that reflected in the momentum-integrated v1 [36].

Regarding the quadratic-response coefficients in the top
right panel of Fig. 15, they are typically smaller than the linear
ones, but there are also more sizable coefficients than for
initial-state observables. Thus, at quadratic order, all modes
seem to be contributing to the charged multiplicity dNch/dη

(negatively) and to the average transverse momentum [pT]
(positively). This confirms the departure from linearity seen
on a few modes in Sec. III D 1 precisely for these two observ-
ables (top-right panel of Fig. 13). That all modes contribute to
dNch/dη and [pT] at quadratic order should also be contrasted
with the fact that, at linear order, only the radially symmet-
ric modes contribute to these observables. It means that the
first nonzero contribution of most modes to multiplicity and

average momentum is at quadratic order. One can, however,
see that the {Qα,ll} for dNch/dη and [pT] are of order 10−3

or smaller, i.e., change the value of the corresponding observ-
able given by the average state by a similar relative amount,
and that they generally decrease in absolute value with
increasing l .

Other nonzero coefficients {Qα,ll} are those that represent
the quadratic response of anisotropic flow in the harmonic 2n
of an initial eccentricity in the nth harmonic, v2n ∝ ε2

n . This
quadratic response yields v2n values of order 10−3 or smaller,
which in real events consisting in a mixture of many modes
will be subleading compared with the linear response of v2n to
modes with a nonzero ε2n. Note that the absence of quadratic
response for the odd harmonics v2n+1 in general, which also
holds for events at b = 9 fm, is due to the definite parity in
position space of the average states (even) and the modes in
general (either even or odd): the quadratic response in a mode
of given position-space parity will always be even, and cannot
give rise to odd (position- or momentum-space) observables.

At finite impact parameter b = 9 fm, the plots showing
the response coefficients are significantly more busy than at
b = 0, due to the breaking of the system rotational symmetry,
but the overall trends are similar. In particular, in the final
state the effect of viscous damping for higher-lying fluctua-
tion modes and on higher anisotropic-flow harmonics is still
clearly present.
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Every mode now affects several characteristics in the initial
state at linear order (Fig. 14, bottom left), which is reflected
one-to-one in the linear-response coefficients of final-state
observables (Fig. 14, bottom right). Regarding these linear
coefficients, two differences with those for collisions at b = 0
appear. First, the opposite signs of the {Lα,l} for dE/dy and
{r2}—and the corresponding correlation (anticorrelation) be-
tween dNch/dη and [pT] in the Glauber (saturation) (Fig. 35,
bottom right) model—is no longer systematic. Second, the
2 × 2 structure of the eccentricities and flow harmonics has
disappeared: the participant-plane angles �n tend to align
either along the impact-parameter direction (i.e., the x axis),
resulting in a finite εn,c and εn,s = 0, or at π/2n from the x
axis, yielding εn,c = 0 and a finite εn,s.

Although the final state in the right panel seems to mirror
exactly the initial state on the left-hand side, one can find a
couple of interesting differences for modes l = 58 and 59.
Mode l = 58 (59) has a visible v1,s (v1,c), although the corre-
sponding eccentricity ε1,s (ε1,c) is very small. The explanation
of this apparent inconsistency is that the coefficients Lv1,l of
these modes measure the contribution to v1 at order cl of
events of the form �̄ + cl�l , i.e., consisting of the mode and
the average initial state. Such events have a very small ε1

(of the order of 10−3 for cl = 1) but significant ε2—that of
�̄—and ε3—coming from �l . In the evolution, the ellipticity
and triangularity of the initial geometry interfere and yield the
nonlinear dynamical response

v1(�̄ + cl�l ) ∝ ε2(�̄ )ε3(cl�l ), (51)

already at linear order in cl .9 Note that this nonlinear dynami-
cal response v|n±2|(�̄ + cl�l ) ∝ ε2(�̄ )εn(cl�l ) at order cl is
actually present for all modes at b = 9 fm, but it cannot be
pinpointed for most of the modes because they usually have
all even or odd eccentricities.

Looking at the quadratic-response coefficients for initial-
state characteristics (bottom left of Fig. 15), there is again
some sizable nonlinear response for {r2}, which is present
for modes which show a significant linear response for both
{r2} and dE/dy. In contrast with b = 0, also the quadratic
coefficients for some of the eccentricities—mostly ε2,c and
ε4,c—are now sizable. For initial states from the Glauber
model, this holds for modes which also show a finite linear-
response coefficient for the same eccentricity; but in the case
of the saturation model, almost all modes have nonzero Qα,ll

for ε2,c and ε4,c (Fig. 36, bottom left), even those with a
small corresponding Lα,l (Fig. 35, bottom left). These nonzero
quadratic coefficients are caused by the denominators in defi-
nition (46) and the finite ε2,c or ε4,c of the average state.

For final-state observables, a first salient feature is that all
modes seem to have a negative (positive) quadratic-response
coefficient for dNch/dη ([pT]), as already seen at b = 0.10

9The notation ε3(cl�l ) is slightly inaccurate and should rather read
ε3(�̄ + cl�l ), since the energy density inserted in definition (46) is
�̄ + cl�l , but conveniently emphasizes that only cl�l contributes
to ε3.

10Contrary to the linear coefficients, Qα,ll is unchanged under the
change �l → −�l and thus its sign is meaningful.

While most modes do not modify the total energy of the
system, they do change the energy density profile, with re-
gions with more energy than the average state and others with
less energy. The negative Qα,ll for multiplicity can then be
understood from the empirical scaling behavior [18]

dNch

dη
∝
∫

x
e(x)

2
3 , (52)

according to which a change in the initial energy density
e(x) results in a less-than-linear change of the multiplicity.
By considering the effects of fluctuations around the average
background, e(x) = ē(x) + clδel (x), one finds that〈

dNch

dη

〉
∝
∫

x
ē(x)

2
3

[
1 − 1

9

∑
l

δel (x)δel (x)

ē(x)2

]
, (53)

where we used Eqs. (2) and (3). Due to the exponent 2/3 in
Eq. (52), the fluctuation-induced correction to the multiplicity
in Eq. (53) is always negative, indicating for the multiplicity
Qα,ll < 0 for all modes.

Assuming that this local change of energy density results
in a corresponding modification of the number of locally
emitted particles with a scaling law similar to Eq. (52), with an
exponent smaller than 1, leads after integrating over the whole
system to a less-than-linear fluctuation-induced modification
of multiplicity, i.e., a negative Qα,ll .

In turn, the anticorrelation between dNch/dη and [pT] can
be attributed to the fact that most modes do not modify the
total energy of the system, so that a decrease in the multi-
plicity has to be accompanied by an increase of their average
transverse momentum. What is, however, nontrivial is that this
also holds for modes that change the total system energy—but
these modes also modify the mean square radius of the initial
state and affect dNch/dη and [pT] at linear order, so that
disentangling all effects is beyond the scope of the present
paper.11

Eventually, the quadratic coefficients for v2,c and v4,c are
sizable for a large number of modes, while the coefficients
for the other flow harmonics are significantly smaller. The
quadratic contributions to v2,c and v4,c have different origins,
which are difficult to disentangle. Thus, there is the linear
response vn,c ∝ εn,c to an initial eccentricity ε2,c, ε4,c which
is already quadratic in cl (see bottom-left panel of Fig. 15).
Then the modes with an initial ε1(�l ) (either ε1,c or ε1,s) can
dynamically give rise to a quadratic v2,c ∝ ε2

1, but also, due
to the interference with the ellipticity of the average state,
to a v4,c(�̄ + cl�l ) ∝ ε2,c(�̄ )ε1(cl�l )2. Such a term also
contributes to v2,c. More generally v2,c and v4,c also have con-
tributions of the form ε2,c(�̄ )ε1(�l )ε3(�l ) or ε2,c(�̄ )ε3(�l )2

(for modes with odd eccentricities) or ε2,c(�̄ )ε2(�l )2 (for
modes with even eccentricities). As a final example of dynam-
ical nonlinear response, let us mention mode l = 14, which
has both an ε1,s (and higher sine odd harmonics) and an ε2,c:

11In a forthcoming study we shall consider events with a fixed
multiplicity, i.e., a given centrality, instead of fixed impact parameter.
This will possibly facilitate the discussion, in addition to being closer
to the experimental setup.
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FIG. 16. Linear flow-response coefficient Kn,n (left) and quadratic-response coefficient Kn,mm (right) with n = 2m for modes with l < 256
for collisions at b = 0 within the Glauber (squares) and saturation (circles) models.

these give rise in the evolution to a v1,s ∝ ε2,cε1,s, and also to
a v3,s, at quadratic order in cl .12

E. Anisotropic flow response to initial eccentricities

A number of studies within either fluid dynamics—ideal or
dissipative—or kinetic transport theory have demonstrated the
existence of simple relationships between initial-state eccen-
tricities and the anisotropic flow harmonics in the final state.
Considering the absolute values εn and vn [Eqs. (45), (46),
(50)], and restricting oneself to small eccentricities, one finds
that the nth flow harmonic receives on the one hand a linear13

contribution from εn [34–37,39,40,71]:

vn = Kn,nεn, (54)

and on the other hand contributions from eccentricities in
other harmonics. In the simplest case, the latter are of the form
[37–39,72]

vn = Kn,mpεmεp, (55)

with |m ± p| = n. We presently wish to discuss how such
behaviors appear in our mode-by-mode analysis.

Indeed, when discussing the response coefficients for
anisotropic flow in the previous section, we related them sev-
eral times to the initial eccentricities of the system. At b = 9
fm, the deformation of the average state �̄ with sizable values
of ε2 and ε4 (see Table I) and the fact that most fluctuation
modes have several nonzero εm makes it difficult to isolate
the influence of each individual eccentricity on a given flow
harmonic, be it at linear or quadratic order in cl .

In contrast, the situation at b = 0 is cleaner: since the
average state is radially symmetric, the flow response for an
event of the form �̄ + cl�l is entirely due to the asymmetry of
the mode �l , which is what contributes to (the numerator of)
the eccentricities εm(�̄ + cl�l ). More precisely, we mostly
encounter two cases: First, a linear response of the form (54),

12For mode l = 15, the quadratic v1,s comes from ε2,c and ε3,s.
13In collisions with a large ε2, an extra cubic term ∝ε3

2 was found
to contribute to v2 [41].

which manifests itself as a nonzero coefficients Lvn,l , i.e., as
a linear response in cl , for a mode �l with an initial εn. For
such modes we compute

Kn,n ≡ lim
cl →0

vn(�̄ + cl�l )

εn(�̄ + cl�l )
= Lvn,l

Lεn,l
, (56)

which is shown in the left panel of Fig. 16, where k labels
the kth mode �l with l < 256 with an εn � 0.01.14 Second,
one can identify a number of modes with an initial εm with
m = 1 or 2 that gives rise to a final vn with n = 2m, corre-
sponding to Eq. (55) with p = m. For those modes (again with
l < 256), characterized by a sizable Qvn,ll (see top-right panel
of Fig. 15), we show

Kn,mm ≡ lim
cl →0

vn(�̄ + cl�l )

εm(�̄ + cl�l )2
= Qvn,ll

L2
εm,l

with n = 2m

(57)
in the right panel of Fig. 16. We also noted in Sec. III D the
presence of modes with several sizable eccentricities, giving
a “mixed” nonlinear response (55) with m �= p. For instance,
for mode l = 40 in the Glauber model one could compute a
K3,21, which we did not do. By construction, the coefficients
Kn,n and Kn,mm from Eqs. (56) and (57) are positive. However,
we noted in the previous section that the integrated v1 has an
opposite sign to ε1, i.e., K1,1 should be negative [38].

The coefficients Kn,n in the left panel of Fig. 16 clearly
decrease with n, which can be attributed to viscous damping
in the evolution. Yet this is less visible for the quadratic
coefficients K2n,nn on the right, although there is only a small
number of modes with a sizable dipole deformation ε1. One
again sees that the modes come in doublets, as already seen
for their eccentricities (Fig. 5 left) or in the 2 × 2 structure
of the linear-response coefficients Lα,l (top panels of Figs. 14
and 35).

Strikingly, the response coefficients Kn,n are very simi-
lar for modes from either initial-state model, although the
corresponding modes have different radial profiles. This also
holds for K4,22, but not for K2,11, where the fluctuation modes

14The mode number l may differ between the two models.
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from the saturation model with an ε1 trigger a stronger v2

response than those from the Glauber model. For n = 3, 4,
5, Kn,n seems to remain almost constant as the mode number
l increases, while K2,2 may show a decreasing trend, although
rather mild. In fact, one could expect that fluctuation modes
with higher l should be more damped by viscous effects,
since they show increasingly finer structure along the radial
direction, but this is not obvious from this analysis.

This approximate uniformity with increasing l allows us
to compare the mode-by-mode coefficients for initial states
of the form �̄ + cl�l with the values found from full event-
by-event simulations. Roughly speaking, the values of Kn,n

shown in Fig. 16 are in the same ballpark than those reported
in the literature:

(i) K2,2 	 0.2–0.3 is in good agreement with the findings
in hydrodynamical simulations with different setups
[39,41,73–75] and in kinetic transport simulations
[40,76,77].

(ii) K3,3 	 0.1–0.2 fits most values in the literature
[39,41,75,77] apart from Ref. [40], which finds values
larger by about a factor of two.

(iii) K4,4 	 0.05–0.1 is comparable to the results in
Refs. [39,73,75], although somewhat higher values
were found in fluid-dynamical [38] simulations or
kinetic theory simulations [40,78] with η/s = 1/4π .

(iv) In turn, K5,5 	 0.008–0.03 is twice larger than in
Ref. [38], but matches the value in Ref. [75].

(v) For the last linear coefficient K1,1 the four twofold-
degenerate values shown in Fig. 16 are too few to
draw conclusions, yet we find a decent agreement
with the results presented in Ref. [36], while the value
in Ref. [38] is roughly a factor of two smaller.

As regards the quadratic response coefficients, we are not
aware of any value of K2,11 in the literature, while K4,22 	
0.3–0.6 as shown in the right panel of Fig. 16 is significantly
larger than the value of 0.1 reported in Ref. [75].

IV. FLUCTUATIONS AND CORRELATIONS
OF OBSERVABLES

Now that we have established the mode decomposition
and the framework to compute observables the linear and
quadratic response of observables to the fluctuations, we will
compare the results of this mode-by-mode approach to sta-
tistical averages of event-by-event simulations. Naturally, for
a sample of events in a given class—in the present study,
at a given impact parameter and for one of the two initial-
state models we consider—the various system characteristics
(initial-state geometry, final-state multiplicity and anisotropic
flow) generally vary event-by-event, unless it defines the event
class. One can thus consider the average value of each ob-
servable and the statistics of its fluctuations, in particular the
variance, as well as the covariance between the fluctuations of
different observables.

Below we discuss how the statistics of observables can be
assessed in the mode-by-mode approach via the decompo-
sition in an average event and fluctuation modes introduced
in Sec. II. To compare with the event-by-event approach, we

also simulated the event-by-event evolution with KøMPøST
and MUSIC (see Sec. III C) for 8192 random events for each
of our initial-state models and impact-parameter values. For
these, we computed the average values (Sec. IV A) of the
observables introduced in Sec. III B, as well as their vari-
ances and some of their covariances (Sec. IV B), which we
relate to their values as calculated within the fluctuation-
mode decomposition. Eventually, in Sec. IV C 2 we develop
a framework for making predictions for the joint probability
distribution of observables, under the assumption of Gaussian
statistics of the coefficients cl , with variances and covariances
determined within the mode-by-mode decomposition. This
approach is then applied to eccentricities and anisotropic-flow
coefficients.

A. Average values of observables

Based on the event-by-event simulations of the 8192 events
simulated in each class, i.e., for collisions either at b = 0 or
b = 9 fm with initial states from either the Glauber or the
saturation model, we display in Table II the “sample mean,”
i.e., the mean value averaged over the sample, of a few system
characteristics, namely the total energy, mean square radius,
eccentricities ε2,c and ε4,c in the initial state, charged multi-
plicity, average transverse momentum, flow coefficients v2,c

and v4,c in the final state. We also provide the results for
the mode-by-mode approach, where the rows “average event”
refer to the value of each of these observables computed in the
average state �̄, while the row labeled “Eq. (38)” includes the
effects of fluctuations up to quadratic order.

As could be anticipated, in the isotropic case b = 0 the ec-
centricities and anisotropic-flow coefficients have very small
mean values (below 10−3) which we do not report. For the
initial-state characteristics, the values Oα (�̄ ) computed in the
average state are in very nice agreement with the sample-
mean values 〈Oα〉, except for ε4,c. Going to the final-state
observables, there are now sizable differences between the
event-averaged and average-event values, especially for the
charged multiplicity and v4,c. In particular for the former, this
difference is related to the strong nonlinearities observed in
Sec. III. Indeed, Eq. (38) shows how the quadratic response
coefficients Qα,ll contribute to the average value of observable
Oα at order O(c2

l ). Including this term modifies significantly
the predicted average value of a few observables (see Table II):
charged multiplicity and [pT] in general, and at finite impact
parameters ε4,c, v2,c, and v4,c. In both models, at b = 0 the
shift induced by the coefficients {Qα,ll} brings the mode-by-
mode average value of observables closer to the sample value,
although not enough for dNch/dη. For collisions at b = 9 fm,
the estimate (38) of the average value yields a nice description
of initial-state characteristics, and in the final state it improves
the agreement of [pT] with the sample value. However, the
effect on 〈dNch/dη〉 or 〈v2,c〉 are of the proper sign, but much
too large in absolute value. The presence of such sizable con-
tributions is consistent with the lower-right panels of Fig. 15
or 36. Yet we do not really understand why the contribution
1
2

∑
l Qv2,c,ll should degrade the rather good agreement of

v2,c(�̄ ) with the value from the event sample, even though it
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TABLE II. Sample mean 〈Oα〉 (using 8192 simulations), average-event value Oα (�̄ ), and estimate (38) of the average value of initial and
final-state observables for both models at b = 0 and b = 9 fm. The uncertainties given for 〈Oα〉 are the standard errors on the mean.

dE
dy (GeV) {r2} (fm2) ε2,c ε4,c

dNch
dη

[pT] (MeV/c) v2,c (%) v4,c (%0)

Glauber b = 0
sample mean 7247 ± 3 16.30 ± 0.01 2203 ± 1 792.9 ± 0.2
average event 7248 16.29 2257 783.9
Eq. (38) 7248 16.31 2233 796.9

Glauber b = 9 fm
sample mean 1668 ± 2 8.69 ± 0.02 0.299 ± 0.002 −0.111 ± 0.002 597 ± 1 773.8 ± 0.3 5.9 ± 0.03 3.7 ± 0.1
average event 1667 8.72 0.296 −0.094 636 746.3 6.1 4.3

Eq. (38) 1667 8.72 0.302 −0.111 569 758.8 3.9 3.3

Saturation b = 0
sample mean 6468 ± 2 17.01 ± 0.01 2071 ± 1 779.1 ± 0.1
average event 6468 17.00 2119 769.0

Eq. (38) 6468 17.01 2080 772.3

Saturation b = 9 fm
sample mean 1384 ± 2 7.94 ± 0.01 0.410 ± 0.001 −0.220 ± 0.002 493 ± 1 794.3 ± 0.3 8.2 ± 0.03 6.7 ± 0.1
average event 1386 7.95 0.406 −0.201 537 753.9 8.5 7.1
Eq. (38) 1386 7.95 0.410 −0.219 432 803.5 6.4 9.9

is clear that higher-order terms (in cl ) can contribute—which
we did not attempt to estimate in the present study.

B. Variances and covariances

From the 8192 random events one can compute the sample
standard deviation of every observable Oα about its mean
value 〈Oα〉. On the other hand, in our dynamical setup15 the
dispersion of the values taken by Oα event by event arises
solely from the fluctuations in the initial state. One may hope
to capture the fluctuations of observables with our mode de-
composition, and in fact Eq. (39) gives the covariance between
the fluctuations of two observables at order c2

l . Setting α = β

thus yields the variance of the fluctuations of Oα

V(Oα ) ≡ 〈(Oα − 〈Oα〉)2〉 	
∑

l

L2
α,l , (58)

involving the linear response coefficients Lα,l . In the top pan-
els of Figs. 17 and 18, we show these variances (full lines) as
function of the number of modes over which the sum runs. We
also show as circles close to the right edge of each panel the
sample variances of the observables computed from the 8192
events, with error bars given by the standard uncertainty on
the variance estimate.

From the covariance (39) one can also derive the Pearson
correlation coefficient of two observables:

C(Oα, Oβ ) ≡ 〈(Oα − 〈Oα〉)(Oβ − 〈Oβ〉)〉√
V(Oα )V(Oβ )

	
∑

l Lα,l Lβ,l√∑
k,k′ L2

α,kL2
β,k′

. (59)

15Using fluctuating fluid dynamics or early time evolution would
yield a further source of fluctuations.

These coefficients are shown for various pairs of observables
as full lines in the bottom panels of Figs. 17 and 18 as a
function of the number of modes used in the sum in the
numerator. The sums in the denominator always include the
first 256 modes. That is, the values of V(Oα ), V(Oβ ) used
in the denominator of Eq. (59) are those reached at the end
of the full lines in the upper panels of the figures. Again, the
circles close to the right edge of the panels are the correlation
coefficients from the sample of 8192 events.

We first focus on the behavior of the variances, shown
in Fig. 17 for collisions at b = 0 while Fig. 18 shows the
corresponding results at b = 9 fm. Both are obtained in the
Glauber model, while the corresponding plots with initial
states from the saturation model are shown in Figs. 37 and
38 in Appendix D, with similar results.

Since L2
α,l is non-negative, including more modes in the

sum increases the value of V(Oα ). But since the magni-
tude of the response Lα,l typically decreases with l , each
sum should hopefully converge, and indeed each variance
seems to reach a maximum value. At b = 0 (Fig. 17) and
for initial-state characteristics (left), the visual impression
is that each mode-by-mode variance tends towards the cor-
responding sample variance, except for ε5 for which more
modes would be needed. For initial- and final-state observ-
ables at zero impact parameter, the variance does not grow
with each mode, but there are only a few increasingly rarer
steps: e.g., for l = 0, 7, 18, 33, 52, 77, . . . in the case of the
variances of dE/dy or multiplicity. The reason is simply that
these are the only “radial modes,” i.e., the only modes for
which the linear-response coefficient Lα,l for dE/dy has a
sizable value, as shown in the top panels of Fig. 14. In the
case of eccentricities, the successive steps of the variance
have the same size for εn,c and εn,s in a given harmonic
but occur at values of l differing by one: this mirrors once
again the existence of pairs of degenerate, rotated modes,
which we have encountered several times. Due to rotational
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FIG. 17. Variances (top) and correlation coefficients (bottom) of initial-state (left) and final-state observables (right) for collisions at b = 0
in the Glauber model. The circles next to the right edge of each panel give the values computed from the random sample of 8192 events. The
full lines show the quantities computed with Eqs. (58) and (59), including the number of modes given by the abscissa for the sums in V and
the numerator of C. The sums in the denominator of C run over 256 modes. The variances of dE/dy, {r2}, dNch/dη, and [pT] are divided by
the corresponding mean values.

symmetry at b = 0, the sample variance is then the same for
εn,c and εn,s.

Generally, the features observed for the fluctuations of
the eccentricities are also found for the variances of the
anisotropic-flow harmonics in the final state at b = 0 (top-
right panel of Fig. 17). However, a significant difference
appears, namely, some of the mode-by-mode variances com-
puted with Eq. (58) are larger than the sample variances from
the 8192 random events. For v2, v3, or v4 this could perhaps
be caused by downwards fluctuations of the variances in the
event sample. However, this cannot ba a valid explanation
for the variance of multiplicity: V(dNch/dη) has clearly not
yet reached its maximum when summing over 256 modes in
Eq. (58), yet it is already markedly larger than the value found
in the event sample. Since we shall again encounter this mis-
match at b = 9 fm, we momentarily postpone its discussion.

Indeed, it is striking that some high-fluctuation modes—for
instance �l with l = 203—yield a large contribution to the
variance of charged multiplicity, while this does not hap-

pen for the other observables. This can be attributed to the
system viscosity (here shear viscosity, since the bulk vis-
cosity is zero in our simulations), which converts the small
scale radial “ripples” of the initial energy density profile into
extra particles. To test that idea we performed simulations
with different values of the shear viscosity to entropy ratio
(η/s ∈ {0, 0.16, 0.32}). These revealed that the radial fluctua-
tion modes with small l , for example l = 0, are significantly
affected by viscosity, which diminishes the mode contribution
to the multiplicity. This is, however, less the case of radial
modes with a relatively large l , e.g., l = 203. We checked that
for l � 256 the contribution of radial modes to V(dNch/dη)
decreases, which is to be expected since the mode eigenval-
ues keep decreasing. Therefore, given a sufficient number of
modes, V(dNch/dη) computed with Eq. (58) converges to
a finite value, but it still cannot coincide with the sample
variance since it is already larger after 256 modes.

At zero impact parameter there are only two sizable co-
variances, or equivalently Pearson correlation coefficients,
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FIG. 18. Same as Fig. 17 but for collisions at b = 9 fm within the Glauber model.

between the observables we consider, namely, between total
energy and typical system size in the initial state, and between
multiplicity and average momentum in the final state.16 In
the bottom panels of Fig. 17 we see that the mode-by-mode
correlation coefficient C(dE/dy, {r2}) seems to tend towards
its sample value after 256 modes. This may also be true
of C(dNch/dη, [pT]), although it is less clear. As mentioned
above, the radial fluctuation modes with a rather high l still
contribute to the fluctuations of multiplicity. In any case, one
may note that the mode-by-mode evolution of the correlation
functions does not behave monotonically when more modes
are included in the sums in the numerator, i.e., in the co-
variances: some modes affect both observables in the same
direction, leading to a positive correlation function, while in
other modes the observables are anticorrelated.

In events at b = 9 fm (Fig. 18), the first salient feature is
that the variances and the correlation functions are now af-
fected by many more modes, instead of only a few ones at zero
impact parameter. Visually, the typical contribution of a mode

16We leave aside correlations between an initial-state quantity and
a final-state observable.

looks smaller, but one should beware that the vertical scales
of the plots differ from Fig. 17. That more modes contribute
to the fluctuations is simply related to the fact that, due to the
mixing with the anisotropic average state (cf. Sec. II C) every
mode now affects multiple initial-state characteristics. This
also explains why there are now several nonzero correlation
functions in both initial and final states.

A second remark is that the parallel behavior of the vari-
ances of εn,c and εn,s, and in the final state vn,c and vn,s

is no longer observed, reflecting the breaking of rotational
symmetry at finite impact parameter.

Eventually, it is now clear that several variances computed
within the mode-by-mode approach will not match the sample
variance from our event-by-event simulations. In the top-left
panel of Fig. 18, the values of V(εn) with n = 2, 3, 4, 5 ob-
tained with 256 modes are larger than the sample variance
depicted by the circles. In the top right panel, the same holds
for almost all final-state observables, especially [pT], v1,c/s,
or v3,c/s.

In the case of the initial-state characteristics, we found in
Table II that the mode-by-mode approach provides a good
estimate of the average value, especially when including the
term in Qα,ll in Eq. (38). In contrast, Eq. (58) does not in-
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FIG. 19. Variances of the numerators and denominators of the initial-state eccentricities (45) for collisions at b = 0 (left) and b = 9 fm
(right) in the Glauber model. The variances are computed with Eq. (58), including the number of modes given by the abscissa for the sum and
divided by the sample variances from the 8192 random events so that the open symbols at a value of one stand for these sample variances.

clude these quadratic-response terms—without contradiction,
since both equations are valid at order O(c2

l ). Yet it hints at
the origin of the mismatch between the mode-by-mode and
sample values of the variances, since the eccentricities, which
are defined as ratios with a moment of the energy density in
the denominator, depend nonlinearly on the modes, i.e., on cl .
To test this idea, we took as observables Oα the numerators
and denominators of the eccentricities (45) alone, i.e., the
integrals of rn, rn cos(nθ ), and rn sin(nθ ) multiplied by the
energy density. The mode-by-mode variances (58) of these
quantities for initial states from the Glauber model, divided
by the respective sample variances from the 8192 random
events, are shown in Fig. 19. The ratios of mode-by-mode over
sample variances seem to converge to unity from below when
more modes are accounted for in the calculation of V(Oα ),
showing that Eq. (58) provides a good estimate of the variance
for characteristics that depend linearly on the modes. In turn,
we can deduce that the lack of convergence of mode-by-mode
variances to the sample values in Figs. 17 and 18 means that
nonlinear effects are present, already in the initial state, and
naturally even more so in the final state.

At both impact parameters, the variance of εn,c/s increases
with n. The reverse holds for the anisotropic flow harmon-
ics, with v2,c/s having the largest variance and v5,c/s the
smallest.17 This is consistent with the fact that the values
of vn themselves follow the same hierarchy due to viscous
damping.

Despite the discrepancy between mode-by-mode and sam-
ple variances, the correlation coefficients computed with the
modes [Eq. (59)] or from the 8192 events are generally in
rather decent agreement, see bottom panels of Fig. 18. In ad-
dition, most correlation functions seem to reach rather quickly
a limiting value, namely, after including about 150 modes,
which rather contrasts the situation at b = 0. This motivated

17v1 does not follow the trend, but the underlying physics is
somewhat different, since global transverse-momentum conservation
plays a crucial role for directed flow.

us to provide a more direct comparison between the values
computed with 256 modes of the correlation functions and
the sample values, shown in Fig. 20 (Fig. 21) for collisions
in the Glauber model at b = 0 (b = 9) fm, and in Figs. 39
and 40 for events with initial states from the saturation model.
A further advantage of these figures is that they also include
correlation coefficients not shown in Figs. 17 or 18. Here
we merely describe the visible features, irrespective of any
physical interpretation.

At vanishing impact parameter (Fig. 20), we already saw
that the only sizable correlation coefficients are between
dE/dy and {r2} in the initial state, and between charged
multiplicity and average transverse momentum in the final
state. These correlations are caused by the radially symmetric
fluctuation modes, which are the only ones that contribute to
both pairs of observables.

In events at b = 9 fm, a few clear trends appear: the cosine
parts of even-order eccentricities (anisotropic-flow harmon-
ics) are (anti-)correlated with each other and with dE/dy and
{r2} (dNch/dη and [pT]), but not with the other observables.
The cosine parts of odd-order eccentricities or anisotropic-
flow harmonics are correlated with each other but not with the
rest. Finally, the sine parts of eccentricities (flow coefficients)
only correlate to other εn,s (vn,s) in a harmonic n with the same
parity.

C. Probability distributions and Gaussian statistics

We have seen that the probability distributions of the nor-
malized coefficients cl of statistical fluctuations are close to
being Gaussian, see Fig. 2. Assuming that they were in fact
perfectly described by Gaussian statistics and that the fluctua-
tions of a number of choice observables depend linearly on the
fluctuations, it is straightforward to calculate model predic-
tions of probability distributions for these observables. These
predictions can serve as an approximation to the true statistical
distributions of observables. In this section, we describe the
mathematical framework for this approach—the details of the
calculations are reported in Appendix E 1—and present some
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FIG. 20. Correlation coefficients of initial state (left) and final state (right) observables for collisions at b = 0 in the Glauber model. Top:
values computed with 256 modes in the mode-by-mode approach [Eq. (59)]. Bottom: values from the sample of 8192 random events. Values
on the diagonal, which by definition equal one, are shown as gray squares.

results for the probability distributions of anisotropic flow
coefficients.

1. Formalism

It is clear that all observables cannot be assumed to
respond linearly to the fluctuation modes. Indeed, many
interesting characteristics of the system are by definition
positive, such as, for example, for the eccentricities εn =
[(εn,c)2 + (εn,s)2]1/2, or they are (nonlinear) functions of other
observables. With this caveat in mind, we postulate the exis-
tence of observables Oα whose fluctuations depend essentially
linearly on the expansion coefficients {cl}, i.e., such that
Eq. (37) can be truncated at linear order:

Oα ({cl}) 	 Ōα +
∑

l

Lα,l cl , (60)

where for brevity we denoted by Oα ({cl}) the value of an ob-
servable Oα evaluated at the (not necessarily physical) initial
state �̄ +∑

l cl�l with a given set {cl}.
Introducing the joint probability distribution p({cl}) of the

expansion coefficients, the probability distribution of Oα reads

pα (Oα ) =
∫

Dcp({cl})δ(Oα − Oα ({cl})), (61)

where we introduced the shorthand notation∫
Dc ≡

∏
l

∫ ∞

−∞
dcl . (62)

Up to this point no assumption has been made in writing
Eq. (61).

By construction the coefficients {cl} are uncorrelated: the
covariance of cl and cl ′ vanishes if l �= l ′, see Eq. (3). Let
us assume that they are statistically independent variables.
In that case, the joint distribution factorizes into the product
of single-variable probability distributions of the individual
coefficients:

p({cl}) =
∏

l

pl (cl ), (63)

where each distribution pl is centered and has a unit variance,
Eqs. (2) and (3). In addition, in this section we assume that
each expansion coefficient cl is a Gaussian random variable:

pl (cl ) 	 1√
2π

exp

(
−c2

l

2

)
. (64)

In practical calculations, the decomposition in fluctuation
modes can only involve a finite number of modes, so that the
sum in Eq. (60) or the product in Eq. (62) are restricted to
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FIG. 21. Same as Fig. 20 but for collisions at b = 9 fm within the Glauber model.

values l < lmax with some lmax. Accordingly, for an observable
obeying relation (60) and assuming that the {cl} are Gaussian,
the probability distribution (61) of Oα becomes

pα (Oα ) 	 pG
α (Oα ) ≡ 1√

2πCαα

exp

[
− (Oα − Ōα )2

2Cαα

]
, (65)

where Cαα ≡ ∑
l L2

α,l is the variance of Oα , see also Eq. (39).
More generally, one can obtain a similar result for the

joint probability of d observables Oα1 , ..., Oαd . In the
Gaussian approximation, their joint probability distribution
reads

pG
�α ({Oαk }) =

exp
[− 1

2 (Oαi − Ōαi )
(
�−1

�α
)

i j
(Oα j − Ōα j )

]
√

(2π )d det (��α )
,

(66)
with an implicit sum over i and j in the exponent. ��α is the
covariance matrix of the observables, with (i, j) entry

(��α )i j ≡
∑

l

Lαi,lLα j ,l . (67)

For brevity, this entry will be denoted (��α )i j ≡ Cαiα j .
Note that lmax does not appear explicitly in Eq. (66) [or
Eq. (65)], but it is hidden in the definition of the covariance
matrix (67).

As could be anticipated, if the expansion coefficients {cl}
on the basis of fluctuation modes are Gaussian-distributed,
and if observables {Oαk } depend linearly on these coefficients,
then the joint probability distribution (66) of the observables
is Gaussian.

For an observable of the form Oβ = (O2
α1

+ O2
α2

)1/2, the
assumption of a Gaussian distribution is clearly not valid. But
if it is (approximately) valid for Oα1 and Oα2 , one can com-
pute the probability distribution pβ from the joint probability
distribution pG

α1,α2
, starting from

pG.f.a.
β (Oβ ) =

∫
dOα1

∫
dOα2 pG

α1,α2

(
Oα1 , Oα2

)
× δ

(
Oβ −

√
O2

α1
+ O2

α2

)
, (68)

where the superscript “G.f.a.” stands for “Gaussian fluctuation
approximation.” As detailed in Appendix E 1, by plugging in
the specific form of pG

α1,α2
one can explicitly compute pG.f.a.

β

and express it in terms of an infinite series of products of
modified Bessel functions, whose arguments depend on the
average values Ōα1 , Ōα2 and the variances and covariances of
Oα1 and Oα2 , see Eq. (E23). If the average values Ōα1 , Ōα2
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vanish, the expression strongly simplifies and becomes

pG.f.a.
β (Oβ ) = �(Oβ )Oβ√

det
(
�α1,α2

) exp

[
−O2

β

(
Cα2α2 + Cα1α1

)
4 det

(
�α1,α2

)
]

× I0

⎛
⎜⎝O2

β

√(
Cα2α2 − Cα1α1

)2 + 4Cα1α2

4 det
(
�α1α2

)
⎞
⎟⎠, (69)

where � denotes the Heaviside step function, since Oβ is
clearly non-negative.

Analogously, the joint probability distribution of two ob-
servables Oβ = (O2

α1
+ O2

α2
)1/2 and Oγ = (O2

α3
+ O2

α4
)1/2 can

be expressed as

pG.f.a.
β,γ (Oβ, Oγ ) = �(Oβ )Oβ�(Oγ )Oγ

∫ 2π

0
dφ

∫ 2π

0
dψ

× pG
α1,α2,α3,α4

(Oβ cos φ,

Oβ sin φ, Oγ cos ψ, Oγ sin ψ ), (70)

where the joint probability of the four observables Oα j is
assumed to be Gaussian. This equation is of the same form
as (E14) for the case of a single observable of this type. In
general, i.e., when Oα3 or Oα4 have a nonzero covariance with
Oα1 or Oα2 , the integrals can no longer be computed as in the
case of the single-variable distribution pG.f.a.

β . Nevertheless,
the distribution (70) can still be evaluated numerically.

2. Application to anisotropic flow

We can now apply the formalism of the previous section to
a few observables, and compute probability distributions of
their fluctuations, using values of the (co)variances of ob-
servables determined with 256 fluctuation modes, i.e., as in
Sec. IV B. These semi-analytical probability distributions are
compared with those from a sample of 8192 dynamically
evolved events (for each initial-state model and impact-
parameter value).

For the Pb-Pb collisions we consider in this paper, at a
fixed impact parameter ranging up to 9 fm, the fluctuations
of εn,c and εn,s can to a good approximation be assumed to be
a two-dimensional Gaussian [79–81], although this does not
satisfy the actual constraint εn ≡ [(εn,c)2 + (εn,s )2]1/2 � 1. At
b = 0, the values of the eccentricities in the average state �̄

vanish, ε̄n,c/s = 0, so that the probability distribution of the
modulus εn is given by Eq. (69), namely, a Bessel–Gaussian
distribution [79].

In turn, when all eccentricities are small, i.e., in our case
in collisions at b = 0, each flow coefficient vn,c/s is approxi-
mately proportional to the corresponding eccentricity εn,c/s,

vn,c/s ∝ εn,c/s, (71)

which for n = 2 and 3 also holds pretty well at b = 9 fm. For
such a linear dynamical response, the fluctuations of vn,c/s fol-
low those of εn,c/s, i.e., they are approximately Gaussian. Ac-
cordingly, the joint probability distribution of the four observ-
ables εn,c, εn,s, vn,c, vn,s is itself Gaussian—with a few large

covariances—, and one can estimate the joint probability dis-
tribution of εn and vn ≡ [(vn,c)2 + (vn,s )2]1/2 using Eq. (70).

More generally, we show in Figs. 22–25 the joint probabil-
ity distributions, either computed with Eq. (70) or obtained
from a sample of 8192 random events, of the observables
(εn, vn) with n ∈ {1, . . . , 5} and of (ε2, v4), for both initial-
state models at b = 0 and 9 fm. In every panel, we indicate
with a cross (circle) the average value of the two observ-
ables determined from the semi-analytical calculation (the
event sample). Above (right) of each panel, we display
the (marginal) distribution of the corresponding eccentricity
(anisotropic-flow) coefficient: the dashed curves stand for the
semi-analytical results, the full-line histograms with visible
bin widths are from the sampled events, while the dotted
lines represent a Gaussian smoothing of these histograms.
The first moments of these marginal distributions—for the
event samples and the calculations in the Gaussian fluctuation
approximation—are given in Table III in Appendix E 2.

At vanishing impact parameter, the results from the Gaus-
sian fluctuation approximation and the event sample are
generally in excellent agreement, both in the Glauber (Fig. 22)
and saturation (Fig. 23) models. The only significant discrep-
ancy is between the semi-analytical and sample mean values
of ε5 and v5 in the saturation model (red circle and cross in
the bottom-left panel of Fig. 23). This discrepancy can be
related to the one already observed in the top panels of Fig. 37
between the endpoint of the line(s) and the sample variances
(represented by a circle) for ε5,c/s or v5,c/s. Including more
fluctuation modes in the calculation of the variances, which
enter the semi-analytical estimate, would probably diminish
the discrepancy.

An additional observation at b = 0 is that the dispersion
away from the perfect proportionality (71) between εn and
vn seems to increase when going from n = 2 to n = 5. In
contrast, the correlation between ε2 and v4 is much less
marked: they rather seem to be uncorrelated, and the Gaus-
sian fluctuation approximation captures remarkably well their
joint probability because it factorizes into the product of their
separate probability distributions, which are well reproduced.

Going now to the results at b = 9 presented in Figs. 24
and 25 we find that the Gaussian fluctuation approach again
provides in general a good approximation of the results
from the event samples. However, deviations between the
approaches are now more visible, starting with the average
values of the observables. A first source of discrepancy is that
the variances from the mode-by-mode approach sometimes
miss the sample variances by a significant amount (see top
panels of Fig. 18 and 38). A second, possibly more important
mismatch is that the linear approximation (71) is no longer
always fulfilled: v3 is still approximately proportional to ε3,
and this holds at the level of their sine and cosine parts. The
proportionality between v2 and ε2 is no longer present at large
ε2, where a deviation appears, which was already reported
in the literature [41]. Eventually, nonlinear flow response is
also present in the values of v1, v4, and v5 found in the
event sample. Indeed, the joint probability distribution of ε2

and v4 now has more structure than at b = 0, demonstrating
the existence of a correlation between them. However, the
Gaussian fluctuation approximation does not include these
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FIG. 22. Joint probability distributions of εn and vn for n = 1, 2, 3, 4, 5 (top-, middle-, and bottom-left panels) and ε2, v4 (bottom right) in
collisions at b = 0 within the Glauber model. Contour lines: semi-analytical values from Eq. (70). Density plots: values from a sample of 8192
random events. Red cross (circle): mean value of the observables from the Gaussian-fluctuation calculations (the event sample). Top (right) of
each panel: probability distribution of εn (vn) (histogram: binned sample values; dotted: smoothing of the histogram with a Gaussian kernel
density estimator; dashed line: semi-analytical values).

nonlinearities, which, for example, spoil the assumption that
the fluctuations of vn,c/s are Gaussian. Nonetheless, it is worth
emphasizing the results from the semi-analytical approach are
not totally off, but yield a more than decent approximation.

V. SUMMARY AND OUTLOOK

In this paper we have introduced a general framework for
characterizing the event-by-event fluctuations of the initial
state of heavy-ion collisions predicted by a given model. Start-
ing from a density-matrix formalism, the fluctuating initial
states are written as the sum of an average event and a linear

combination of uncorrelated fluctuation modes, Eq. (1), with
expansion coefficients that are found to be almost Gaussian-
distributed.

For a set of observables—both in the initial state and in the
final state following a dynamical evolution with KøMPøST
and MUSIC—we compared the mean values and (co)variances
computed from a sample of events with those gained from a
mode-by-mode calculation. In the mode-by-mode approach,
we characterized the response of observables to the presence
of a given mode by linear and quadratic-response coefficients.
The statistics of some observables (energy density, mean
square radius, eccentricities εn,c/s, to a large extent vn,c/s)
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FIG. 23. Same as Fig. 22 but for collisions at b = 0 within the saturation model.

is described very satisfactorily by the linear mode-by-mode
response with the inclusion of a reasonable number of modes.
This allows us in particular to predict the joint statistics of
the eccentricities εn and anisotropic flow coefficients vn in the
mode-by-mode approach within a Gaussian fluctuation ansatz
assuming a linear response. In contrast, charged multiplicity
and to a lesser extent average transverse momentum are signif-
icantly nonlinear and may also possibly require more modes
for a good description.18

18The issue with multiplicity may be mitigated if the initial state
is defined in terms of entropy-density profiles instead of energy
densities as in the present paper.

In the present paper we used initial states for Pb-Pb colli-
sions at fixed impact parameter. This has the advantage that,
at b = 0, the colliding system is azimuthally symmetric in the
transverse plane, yielding an average state and modes with a
relatively simple structure: most fluctuation modes only have
a single nonzero eccentricity εn, and accordingly in the final
state only few sizable anisotropic flow harmonics vn, v2n,....
This simplifies the analysis of linear and nonlinear responses
in the mode-by-mode evolution, in particular the calculation
of response in the Gaussian-fluctuation approximation, and
allowed us to validate our approach. In a forthcoming study,
we shall consider the more experimentally relevant case of
events within centrality classes. Even then, it appears advan-
tageous to consider a fixed orientation of the impact parameter
in order to absorb the leading effects into an anisotropic
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FIG. 24. Same as Fig. 22 but for collisions at b = 9 fm within the Glauber model.

average state and thereby limit the contribution of fluctuations
to observables. In this respect our approach is distinct from
previous mode-by-mode studies [43–49], where a rotationally
symmetric average state was considered. With the extra con-
straint of almost-fixed multiplicity, one can then meaningfully
include further observables and investigate (possibly with the
help of a singular value decomposition) which modes are
needed for which observables. This is a needed step towards
the ultimate scope, which would be to discriminate between
initial-state models. Here we considered two such models to
test our method on different samples of initial states, but we
did not attempt to really compare the models. Possibly the
most prominent difference between them is the behavior of
the eigenvalues of the density matrix of fluctuations, i.e., the
relative importance of the contribution of modes to events.

Quite naturally, our method can be extended to different
colliding systems, in particular with deformed nuclei. It may
also be interesting, although possibly costly, to investigate
higher orders for the mode-by-mode response of observables,
especially for those that are highly nonlinear. The generality
of our approach makes it also possible to consider more com-
plicated initial states, like truly three-dimensional profiles or
including conserved charges, although again at an increased
computational cost.
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FIG. 25. Same as Fig. 22 but for collisions at b = 9 fm within the saturation model.
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APPENDIX A: CHARACTERISTICS OF THE
PROBABILITY DISTRIBUTIONS OF THE EXPANSION

COEFFICIENTS

In this Appendix we present quantitative measures of
the probability distributions p(cl ) of the expansion coef-

ficients {cl}. More specifically, we computed the average
μ, the variance σ 2, the skewness γ1, and the excess kur-
tosis γ2. By construction, μ (σ 2) should be close to zero
(one), see Eqs. (2) [(3)]. As in Sec. II C, these char-
acteristics were obtained using 8192 randomly sampled
events in both models and at both considered impact
parameters.

In Figs. 26 and 27 we show the moments for events at
zero impact parameter. In both models the characteristics are
consistent with those of a centered Gaussian distribution with
unit variance, namely, γ1 = γ2 = 0, for almost all modes. The
most notable exception is the mode with the largest relative
weight, l = 0, for which the distribution of the expansion
coefficient c0 has a sizable negative (positive) skewness in
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FIG. 26. Average μ, variance σ 2, skewness γ1, and excess kurtosis γ2 of the probability distributions of the expansion coefficients cl in the
Glauber model at b = 0 fm.
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FIG. 27. Average μ, variance σ 2, skewness γ1, and excess kurtosis γ2 of the probability distributions of the expansion coefficients cl in the
saturation model at b = 0 fm.
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FIG. 28. Average μ, variance σ 2, skewness γ1, and excess kurtosis γ2 of the probability distributions of the expansion coefficients cl in the
Glauber model at b = 9 fm.

the Glauber resp. saturation model.19 The asymmetry of the
probability distribution signaled by this nonzero skewness is
easily understood, as we now discuss on the example of the
saturation model. In that case the mode l = 0 is positive at
the center of the fireball (bottom-left density plot in Fig. 4).
Consider the random event �̄ + c0�0 (and, for the sake of
discussion, no other mode): the requirement that the energy
density of the event should be non-negative everywhere, in
particular at r = 0, constrains the possible values of c0, which
cannot be too negative. In turn, c0 cannot be too large a pos-
itive number either—to ensure the positivity in regions with
r ≈ 0.5R, yet that restriction is milder in that it allows larger
absolute values |c0|. Overall, the distribution of c0 can thus
extend further towards positive values than towards negative
ones: it has a longer tail on the right, i.e., precisely a positive
skewness γ1.

In events at finite impact parameter (b = 9 fm), for which
the results are shown in Figs. 28 and 29, we find in both
models larger deviations from the values for a Gaussian dis-
tribution. First, the skewness γ1 of p(cl ) departs considerably
from zero for some modes, although without any clear trend.
Second, the excess kurtosis γ2 also deviates from zero, with
a marked trend towards positive values that seems to increase
with l . Thus, the broken rotational symmetry at finite impact
parameter leads to a slightly non-Gaussian probability dis-

19Closer inspection reveals that the skewness is also nonzero for a
few further modes, in particular those with radial symmetry—l = 7,
18, 33, ..., although this is less visible.

tribution of the expansion coefficients cl , especially for the
higher modes.

APPENDIX B: FLUCTUATION MODES

In this Appendix we show the first 60 orthonormal eigen-
vectors of the density matrix of fluctuations (9) for the initial
state of Pb–Pb collisions at

√
sNN = 5.02 TeV within the

Glauber model (Fig. 30 at b = 0, Fig. 31 at b = 9 fm) and
the saturation model (Fig. 32 at b = 0, Fig. 33 at b = 9 fm).
Note that these eigenvectors all have the same normalization
to allow a simpler comparison while otherwise the norm of the
successive fluctuation modes �l decreases with increasing l .

APPENDIX C: MODE-BY-MODE RESPONSE OF
OBSERVABLES IN THE SATURATION MODEL

In this Appendix we present the linear and quadratic mode-
by-mode response of system observables for collisions with
an initial state from the saturation model, paralleling the re-
sults in the Glauber model of Sec. III D.

1. Linearity check

In Fig. 34 we show O+
α,l − Ōα ≡ Oα (�̄ + δ�l ) − Oα (�̄ )

for a number of initial-state and final-state observables {Oα}
evaluated for a few modes, using various values of δ between
−2 and 2. On the left are collisions at zero impact parameter,
on the right collisions at b = 9 fm. This is similar to Fig. 13,
with the difference that at b = 9 fm we have chosen different
fluctuation modes �l for the eccentricities εn,c, because the
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FIG. 29. Average μ, variance σ 2, skewness γ1, and excess kurtosis γ2 of the probability distributions of the expansion coefficients cl in the
saturation model at b = 9 fm.

lth mode does not necessarily affect the same harmonics in
the Glauber and saturation models.

The results in the saturation model are generally the same
as in the Glauber model. The only minor difference with
Fig. 13 regards the initial state at b = 0, where the mean
square radius {r2} looks more linear here than in the Glauber
model. Anticipating on what comes next, this can also be seen
on the level of the quadratic-response coefficients in Fig. 36
(top left panel), where no nonlinear response is visible for
{r2}, while small sizable coefficients can be spotted in the
similar plot (Fig. 15) for the Glauber model.

2. Linear and quadratic response coefficients
Figures 35 and 36 show the linear and quadratic-response

coefficients, respectively, of observables [Eq. (37)] for the
fluctuation modes within the saturation model. The results
are generally qualitatively similar to those within the Glauber
model (Figs. 14 and 15), up to an important exception: Here
the linear coefficients Lα,l of energy density and charged mul-
tiplicity in collisions at vanishing impact parameter (Fig. 35,
top panels) have opposite signs, while they have the same sign
for events with initial states from the Glauber model. Alter-
natively, the charged multiplicity dNch/dη and the average
transverse momentum [pT] at b = 0 are negatively correlated
in the saturation model, while they are positively correlated in
the Glauber model.

Regarding the quadratic-response coefficients, an eye-
catching result is the presence of sizable Qα,ll for v4,s in the
modes l = 3 and 4 at b = 9 fm (bottom-right panel of Fig. 36).

These coefficients are readily explained, when one realizes
that these two modes have both an ε2,c(�l ) and a ε2,s(�l ), as
seen either in the first row of Fig. 33—these are the two modes
that do not have the x or y direction as symmetry axis—or in
the bottom-left panel of Fig. 35. Accordingly, v4,s(�̄ + cl�l )
receives a contribution in c2

l ε2,c(�l )ε2,s(�l ). Consistently,
there are also linear contributions ∝clε2,c(�̄ )ε2,c/s(�l ) to
v4,c/s(�̄ + cl�l ), visible as linear-response coefficients in the
bottom-right panel of Fig. 35 for the same modes.

APPENDIX D: FLUCTUATIONS AND CORRELATIONS
OF OBSERVABLES IN THE SATURATION MODEL

In this Appendix we present the variances and correlation
coefficients of observables for events with initial states from
the saturation model, similar to Figs. 17–21. Figure 37 is for
collisions at b = 0 and Fig. 38 for events at b = 9 fm.

As in Sec. IV B, at b = 0 the variances from the mode-
by-mode approach tend towards the sample values obtained
from 8192 random events for most observables except the
charged multiplicity—for which modes with a high l still
yield large contributions to the variance—and ε5, which
would necessitate a few more modes. Paralleling the noncon-
vergence of the variance dNch/dη, its correlation coefficient
with [pT] from the mode-by-mode approach is far from its
sample value. In turn, at b = 9 fm nonlinear effects spoil
the agreement between mode-by-mode values and sample
values.
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FIG. 30. First 60 orthonormal eigenvectors for the Glauber model at b = 0. Both axes are in units of R.

In Figs. 39 and 40 we show the values of the correlation
coefficients, for events at b = 0 and b = 9 fm, respectively.
For the initial-state observables (left panels) at b = 0 and
generally at b = 9 fm the coefficients from the mode-by-

mode approach computed with 256 modes (top panels) are in
qualitative agreement with the sample values extracted from
the 8192 random events (bottom panels). On the other hand,
the large discrepancy between the mode-by-mode and sample
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FIG. 31. First 60 orthonormal eigenvectors for the Glauber model at b = 9 fm. Both axes are in units of R.

values of C(dNch/dη, [pT]) at b = 0 is clearly reflected in the
mismatch between the top and bottom panels on the right of
Fig. 39. The difference comes from the limitation to order c2

l
in the calculation of the mode-by-mode value. If we momen-

tarily assume that all expansion coefficients {cl} are Gaussian-
distributed and that they are statistically independent, one
can compute all moments of their distributions. Under this
assumption, one finds that at order c4

l the covariance of two
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FIG. 32. First 60 orthonormal eigenvectors for the saturation model at b = 0 fm. Both axes are in units of R.

observables Oα , Oβ receives a contribution proportional to
the sum over l of Qα,ll Qβ,ll .20 Now for both models and

20There are also a contribution proportional to the sum of
Qα,ll ′ Qβ,ll ′ over pairs l �= l ′ as well as terms coming from pushing
Eq. (37) to order c4

l , which we did not attempt to estimate.

all modes, the quadratic-response coefficients for dNch/dη

and [pT] have opposite sign, so that this contribution to
C(dNch/dη, [pT]) is negative. In the Glauber model this con-
tribution is much smaller than that in the numerator of Eq. (59)
from the linear coefficients. But in the saturation model they
are actually of similar magnitude, which at least partly ex-
plains the strong difference observed in Figs. 37 or 39.
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FIG. 33. First 60 orthonormal eigenvectors for the saturation model at b = 9 fm. Both axes are in units of R.

APPENDIX E: PROBABILITY DISTRIBUTIONS OF OBSERVABLES

1. Probability distributions in the Gaussian fluctuation approximation

In this Appendix we detail the derivation of the results presented in Sec. IV C on the probability distributions of observables in
the linearized Gaussian approximation. Assuming that the expansion coefficients cl follow a centered Gaussian distribution with
unit variance [Eq. (64)] and that the response of an observable Oα to initial-state fluctuations is linear, the probability distribution

034905-39



NICOLAS BORGHINI et al. PHYSICAL REVIEW C 107, 034905 (2023)

FIG. 34. Variation with δ of O+
α,l − Ōα for initial-state (left) and final-state (right) observables, together with linear fits to the points with

|δ| � 0.01, using the saturation model at b = 0 (top) and b = 9 fm (bottom) Closed symbols and full lines correspond to the first modes
contributing to the respective observable, while open symbols and dashed lines are for the second modes.

for Oα is approximately given by

pG
α (Oα ) = 1

(2π )lmax/2

∫
Dc
∏

l

e−c2
l /2δ

(
Oα − Ōα −

∑
l

Lα,l cl

)
, (E1)

where lmax is the number of fluctuation modes entering a practical calculation. Introducing a Fourier representation of the delta
distribution,

δ(x) =
∫

ds

2π
eisx, (E2)

we can recast the integral over every cl into a complex Gaussian form

pG
α (Oα ) = 1

(2π )lmax/2

∫
ds

2π
eis(Oα−Ōα )

∏
l

∫
dcl exp

(
−c2

l

2
− isLα,l cl

)
(E3)

that is then easily computed:

pG
α (Oα ) =

∫
ds

2π
exp

[
is(Oα − Ōα ) − s2∑

l L2
α,l

2

]
= 1√

2πCαα

exp

[
− (Oα − Ōα )2

2Cαα

]
, (E4)

where in the last step we introduced the diagonal coefficients α = β of the covariance matrix

Cαβ ≡
∑

l

Lα,l Lβ,l . (E5)
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FIG. 35. Linear-response coefficients Lα,l for the initial-state quantities (upper left) and final-state observables (upper right) at b = 0 in the
saturation model. Bottom: same for b = 9 fm. The dimensionful observables and multiplicity have been normalized by Ōα .

This calculation is readily extended to that of the joint probability distribution of d observables Oα1 , ..., Oαd . Starting from

pG
�α ({Oαk }) = 1

(2π )lmax/2

∫
Dc
∏

l

e−c2
l /2
∏

k

δ

(
Oαk − Ōαk −

∑
l

Lαk ,l cl

)
, (E6)

one finds

pG
�α ({Oαk }) = 1

(2π )lmax/2

∏
k

∫
dsk

2π
eisk (Oαk −Ōαk )

∏
l

∫
dcl exp

(
−c2

l

2
− iskLαk ,l cl

)

=
∏

k

∫
dsk

2π
exp

[
isk
(
Oαk − Ōαk

)−
∑

j s j (��α ) jksk

2

]
, (E7)

where we have introduced the matrix

(��α ) jk ≡
∑

l

Lα j ,lLαk ,l . (E8)

Eventually, one obtains

pG
�α ({Oαk }) = 1√

(2π )d det(��α )
exp

⎡
⎣−1

2

∑
i, j

(
Oαi − Ōαi

)(
�−1

�α
)

i j

(
Oα j − Ōα j

)⎤⎦, (E9)

which shows that ��α is in fact the covariance of the k observables, whose entries we shall denote

(��α )i j ≡ Cαiα j . (E10)
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FIG. 36. Quadratic-response coefficients Qα,ll for the initial-state quantities (upper left) and final state observables (upper right) at b = 0
in the saturation model. Bottom: same for b = 9 fm. The dimensionful observables and multiplicity have been normalized by Ōα .

To be able to perform further calculations without specifying the covariances, we will make use of Cramer’s rule for the
general expression of the (i, j) entry of the inverse of a n × n matrix A:

(A−1)i j = (−1)i+ j

det(A)
det(A( j,i) ), (E11)

with A( j,i) the (n − 1) × (n − 1) matrix obtained by deleting the jth row and ith column from A. Using this result for the elements
of �−1

�α in Eq. (E9), we find

pG
�α ({Oαk }) = 1√

(2π )d det(��α )
exp

[
−
∑

i, j (−1)i+ j
(
Oαi − Ōαi

)(
Oα j − Ōα j

)
det(��α,( j,i) )

2 det(��α )

]
, (E12)

where the sum in the numerator of the exponent runs over i and j between 1 and k.
Let us now compute the probability distribution pβ of an observable Oβ = (O2

α1
+ O2

α2
)1/2 with Gaussian distributed Oα1 and

Oα2 . The starting point is simply

pG.f.a.
β (Oβ ) =

∫
dOα1 dOα2 pG

α1,α2
(Oα1 , Oα2 )δ

(
Oβ −

√
O2

α1
+ O2

α2

)
, (E13)

with pG
α1,α2

the (Gaussian) joint probability distribution of Oα1 and Oα2 , while the superscript “G.f.a.” stands for “Gaussian
fluctuation approximation.” To tackle the integral, which in principle runs over the whole two-dimensional plane spanned by Oα1

and Oα2 , we switch to polar coordinates such that Oα1 = ρ cos φ and Oα2 = ρ sin φ. One can then perform the radial integral
with the delta distribution:

pG.f.a.
β (Oβ ) =

∫ 2π

0
dφ

∫ ∞

0
dρρpG

α1,α2
(ρ cos φ, ρ sin φ)δ(Oβ − ρ)

= �(Oβ )Oβ

∫ 2π

0
dφpG

α1,α2
(Oβ cos φ, Oβ sin φ), (E14)
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TABLE III. Average μ, variance σ 2, skewness γ1, and excess kurtosis γ2 of the probability distributions p(εn) and p(vn) calculated with
the mode-by-mode approach within the Gaussian fluctuation approximation (G.f.a.) and extracted from random samples of 8192 events.

Moment Oα Glauber b = 0 Glauber b = 9 fm Saturation b = 0 Saturation b = 9 fm

μG.f.a. ε1 (%) | v1 (%) 5.36 | 1.34 11.47 | 2.27 4.51 | 1.15 12.00 | 2.42
μ ε1 (%) | v1 (%) 5.35 | 1.39 10.97 | 1.87 4.59 | 1.19 11.92 | 2.00
μG.f.a. ε2 (%) | v2 (%) 7.72 | 1.95 33.60 | 6.87 7.45 | 1.85 43.21 | 9.02
μ ε2 (%) | v2 (%) 7.70 | 1.93 33.82 | 6.72 7.54 | 1.84 43.78 | 8.80
μG.f.a. ε3 (%) | v3 (%) 8.00 | 1.31 21.57 | 2.68 8.07 | 1.33 21.55 | 2.65
μ ε3 (%) | v3 (%) 8.13 | 1.29 20.65 | 2.47 8.35 | 1.35 21.13 | 2.47
μG.f.a. ε4 (%) | v4 (%) 8.42 | 0.65 26.14 | 1.27 8.77 | 0.69 31.84 | 1.44
μ ε4 (%) | v4 (%) 8.52 | 0.62 25.36 | 1.13 9.07 | 0.70 33.38 | 1.37
μG.f.a. ε5 (%) | v5 (%) 8.76 | 0.23 28.64 | 0.41 9.21 | 0.26 30.64 | 0.53
μ ε5 (%) | v5 (%) 9.16 | 0.24 25.55 | 0.43 10.24 | 0.30 30.38 | 0.58

(σ 2)G.f.a. ε1 (%0) | v1 (%0) 0.78 | 0.05 3.79 | 0.14 0.55 | 0.04 4.50 | 0.16
σ 2 ε1 (%0) | v1 (%0) 0.79 | 0.05 4.03 | 0.10 0.57 | 0.04 4.88 | 0.11
(σ 2)G.f.a. ε2 (%0) | v2 (%0) 1.63 | 0.10 17.05 | 0.73 1.52 | 0.09 16.33 | 0.82
σ 2 ε2 (%0) | v2 (%0) 1.58 | 0.10 15.12 | 0.71 1.55 | 0.09 15.54 | 0.83
(σ 2)G.f.a. ε3 (%0) | v3 (%0) 1.75 | 0.05 12.70 | 0.20 1.78 | 0.05 12.69 | 0.19
σ 2 ε3 (%0) | v3 (%0) 1.76 | 0.04 11.14 | 0.16 1.88 | 0.05 11.90 | 0.17
(σ 2)G.f.a. ε4 (%0) | v4 (%0) 1.94 | 0.01 18.53 | 0.04 2.10 | 0.01 25.29 | 0.06
σ 2 ε4 (%0) | v4 (%0) 1.93 | 0.01 15.12 | 0.03 2.18 | 0.01 21.00 | 0.05
(σ 2)G.f.a. ε5 (%0) | v5 (%0) 2.10 | 0.001 22.38 | 0.005 2.32 | 0.002 25.57 | 0.008
σ 2 ε5 (%0) | v5 (%0) 2.27 | 0.002 16.49 | 0.006 2.85 | 0.002 21.94 | 0.01

γ G.f.a.
1 ε1 | v1 0.63 | 0.63 0.72 | 0.67 0.63 | 0.63 0.84 | 0.66

γ1 ε1 | v1 0.65 | 0.64 0.93 | 0.71 0.61 | 0.60 0.94 | 0.68
γ G.f.a.

1 ε2 | v2 0.63 | 0.63 0.18 | 0.19 0.63 | 0.63 0.05 | 0.07
γ1 ε2 | v2 0.61 | 0.64 −0.07 | 0.12 0.61 | 0.63 −0.24 | 0.05
γ G.f.a.

1 ε3 | v3 0.63 | 0.63 0.63 | 0.63 0.63 | 0.63 0.63 | 0.63
γ1 ε3 | v3 0.59 | 0.60 0.58 | 0.60 0.64 | 0.65 0.54 | 0.60
γ G.f.a.

1 ε4 | v4 0.63 | 0.63 0.62 | 0.62 0.63 | 0.63 0.50 | 0.60
γ1 ε4 | v4 0.61 | 0.62 0.38 | 0.64 0.60 | 0.60 0.13 | 0.69
γ G.f.a.

1 ε5 | v5 0.63 | 0.63 0.63 | 0.63 0.63 | 0.63 0.62 | 0.63
γ1 ε5 | v5 0.62 | 0.60 0.48 | 0.83 0.61 | 0.60 0.39 | 0.72

γ G.f.a.
2 ε1 | v1 0.25 | 0.25 0.51 | 0.35 0.25 | 0.25 0.80 | 0.32

γ2 ε1 | v1 0.33 | 0.25 1.01 | 0.41 0.16 | 0.16 0.99 | 0.38
γ G.f.a.

2 ε2 | v2 0.25 | 0.25 −0.18 | − 0.18 0.25 | 0.25 −0.06 | − 0.09
γ2 ε2 | v2 0.19 | 0.30 −0.42 | − 0.33 0.13 | 0.15 −0.18 | − 0.17
γ G.f.a.

2 ε3 | v3 0.25 | 0.25 0.24 | 0.25 0.25 | 0.25 0.25 | 0.25
γ2 ε3 | v3 0.15 | 0.17 0.11 | 0.14 0.32 | 0.34 −0.03 | 0.07
γ G.f.a.

2 ε4 | v4 0.25 | 0.25 0.21 | 0.23 0.25 | 0.25 −0.03 | 0.16
γ2 ε4 | v4 0.25 | 0.22 −0.31 | 0.29 0.18 | 0.20 −0.55 | 0.38
γ G.f.a.

2 ε5 | v5 0.25 | 0.25 0.21 | 0.25 0.25 | 0.25 0.16 | 0.25
γ2 ε5 | v5 0.29 | 0.20 −0.08 | 0.78 0.09 | 0.15 −0.33 | 0.33

with � being the Heaviside step function. Analogously, if we need the joint probability distribution of Oβ and Oγ =
(O2

α3
+ O2

α4
)1/2, where Oα3 and Oα4 are two Gaussian distributed observables, we can perform two substitutions with polar

coordinates—in the planes (Oα1 , Oα2 ) and (Oα3 , Oα4 )—which yield

pG.f.a.
β,γ (Oβ, Oγ ) = �(Oβ )Oβ�(Oγ )Oγ

∫ 2π

0
dφ

∫ 2π

0
dψ pG

α1,α2,α3,α4
(Oβ cos φ, Oβ sin φ, Oγ cos ψ, Oγ sin ψ ). (E15)

However, the remaining angular integrals are generally highly nontrivial, because the joint probability distribution pG
�α , even if

it is Gaussian, still contains the correlation between the observables {Oα j }, which enter as covariances in the argument of the
exponential function.
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FIG. 37. Variances (top) and correlation coefficients (bottom) of initial-state (left) and final-state observables (right) for collisions at b = 0
in the saturation model. The circles next to the right edge of each panel give the values computed from the random sample of 8192 events. The
full lines show the quantities computed with Eqs. (58) and (59), including the number of modes given by the abscissa for the sums in V and
the numerator of C. The sums in the denominator of C run over 256 modes. The variances of dE/dy, {r2}, dNch/dη, and [pT] are divided by
the corresponding mean values.

In the case of the single-variable probability distribution pG.f.a.
β , with only one angular integration, one can make further

analytical progress with Eq. (E14) as follows: Inserting expression (E12) of pG
α1,α2

into Eq. (E14) yields

pG.f.a.
β (Oβ ) = �(Oβ )Oβ√

det
(
�α1,α2

)
∫ 2π

0

dφ

2π
exp

[
−Cα2α2 (Oβ cos φ − Ōα1 )2 + Cα1α1

(
Oβ sin φ − Ōα2

)2

2 det
(
�α1,α2

)
]

× exp

[
−2Cα1α2

(
Oβ cos φ − Ōα1

)(
Oβ sin φ − Ōα2

)
2 det

(
�α1,α2

)
]
.

In the numerator of the argument of the exponential functions, we gather all terms linear (quadratic) in the trigonometric functions
into single cos(φ − θ1) (cos(2φ − θ2)) terms:

Cα2α2 (Oβ cos φ − Ōα1 )2 + Cα1α1 (Oβ sin φ − Ōα2 )2 − 2Cα1α2 (Oβ cos φ − Ōα1 )(Oβ sin φ − Ōα2 )

= ρ1 cos(φ − θ1) + ρ2 cos(2φ − θ2) + 1
2Cα2α2 O2

β + 1
2Cα1α1 O2

β + Cα2α2 Ō2
α1

+ Cα1α1 Ō2
α2

− 2Cα1α2 Ōα1 Ōα2 , (E16)

where we defined

ρ1 cos θ1 = 2
(
Cα1α2 Ōα2 − Cα2α2 Ōα1

)
Oβ, ρ1 sin θ1 = 2(Cα1α2 Ōα1 − Cα1α1 Ōα2 )Oβ, (E17)

ρ2 cos θ2 = 1
2

(
Cα2α2 − Cα1α1

)
O2

β, ρ2 sin θ2 = −Cα1α2 O2
β. (E18)
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FIG. 38. Same as Fig. 37 but for collisions at b = 9 fm within the saturation model.

This results in

pG.f.a.
β (Oβ ) = �(Oβ )Oβ√

det
(
�α1,α2

) exp

[
−Cα2α2 O2

β + Cα1α1 O2
β + 2Cα2α2 Ō2

α1
+ 2Cα1α1 Ō2

α2
− 4Cα1α2 Ōα1 Ōα2

4 det
(
�α1,α2

)
]

×
∫ 2π

0

dφ

2π
exp

[
−ρ1 cos (φ − θ1) + ρ2 cos (2φ − θ2)

2 det
(
�α1,α2

)
]
. (E19)

To handle the terms in exp[ρ j cos( jφ − θ j )/2 det(�α1,α2 )], we follow the same trick as in Ref. [82] and write

exp(z∗
j e

i jφ + z je
−i jφ ) =

∞∑
q=−∞

e−iq jφ

(
z j

|z j |
)q

Iq(2|z j |), (E20)

where Iq is the modified Bessel of the first kind of order q, while

z1 ≡ − ρ1eiθ1

4 det
(
�α1,α2

) , z2 ≡ − ρ2eiθ2

4 det
(
�α1,α2

) . (E21)

This yields∫ 2π

0

dφ

2π
exp

[
−ρ1 cos (φ − θ1) + ρ2 cos (2φ − θ2)

2 det
(
�α1,α2

)
]

=
∞∑

q1,q2=−∞

(
z1

|z1|
)q1

Iq1 (2|z1|)
(

z2

|z2|
)q2

Iq2 (2|z2|)
∫ 2π

0

dφ

2π
e−i(q1+2q2 )φ,

(E22)
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FIG. 39. Correlation coefficients of initial-state (left) and final-state (right) observables for collisions at b = 0 in the saturation model. Top:
values computed with 256 modes in the mode-by-mode approach [Eq. (59)]. Bottom: values from the sample of 8192 random events. Values
on the diagonal, which by definition equal one, are shown as gray squares.

so that the integral over φ is now trivial. Going back to Eq. (E19), we thus find

pG.f.a.
β (Oβ ) = �(Oβ )Oβ√

det
(
�α1,α2

) exp

[
−Cα2α2 O2

β + Cα1α1 O2
β + 2Cα2α2 Ō2

α1
+ 2Cα1α1 Ō2

α2
− 4Cα1α2 Ōα1 Ōα2

4 det
(
�α1,α2

)
]

×
∞∑

q=−∞

(
z2

1z2∣∣z2
1z2

∣∣
)q

I2q(2|z1|)Iq(2|z2|). (E23)

There are two special cases in which all terms in the sum over q vanish but one. When Oα1 and Oα2 are independent (Cα1α2 = 0)
and have the same variance (Cα1α1 = Cα2α2 ), Eq. (E18) yields ρ2 = 0 and thus [Eq. (E21)] z2 = 0. In turn, in the case of vanishing
average values Ō1 = Ō2 = 0, Eqs. (E17) and (E21) give z1 = 0. In either case, only the term q = 0 in the sum in the second line
of Eq. (E23) is nonzero, and the sum itself simply reduces to a single modified Bessel function I0, resulting in a simple form for
the probability distribution of Oβ .

2. Moments of the probability distributions of eccentricities and flow coefficients

In Table III we show the first moments of the probability distributions p(εn) and p(vn) shown at the top and on the right
of every panel in Figs. 22–25. We give the average μ, variance σ 2, skewness γ1 and excess kurtosis γ2 for the distributions
computed within the Gaussian fluctuation approximation (G.f.a.) and for those obtained from the sampled events.

In collisions at vanishing impact parameter and for both initial-state models, these moments confirm the visual impression
of Figs. 22 and 23, namely, the very good agreement between the probability distributions from the event sample and those
computed in the G.f.a., which are of the Bessel–Gaussian type. The only sizable discrepancies are for the excess kurtosis γ2 (of
basically all εn and vn) and to a lesser extent the variance of ε5 in the saturation model.
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FIG. 40. Same as Fig. 39 but for collisions at b = 9 fm in the saturation model.

At b = 9 fm, the Gaussian fluctuation approximation still provides a very good description of the mean and variance of the
distributions of εn and vn, although less good for the variances of ε4 and ε5—which is correlated to the mismatch seen for these
observables in the top-left panels of Figs. 17 and 37—and for the mean value of v1. Regarding the higher moments, the G.f.a.
generally reproduces the skewness values of the event samples rather well—with the important exception of ε2, for which the
wrong sign is predicted, and ε4. Going to γ2, larger departures between the event-sample and G.f.a. values occur more often. Part
of the explanation may be that the (excess) kurtosis is more sensitive to the constraints εn � 1, vn � 1, which are necessarily
there in the event samples but not accounted for in the Gaussian-fluctuation approach.
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