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Magnetic-field-dependent electric-charge transport in hadronic medium at finite temperature
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Electric charge transport of hadronic matter at finite temperature and magnetic field is studied within the
linear σ model. Anisotropic transport coefficients associated with the charge transport are estimated both in the
weak and strong regimes of the magnetic field using the transport theory approach. In a weakly magnetized
medium, the magnetic field effects are incorporated through the Lorentz force term in the Boltzmann equation.
Strong magnetic field puts further constraints on the motion of charged particles through Landau quantization.
Magnetic field-dependent thermal relaxation time is obtained from interaction rates of hadrons with the S-matrix
approach by considering the Landau level kinematics of the charged hadrons. Mean-field effects are embedded in
the analysis through the temperature-dependent hadron masses. Further, the hadronic medium response to a time-
varying external electric field is studied in weak and strong magnetic field regimes. It is seen that electromagnetic
responses of the hadronic matter have a strong dependence on the mean-field effects, σ mass, the strength of the
external fields, and its evolution in the medium.
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I. INTRODUCTION

Research programs at the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven National Laboratory (BNL) and Large
Hadron Collider (LHC) at CERN have realized the exis-
tence of strongly interacting matter—the quark-gluon plasma
(QGP) at extreme conditions [1–5]. The dynamical evolu-
tion of the created medium has been successfully studied
with hydrodynamic modeling [6–8]. Transport coefficients of
the strongly interacting matter act as the input parameters
for the hydrodynamic simulation. The extraction of transport
coefficients from effective microscopic theories and its phe-
nomenological constraints from the measured observables in
the collision experiments at the RHIC and LHC are interesting
aspects of current research in heavy-ion collision physics [9].

Several theoretical efforts [10–14] have suggested the ex-
istence of a strong magnetic field in a noncentral heavy-ion
collision in which the magnitude of the field can be in the
order of 1018 G at the RHIC and 1019 G at the LHC. The
recent observations on the directed flow of neutral D mesons
at the RHIC and LHC [15,16] gave indications of the gen-
eration of a strong magnetic field in the initial stages of the
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collision experiment. However, the space-time evolution of
the magnetic field is not completely understood so far, and
some recent analyses have shown that the field may persist
longer time in the conducting medium than expected [17,18].
The significance of the generated magnetic field has been
studied in the context of novel phenomena such as chi-
ral magnetic effect [19], chiral vortical effect [20], and in
the realization of global hyperon polarization [21]. Proper-
ties of quarkonia [22,23], magnetic catalysis [24], inverse
magnetic catalysis [25,26], quantum chromodynamics (QCD)
thermodynamic and transport properties [27–34], chiral sus-
ceptibility [35], dilepton production [36,37], and damping rate
of photon [38] have been investigated in the presence of a
magnetic field. The impact of electromagnetic fields on the
conducting medium can be studied in terms of electric charge
transport and the associated conductivities that quantify the
induced current due to the external fields. Several efforts have
been done to explore the behavior of electrical conductivity of
the QCD medium within the Kubo formalism [39–41], lattice
QCD approach [42], holographic models [43], and transport
theory calculations [44–51]. The electromagnetic responses
of the QCD medium have a crucial role in magnetohydro-
dynamics simulations and in the study of the impact of the
fields on the measured observables in the heavy-ion collision
experiments.

The present study is on the electric charge transport in
a magnetized hadronic medium by employing the linear σ

model (LSM). The LSM, first introduced by Gell-Mann and
Levy [52] is a simple, low-energy effective model to study the
hadronic system. Later, LSMs have been extended by includ-
ing quarks [53,54] and vector mesons in this model [55]. In the
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presence of an external magnetic field, pion condensate [56],
chiral phase transition [57], and neutral pion mass [54] have
been analyzed using the LSM. The LSM description of trans-
port coefficients of the hadronic medium has been presented
within the relaxation time approximation [58]. Recently, in
Ref. [59], the behavior of shear viscosity, bulk viscosity,
and electrical conductivity of the hadronic matter has been
studied using a functional variational approach. The prime
focus of the current analysis is on the effective description
of the hadronic medium response to electromagnetic fields.
As the strength of the generated magnetic field is not com-
pletely known throughout the medium evolution, the analysis
has been done both in the weak and strong magnetic field
regimes. In a weakly magnetized matter, the temperature is
the dominant energy scale, whereas the magnetic field acts
as a small perturbation in the medium. On the other hand, in
the strongly magnetized hadronic matter, the charged particles
follow Landau level kinematics. In both cases, we employ the
transport theory approach within the relaxation time approxi-
mation and obtain the magnetic field-dependent conductivities
in a hadronic medium with the LSM for the first time. Unlike
in the case of a weakly magnetized medium, the impact of
the strong magnetic field on thermodynamics and interac-
tion rate has been considered in the analysis. Several recent
studies have suggested the existence of space-time decaying
electromagnetic fields in the collision experiments [13,60,61].
This sets the motivation to extend the analysis to explore
the hadronic medium response to an external time-varying
electric field. The impact of the proper time evolution of
the external electric field on the charge transport is studied
in a weakly and strongly magnetized hadronic matter. We
have illustrated the effects of mass of σ meson, strength, and
evolution of external fields on the induced current density in a
magnetized hadronic medium.

The article is organized as follows. The general formalism
for the electric charge transport process in a weakly magne-
tized hadronic medium followed by the LSM description of
the medium is presented in Sec. II. In Sec. III, the longitu-
dinal current density of the hadronic matter in the presence
of a strong magnetic field and the magnetic field-dependent
interaction rate is discussed. Section IV is devoted to the
description of medium responses to a time-varying electric
field in both weakly and strongly magnetized hadronic matter.
We presented the results in Sec. V and finally summarized the
analysis in Sec. VI.

Notations and conventions. The particle velocity is denoted
as v = p

ε
with p and ε as the momentum and energy, respec-

tively. The components of a vector A are represented with
Al . The quantities B = |B|, E = |E|, and j = |j| describe the
magnitude of the magnetic field, electric field, and current
density in the medium, respectively. The metric tensor is taken
as gμν = diag(1,−1,−1,−1).

II. ELECTRIC CHARGE TRANSPORT OF HADRONIC
MATTER IN A WEAK UNIFORM MAGNETIC FIELD

Electric field acts as the source of perturbation associated
with the charge transport of the hadronic medium and can
be quantified in terms of induced current density, j = σ0E

with σ0 as the electrical conductivity. In the current analy-
sis, we ignored the effect of a weak magnetic field on the
thermodynamic quantities and on the microscopic interactions
in the hadronic medium as the temperature is the dominant
scale in comparison with the strength of the field qB � T 2.
In the presence of a magnetic field, the motion of the charged
particle will be constrained and this induces anisotropy in the
transport processes in the medium. The anisotropic momen-
tum transport coefficients (five shear-viscous coefficients and
two components of bulk viscosity) in the QCD medium have
been studied in Refs. [62–67]. Depending upon the strength
of the magnetic field, the electric charge transport and the
decomposition of the current density will be modified. In the
presence of a weak magnetic field, the electric current density
can be defined as [68]

jl = σ0δ
l jE j − σ1ε

lk jbkE j + σ2blbjE j, (1)

where σ0, σ1, and σ2 are the transport coefficients associated
with the electric charge transport in the presence of constant
electromagnetic fields. Here, δl j denotes the Kronecker δ

function, εlk j is the antisymmetric 3 × 3 tensor, and b is the
direction of the magnetic field in the hadronic matter. The
current density can be defined in terms of particle momentum
distribution function as follows:

jl =
∑

a

∫
d3p

(2π )3
vl qaδ fa, (2)

where the subscript a describes the particle species, qa is the
charge, and δ fa is the nonequilibrium part of the distribution
function that describes the near-equilibrium distribution of
hadronic particles in the presence of external electromagnetic
fields. The first step in the calculation of current density is
to estimate δ fa by solving the relativistic transport equation.
In the presence of a weak magnetic field, the Boltzmann
equation within the relaxation time approximation takes the
form

pμ ∂μ fa(x, p) + qaFμν pν∂
(p)
μ fa = −δ fa

τa
, (3)

in which τa is the thermal relaxation time, Fμν is the field
strength tensor, and fa = f 0

a + δ fa is the near-equilibrium
distribution function of the hadronic particles where f 0

a is the
equilibrium distribution function. The following ansatz is con-
sidered to estimate the nonequilibrium part of the momentum
distribution:

δ fa = p[α1E + α2B + α3(E × B)]
∂ f 0

a

∂ε
, (4)

where α1, α2, α3 are the unknown functions that can be
obtained from the microscopic description of the hadronic
matter. By employing the form of δ fa in the Boltzmann equa-
tion, we have

qava · (E + α1(B × E) + α3(E · B)B − α3B2E)

= −εa

τa
[α1va · E + α2va · B + α3va · (E × B)]. (5)

By comparing the independent tensorial structures such as
(va · E), (va · B), and (va · (E × B)) in both sides of Eq. (5),
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we obtain a set of equations that relate coefficients α1, α2, and
α3 as

−εa

τa
α1 = qa + α3qaB2,

εa

τa
α2 = α3qa(E · B),

εa

τa
α3 = αqqa. (6)

Employing the relation between the coefficients as described
in Eq. (6), the form of α1, α2, and α3 can be obtained as
follows:

α1 = − εaqaτa(
τ 2

a q2
aB2 + ε2

a

) , α2 = − (qaτa)3(E · B)(
τ 2

a q2
aB2 + ε2

a

)
εa

,

α3 = − q2
aτ

2
a(

τ 2
a q2

aB2 + ε2
a

) . (7)

Substituting Eq. (4) in Eq. (2), we obtain the electric charge
current density in a weakly magnetized hadronic matter as

j = 1

3

∑
a

∫
d3p

(2π )3

p2

εa
qa

{
εaqaτa(

τ 2
a q2

aB2 + ε2
a

)E

+ (qaτa)3(E · B)(
τ 2

a q2
aB2 + ε2

a

)
εa

B + q2
aτ

2
a(

τ 2
a q2

aB2 + ε2
a

) (E × B)

}

×
(

−∂ f 0
a

∂εa

)
. (8)

The first term, which is proportional to the external electric
field, represents the Ohmic current and is the leading order
in relaxation time. The magnetic field in the medium induces
other components of the current density depending upon the
direction of the fields. For the case with transverse external
fields, i.e., E · B = 0, the second term in Eq. (8) vanishes.
The Hall current density which is proportional to E × B will
be subdominant in comparison with the Ohmic current as
Hall component depends upon the chemical potential μ. Com-
paring Eqs. (1) and (8), we define the transport coefficients
associated with the charge transport in a weakly magnetized
hadronic medium as

σ0 = 1

3

∑
a

∫
d3p

(2π )3
p2q2

a

τa(
τ 2

a q2
aB2 + ε2

a

)(
−∂ f 0

a

∂εa

)
, (9)

σ1 = 1

3

∑
a

∫
d3p

(2π )3

p2

εa
q3

a

τ 2
a B(

τ 2
a q2

aB2 + ε2
a

)(
−∂ f 0

a

∂εa

)
, (10)

σ2 = 1

3

∑
a

∫
d3p

(2π )3

p2

ε2
a

q4
a

τ 3
a B2(

τ 2
a q2

aB2 + ε2
a

)(
−∂ f 0

a

∂εa

)
. (11)

The quantitative estimation of the conductivity coefficients
required the knowledge of microscopic interactions of the
hadronic medium. To that, one needs to obtain the thermal
relaxation time associated with the interactions. The mag-
netic field has a strong dependence on the thermal relaxation
time in the strong field regime, qB � T 2 and is presented in
Sec. III A. Proper modeling of the hadronic medium is the first
step towards the estimation of interaction rate or relaxation
time.

A. Linear σ model

The LSM is used in this work to calculate the electric
conductivity. Mainly, the LSM Lagrangian contains a bosonic
field with N components. When N = 4, it denotes the theory
of soft pion dynamics with (N − 1) pion fields (πi) and one
sigma (σ ) field. The classic LSM Lagrangian density for
N = 4 takes the form as [59,69]

L = 1
2 (∂μσ )2 + 1

2 (∂μπ)2 − V (σ,π). (12)

The potential term in the above equation reads as

V (σ,π) = λ

4
(σ 2 + π2 − f 2)2 − Hσ (13)

with Hσ representing the explicit chiral symmetry breaking
term that describes the pion mass. The vacuum expectation
value v of the scalar σ field with σ = v + �, where � is the
fluctuation, is described as

λv(v2 − f 2) = H, (14)

where the parameters λ, H , and f are determined by pion
decay constant fπ , σ masses (mσ ), and pion masses (mπ ) as

λ = m2
σ − m2

π

2 f 2
π

, H = fπm2
π , f 2 = f 2

π

m2
σ − 3m2

π

m2
σ − m2

π

. (15)

For quantitative estimation, we consider decay constant
fπ = 93 MeV, σ mass takes one of the values mσ =
{400, 500, 700}, and vacuum pion mass mπ = 140 MeV. We
perform the analysis on the isospin pion basis which repre-
sents the physical pions. The physical pions are related to
Cartesian pion fields as

π0 = π3, π+ = 1√
2

(π1 + iπ2), π− = 1√
2

(π1 − iπ2).

(16)

The interaction Lagrangian can be expressed in terms of phys-
ical pion basis as

Lint = λ

4
(σ 4 + (π0)4 + (π+)4 + (π−)4 + 2(π0)2(π+)2

+ 2(π0)2(π−)2 + 2(π0)2σ 2 + 2(π+)2(π−)2

+ 2(π+)2σ 2 + 2(π−)2σ 2 + 4vσ (π0)2 + 4vσ (π+)2

+ 4vσ (π−)2 + 4vσ 3). (17)

The possible interactions in the medium can be read off from
the above interaction Lagrangian.

B. Interaction rate at finite temperature

The interaction rate ωa, which is the inverse of the ther-
mal relaxation time, for the interaction a + b → c + d can be
defined as [59,70]

ωa
th(Ea) ≡ τ−1

a (Ea) =
∑
bcd

1

1 + δcd

×
∫

d3 pbd3 pcd3 pd

(2π )5

|M(ab → cd )|2
16EaEbEcEd

× δ4(pa + pb − pc − pd ) f 0
b , (18)
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where |M(ab → cd )| is the matrix element associated with
the interaction. The particle kinematics can be further sim-
plified in the center of mass (c.m.) frame. In the c.m. frame,
Eq. (18) can be described as

ωa
th = 1

256π3Ea

∑
bcd

1

1 + δcd

∫ ∞

mb

dEb

√
E2

b − m2
b

×
∫ 1

−1

dx

pab
√

s
(tmax − tmin) |M|2 f 0

b (Eb), (19)

where the parameters take the following forms:

s = 2EaEb

(
1 + m2

a + m2
b

2EaEb
− pa pb

EaEb
x

)
, (20)

tmax = m2
a + m2

c − 1

2s

(
s + m2

a − m2
b

)(
s + m2

c − m2
d

)
+ 1

2s

√
λ
(
s, m2

a, m2
b

)
λ
(
s, m2

c , m2
d

)
, (21)

tmin = m2
a + m2

c − 1

2s

(
s + m2

a − m2
b

)(
s + m2

c − m2
d

)
− 1

2s

√
λ
(
s, m2

a, m2
b

)
λ
(
s, m2

c , m2
d

)
, (22)

pab(s) = 1

2
√

s

√
λ
(
s, m2

a, m2
b

)
. (23)

The kinematic function λ is given as λ(x, y, z) = x2 + y2 +
z2 − 2(xy + yz + zx). For the case of pure thermal medium,
we use the following matrix elements in Eq. (18) from the
LSM model:

M f i(σσ |σσ ) = −6λ, (24)

M f i(π
gπg|πgπg) = −6λ, {g = 0,+,−}, (25)

M f i(π
+π−|π+π−) = −2λ, (26)

M f i(π
0π0|σσ ) = −2λ, (27)

M f i(π
gσ |πgσ ) = −2λ, {g = 0,+,−}, (28)

M f i(π
hπ0|πhπ0) = −2λ, {h = +,−}. (29)

Note that a pole arises in each s, t, u channel while estimat-
ing the matrix element. The current analysis is on the limit
with s, t, u → ∞, which excludes the three-point interactions.
More detailed discussions on the interaction rates and the
matrix elements for the thermal medium can be found in
Ref. [59]. In the next section, we explore the the impact of
a strong magnetic field on electric charge transport and on the
interaction rate in the hadronic medium.

III. LONGITUDINAL ELECTRICAL CONDUCTIVITY
IN STRONGLY MAGNETIZED HADRONIC MATTER

The dynamics of charged particles are constrained in (1 +
1)-dimensional space in the presence of a strong uniform
magnetic field via Landau level quantization. We consider
B = Bẑ in the analysis. The Landau level energy dispersion
for a charged boson in an arbitrary magnetic field can be
defined as

En =
√

p2
z + m2 + (2n + 1)qB, (30)

where m is the mass of the particle and n is the order of the
Landau level. In the regime T 2 � |qB|, the charged particles
will be in the lowest Landau level (LLL) state, i.e., n = 0,
as the thermal occupation of higher levels is suppressed due

to the Boltzmann factor e−
√

qB
T . To separate out the impact of

the magnetic field on the charged particles in the medium, the
equilibrium energy-momentum tensor of the system can be
defined as

T μν = T̄ μν + T μν
B , (31)

where T̄ μν is the magnetic field independent part and T μν
B

is the component that depends on the magnetic field in the
hadronic medium. The microscopic definition and tensor de-
composition of T̄ μν has the following form:

T̄ μν =
∑

a=σ,π0

∫
d3p

(2π )3
pμ

a pν
a f 0

a , T̄ μν = ε̄uμuν − P̄�μν,

(32)

where uμ is the fluid velocity and �μν = gμν − uμuν is the
projection operator orthogonal to uμ. Here, ε̄ and P̄ denote
the energy density and pressure of neutral particles. Similarly,
the magnetic field dependent part of the energy-momentum
tensor T μν

B at the LLL can be defined as

TB
μν = |eB|

2π

∑
a=π±

∫
d pz

2π
pμ

‖ a pν
‖ a f 0

B a,

T μν
B = ε‖uμuν − P‖�

μν

‖ (33)

with �
μν

‖ ≡ gμν

‖ − uμuν is the longitudinal projection op-
erator where gμν

‖ = (1, 0, 0,−1). The quantities P‖ and ε‖
represent the longitudinal pressure and energy density of the
charged particles in the presence of the strong magnetic field.
The charged particle motion is constrained in the direction
of the magnetic field, and the Landau quantization modi-
fies the integration phase factor and the distribution function
f 0
B a. Thermodynamic quantities of the hadronic medium can

be obtained by taking appropriate components of Eqs. (32)
and (33). Here, we particularly focus on the specific heat
capacity and speed of sound in the hadronic medium.

With the 1 + 1-dimensional motion of the charged particles
in the presence of a strong magnetic field, the longitudinal
current density can be defined as

j‖ = σ‖E, (34)

where σ‖ is the magnetic field-dependent longitudinal con-
ductivity in the medium. In terms of the particle distribution
function, the longitudinal current density at the LLL takes the
following form:

j‖ = |eB|
2π

∑
a=π±

∫
d pz

2π

pz

εa
qaδ fB a, (35)

where δ fB a is the nonequilibrium part of the distribution
function of charged pions in the strong magnetic field. As the
charged particle motion is along the direction of the magnetic
field, we have (v × B) = 0. This indicates that the Hall cur-
rent will vanish in a strongly magnetized medium. Solving the
Boltzmann equation in the presence of a strong magnetic field,
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we obtain δ fB a, and the longitudinal current can be expressed
as

j‖ = |eB|
2π

∑
a=π±

∫
d pz

2π

p2
z

ε2
a

q2
aτB a

(
−∂ f 0

B a

∂εa

)
E. (36)

Here, τB a denotes the magnetic field-dependent thermal relax-
ation in the strongly magnetized hadronic medium. Unlike in
the case of a weakly magnetized medium, particle interaction
rate will depend upon the strength of the magnetic field in
the strong field regime. The same observation holds true for
the case of the QGP medium [41]. Now, we proceed with the
discussion of thermal relaxation time in a strongly magnetized
hadronic medium at finite temperature.

A. Magnetic field-dependent interaction rate at finite
temperature

The magnetic field modifies the Lagrangian density for
the charged pions. In the presence of a strong magnetic
field B = Bẑ, the charged pions dynamics get affected and
the four-derivative ∂μ can be replaced with the covari-
ant derivative Dμ = ∂μ + qAμ. This modifies the kinetic
part of the Lagrangian density for the charged pions. We

employ q = e for π± and Aμ = {0, 0, xB, 0} in the analy-
sis. This indicates that the matrix amplitudes, as well as
the interaction rates, will get modified as the charged par-
ticles interact with the magnetic field [71]. In the strong
magnetic field limit, LLL approximation is considered in the
calculations. For π+(ka) + π+(kb) → π+(kc) + π+(kd ) and
π−(ka) + π−(kb) → π−(kc) + π−(kd ) processes, the interac-
tion rate of πh(h = ±) can be defined as

ωa
1 = 1

2

∫ dkb
y dkb

z

(2π )2

dkc
ydkc

z

(2π )2

dkd
y dkd

z

(2π )2
(2π )3

× δ
(3)

�x
(ka + kb − kc − kd )

× 1

16EaEbEcEd
|M f i(π

±π±|π±π±)|2 f 0
b , (37)

where δ
(3)

�x
is the δ function for space-time coordinates except

x, i.e., δ
(3)

�x
(ka + kb − kc − kd ) = δ(ka

0 + kb
0 − kc

0 − kd
0 )δ(ka

y +
kb

y − kc
y − kd

y )δ(ka
z + kb

z − kc
z − kd

z ). The matrix element is
evaluated from the S-matrix calculations by using the solu-
tions of the Klein-Gordon equation for charged particle in the
presence of a strong magnetic field and takes the form as

|M f i|2 = (6λ)2 |eB|
2π

exp

⎧⎨
⎩−

(
ka

y + kb
y + kc

y + kd
y

)2 − 4
(
ka

y

)2 − 4
(
kb

y

)2 − 4
(
kc

y

)2 − 4
(
kd

y

)2

4|eB|

⎫⎬
⎭. (38)

After performing the integration over kb
y , kc

y , kd
y , and using the

properties of the δ function, Eq. (37) can be simplified as

ωa
1 = 9λ2 |eB|2

(4π )3

∫ ∞

−∞
dkb

z

1

E2
a E2

b

(
ka

z

Ea
− kb

z

Eb

)−1

f 0
b . (39)

The matrix element and interaction rate for the charged pions
in the magnetized medium are described in detail in the Ap-
pendix. Similarly, the interaction rate of πh(h = ±) for the
scattering process π+(ka) + π−(kb) → π+(kc) + π−(kd ) can
be described as

ωa
2 = 2λ2 |eB|2

(4π )3

∫ ∞

−∞
dkb

z

1

E2
a E2

b

(
ka

z

Ea
− kb

z

Eb

)−1

f 0
b . (40)

For the other scattering processes, πh(p) + σ (k) → πh(p′) +
σ (k′) and πh(p) + π0(k) → πh(p′) + π0(k′), the interaction
rate of πh particle is given by

ωπh

3 (p) =
∫

d3k

(2π )3

d3k′

(2π )3

d2 p′

(2π )2

(2π )3δ
(3)

�x
(p + k − p′ − k′)

16EkEpEp′Ek′

× (2λ)2 exp

{
− (py − p′

y)2+(kx − k′
x )2

2|eB|

}
f 0
σ/π0

(Ek ).

(41)

Following the similar procedure as that for other processes,
Eq. (41) can further simplified by performing the integration

over p′
y and kz and has the following form:

ωπh

3 =
(

λ

2

)2 ∫
d3k′

(2π )5

d2k⊥d p′
z 2|Ep′ + Ek′ − Ep|

EpE ′
kEp′

√
k2
⊥ + (p′

z + k′
z − pz )2

× exp

{
− (k − k′)2

⊥
2|eB|

}
δ(k2

⊥ − (Ep′ + Ek′ − Ep)2

× + (p′
z + k′

z − pz )2) f 0
σ/π0

(
√

k2
⊥ + (p′

z + k′
z − pz )2).

(42)

After the k⊥ integration, we perform other integration numer-
ically for the quantitative estimation.

To calculate the frequency of interaction of the neutral
scalar particles σ and π0, the processes πh(p) + σ (k) →
πh(p′) + σ (k′) and πh(p) + π0(k) → πh(p′) + π0(k′) need
to be considered. The matrix element of there interactions
takes the same form as described in Eq. (38). After performing
the integration over k′

z and p′
y, the expressions of the interac-

tion frequencies of π0 and σ read as

ωσ,π0

4 =
(

λ

2

)2 ∫
d2k′

⊥
(2π )4Lx

d pyd pz d p′
z

EpEkEp′

√
k′2
⊥ + (pz + kz − p′

z )2

× δ(Ep + Ek −
√

k′2
⊥ + (pz + kz − p′

z )2 − Ep′ )

× exp

{
− (k − k′)2

⊥
2|eB|

}
f 0
πh (Ep). (43)
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Considering the infinite volume limit of the finite box side Lx

and using the properties of δ function, the interaction can be
further evaluated numerically to obtain the thermal relaxation
time associated with the process.

Now, we briefly discuss the procedure to evaluate the total
relaxation time, say the relaxation time of π+, i.e., τB π+ in
the medium. To that end, we need to consider the following
processes:

π+ + πg → π+ + πg (g = +,−, 0),

π+ + σ → π+ + σ. (44)

The total interaction rate for π+ can be expressed as
ωπ+ = ωπ+

1 + ωπ+
2 + ωπ+

3 . In a similar fashion we can cal-
culate the interaction frequencies for other particles. As
the charged neutral particles are not directly affected by
the magnetic field, the interaction rate associated with the
scalar particle interaction, for example, σσ → σσ , remains
intact as described in Eq. (19). We obtain the longitudi-
nal conductivity in a strongly magnetized hadronic medium
by employing these magnetic field-dependent interaction
rates.

IV. HADRONIC MEDIUM RESPONSE
TO A TIME-VARYING ELECTRIC FIELD

Here, the effects of the time dependence of the external
fields are considered on the electric charge transport in the
hadronic medium. Incomplete electromagnetic responses of
the QCD medium to fast decaying external electromagnetic
fields have gained much interest in recent times [72,73]. The
buildup of induced current due to the time decay of electro-
magnetic fields will need some time to relax to the Ohmic
form (a larger relaxation time for the current to obey Ohm’s
law), and this can be described as the incomplete electromag-
netic response of the QCD medium. It is shown in Ref. [72]
that the incomplete electromagnetic response is significant
only at the early stages of non-central heavy-ion collision,
and in the later stages, the induced electric current reduces to
the Ohmic form. This is due to the counterbalance of Lorentz
force (which accelerates the collective motion) and collision
with particles in the medium (which resists the acceleration).
The current study is on the electric charge transport in the
hadronic matter, which is created at later stages of collision.
Here, we study the nonlinear electromagnetic responses of
the weakly and strongly magnetized hadronic medium to
a slow-varying external electric field. The present analysis
focuses on a regime where the time inhomogeneity of the
field is small (slowly varying field, i.e., large value of decay
parameter τE ) so that the collisional effect in the medium
cannot be neglected. First, we consider the case of a weakly
magnetized hadronic matter with E · B = 0. The vector quan-
tities that can act as the source of the induced current are
E, (E × Ḃ), B, Ė, Ḃ, (Ė × B), (E × Ḃ). These quantities can
be further related by Maxwell’s equations. Notably, the parity
of the current density operator is different from that of B and
Ḃ. This indicates that the components of the current density
associated with B and Ḃ cannot exist due to the parity consid-
erations and the choice of direction of electromagnetic fields.

The first step toward the estimation of various components
of current density is to obtain the nonequilibrium part of
the distribution function. For a weakly magnetized hadronic
medium, δ fa in the presence of a time-varying electric field
can be described as follows:

δ fk = p[α1E + α3(E × B) + β1Ė + β3(Ė × B)]
∂ f 0

k

∂ε
. (45)

Here, β1 and β3 denote the additional coefficients that give rise
to the components of current density due to the time evolution
of the electric field in the hadronic medium. The coefficients
can be obtained by solving the Boltzmann equation for the
case of time-varying fields. By employing Eq. (45) in Eq. (3),
we have

εava · [α1Ė + α3(Ė × B) + O(Ë)] + qava · E

− α1qava · (E × B) − β1qava · (Ė × B)

+ α3qa(va · E)(B2)− α3qa(va · B)(B · E)

+ β3qa(va · Ė)(B2) − β3qa(va · B)(B · Ė)

= −εa

τa
[α1va · E + βava · Ė + α3va · (E × B)

+ β3va · (Ė × B)]. (46)

Note that the terms with higher-order derivatives are neglected
in the analysis. Comparing various tensorial structures on both
sides of Eq. (46) and solving the obtained coupled equations,
we estimate the transport coefficients associated with electric
charge transport of the weakly magnetized hadronic medium
in the presence of a time-evolving electric field. We observe
that the forms of coefficients α1 and α3 [as described in
Eq. (7)] remain intact due to the time dependence of the
electric field. However, we have obtained an additional set of
coupled equations while comparing terms with (va · Ė) and
va · (Ė × B) in both sides of Eq. (46) as

− εa

τa
β1 = εaα1 + β3qaB2, −εa

τa
β3 = εaα3 − β1qa. (47)

Employing the form of α1 and α3, Eq. (47) can be solved and
the coefficients β1 and β1 take the following forms:

β1 =
εaqa

[ ε2
a

τ 2
a

− (qaB)2
]

[ ε2
a

τ 2
a

+ (qaB)2
]2 , β2 = 2ε2

a q2
a

τa
[ ε2

a
τ 2

a
+ (qaB)2

]2 . (48)

Hence, the current density in a weakly magnetized hadronic
matter due to the time-evolving electric field can be defined as

j = 1

3

∑
a

∫
d3p

(2π )3

p2

εa
qa

{
εaqaτa(

τ 2
a q2

aB2 + ε2
a

)E

+ q2
aτ

2
a(

τ 2
a q2

aB2 + ε2
a

) (E × B) −
εaqa

[ ε2
a

τ 2
a

− (qaB)2
]

[ ε2
a

τ 2
a

+ (qaB)2
]2 Ė

− 2ε2
a q2

a

τa
[ ε2

a
τ 2

a
+ (qaB)2

]2 (Ė × B)

}(
−∂ f 0

a

∂εa

)
. (49)
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FIG. 1. Temperature behavior of Cv

T in a magnetized hadronic matter for a vacuum σ mass of 400 MeV (left panel) and 700 MeV (right
panel).

In the limit of constant electromagnetic fields, Eq. (49) re-
duces back to Eq. (8). Note that in a system with nonzero
chiral chemical potential, there will be more components to
the current density which is proportional to the magnetic field
in the medium. This aspect is beyond the scope of the present
study.

For the case of a strongly magnetized hadronic medium,
the component of current density due to the term E × B
will not survive due to the 1 + 1-dimensional Landau level
motion of the charged particle in the medium. Solving the
1 + 1-dimensional Boltzmann equation within the relaxation
time approximation in the presence of a time-varying electric
field, we obtain the nonequilibrium correction of the charged
hadronic particle as follows:

δ fB k = τB aqa
pz

εa

(
−∂ f 0

B a

∂εa

)
E − τ 2

B aqa
pz

εa

(
−∂ f 0

B a

∂εa

)
Ė. (50)

Substituting Eq. (50) in Eq. (35), we obtain the current density
in a strongly magnetized hadronic matter in the presence of a
time-varying electric field as

j‖ = |eB|
2π

∑
a=π±

∫
d pz

2π

p2
z

ε2
a

q2
aτB a

(
−∂ f 0

B a

∂εa

)
E

− |eB|
2π

∑
a=π±

∫
d pz

2π

p2
z

ε2
a

q2
aτ

2
B a

(
−∂ f 0

B a

∂εa

)
Ė. (51)

Here, the first term is leading order in relaxation time and
gives rise to the dominant longitudinal current density. The
second term, which is higher-order in τB a, denotes the correc-
tion due to the time dependence of the external electric field.

V. RESULTS AND DISCUSSIONS

We initiate the discussion with the effect of magnetic field
and sigma mass on the specific heat capacity (Cv ) and speed
of sound (vs) in the hadronic medium. These thermodynamic
quantities can be described as

Cv =
(

∂ε

∂T

)
v

, v2
s = ∂P

∂ε
, (52)

where ε and P are the energy density and pressure of the
hadronic matter. In the current analysis, we have neglected
the effect of the magnetic field on the thermodynamics of
a weakly magnetized hadronic medium as the field enters
as a small perturbation in the system. However, the impact
of the magnetic field has been incorporated in the strongly
magnetized regime. In Fig. 1, the ratio Cv/T is plotted as a
function of temperature for different values of sigma mass
and magnetic field. It is observed that Cv/T has a strong
dependence on the Landau level dynamics of the charged
hadronic particles in the presence of a strong magnetic field
throughout the chosen temperature regime. The impact of the
σ mass on the chiral symmetry restoration is studied in terms
of thermodynamic quantities. We have observed a peak in the
heat capacity for the case with mσ = 700 MeV, which indi-
cates that the chiral symmetry is restored faster for higher σ

mass. The mean field effects are observed to have a significant
role in the low-temperature behavior of the medium. This is
reflected in the temperature behavior of speed of sound in the
hadronic matter as plotted in Fig. 2. In contrast to the behavior
of Cv/T in a magnetized hadronic medium, the effect of the
magnetic field on the speed of sound is more pronounced in
the intermediate temperature regime (0.05 to 0.3 GeV). The
speed of sound measures the conformality of the medium, and
at very high temperature, v2

s reaches the Boltzmann limit with
ε ≈ 3P. The magnetic field-dependent speed of sound plays a
vital role in the understanding of the behavior of bulk viscosity
in the magnetized hadronic medium.

The electrical conductivity σ0 of hadronic matter in the
presence of a weak magnetic field is depicted in Fig. 3 for
different choices of σ mass. For the quantitative estimation,
we consider the case of E · B = 0. Notably, the vacuum σ

mass has a visible impact on the conductivity of the hadronic
medium. As the value of mσ increases, the ratio σ0/T de-
creases significantly. A detailed comparative analysis of the
LSM description of electrical conductivity with other ap-
proaches at the case of vanishing magnetic field is presented in
Ref. [59]. In a weakly magnetized medium, the magnetic field
effects enter through the cyclotron motion via the Lorentz
force term in the Boltzmann equation. The impact of the
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FIG. 2. Impact of magnetic field on the temperature behavior of speed of sound in the hadronic medium for mσ = 400 MeV (left panel)
and mσ = 700 MeV (right panel).

magnetic field on the temperature behavior of σ0/T is more
pronounced in the lower temperature regimes, especially for
the lower value of mσ . This is attributed due to the fact that
the magnetic field act as a perturbation in a weakly magne-
tized hadronic medium, and at high-temperature regimes, the
strength of the magnetic field becomes negligible in compari-
son with the temperature scale of the medium. It is important
to emphasize that the Hall conductivity σ1 as described in
Eq. (10) vanishes in the present analysis as the focus is on
the limit μ = 0.

The electric charge transport in the hadronic matter in
the presence of a strong magnetic field can be quantified in
terms of longitudinal current density. In contrast to the case
of a weakly magnetized medium, in a strongly magnetized
hadronic medium, the magnetic field effects enter through the
Landau level dispersion and through the interaction rate. In
Fig. 4, the longitudinal conductivity is plotted as a function
of temperature for different values of magnetic field and σ

mass. It is seen that the conductivity in a strongly magnetized
hadronic medium significantly varies due to the constrained
Landau level dynamics of the charged particles. The strength

of the magnetic field in the medium has a visible impact on
the behavior of σ‖/T . In the low-temperature regime, σ‖/T
decreases with an increase in the field strength. However, the
behavior is quite the opposite in the high-temperature regime.
The observation holds true for both the cases with mσ =
400 MeV and mσ = 500 MeV. It is important to emphasize
that at higher temperatures, higher Landau level contributions
may not be negligible and can affect the behavior of longitu-
dinal transport in the medium, which is beyond the scope of
the present study. Similar to the behavior of σ0/T in a weakly
magnetized medium, σ‖/T has a strong dependence on the σ

mass.
Hadronic medium response to an external time-dependent

electric field is studied in terms of the ratio j
ET . In the limit

of constant fields, j
ET = σ0

T . We consider the case of a slowly
varying field to include collisional aspects of the medium, and
hence the induced magnetic field due to the time dependence
of the electric field is neglected in the analysis. We observe
that the proper time dependence of the external electric field
gives rise to additional components of the current density
and gives corrections to the Ohmic current in the medium.

FIG. 3. Temperature dependence of σ0
T of a weakly magnetized hadronic medium for mσ = 400 MeV (left panel) and mσ = 500 MeV (right

panel).
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FIG. 4. Longitudinal conductivity of a strongly magnetized hadronic medium as a function of temperature for mσ = 400 MeV (left panel)
and mσ = 500 MeV (right panel).

For the quantitative estimation, we consider the exponential
time decay of the electric field as described in [44,61] with
Ė
E ∝ − 1

τE
, where τE as the decay parameter. The ratio j

ET
is plotted as a function of temperature and decay parameter
of the external electric field at eB = 0 case in Fig. 5. Time
evolution of the electric field is seen to have a noticeable effect
on the temperature behavior of induced current density in the
hadronic medium.

The electromagnetic response of the weakly magnetized
hadronic medium to a time-varying electric field is shown in
Fig. 6. The time dependence of the electric field significantly
modifies the Ohmic current density throughout the chosen
temperature range, and the effect is more pronounced for the
case with lower σ mass. The higher the value of τE , i.e., the
longer the electric field stays in the medium, the smaller the
impact of the time dependence of the field on the charge trans-
port. In Fig. 7, the impact of the time-varying electric field on
the temperature behavior of longitudinal current in a strongly
magnetized hadronic matter is shown for different values of
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FIG. 5. The effect of temperature and electric field decay pa-
rameter on j

ET at vanishing magnetic field. Curved lines represent
constant value contours of j

ET .

σ mass. As the strength of the magnetic field increases (from
weak field to strong-field regime), we observe a decrement in
the additional contribution to the longitudinal current density
in comparison with that in the weakly magnetized hadronic
matter. However, the effect of the additional component is
non-negligible in the low-temperature regime. Notably, at the
limit τE → ∞, the results reduce back to that for the constant
fields, both in weak and strong field regimes.

The inclusion of baryons will modify the thermodynamic
and transport properties of the medium. This indicates that
there will be a finite baryonic contribution to the electric
charge transport in addition to the leading order contribution
from pions. It is also important to emphasize that pion re-
laxation time will be modified in the presence of a baryon
chemical potential μB. At finite baryon chemical potential, we
expect that the pion relaxation time decreases with μB due to
scattering with the baryons, and this may suppress the electric
charge transport in the medium. A similar observation has
been made with the hadron resonance model (HRG) at van-
ishing magnetic field [68], and it is shown that the increase of
the baryonic contribution to the electrical conductivity is not
enough to compensate for the decreasing contribution arising
from pions. This leads to a decrease of the total electrical
conductivity with an increase in baryon chemical potential
at a vanishing magnetic field. Further studies are required to
explore the impact of baryons on electric charge transport,
especially in a strongly magnetized medium. LSMs with fi-
nite baryon density have been studied at vanishing magnetic
field [74,75]. The effect of baryon density on magnetized
medium within the LSM will be an interesting aspect to
explore.

VI. SUMMARY AND OUTLOOK

We have employed a general formalism to study the elec-
tric charge transport in a magnetized hadronic matter. We have
analyzed of the electric current density and associated con-
ductivities within the LSM at finite temperature and magnetic
field. Depending upon the strength of the magnetic field in
the hadronic medium, the analysis has been done in weak
and strong magnetic field regimes. In a weakly magnetized
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FIG. 6. Temperature dependence of j
ET due to time-varying electric field in a weakly magnetized hadronic matter for different values of

decay parameter.

medium, the temperature of the medium is the dominant
energy scale and magnetic field will not directly affect the
thermodynamics of the medium. However, the magnetic field
effects are entering through the Lorentz force term in the
relativistic transport equation. On the other hand, a strong
magnetic field modifies the thermodynamics via Landau level
kinematics of the charged hadronic particles and interaction
rate in the medium. The σ mass is seen to have a significant
impact on the electric charge transport in the magnetized

hadronic medium. We have presented the first calculations
of magnetic field-dependent electrical conductivity with the
LSM, both in the weak and strong field regimes. Further, the
response of the hadronic medium to a time-varying external
electric field is studied. We have obtained an additional com-
ponent of current density due to the proper time dependence of
the external field. The effect of the additional component has
a strong dependence on the strength of the magnetic field and
σ mass. The evolution of the external field in the medium sig-

FIG. 7. Behavior of
j‖

ET due to time-varying electric field in a strongly magnetized hadronic matter.
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nificantly modifies charge transport in a weakly magnetized
hadronic medium, whereas the impact of field evolution is
negligible in high-temperature regimes in a strongly magne-
tized medium.

The contribution from higher Landau levels to the elec-
tric charge transport may not be negligible with a moderate
strength of the magnetic field. The formulation of interaction
rate and setting up of the LSM with higher Landau levels
is an interesting aspect to explore in the near future. The
magnetic field induced anisotropic transport coefficients of
a chiral QCD medium is another direction to follow. We in-
tend to explore the electromagnetic responses of the hadronic
medium on the regime where the time-inhomogeneity of the
fast-decaying electromagnetic field is large. This may give rise
to leading and subleading components of current density that
are quadratic in terms of the electromagnetic fields. We leave
these interesting aspects for the future.
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APPENDIX: MATRIX ELEMENTS

The Feynman diagram associated with the scattering pro-
cess can be determined from the LSM Lagrangian. The matrix
element can be read off from the Lagrangian in the isospin
pion basis. For example, in the estimation of the matrix el-
ement Mπaπb;π cπd at a vanishing magnetic field, one can
obtain the factor −2λ from the four-point diagram. Also, from
π + π → σ → π + π in the s channel, a factor 4λv2

s−m2
σ

can
be obtained. Hence, at B = 0, the four-point pion s channel
diagram can be described as

Mπaπb;π cπd = −2λ + 4λv2

s − m2
σ

. (A1)

By employing the the form of λ from Eq. (15), Eq. (A1) can
be modified as

Mπaπb;π cπd = −2λ

(
s − m2

π

s − m2
σ

)
. (A2)

The full matrix element, by including other processes, in a
vanishing magnetic field can be denoted as

Mπaπb;π cπd = −2λ

(
s − m2

π

s − m2
σ

δabδcd + t − m2
π

t − m2
σ

δacδbd

+u − m2
π

u − m2
σ

δadδbc

)
. (A3)

The pole arising in Eq. (A3) in each channel poses trouble
and is well known in the literature. It is important to em-
phasize that the coupling λ in LSM is larger than one and
a resummation method will not work as the diagrammatic
expansion will not be convergent. Following Refs. [58,59], the
kinematics are restricted in order to bypass the singularities.
We employ Mandelstam variables s, t, u → ∞ which exclude
the three-point vertices [58,59].

In the presence of a magnetic field, we have followed the
same approach to bypass the singularities (by excluding the
three-point interactions) as in the case of a vanishing magnetic
field. Due to the magnetic field, the Klein-Gordon equation for
charged scalar particle gets modified [76,77], and the solution
of the Klein-Gordon equation in the presence of a magnetic
field is given by

fν (ξ ) ≡
( √|eB|

ν! 2ν
√

π

)1/2

e−ξ 2/2Hν (ξ ), (A4)

where Hν are Hermite polynomials and ν = 0, 1, 2, . . .. Now,
the scalar field operator can be written in terms of annihilation
and creation operators as

�(X ) =
∞∑

n=0

∫
dky dkz

2π
√

2En
[e

−iK ·X
�x fn(x, k

�x
)a(n, k

�x
)

+ e
iK ·X

�x f ∗
n (x, k

�x
)b†(n, k

�x
)], (A5)

where K · X
�x
= ky y + kzz and k

�x
describes the components

of k except for the x component. Here, we have considered
a finite box of sides (Lx, Ly, Lz ), which is taken to an infinite
volume limit at the end. The action of field operators on one-
particle states reads as

� |π−(n, k
�x
)〉 = 1√

2EnLyLz
e
−iK ·X

�x fn(x, k
�x
) |0〉 ,

�† |π+(n, k
�x
)〉 = 1√

2EnLyLz
e
−iK ·X

�x fn(x, k
�x
) |0〉 . (A6)

Now, we briefly summarize the procedure to calculate the
matrix elements in the presence of a magnetic field. The
S-matrix element for πb(p

�x
, m) + πb(k

�x
, n) → πb(p′

�x
, m′) +

πb(k′
�x
, n′) scattering is given as

S f i = 4!
λ

4

∫
d4X 〈πb(n′, k′

�x
)πb(m′, p′

�x
)| (πb)4 |πb(n, k

�x
)πb(m, p

�x
)〉 , {b = +,−}

= 4!
λ

4

∫
d4X

e
−i(P+K−P′−K ′ )·X

�x√
16EnEmE ′

nE ′
m(LyLz )4

fn(x, k
�x
) fm(x, p

�x
) f ∗

n′ (x, k′
�x
) f ∗

m′ (x, p′
�x
)

= (2π )3δ
(3)

�x
(p + k − p′ − k′)

1√
16EnEmE ′

nE ′
m(LyLz )4

M f i, (A7)
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where the matrix element M f i reads as

M f i(π
bπb|πbπb) = 4!

λ

4

∫
dx fn(x, k

�x
) fm(x, p

�x
) f ∗

n′ (x, k′
�x
) f ∗

m′ (x, p′
�x
), {b = +,−}. (A8)

By substituting Eq. (A4) in Eq. (A8), we obtain the matrix element and interaction rate ωa
1 as described in Eq. (39) for the

scattering process. The other matrix elements are obtained from a similar approach.
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[25] G. Endrődi, M. Giordano, S. D. Katz, T. G. Kovács, and F.

Pittler, J. High Energy Phys. 07 (2019) 007.
[26] M. D’Elia, F. Manigrasso, F. Negro, and F. Sanfilippo, Phys.

Rev. D 98, 054509 (2018).
[27] M. Kurian, S. Mitra, S. Ghosh, and V. Chandra, Eur. Phys. J. C

79, 134 (2019).

[28] A. Bandyopadhyay, B. Karmakar, N. Haque, and M. G.
Mustafa, Phys. Rev. D 100, 034031 (2019).

[29] B. Karmakar, R. Ghosh, A. Bandyopadhyay, N. Haque, and
M. G. Mustafa, Phys. Rev. D 99, 094002 (2019).

[30] M. Kurian and V. Chandra, Phys. Rev. D 96, 114026
(2017).

[31] P. Panday and B. K. Patra, Phys. Rev. D 105, 116009 (2022).
[32] M. Kurian, Phys. Rev. D 102, 014041 (2020).
[33] S. A. Khan and B. K. Patra, arXiv:2205.00317.
[34] K. K. Gowthama, M. Kurian, and V. Chandra, Phys. Rev. D 106,

034008 (2022).
[35] R. Ghosh, B. Karmakar, and M. G. Mustafa, Phys. Rev. D 103,

074019 (2021).
[36] A. Das, A. Bandyopadhyay, and C. A. Islam, Phys. Rev. D 106,

056021 (2022).
[37] A. Bandyopadhyay, C. A. Islam, and M. G. Mustafa, Phys. Rev.

D 94, 114034 (2016).
[38] R. Ghosh, B. Karmakar, and M. G. Mustafa, Phys. Rev. D 101,

056007 (2020).
[39] B. Feng, Phys. Rev. D 96, 036009 (2017).
[40] S. Satapathy, S. Ghosh, and S. Ghosh, Phys. Rev. D 104,

056030 (2021).
[41] K. Hattori, S. Li, D. Satow, and H.-U. Yee, Phys. Rev. D 95,

076008 (2017).
[42] P. V. Buividovich, M. N. Chernodub, D. E. Kharzeev, T.

Kalaydzhyan, E. V. Luschevskaya, and M. I. Polikarpov, Phys.
Rev. Lett. 105, 132001 (2010).

[43] S. Pu, S.-Y. Wu, and D.-L. Yang, Phys. Rev. D 91, 025011
(2015).

[44] D. Satow, Phys. Rev. D 90, 034018 (2014).
[45] E. V. Gorbar, I. A. Shovkovy, S. Vilchinskii, I. Rudenok, A.

Boyarsky, and O. Ruchayskiy, Phys. Rev. D 93, 105028 (2016).
[46] K. K. Gowthama, M. Kurian, and V. Chandra, Phys. Rev. D 103,

074017 (2021).
[47] G. K. K, M. Kurian, and V. Chandra, Phys. Rev. D 104, 094037

(2021).
[48] B. O. Kerbikov and M. A. Andreichikov, Phys. Rev. D 91,

074010 (2015).
[49] A. Bandyopadhyay, S. Ghosh R. L. S. Farias, J. Dey, and G.

Krein, Phys. Rev. D 102, 114015 (2020).
[50] A. Das, H. Mishra, and R. K. Mohapatra, Phys. Rev. D 99,

094031 (2019).
[51] M. Kurian and V. Chandra, Phys. Rev. D 99, 116018 (2019).
[52] M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960).
[53] A. Ayala, R. L. S. Farias, S. Hernández-Ortiz, L. A. Hernández,

D. M. Paret, and R. Zamora, Phys. Rev. D 98, 114008 (2018).
[54] A. Das and N. Haque, Phys. Rev. D 101, 074033 (2020).
[55] F. Divotgey, P. Kovacs, F. Giacosa, and D. H. Rischke, Eur.

Phys. J. A 54, 5 (2018).
[56] M. Loewe, C. Villavicencio, and R. Zamora, Phys. Rev. D 89,

016004 (2014).

034903-12

https://doi.org/10.1016/j.nuclphysa.2005.03.085
https://doi.org/10.1016/j.nuclphysa.2005.03.084
https://doi.org/10.1016/j.nuclphysa.2005.02.130
https://doi.org/10.1016/j.nuclphysa.2005.03.086
https://doi.org/10.1103/PhysRevLett.105.252301
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0218301310014613
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1142/S0218301322500975
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1103/PhysRevC.83.054911
https://doi.org/10.1103/PhysRevC.85.044907
https://doi.org/10.1155/2014/193039
https://doi.org/10.1103/PhysRevLett.125.022301
https://doi.org/10.1103/PhysRevLett.123.162301
https://doi.org/10.1103/PhysRevC.88.024910
https://doi.org/10.1140/epjc/s10052-016-4516-8
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1016/j.ppnp.2016.01.001
https://doi.org/10.1103/PhysRevC.95.054902
https://doi.org/10.1103/PhysRevD.106.054010
https://doi.org/10.1103/PhysRevD.97.096011
https://doi.org/10.1103/PhysRevD.91.116010
https://doi.org/10.1007/JHEP07(2019)007
https://doi.org/10.1103/PhysRevD.98.054509
https://doi.org/10.1140/epjc/s10052-019-6649-z
https://doi.org/10.1103/PhysRevD.100.034031
https://doi.org/10.1103/PhysRevD.99.094002
https://doi.org/10.1103/PhysRevD.96.114026
https://doi.org/10.1103/PhysRevD.105.116009
https://doi.org/10.1103/PhysRevD.102.014041
http://arxiv.org/abs/arXiv:2205.00317
https://doi.org/10.1103/PhysRevD.106.034008
https://doi.org/10.1103/PhysRevD.103.074019
https://doi.org/10.1103/PhysRevD.106.056021
https://doi.org/10.1103/PhysRevD.94.114034
https://doi.org/10.1103/PhysRevD.101.056007
https://doi.org/10.1103/PhysRevD.96.036009
https://doi.org/10.1103/PhysRevD.104.056030
https://doi.org/10.1103/PhysRevD.95.076008
https://doi.org/10.1103/PhysRevLett.105.132001
https://doi.org/10.1103/PhysRevD.91.025011
https://doi.org/10.1103/PhysRevD.90.034018
https://doi.org/10.1103/PhysRevD.93.105028
https://doi.org/10.1103/PhysRevD.103.074017
https://doi.org/10.1103/PhysRevD.104.094037
https://doi.org/10.1103/PhysRevD.91.074010
https://doi.org/10.1103/PhysRevD.102.114015
https://doi.org/10.1103/PhysRevD.99.094031
https://doi.org/10.1103/PhysRevD.99.116018
https://doi.org/10.1007/BF02859738
https://doi.org/10.1103/PhysRevD.98.114008
https://doi.org/10.1103/PhysRevD.101.074033
https://doi.org/10.1140/epja/i2018-12458-9
https://doi.org/10.1103/PhysRevD.89.016004


MAGNETIC-FIELD-DEPENDENT ELECTRIC-CHARGE … PHYSICAL REVIEW C 107, 034903 (2023)

[57] A. Ayala, A. Bashir, A. Raya, and A. Sanchez, Phys. Rev. D 80,
036005 (2009).

[58] P. Chakraborty and J. I. Kapusta, Phys. Rev. C 83, 014906
(2011).

[59] M. Heffernan, S. Jeon, and C. Gale, Phys. Rev. C 102, 034906
(2020).

[60] K. Tuchin, Phys. Rev. C 88, 024911 (2013).
[61] M. Hongo, Y. Hirono, and T. Hirano, Phys. Lett. B 775, 266

(2017).
[62] A. Dash, S. Samanta, J. Dey, U. Gangopadhyaya, S. Ghosh, and

V. Roy, Phys. Rev. D 102, 016016 (2020).
[63] S. Ghosh and S. Ghosh, Phys. Rev. D 103, 096015 (2021).
[64] A. K. Panda, A. Dash, R. Biswas, and V. Roy, J. High Energy

Phys. 03 (2021) 216.
[65] X.-G. Huang, A. Sedrakian, and D. H. Rischke, Ann. Phys.

(NY) 326, 3075 (2011).
[66] G. S. Denicol, E. Molnár, H. Niemi, and D. H. Rischke, Phys.

Rev. D 99, 056017 (2019).

[67] S. Rath and S. Dash, Euro. Phys. J. C 82, 797 (2022).
[68] A. Das, H. Mishra, and R. K. Mohapatra, Phys. Rev. D 100,

114004 (2019).
[69] O. Scavenius, A. Mocsy, I. N. Mishustin, and D. H. Rischke,

Phys. Rev. C 64, 045202 (2001).
[70] A. Abhishek, H. Mishra, and S. Ghosh, Phys. Rev. D 97, 014005

(2018).
[71] R. Ghosh and N. Haque, Phys. Rev. D 105, 114029 (2022).
[72] Z. Wang, J. Zhao, C. Greiner, Z. Xu, and P. Zhuang, Phys. Rev.

C 105, L041901 (2022).
[73] I. A. Shovkovy, Particles 5, 442 (2022).
[74] A. Ayala, S. Hernandez-Ortiz, L. A. Hernandez, V.

Knapp-Perez, and R. Zamora, Phys. Rev. D 101, 074023
(2020).

[75] F. L. Braghin, Braz. J. Phys. 37, 33 (2007).
[76] W. Greiner, Relativistic Quantum Mechanics: Wave Equations,

3rd ed. (Springer, Berlin, 2000).
[77] O. H. M. R. Setare, Commun. Theor. Phys. 51, 1000 (2009).

034903-13

https://doi.org/10.1103/PhysRevD.80.036005
https://doi.org/10.1103/PhysRevC.83.014906
https://doi.org/10.1103/PhysRevC.102.034906
https://doi.org/10.1103/PhysRevC.88.024911
https://doi.org/10.1016/j.physletb.2017.10.028
https://doi.org/10.1103/PhysRevD.102.016016
https://doi.org/10.1103/PhysRevD.103.096015
https://doi.org/10.1007/JHEP03(2021)216
https://doi.org/10.1016/j.aop.2011.08.001
https://doi.org/10.1103/PhysRevD.99.056017
https://doi.org/10.1140/epjc/s10052-022-10757-4
https://doi.org/10.1103/PhysRevD.100.114004
https://doi.org/10.1103/PhysRevC.64.045202
https://doi.org/10.1103/PhysRevD.97.014005
https://doi.org/10.1103/PhysRevD.105.114029
https://doi.org/10.1103/PhysRevC.105.L041901
https://doi.org/10.3390/particles5040034
https://doi.org/10.1103/PhysRevD.101.074023
https://doi.org/10.1590/S0103-97332007000100012
https://doi.org/10.1088/0253-6102/51/6/07

