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Dynamical magnetic fields in heavy-ion collisions
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The magnetic fields in heavy-ion collisions are important ingredients for many interesting phenomena, such
as the chiral magnetic effect, the chiral magnetic wave, the directed flow v1 of D0 mesons, and the splitting
of the spin polarization of the �/�̄. Quantitative studies of these phenomena, however, suffer from limited
understanding of the dynamical evolution of these fields in the medium created by the collisions, which remains
a critical and challenging problem. The initial magnetic fields from the colliding nuclei decay very fast in the
vacuum but their lifetime could be extended through medium response due to electrically conducting quarks
and antiquarks. Here we perform a detailed analysis of such medium effect on the dynamical magnetic fields
by numerically solving Maxwell’s equations concurrently with the expanding medium described by viscous
hydrodynamics, under the assumption of negligible back reaction of the fields on the fluid evolution. Our results
suggest a considerable enhancement of late time magnetic fields, the magnitude of which depends sensitively on
the fireball expansion as well as the medium electric conductivity both before and during hydrodynamic stage.
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I. INTRODUCTION

Ultrarelativistic heavy-ion collisions provide the opportu-
nity to create quark-gluon plasma (QGP) and investigate its
properties under extreme conditions in terms of temperatures,
baryon densities, and more recently also magnetic fields and
vorticity. There are very strong magnetic fields arising from
the fast-moving ions in noncentral heavy-ion collisions, which
can reach about eB ∼ m2

π ≈ 1018 G in Au + Au collisions at
the Relativistic Heavy Ion Collider (RHIC), and can be still
an order of magnitude larger at the Larger Hadron Collider
(LHC) [1–9]. Many interesting effects induced by such mag-
netic fields have been proposed and studied both theoretically
and experimentally, such as the chiral magnetic effect, the
chiral magnetic wave, the directed flow v1 of D0 mesons, the
splitting of the spin polarization of the �/�̄, etc. See recent
reviews in, e.g., [10–16].

While the initial strength and spatial distribution of the
magnetic fields at the beginning of a heavy ion collision can
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be accurately calculated, the subsequent dynamical evolution
of such magnetic fields in the medium is rather poorly deter-
mined. If one only considers the field evolution in vacuum
case, it is well known that the strength decays rapidly in
time and the field lifetime at midrapidity can be estimated
as τB ∼ RA/(γ vz ) which is about 0.06 fm for Au + Au col-
lisions at 200 GeV [16] while it is about 0.005 fm for Pb + Pb
collisions at 2.76 TeV. However, the lifetime of the in-medium
magnetic field could be elongated due to the presence of the
quark-gluon plasma in which the electrically charged quarks
and antiquarks form a conducting medium with induction
effect, as qualitatively demonstrated by various theoretical and
numerical investigations [17–30]. A quantitative understand-
ing of the dynamical evolution of magnetic fields, however,
remains a key challenge.

Generally speaking, there are two different types of ap-
proaches: the “strong field” and “weak field” methods. In the
strong field method, the influence of the electromagnetic fields
on the medium evolution cannot be ignored and thus need to
be taken into account for describing the medium. The most
representative example is magnetohydrodynamics (MHD). In
an ideal MHD with infinite conductivity, the magnetic field
obeys the frozen flux (or Alfven) theorem and can therefore
be represented simply in time [31,32] for a Bjorken flow, i.e.,
B(τ ) = B0 τ0/τ , where B0 is the initial magnetic field at time
τ0. Numerical efforts were developed in [33,34] by using the
improved version of ECHO-QGP to simulate the evolution
of electromagnetic fields in heavy-ion collisions by solving
the relativistic ideal MHD equations with the assumption of
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infinite electrical conductivity of the plasma and ideal hydro
behavior of the medium without dissipative effects. These
analyses show that the medium effect would indeed slow
down the decay of the magnetic field and hence enlarge its
lifetime. However, given the strongly coupled nature of the
quark-gluon plasma, it is difficult to imagine that the electric
conductivity would be very large. In fact, lattice simulations
would suggest a rather limited QGP electric conductivity.

In the weak field method, one assumes that the effect
of the medium on electromagnetic fields must be accounted
for while the back reaction of electromagnetic fields on the
medium is negligible. In this approach, the medium evolution
can be described by usual viscous hydrodynamics without
electromagnetic fields and the evolution of the electromag-
netic fields can be derived from Maxwell’s equations by
including the responses from the medium via, e.g., induction
currents. Several previous theoretical and numerical works
adopted this method; see, e.g., [7,8,35–42]. These studies also
clearly demonstrated the medium response effect that can help
extend the lifetime of magnetic fields, but often suffer from
various unrealistic approximations, e.g., constant conductiv-
ity, static medium, one-dimensional Bjorken expansion only,
infinite transverse medium, etc.

Quantitatively understanding the dynamical evolution of
magnetic fields requires a more realistic hydrodynamic back-
ground, a more realistic QGP conductivity, a proper treatment
of the full space-time dependence of the fields, as well as a
careful analysis of the per-hydro nonequilibrium stage. In this
work, we make an attempt at address these issues based on the
weak field method through numerically solving concurrently
the viscous hydrodynamics for the medium and Maxwell’s
equations for the electromagnetic fields. To be specific, let’ us
take the

√
sNN = 200 GeV Au + Au collisions as an example

to demonstrate the developed framework. The full evolution
includes three different stages in our framework. The first
stage is the initial stage of time interval τ = 0.0–0.1 fm,
which may be gluon dominated with few quarks. At this time
there would be no medium response and the electromagnetic
fields are assumed to evolve in vacuum. The second stage
is the pre-equilibrium stage of time interval τ = 0.1–0.4 fm
where the system is undergoing Bjorken expansion. While
substantial numbers of quarks and antiquarks emerge in this
stage, they may or may not be close to thermal equilibrium
yet. Since there is no clear answer for the electric conductivity
in such a nonequilibrium case, we will test several plausible
assumptions for the preequilibrium effective electric conduc-
tivity, such as the zero model, constant model, and linear
model. The third stage is the hydrodynamic stage for time
τ � 0.4 fm, in which the QGP medium is assumed to have
thermal conductivity, and several scenarios for the conduc-
tivity will also be tested. A more detailed description of our
framework will be presented later.

The rest of this paper is organized as follows. In Sec. II, the
analytical solution and the numerical algorithm of Maxwell’s
equations in the static QGP scenario are briefly reviewed, with
certain new results for dynamic magnetic fields under static
QGP with space-time-dependent conductivity. In Sec. III, the
dynamical evolution of magnetic fields in dynamically ex-
panding QGP is studied and the results are compared for

different models of both thermal and preequilibrium con-
ductivities as well as for different choices of hydrodynamic
backgrounds. Finally we conclude in Sec. IV. A number of
relevant technical details are also included in several appen-
dices: Appendix A presents the external electric and magnetic
fields in heavy-ion collision as solutions of Eq. (11); Ap-
pendix B introduces Yee’s grid algorithm for solving the
Maxwell’s equations; Appendix C briefly reviews the Levi-
Civita tensor and electromagnetic tensor in Milne space used
for the expanding case; Appendix D discusses the difference
of the velocity in Milne space and Minkowski space.

II. DYNAMICAL MAGNETIC FIELD IN A STATIC QGP

The covariant Maxwell equations are

∂μFμν = Jν, ∂μF̃μν = 0, (1)

where F̃μν = 1
2εμναβFαβ is a dual tensor of the electromag-

netic field tensor Fμν = ∂μAν − ∂νAμ. Using the relations
Bi = − 1

2εi jkFjk = F̃ i0, Ei = F i0, F i j = εi jkBk , the co-
variant Maxwell equations (1) can be rewritten in the familiar
form

� · E = J0,

� · B = 0,

∂t E = � × B − J,

∂t B = −� × E.

(2)

The first two equations are the constraint equations, while the
last two equations the dynamical equations of the electromag-
netic fields. The latter can be used to derive the electric and
magnetic fields at the next time step. In a static medium, the
current J0 and J can expanded as

J0 = J0
s , J = σE + σχB + Js, (3)

with σ and σχ respectively being the electric and chiral con-
ductivities of QGP. J0

s and Js are the source contributions from
the fast moving protons in the colliding nuclei. They can be
written as

J0
s = e

∑
i

δ(x⊥ − x′
⊥,i )δ(z − z′

i − βt ), (4)

Js = e
∑

i

β ẑ δ(x⊥ − x′
⊥,i )δ(z − z′

i − βt ). (5)

From the above Maxwell equations (2), we can construct
the corresponding wave equations for the electric and mag-
netic fields,(

�2 − ∂2
t − σ∂t

)
E − σt E + σχ� × E

= σχ,t B + ∂t Js + �J0
s , (6)(

�2 − ∂2
t − σ∂t

)
B + (�σχ ) × B + σχ� × B

= −(�σ ) × E − � × Js,

where we have used the notations σt = ∂tσ , σχ,t = ∂tσχ .
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A. Analytical solution of Maxwell equations
at constant conductivities

It is possible to analytically solve the Maxwell equa-
tions (2) or (6), when the electric and chiral conductivity are
all constant for space-time [35,38–40]. In such a case, the
wave equation (6) can be simplified as(

�2 − ∂2
t − σ∂t

)
E + σχ� × E = ∂t Js + �J0

s ,(
�2 − ∂2

t − σ∂t
)
B + σχ� × B = −� × Js.

(7)

Adopting the cylindric coordinate, its analytical solution is
found to be [35,38–40]

Bφ = Q

4π

vγ xT

�3/2

(
1 + σvγ

2

√
�

)
eA,

Br = −σχ

Q

8π

vγ 2xT

�3/2
[γ (vt − z) + A

√
�]eA, (8)

Bz = σχ

Q

8π

vγ

�3/2

[
γ 2(vt − z)2

(
1 + σvγ

2

√
�

)

+�

(
1 − σvγ

2

√
�

)]
eA,

Eφ = σχ

Q

8π

v2γ 2xT

�3/2
[γ (vt − z) + A

√
�]eA,

Er = Q

4π

{
γ xT

�3/2

(
1 + σvγ

2

√
�

)

− σ

vxT
e−σ (t−z/v)

[
1 + γ (vt − z)√

�

]}
eA, (9)

Ez = Q

4π

{
− eA 1

�3/2

[
γ (vt − z) + A

√
� + σγ

v
�

]

+σ 2

v2
e−σ (t−z/v)�(0,−A)

}
,

where � ≡ γ 2(vt − z)2 + x2
T , A ≡ (σvγ /2)[γ (vt − z) −√

�], and �(0,−A) is the incomplete gamma function
defined as �(a, z) = ∫∞

z dt ta−1e−t .
As noted above, such an analytical solution is based on

the precondition that the electric and chiral conductivities
are space-time independent. Such a condition is not satis-
fied by the rapidly expanding medium form in the heavy-ion
collision. It seems unrealistic to analytically solve the wave
equations (6) or the Maxwell equations (2) when the conduc-
tivities are space-time dependent. Further investigatin of the
realistic dynamical evolution of the electromagnetic field in
heavy-ion collisions calls for numerical calculations.

B. Numerical method to solve Maxwell equations

Numerically solving the Maxwell equations (2) might be
unstable, due to the Dirac delta functions in the source term.
Therefore, we will adopt the method established by McLerran
and Skokov [7]. In this method, the electric and magnetic
fields are separated into two pieces, i.e.,

E = Eext + Eint, B = Bext + Bint. (10)

The subscript ‘‘ext” denotes the external part which origi-
nated by the source contribution from the fast moving charge
particles in heavy-ion collisions, whereas “int” refers to the
induced electromagnetic fields generated in the created quark-
gluon plasma (QGP). Then the Maxwell equations (2) under
static medium now can been split into two parts. For the
“external” part,

� · Eext = J0
s ,

∂t Eext = � × Bext − Js,

� · Bext = 0,

∂t Bext = −� × Eext.

(11)

There is an analytical solution to this set of equations, which
represent the electric and magnetic fields induced by the
fast moving charged particles. Details can be found in Ap-
pendix A. The “internal” part is

� · Eint = 0,

∂t Eint = � × Bint − σ (Eint + Eext ) − σχ (Bint + Bext ),

� · Bint = 0, (12)

∂t Bint = −� × Eint.

We numerically solve this equation set to obtain the internal
electric and magnetic fields in the medium at any time, and
then the resulting dynamical electric and magnetic fields in
heavy-ion collisions are obtained by adding the external and
internal parts.

For numerical stability for the conductivity ranging from 0
to ∞ when solving Eq. (12), we chose Yee’s algorithm [43],
which belongs to the category of leapfrog algorithms. In Yee’s
algorithm, the computed fields E and B are staggered by half
a step in space-time with respect to each other. More details
about the algorithm of Eq. (12) are presented in Appendix B.
The code package of this section is publicly available [44].

C. numerical results

In this subsection, we present the numerical results us-
ing the aforementioned numerical method. The simulation
is performed using initial conditions of the electromagnetic
field provided by event-averaged Monte Carlo–Glauber (MC-
Glauber) simulation for Au + Au collisions at RHIC energy√

sNN = 200 GeV and impact parameter b = 6 fm. The ve-
locity and Lorentz factor for both target and projectile can be
estimated by v2 = 1 − γ −2 and γ = √

sNN/2mp. To explore
the effect of conductivity, we parametrize the electric conduc-
tivity as the result of hot QCD medium being obtained in the
lattice calculations [19] scaled by a factor (λ),

σ = λ σLQCD = 5.8 λ MeV. (13)

To test the stability of our program and investigate influence
of the conductivity on the evolution of the magnetic field, the
parameter is chosen as λ = 1, 10, 100, and 1000. The chiral
conductivity is [45]

σχ =
(

e2

2π2
Nc

∑
f

q2
f

)
μ5, (14)
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FIG. 1. The dynamical magnetic field in the static medium.

where μ5 is the chiral chemical potential. Based on these
inputs and the aforementioned method, we numerically solve
the time evolution of the magnetic field in the origin x = 0
as a function of the electric conductivity. Results are shown
in Fig. 1, and are qualitatively consistent with McLerran and
Skokov [7].1 In our calculation, we took two values of the
chiral chemical potential: an optimistic limit that μ5 = 1 GeV
and a pessimistic limit that μ5 = 0. We find the difference
between these two cases to be negligible.

The rapidly expanding conducting medium created in
heavy-ion collisions is highly inhomogeneous. A realistic
simulation requires a space-time-dependent electric conduc-
tivity. Meanwhile, quarks are not formed immediately after
the initial collisions, and it takes finite time for the quark to
equilibrate. One needs to pay special attention to the nontrivial
time dependence of σ in the preequilibrium stage.

Herein, we test the influence of different components by
choosing a couple of different models in the simulation. To
explore the limits without transverse expansion and with the
strongest one, we take two the Bjorken and Hubble models
to estimate the time dependence of electric conductivity, σ (t ),
i.e.,

Bjorken: σ (t ) = σc
T (t )

Tc
= σc

T0

Tc

(
t0
t

)
,

Hubble: σ (t ) = σc
T (t )

Tc
= σc

T0

Tc

(
t0
t

) 1
3

.

(15)

In our calculation, we take T0 = 3 Tc and σc = 10 σLQCD.
The spatial dependence is then modeled by assuming a

1We speculate that the difference in qualitative value is due to the
fact that a different colliding system was considered in [7]. See also
[41].

homogeneous or Gaussian profile,

homogeneous: σ (t, x) = σ (t ),

Gaussian: σ (t, x) = σ (t )e
− x2

R2
x
− y2

R2
y
− z2

R2
z ,

(16)

where the corresponding parameters in the Gaussian model
are Rx = RA − b/2, Ry =

√
R2

A − b2/4, and Rz = 3 fm; RA =
6.38 fm is the radius of Au; and b = 6 fm is the impact param-
eter. Finally, the effect of quark formation time is estimated by
taking two limits: quarks at time 0 � t � t0 are not created at
all, or rapidly created to the density at t0. Correspondingly, the
conductivity is parametrized as

zero:

{
σ (t ) = 0, t � t0,
σ (t ) 	= 0, t0 < t ;

nonzero:

⎧⎨
⎩

σ (t ) = 0, t � 0,

σ (t ) = σ (t0), 0 < t � t0,
σ (t ) 	= 0, t0 < t .

(17)

Here the t0 = 0.4 fm is the start time of the hydro stage which
is assumed as global equilibrium. The picture of these two
cases is that the system is under the pre-equilibrium stage
at time interval 0 < t < t0, and then the system is close to
the equilibrium stage after time t = t0. The difference is in
the conductivity at the pre-equilibrium stage. Corresponding
numerical results are shown in Fig. 2. It shows that B(t ) is very
sensitive to the effective conductivity of the preequilibrium
stage (0 < t < t0) and the hydro stage (t � t0). We note that
in Ref. [37] the authors solve the Maxwell equation for a σ (t )
that is similar to our “zero” scenario, and in Fig. 2 we observe
similar behavior for B(t ).

III. DYNAMICAL MAGNETIC FIELDS IN
THE NONSTATIC QGP

A. The Maxwell equation in Milne space

It is convenient to use the Milne space for investigating the
dynamic evolution of the electromagnetic field in the rapidly
expanding QGP. The Maxwell equation can be expressed as

D̂μFμν
M = Jν, (18)

D̂μF̃μν
M = 0, (19)

where the electromagnetic field tensor is marked with the
subscript M to refer to Milne coordinates. The covariant
derivative D̂μ acting on a tensor is expressed as D̂μtνρ =
∂μtνρ + �ν

λμtλρ + �
ρ
λμtνλ, with affine connections �ρ

μν =
(1/2)gρσ (∂νgσμ + ∂μgσν − ∂σ gμν ). We adopt the metric con-
vention to be gμν = diag(1,−1,−1,−τ 2). The dual tensor is
F̃μν

M = (1/2)εμνρσ F M
ρσ . Herein, the Levi-Civita tensor εμνρσ

and the electromagnetic tensor are different from the case
of Minkowski coordinate, and their explicit forms can be
found in Appendix C. The currents are composed of normal
currents, diffusion current, Ohm’s law, and chiral magnetic
effect (CME) current follows:

Jμ = Jμ
in + Jμ

s ,

Jμ
in = n uμ + dμ + σ Fμν

M uν + σχ F̃μν
M uν .

(20)
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FIG. 2. Time dependence of the magnetic field along the out-
of-plane direction. Upper and lower panels compare the effect of
preequilibrium conductivity (17). In each plot, red and blue lines
compare the temporal distribution (15), whereas solid and dashed
lines compare the spatial distribution (16).

Herein, Jμ
in denotes the current in the medium and Jμ

s the
source contributions from the fast moving charged particles in
heavy-ion collisions; n is the charge number density and dμ

the diffusive current. We further denote electric and magnetic
fields in the Milne space as

Ẽ i = F i0
M , B̃i = F̃ i0

M , (21)

with i being x, y, or η. The current in the medium can be
further simplified as follows:

Jμ
in = (Jτ , Jx, Jy, Jη ),

Jτ = n uτ + dτ + σ (Ẽ xux + Ẽ yuy + τ 2Ẽηuη )

+ σχ (B̃xux + B̃yuy + τ 2B̃ηuη ),

Jx = n ux + dx + σ (Ẽ xuτ + τ B̃ηuy − τ B̃yuη )

+ σχ (B̃xuτ − τ Ẽηuy + τ Ẽ yuη ),

Jy = n uy + dy + σ (Ẽ yuτ − τ B̃ηux + τ B̃xuη )

+ σχ (B̃yuτ + τ Ẽηux − τ Ẽ xuη ),

Jη = n uη + dη + σ

(
Ẽηuτ + B̃y

τ
ux − B̃x

τ
uy

)

+ σχ

(
B̃ηuτ − Ẽ y

τ
ux + Ẽ x

τ
uy

)
.

(22)

In order to facilitate the subsequent numerical calculations,
let us further simplify the above Maxwell equations. From
Eq. (18) and (19), one can get the evolution equations of the
electric and magnetic fields as

∂xẼ x + ∂yẼ y + ∂ηẼη = Jτ ,

∂τ (τ Ẽ x ) = ∂y(τ 2B̃η ) − ∂ηB̃y − τ Jx, (23)

∂τ (τ Ẽ y) = −∂x(τ 2B̃η ) + ∂ηB̃x − τ Jy,

∂τ (τ Ẽη ) = ∂xB̃y − ∂yB̃x − τ Jη;

∂xB̃x + ∂yB̃y + ∂ηB̃η = 0,

∂τ (τ B̃x ) = −∂y(τ 2Ẽη ) + ∂ηẼ y, (24)

∂τ (τ B̃y) = ∂x(τ 2Ẽη ) − ∂ηẼ x,

∂τ (τ B̃η ) = −∂xẼ y + ∂yẼ x.

Now we can carry out the simulations with above
equations (23) and (24), according to the aforementioned nu-
merical method in Sec. II B. In the final numerical results, we
will compute the electric and magnetic fields in Minkowski
coordinates, which are Lorentz transformation of electric and
magnetic fields in Milne coordinates by the following:

Ex = cosh η Ẽ x + sinh η B̃y,

Ey = cosh η Ẽ y − sinh η B̃x,

Ez = τ Ẽη, (25)

Bx = cosh η B̃x − sinh η Ẽ y,

By = cosh η B̃y + sinh η Ẽ x,

Bz = τ B̃η.

B. Electric conductivity

The electric conductivity of QGP remains an open
question. There are many works focusing on the electric
conductivity in the hydro stage of QGP using theoretical
calculations and simulations, but significantly different results
are obtained. Here we briefly outline some of them in the fol-
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lowing for further estimation of the reasonable region. First,
results from different lattice QCD calculations can be different
by an order of magnitude. They are listed as follows:

[17] σ
T |1.5<T/Tc<3 = 7Cem ≈ 0.428,

[18] σ
T |T/Tc≈1.5 = (0.4 ± 0.1)Cem = 0.0245 ± 0.006,

[19,20] σ
T |1.1Tc = (0.201–0.703)Cem ≈ (1.23–4.30)×10−2,
σ
T |1.3Tc = (0.203–0.388)Cem ≈ (1.24–2.37)×10−2,
σ
T |1.5Tc = (0.218–0.413)Cem ≈ (1.33–2.52)×10−2,

where the factor Cem =∑ f e2
f ≈ 0.06115 for the three-flavor

case, and e f is the charge of a quark with flavor f .
Additionally, results from different theoretical calculations

are also different. The hard thermal loop (HTL) calculation
up to leading logarithm for high temperature QGP pro-
duces σ/T = 11.8687e Tr f (QeQV )

g4 ln(1/g) = 146.33(26.12) for αs =
0.01(0.05) [23], where Qe = (2/3,−1/3,−1/3) for (u, d, s)
and the numerical results are for QV = Qe. Meanwhile, the
leading order perturbative QCD calculation gives σ/T ≈
5.98 [29], whereas the dilute instanton-liquid model gives
σ/T ≈ (0.46–1.39)Cem ≈ (0.0281–0.0850) [27]. The trans-
port model with relaxation time gives us an analytical
representation (see, e.g., [25,46–49]),

σ =
∑
f ,±

g f q2
f τq

6π2T

∫
k2dk

E2
k, f

e− Ek, f ±μ

T(
e− Ek, f ±μ

T + 1
)2 , (26)

where the + (−) sign indicates fermion (antifermion). One
can estimate σ/T = 0.007–0.026 for T = Tc − 5Tc with zero
chemical potential.2 Furthermore, the parton-hadron-string
dynamics (PHSD) transport [28] approach finds that σ/T ≈
0.0009 + 0.015(T − Tc)/Tc. Finally, simulation using the mi-
croscopic relativistic transport model Boltzmann Approach
to Multi-Parton Scatterings (BAMPS) [50] obtained σ/T ≈
(0.05–0.2).

Based on the above summary, we choose σ/T = 0.1 as a
relatively reasonable value in our numerical simulation. We
also take σ/T = 100 to explore the medium response in the
large conductivity limit.

C. Numerical results

In this subsection, we present the simulate results of
the electromagnetic field evolution in the no-static QGP.
As mentioned before, the evolution of the medium formed
in the relativistic heavy-ion collision, as well as that of
the electromagnetic field, consists of three stages: initial
(τ < 0.1 fm), preequilibrium (0.1 � τ < 0.4 fm), and hydro
(τ � 0.4 fm) stages. Our simulation will be arranged accord-
ingly. The initial condition of the electromagnetic field is
generated by two heavy nuclei moving toward each other.
Then we solve the Maxwell’s equations (23) and (24) and

2In this estimation, the relaxation time is τq =
1

5.1T α2
s ln(α−1

s )[1+0.12(2Nf +1)]
, gf = 2 × 3, the mass is the effective

mass composed of the bare mass and thermal mass, and the coupling
constant αs(T ) = 6π

(33−2Nf ) ln(T/�T ) (1 − 3(153−19Nf )

(33−2Nf )2
ln[2 ln(T/�T )]

ln(T/�T ) ), with

�T = 200 MeV.

FIG. 3. The suppression effect of the longitudinal expansion of
the medium.

simulate the electromagnetic field evolution in the preequi-
librium and hydro stages. In the pre-equilibrium stage, the
QGP is assumed to expand as a Bjorken flow, and we ex-
plore three different models for the time dependence of the
electrical conductivity. In the hydro stage, we take the hydro
background from Bjorken flow, Gubser flow, and a realistic
hydro profile from the MUSIC package [51–54]. The cor-
responding temperature and fluid velocity are produced by
these three models. (See Appendix D for analytical forms
of temperature and fluid velocity in the Bjorken and Gub-
ser solutions.) These temperature and fluid velocity profiles
are then read into the program and provide the background
field to solve Maxwell’s equations (23) and (24). In what
follows, we will focus on the dynamical magnetic field at
the center of the fireball [x = (0, 0, 0)].3 Herein, we focus
on the case that the net number density (n) and the diffusive
current density (dμ) are set to zero, and their influence on the
dynamic evolution of the magnetic field will be studied in our
future work.

1. Suppression effect due to the longitudinal
expansion of the medium

We first study the evolution of magnetic field along the
out-of-plane direction (e By) with three different backgrounds:
a static medium, Bjorken flow, and Gubser flow. We take
identical electric conductivities in these three different cases,
i.e., σ = 0 for the initial stage, and σ = σLQCD for the pree-
quilibrium and hydro stages. Results are shown in Fig. 3. We

3It is worth noting that we can generate the dynamic magnetic and
electric fields at any given coordinate and the spatial distribution of
electromagnetic fields at any time under our framework.
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FIG. 4. Illustration of the suppression effect. (a) Lorentz force
acting on in-medium charged particles due to the external magnetic
field. (b) Induced electric currents due to the Lorentz force and their
resulting induced magnetic field.

observe a suppression effect for the longitudinal expansion of
the medium. The dynamical magnetic field was depressed in
the Bjorken expansion and the Gubser expansion compared
to the static case.

The reason for the suppression effect is illustrated in Fig. 4
and explained as follows. In the presence of a external mag-
netic field along the y axis, in-medium particles with positive
(negative) at forward rapidity experience a Lorentz force

pointing at the negative (positive) x direction, and vice versa
for particles at backward rapidity. Collective motion of the
charged particles, due to the Lorentz force, induces a clock-
wise circular current. It generates an induced magnetic field
in the negative y direction and thereby weakens the external
magnetic field.

2. The dynamical magnetic field with realistic hydro background

Now we move on to the realistic hydrodynamic back-
ground provided by numerical simulation using the MUSIC
package [51–54]. We set σ = 0 at the initial stage, and we ex-
plore the medium responses to the magnetic field by choosing
three different electric conductivity models in the preequilib-
rium stage and respectively setting the electric conductivity
σ = 0.1 T , σ = σLQCD, and σ = 100 T in the hydro stage.
The three models for the preequilibrium stage are (a) zero
model that assumes vanishing conductivity, σ (τ, x) = 0; (b)
constant model that assumes constant conductivity, which
takes the value at the initial time of the hydro stage, σ (τ, x) =
σ (τ = 0.4 fm, x); and (c) linear model that the conductivity
that grows linearly from zero to the value at the hydro initial
time, σ (τ, x) = (τ/0.4 fm)σ (τ = 0.4 fm, x). We will assume
that the temperature and velocity of the background flow in
the preequilibrium stage follow the Bjorken flow.

Both hydro and electromagnetic field initial conditions
are generated by event-averaged MC-Glauber simulation for√

sNN = 200 GeV AuAu collisions. For a more direct com-
parison of the response of different hydro profiles, we fix
the magnetic field to be the one with impact parameter
b = 6 fm, and vary the hydro background from 10–20% to
50–60% centrality classes.

Results for σ = 0.1T in the hydro stage are presented in
Fig. 5. The dynamical magnetic field is more sensitive to the
electric conductivity model of the preequilibrium stage than
to the hydro background. The dynamical magnetic fields in
Bjorken, Gubser, and realistic backgrounds are almost the
same except for the late time region where the magnetic
field strength is very small. It means that the evolution of

FIG. 5. Proper dependence of magnetic field along the out-of-plane direction at the center (x = 0, y = 0, z = 0) and with conductivity
σ = 0.1 T in the hydro stage. Panels from left to right correspond to zero, linear, and constant models for the preequilibrium stage. Black solid
curves represent the vacuum value, whereas dotted (dashed) curves take Bjorken (Gubser) flow as the background. Colored solid curves from
purple to red are respectively for realistic hydro backgrounds in the 10–20% to 50–60% centrality classes.
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TABLE I. The fit parameters of the fitted magnetic field Eq. (27) for electric conductivity σ = 0.1 T in the hydro stage with a different
conductivity model in the preequilibrium stage.

a0 b0 b1 b2 c0 c1 c2 c3

zero model −8.848 −2.193 0.412 −0.207 0.0 13.074 −11.66 19.679
constant model −21.693 −28.039 −148.773 −16.302 0 159.619 6.285 4.948
linear model −10.177 −7.549 0.183 −0.299 0.351 36.926 −16.311 3.285

the y component of the magnetic field is dominated by the
longitudinal expansion of the QGP, rather than the transverse
expansion. We fit the magnetic field as a function of time with
a parameterized function,

e By = e By
τ=0 exp

[
a0 e

b0+b1τ+b2τ2

c0+c1τ+c2τ2+c3τ3
]
. (27)

Corresponding parameters in Table I are fit from the data of
the MUSIC hydro background with centrality 40–50%.

Then we investigate the evolution of magnetic field with
the constant conductivity σ = σLQCD in the hydro stage. Re-
sults are presented in Fig. 6, and parameter fit for 40–50%
centrality range is listed in Table II. Given the constant
conductivity, the influence of transverse expansion become
negligible.

Finally, let us explore the response of a highly conductive
plasma where the electric conductivity is 1000 times that in
the hydro stage, i.e., σ = 100 T . Results are shown in Fig. 7
and Table III. Compared with the results in Fig. 5, the late-
time strength of the magnetic field is much greater, and it is
more explicitly dependent on the choice of the conductivity
model in the preequilibrium stage.

IV. CONCLUSION

To conclude, we have developed a framework to numer-
ically simulate the dynamical magnetic fields in heavy ion
collisions. This framework has allowed us to investigate the
in-medium evolution of space-time-dependent magnetic fields
on top of a variety of background medium evolution models
for different scenarios of electric conductivities both in the
thermal phase and in the pre-equilibrium stage. Our main
findings can be summarized as follows.

(i) In the case of a static QGP, previous results assum-
ing constant electric conductivity are reproduced and
new results with more realistic space-time-dependent
electric conductivity are obtained, demonstrating a
robust medium response that extends the lifetime of
the magnitude and that is sensitive to the values of the
conductivity.

(ii) For an expanding QGP, we find a strong influence
of the longitudinal expansion which considerably re-
duces the contributions from medium response and
as a result leads to a much smaller magnetic fields
as compared with the static case. On the other hand,
the inclusion of transverse expansion in addition to
the longitudinal expansion only affects the dynamical
field evolution rather mildly.

(iii) The lifetime of the dynamical magnetic fields is
strongly dependent on the medium conductivities in
the thermal QGP. Choosing a conductivity value in the
range implied by relevant lattice simulations would
only lead to a limited medium enhancement of late
time field strength.

(iv) More importantly, the lifetime is found to be par-
ticularly sensitive to, and mainly determined by,
the nonequilibrium contribution from the early time
partonic medium, as demonstrated by comparisons
among the three different choices (zero model, con-
stant model, and linear model). A considerable
prehydro effective conductivity could significantly
enhance the dynamical field strength.

Clearly, the main “bottleneck” for an accurate description
of the dynamical magnetic fields is a better estimate of the
effective conductivity for the preequilibrium stage, which in

FIG. 6. Same as Fig. 5 but with hydro constant conductivity σ = σLQCD.
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TABLE II. Same as Table I but for constant conductivity σ = σLQCD.

a0 b0 b1 b2 c0 c1 c2 c3

zero model −9.924 −2.145 −8.568 3.602 0. 14.76 12.063 14.417
constant model −10.871 −1.786 −5.669 −7.969 0.0 10.273 16.761 20.953
linear model −10.298 −2.785 −6.329 −1.854 0.0 16.528 10.082 18.5673

turn relies on a detailed understanding of the prethermal evo-
lution (especially that of the quarks and antiquarks). From a
phenomenological perspective, a magnetic field lifetime on
the order of ≈1 fm/c in

√
sNN = 200 GeV collisions ap-

pears to be needed for explaining relevant observables of
the chiral magnetic effect and the �/�̄ global polarization
splitting [55–60]. According to our findings in this work, such
a lifetime would suggest a considerable medium response
contribution at the very early stage of the collisions. Whether
this scenario could realistically occur will be an important
question for future investigation.

Finally, while this work focuses on
√

sNN = 200 GeV
Au + Au collisions, our framework can be readily applied
for other colliding systems at different collision energies. The
simulation code for the static case has been made available
at [61], and efforts are under way to make the full dynamical
package publicly available in the future. Such a framework
will allow quantitative estimates of many interesting observ-
ables induced by the dynamical magnetic fields in heavy ion
collisions.
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APPENDIX A: THE SOLUTIONS OF EQ. (11)

As mentioned before, we do not need to solve Eq. (11):
it can be represented analytically by a boosted point charge.
If we choose the distribution of protons in both projectile
and target according to the Woods-Saxon distribution with the
standard parameters [62],

ρ(r) = ρ0
1 + w

(
r
R

)2
1 + e

r−R
a

. (A1)

For the Au nucleus, a = 0.535 fm, R = 6.38 fm, w = 0. In
this work, we will use the Gauss theorem in the rest frame
of the target, and then boost the electromagnetic fields to the
laboratory frame with the velocity of the target. In the rest
frame of the target,

E0 = e

4π
Q(r0)

r0

r3
0

, Q(r) = 4π

∫ r

0
ρ(x)x2dx,

B0 = 0, r0 = x − x′. (A2)

Where x and x′ are the locations of the field and nucleus center
respectively. After boosting to the laboratory frame,

Ex = γ E0
x , Ey = γ E0

y , Ez = E0
z ,

Bx = −γ vE0
y , By = γ vE0

x , Bz = 0.
(A3)

FIG. 7. Same as Fig. 5 but with hydro conductivity σ = 100 T .
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TABLE III. Same as Table I but for conductivity σ = 100 T .

a0 b0 b1 b2 c0 c1 c2 c3

zero model −10.676 −4.081 −0.93 −18.58 0.052 19.787 13.497 14.866
constant model −5.633 −1.344 −4.912 1.406 0 12.345 −0.039 0.677
linear model −7.311 −1.248 0.483 −12.433 0 8.03 −0.223 16.904

The corresponding coordinates represented by the laboratory
frame are

r0,x = x − x′, r0,y = y − y′, r0,z = γ (z − z′ − vt ).

One can also generate the electromagnetic fields of heavy-
ion collisions by using the Monte Carlo method as in the work
of Deng and Huang [5]. In this work, we will use the above
method for simplicity.

APPENDIX B: APPLYING YEE’S GRID ALGORITHM TO EQ. (12)

Yee’s grid algorithm for Eq. (12) can be easily understood by the following representation:

dEx

dt
(t + dt/2, x + dx/2, y, z) = [∂yBz − ∂zBy − σ Ex − σχBx − J̃x]

∣∣(t + dt/2, x + dx/2, y, z),

dEy

dt
(t + dt/2, x, y + dy/2, z) = [∂zBx − ∂xBz − σ Ey − σχBy − J̃y]

∣∣(t + dt/2, x, y + dy/2, z),

dEz

dt
(t + dt/2, x, y, z + dz/2) = [∂xBy − ∂yBx − σ Ez − σχBz − J̃z]

∣∣(t + dt/2, x, y, z + dz/2),

dBx

dt
(t, x, y + dy/2, z + dz/2) = [∂zEy − ∂yEz]

∣∣(t, x, y + dy/2, z + dz/2),

dBy

dt
(t, x + dx/2, y, z + dz/2) = [∂xEz − ∂zEx]

∣∣(t, x + dx/2, y, z + dz/2),

dBz

dt
(t, x + dx/2, y + dy/2, z) = [∂yEx − ∂xEy]

∣∣(t, x + dx/2, y + dy/2, z).

(B1)

Let us use the center difference method at the given points to solve these equations. One can get the following results:

Ex

∣∣n+1

i+1/2, j,k = Ex

∣∣n
i+1/2, j,k + dt

Bz

∣∣n+1/2

i+1/2, j+1/2,k
− Bz

∣∣n+1/2

i+1/2, j−1/2,k

dy
− dt

By

∣∣n+1/2

i+1/2, j,k+1/2 − By

∣∣n+1/2

i+1/2, j,k−1/2

dz

− dt
{
σ Ex

∣∣n+1/2

i+1/2, j,k + σχBx

∣∣n+1/2

i+1/2, j,k + J̃x

∣∣n+1/2

i+1/2, j,k

}
,

Ey

∣∣n+1

i, j+1/2,k = Ey

∣∣n
i, j+1/2,k + dt

Bx

∣∣n+1/2

i, j+1/2,k+1/2 − Bx

∣∣n+1/2

i, j+1/2,k−1/2

dz
− dt

Bz

∣∣n+1/2

i+1/2, j+1/2,k − Bz

∣∣n+1/2

i−1/2, j+1/2,k

dx

− dt
{
σ Ey

∣∣n+1/2

i, j+1/2,k + σχBy

∣∣n+1/2

i, j+1/2,k + J̃y

∣∣n+1/2

i, j+1/2,k

}
, (B2)

Ez

∣∣n+1

i, j,k+1/2 = Ez

∣∣n
i, j,k+1/2 + dt

By

∣∣n+1/2

i+1/2, j,k+1/2 − By

∣∣n+1/2

i−1/2, j,k+1/2

dx
− dt

Bx

∣∣n+1/2

i, j+1/2,k+1/2 − Bx

∣∣n+1/2

i, j−1/2,k+1/2

dy

− dt
{
σ Ez

∣∣n+1/2

i, j,k+1/2 + σχBz

∣∣n+1/2

i, j,k+1/2 + J̃z

∣∣n+1/2

i, j,k+1/2

}
;

Bx

∣∣n+1/2

i, j+1/2,k+1/2 = Bx

∣∣n−1/2

i, j+1/2,k+1/2 + dt

{Ey

∣∣n
i, j+1/2,k+1 − Ey

∣∣n
i, j+1/2,k

dz
−

Ez

∣∣n
i, j+1,k+1/2 − Ez

∣∣n
i, j,k+1/2

dy

}
,

By

∣∣n+1/2

i+1/2, j,k+1/2 = By

∣∣n−1/2

i+1/2, j,k+1/2 + dt

{Ez

∣∣n
i+1, j,k+1/2 − Ez

∣∣n
i, j,k+1/2

dx
−

Ex

∣∣n
i+1/2, j+1,k+1 − Ex

∣∣n
i+1/2, j,k

dz

}
,

Bz

∣∣n+1/2

i+1/2, j+1/2,k = Bz

∣∣n−1/2

i+1/2, j+1/2,k + dt

{Ex

∣∣n
i+1/2, j+1,k

− Ex

∣∣n
i+1/2, j,k

dy
−

Ey

∣∣n
i+1, j+1/2,k

− Ey

∣∣n
i, j+1/2,k

dx

}
.

(B3)
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These two sets of equations should be further simplified for the next numerical simulations. Then the electric parts can be cast
into the following:

Ex

∣∣n+1

i+1/2, j,k =COE
∣∣n+1/2

i+1/2, j,kEx

∣∣n
i+1/2, j,k + CE

∣∣n+1/2

i+1/2, j,k

[ dt

dy

(
Bz

∣∣n+1/2

i+1/2, j+1/2,k − Bz

∣∣n+1/2

i+1/2, j−1/2,k

)

− dt

dz

(
By

∣∣n+1/2

i+1/2, j,k+1/2 − By

∣∣n+1/2

i+1/2, j,k−1/2

)
− dtσχ

∣∣n+1/2

i+1/2, j,kBx

∣∣n+1/2

i+1/2, j,k − dt J̃x

∣∣n+1/2

i+1/2, j,k

]
,

Ey

∣∣n+1

i, j+1/2,k =COE
∣∣n+1/2

i, j+1/2,kEy

∣∣n
i, j+1/2,k + CE

∣∣n+1/2

i, j+1/2,k

[dt

dz

(
Bx

∣∣n+1/2

i, j+1/2,k+1/2 − Bx

∣∣n+1/2

i, j+1/2,k−1/2

)

− dt

dx

(
Bz

∣∣n+1/2

i+1/2, j+1/2,k − Bz

∣∣n+1/2

i−1/2, j+1/2,k

)
− dtσχ

∣∣n+1/2

i, j+1/2,kBy

∣∣n+1/2

i, j+1/2,k − dt J̃y

∣∣n+1/2

i, j+1/2,k

]
,

Ez

∣∣n+1

i, j,k+1/2 =COE
∣∣n+1/2

i, j,k+1/2Ez

∣∣n
i, j,k+1/2 + CE

∣∣n+1/2

i, j,k+1/2

[ dt

dx

(
By

∣∣n+1/2

i+1/2, j,k+1/2 − By

∣∣n+1/2

i−1/2, j,k+1/2

)

− dt

dy

(
Bx

∣∣n+1/2

i, j+1/2,k+1/2 − Bx

∣∣n+1/2

i, j−1/2,k+1/2

)
− dtσχ

∣∣n+1/2

i, j,k+1/2Bz

∣∣n+1/2

i, j,k+1/2 − dt J̃z

∣∣n+1/2

i, j,k+1/2

]
,

(B4)

where we have used an approximation Ei|n+1/2 = (Ei|n+1 + Ei|n)/2 for the term σ Ei, where i = x, y, z.
The magnetic field parts can be written as

Bx

∣∣n+1/2

i, j+1/2,k+1/2 = Bx

∣∣n−1/2

i, j+1/2,k+1/2 + dt

dz

(
Ey

∣∣n
i, j+1/2,k+1 − Ey

∣∣n
i, j+1/2,k

)− dt

dy

(
Ez

∣∣n
i, j+1,k+1/2 − Ez

∣∣n
i, j,k+1/2

)
,

By

∣∣n+1/2

i+1/2, j,k+1/2 = By

∣∣n−1/2

i+1/2, j,k+1/2 + dt

dx

(
Ez

∣∣n
i+1, j,k+1/2 − Ez

∣∣n
i, j,k+1/2

)− dt

dz

(
Ex

∣∣n
i+1/2, j,k+1 − Ex

∣∣n
i+1/2, j,k

)
,

Bz

∣∣n+1/2

i+1/2, j+1/2,k = Bz

∣∣n−1/2

i+1/2, j+1/2,k + dt

dy

(
Ex

∣∣n
i+1/2, j+1,k − Ex

∣∣n
i+1/2, j,k

)− dt

dx

(
Ey

∣∣n
i+1, j+1/2,k − Ey

∣∣n
i, j+1/2,k

)
.

(B5)

First, the respective coordinates (n, i, j, k) denote (t0 + n dt, x0 + i dx, y0 + j dy, z0 + k dz), where n, i, j, k = 0, 1, 2, . . . . The
coefficients are

CE
∣∣n
i, j,k = 2

2 + dt σ
∣∣n
i, j,k

, COE
∣∣n
i, j,k =

2 − dt σ
∣∣n
i, j,k

2 + dt σ
∣∣n
i, j,k

, (B6)

in which σ |ni, j,k = σ (t0 + n dt, x0 + i dx, y0 + j dy, z0 + k dz).
Second, the external source terms are

J̃m

∣∣n
i, j,k

= σ
∣∣n
i, j,k

Eext
m

∣∣n
i, j,k

+ σχ

∣∣n
i, j,k

Bext
m

∣∣n
i, j,k

, m = (x, y, z). (B7)

Finally, the coordinates of the magnetic field at the chiral magnetic effect term in the set of equations (B4) are not the same as the
positions of the computed magnetic field. So we need to represent them with the computed magnetic field. There is one method
to solve this problem, i.e.,

Bx

∣∣n+1/2

i+1/2, j,k = 1
8

(
Bx

∣∣n+1/2

i+1, j+1/2,k+1/2 + Bx

∣∣n+1/2

i+1, j+1/2,k−1/2 + Bx

∣∣n+1/2

i+1, j−1/2,k+1/2 + Bx

∣∣n+1/2

i+1, j−1/2,k−1/2

× Bx

∣∣n+1/2

i, j+1/2,k+1/2 + Bx

∣∣n+1/2

i, j+1/2,k−1/2 + Bx

∣∣n+1/2

i, j−1/2,k+1/2 + Bx

∣∣n+1/2

i, j−1/2,k−1/2

)
,

By

∣∣n+1/2

i, j+1/2,k = 1
8

(
By

∣∣n+1/2

i+1/2, j+1,k+1/2 + By

∣∣n+1/2

i+1/2, j+1,k−1/2 + By

∣∣n+1/2

i−1/2, j+1,k+1/2 + By

∣∣n+1/2

i−1/2, j+1,k−1/2

× By

∣∣n+1/2

i+1/2, j,k+1/2 + By

∣∣n+1/2

i+1/2, j,k−1/2 + By

∣∣n+1/2

i−1/2, j,k+1/2 + By

∣∣n+1/2

i−1/2, j,k−1/2

)
,

Bz

∣∣n+1/2

i, j,k+1/2 = 1
8

(
Bz

∣∣n+1/2

i+1/2, j+1/2,k+1 + Bz

∣∣n+1/2

i+1/2, j−1/2,k+1 + Bz

∣∣n+1/2

i−1/2, j+1/2,k+1 + Bz

∣∣n+1/2

i−1/2, j−1/2,k+1

× Bz

∣∣n+1/2

i+1/2, j+1/2,k
+ Bz

∣∣n+1/2

i+1/2, j−1/2,k
+ Bz

∣∣n+1/2

i−1/2, j+1/2,k
+ Bz

∣∣n+1/2

i−1/2, j−1/2,k

)
.

(B8)
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APPENDIX C: LEVI-CIVITA TENSOR AND ELECTROMAGNETIC TENSOR IN MILNE SPACE

In Milne coordinates, the Levi-Civita tensor is different from that in Minkowski coordinates,

εμνρσ = 1√|g| ε̃
μνρσ , εμνρσ = θ (g)

√
|g|̃εμνρσ , (C1)

where g = det(gμν ), θ is the Heaviside step function, and the Levi-Civita symbol in the Minkowski coordinate ε̃μνρσ is defined
by the following,

ε̃μνρσ = ε̃μνρσ =
⎧⎨
⎩

+1, even permutation of (0, 1, 2, . . . , n − 1),
−1, odd permutation of (0, 1, 2, . . . , n − 1),

0, otherwise.

Taking g = −τ 2 and |g| = τ 2, one finds ε0123 = 1
τ

and ε0123 = −τ .
The electric and magnetic fields in the Milne space are defined by

Ẽ i = F i0
M , B̃i = F̃ i0

M . (C2)

Then one can directly derive the electromagnetic tensor in Milne space with the above Levi-Civita definition, which can be
expressed as

Fμν
M =

⎛
⎜⎜⎜⎝

0 −Ẽ x −Ẽ y −Ẽη

Ẽ x 0 −τ B̃η B̃y

τ

Ẽ y τ B̃η 0 − B̃x

τ

Ẽη − B̃y

τ
B̃x

τ
0

⎞
⎟⎟⎟⎠, F̃μν

M =

⎛
⎜⎜⎜⎝

0 −B̃x −B̃y −B̃η

B̃x 0 τ Ẽη − Ẽ y

τ

B̃y −τ Ẽη 0 Ẽ x

τ

B̃η Ẽ y

τ
− Ẽ x

τ
0

⎞
⎟⎟⎟⎠ (C3)

APPENDIX D: THE VELOCITY IN MILNE SPACE AND MINKOWSKI SPACE

We will need some simplified velocities of the medium when we do the numerical calculations in the moving medium for
doing comparisons, such as the static velocity, Bjorken velocity, and Gubser velocity. These velocities in the Milne space and
Minkowski coordinates can be expressed as follows:

uμ
M = Rμ

νuν =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
cosh η, 0, 0,− sinh η

τ

)
for static case: uμ = (1, 0, 0, 0),

(1, 0, 0, 0), for Bjorken flow: uμ =
(

t

τ
, 0, 0,

z

τ

)
,

(
uτ , u⊥ x

x⊥
, u⊥ y

x⊥
, 0

)
, for Gubser flow: uμ =

(
uτ cosh η, u⊥ x

x⊥
, u⊥ y

x⊥
, uτ sinh η

)
.

(D1)

The velocity with M subscript represents the velocity in Milne coordinates, while the velocity without M subscript is the velocity
in Minkowski coordinates. The transformation matrix and antitransformation matrix from Minkowski coordinates to Milne space
are defined as follows:

Rμ
ν = ∂ xμ

M

∂ xν
=

⎡
⎢⎢⎣

cosh η 0 0 − sinh η

0 1 0 0
0 0 1 0

− sinh η

τ
0 0 cosh η

τ

⎤
⎥⎥⎦, Řμ

ν = ∂ xμ

∂ xν
M

=

⎡
⎢⎢⎣

cosh η 0 0 τ sinh η

0 1 0 0
0 0 1 0

sinh η 0 0 τ cosh η

⎤
⎥⎥⎦. (D2)

The corresponding components in the velocity of the Gubser flow are expressed as [63,64]

uτ = 1 + q2τ 2 + q2x2
⊥

2qτ
√

1 + g2
, u⊥ = qx⊥√

1 + g2
, g = 1 + q2x2

⊥ − q2τ 2

2qτ
. (D3)

Herein the proper time is defined by τ = √
t2 − z2 and the transverse distance x⊥ =

√
x2 + y2, while the temperature in the local

rest frame of the fluid is defined as

T = 1

τ f 1/4
∗

(
T̂0

(1 + g2)1/3
+ H0g√

1 + g2

[
1 − (1 + g2)1/6

2F1

(
1

2
,

1

6
;

3

2
; −g2

)])
. (D4)

T̂0 is a dimensionless integration constant, and f∗ = ε/T 4 = 11, q = 1/(4.3 fm). For RHIC energy
√

sNN = 200 GeV, T̂0 = 5.55
and H0 = 0.33. The function 2F1 denotes a hypergeometric function.
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For the Bjorken flow, the temperature changes as

T (τ ) = T0
τ0

τ
, (D5)

where the T0 is the temperature at time τ0, which can be given by the Glauber model. For example, T0 ≈ 400 MeV at the center
of the QGP at τ0 = 0.4 fm for

√
sNN = 200 GeV Au + Au collisions.
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