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Novel machine-learning method for spin classification of neutron resonances
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The performance of nuclear reactors and other nuclear systems depends on a precise understanding of the
neutron interaction cross sections for materials used in these systems. These cross sections exhibit resonant
structure whose shape is determined in part by the angular-momentum quantum numbers of the resonances.
The correct assignment of the quantum numbers of neutron resonances is, therefore, paramount. In this project,
we apply machine learning to automate the quantum number assignments using only the resonances’ energies
and widths and not relying on detailed transmission or capture measurements. The classifier used for quantum
number assignment is trained using stochastically generated resonance sequences whose distributions mimic
those of real data. We explore the use of several physics-motivated features for training our classifier. These
features amount to out-of-distribution tests of a given resonance’s widths and resonance-pair spacings. We pay
special attention to situations where either capture widths cannot be trusted for classification purposes or where
there is insufficient information to classify resonances by the total spin J . We demonstrate the efficacy of our
classification approach using simulated and actual 52Cr resonance data.
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I. INTRODUCTION

Neutron scattering and reaction data for neutron energies
ranging from 10−5 eV to 20 MeV are needed for simula-
tions of nuclear systems in nuclear fission and fusion energy
production, stockpile stewardship, nonproliferation, etc. [1].
For energies below that typical of fission neutrons, ≈1 MeV,
normally only elastic and capture (and fission for actinides)
channels are open. For all but the lightest nuclei, these reaction
channels all exhibit strong resonant structure that we identify
with the energy levels of the compound nucleus formed by the
capture of the neutron into the target state [2].

The double-differential capture or elastic-scattering cross
sections are completely determined by the set of resonance
energies, the decay widths to each of the observed reaction
channels and incident neutron orbital angular momentum L
and the total angular momentum J characterizing these reac-
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tion channels,1 when described using R-matrix theory [3,4].
We cannot predict the energies and widths of the resonances
in any nuclei other than the lightest systems with current
theoretical and computational approaches. The resonance en-
ergies and widths must be determined by fitting experimental
transmission or cross-section measurements. To complicate
matters, the shape of the R-matrix fitting function is heavily
dependent on the quantum numbers (L, J) assigned to the
particular resonance.

Codes, such as SAMMY [5] and REFIT [6], use a gener-
alized least-squares fitting routine derived from a linearized
version of Bayes’ Equation. Conventional evaluations based
on SAMMY or REFIT require significant preparation by an
evaluator to establish reliable prior estimates of the widths,
energies and (L, J ) quantum numbers of the resonances, en-
suring that one is sufficiently close to the χ2 minimum for
the fit to be well founded. Unfortunately, the shear number

1In the JLS coupling scheme which we use in this work, there is
also the total spin of the incident channel, S. This can usually be
determined from knowledge of L and J for s- and p-wave resonances.
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FIG. 1. A portion of a typical resonance region cross section; namely, the elastic cross section for 56Fe extracted from the ENDF/B-VIII.0
evaluated file [1], as an illustrative representation of resonance properties. In this figure we show several L = 0, 1, and 2 resonances and label
the spacing DL between a pair of L = 0 and L = 1 resonances, respectively. We note that it is often quite difficult to discern between a L = 1
and L = 2 resonance. Determining the J quantum number is significantly more challenging, as indicated in the main text.

of known resonances in a typical evaluation makes this en-
deavor tedious and time consuming. Furthermore, this step of
the evaluation is subjective, relying on the experience of the
evaluator and, therefore, it is hardly reproducible. This fact
leads to significant amounts of unquantified uncertainty in the
final evaluation.

There are a number of experimental techniques that can
help determine the incident neutron orbital angular momen-
tum L and the total angular momentum J of each resonance
including study of the low-energy γ -ray cascades from
neutron capture events detected by Ge-Li detectors, γ -ray
multiplicity methods, and measurements with polarized neu-
tron beams and polarized targets. In the best case, angular
distribution data for scattered neutrons or emitted photons
are available and can be used to determine the L and J
of the resonance. Between the hundreds, or thousands, of
resonances per nuclide in an evaluation and the technical
complexity of some of these techniques, they are often not
used in practice. Figure 1 shows a representation of measured
cross-section data where two distinct resonance shapes are
observable: a wide and asymmetric shape corresponding to
s-wave (L = 0) resonances and a narrow and symmetric res-
onance shape corresponding to p-wave (L = 1) resonances.
Note, however, that the visible distinction in the experimental
data between the two shapes diminishes with increasing inci-
dent neutron energy.

The current practice worldwide is for the resonance evalu-
ator to visually inspect the experimental cross section, yield,
or transmission data, such as in Fig. 1, sometimes for thou-
sands of resonances, and make the spin assignments for each
resonance. As mentioned before, this part of the process is
(i) very time consuming for the evaluator, (ii) not fully re-
producible, (iii) does not result in uncertainty estimate on the
correct resonance spin assignment, and (iv) has significant
impact on the angular distributions and, therefore, on the mod-
eling of neutron transport in nuclear systems. Furthermore,
visual inspection of the resonance shape in experimental

cross-section data can only determine the orbital angular mo-
mentum L (s wave, p wave) corresponding to each resonance
and not the total angular momentum J . The evaluator is left
to chose the total angular momentum by observing small
changes in the interference pattern between resonances of the
same orbital angular momenta.

Moving beyond a pure experimental approach, there are
some early attempts at information-theoretic techniques for
resonance spin classification. Reference [7] was the first to
suggest using random matrix theory–inspired (RMT-inspired)
metrics to determine the fraction of missing levels using
stochastically generated resonances. Reference [8, p. 81]
suggests probabilistic assignment based on consideration of
width distribution. This concept is expanded on by Mitchell
et al. [9]. The series of papers by Mulhall et al.examine the use
of �3 statistics to infer the purity of a spin sequence [10–13].
Finally, there is a pair of reports by Mitchell and Shriner
estimating the fraction of missing or misclassified resonances
[14,15] using various RMT-inspired metrics.

In this study, we aim to develop a more reliable, automated
and reproducible method through the utilization of a variety
of standard machine-learning classification algorithms. The
classifiers used in this study can be found in the SCIKIT-LEARN

python module [16]. In the recent years many statistical and
computational tools aiming to mimic the way the human brain
functions to identify patterns and learn how to solve problems,
broadly named machine-learning (ML) methods, have been
optimized and packaged for general purpose. These have been
applied to an extremely wide variety of applications. Our
goal is to leverage such methods and foundation to develop a
new and reproducible approach to the classification of neutron
resonances.

This paper is organized as follows: In Sec. II, we re-
view the relevant statistical and average properties of neutron
resonances. Using these properties, we develop a set of
machine-learning features allowing us to recast the quan-
tum number assignment problem as a machine-learning
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problem in Sec. III. In Sec. IV, we apply our machine-learning
approach to n + 52Cr neutron resonances. In Sec. V, we pro-
vide a summary and outlook. As a reference, we present
in Appendix the definition of ML terms and concepts used
throughout the text.

II. STATISTICAL PROPERTIES OF RESONANCES

Although the experimental situation is complicated, there
are results from both nuclear reaction and RMTs that will
make our classification problem more tractable. Here we do
not aim for a review of theory of neutron resonances as there
are many other sources for that (e.g., Refs. [8,17]). Rather, we
highlight results that impact our resonance classification task.

A. JLS coupling

Our classification scheme focuses on the L and J quantum
numbers. As an R-matrix analysis of neutron resonances is
nearly always done using the JLS coupling scheme [3], it is,
therefore, useful to expand on it. The JLS scheme describes
the coupling of the incident neutron with orbital angular mo-
mentum L, spin 1/2, and target nucleus spin It to the total
angular momentum J .

In the JLS coupling scheme, the two particles partici-
pating in a reaction channel have their spins coupled to a
total channel spin S. For an entrance channel with target
nucleus spin and parity I�

t and incident neutron with spin
and parity In = 1

2
+

, the total channel spin may take values
S = |It − In|, . . . , It + In. Since neutrons have spin 1/2, this
limits S to at most two values, S = |It − 1/2| and It + 1/2.
For a spin-zero nucleus, only S = 1/2 is allowed.

The total channel spin J then may take values J = |L −
S|, . . . , L + S. For a spin-zero nucleus, J is limited to 1/2
for s-wave resonances (L = 0). For L > 0, J takes two values
L − 1/2 and L + 1/2. For higher spin target nuclei, J can take
many values.

Additional consideration of the parity of the neutron and
target limits the potential values of J somewhat but does
not change the essential problem that there are usually many
possible values of J for a given L. Fröhner provides a table of
allowed values in Ref. [8, Table 2, page 50].

In any event, these considerations of angular-momentum
limit the possible labels we can assign to a resonance sequence
to a tractable number. In some cases, these considerations
completely determine the J value for a given L, at least in
the case of nuclei with a spin-zero ground state.

B. Random matrix theory

Within a sequence of resonances with the same L and J
(and perhaps S), which defines a spin group, the question
arises as to whether there are qualities of the resonances
and/or the entire sequence that can inform the classification
task. The answer is affirmative if one considers the direct
results of RMT.

In random matrix theory, we make a bold and somewhat
surprising assumption about the compound-nuclear states and
their couplings to the outside space: we assume that the

Hamiltonian governing the system’s couplings between states
obeys all relevant symmetries (so it is invariant under an
orthogonal transformation) but is otherwise made of random
numbers drawn from a normal distribution. The collection of
all such Hamiltonians with a given dimension and coupling
scale D is the Gaussian orthogonal ensemble (GOE). It can
be shown that the eigenvalues of these GOE Hamiltonians
(which we identify with compound-nuclear states and hence
resonance energies) have a joint probability density given by
Refs. [18,19]

PGOE(H )d[H] = N0dO exp

[
− N

4λ2

∑
k

E2
k

]

×
∏
l<m

|El − Em|
∏

n

dEn. (1)

Here dO is the de Haar measure of the integral, N0 is a nor-
malization constant, N is the dimension of the space (assumed
large), Eμ are the eigenvalues of the Hamiltonian H , and the
constant λ = ND/π with D being the mean spacing between
states.

By itself, Eq. (1) cannot be used as a ML feature in
our problem. Even for small N , the probabilities of a given
configuration of energies is numerically very small even if a
particular configuration has a high relative probability com-
pared with other configurations. Thus, use of this as a feature
would be plagued by numerical precision issues.

Equation (1) can be used to derive correlations between
the resonance energies of spin group sequences of nearly any
length. This will allow us to develop classification features
that are “local” in that they depend only on a resonance and its
nearest neighbors in the sequence. Thus, classification errors
in the sequence far from a given resonance will not impact
its own classification. The most interesting correlations for
our purposes are the short-range correlations characterized
by the nearest-neighbor spacing distribution (NNSD) and the
spacing-spacing distribution (SSD). Equation (1) alone does
not fully motivate the last interesting set of correlations, the
width distributions as we will discuss below.

(a) Nearest-neighbor spacing distribution (NNSD). The
spacing between the nth resonance and the (n + 1)st reso-
nance is Dn = En+1 − En. From Eq. (1), one can show that the
distribution of Dn follows a distribution colloquially known as
“Wigner’s surmise” [19]:

Pw(x) = πx

2
exp

(
−πx2

4

)
. (2)

Here x = D/D, where D is the average spacing. We note
several things about this distribution: it favors spacings ap-
proximately near D; the fact that it approaches zero for small
spacings elegantly explains level repulsion; and it does not
forbid large spacings, but strongly discourages them. In this
way, Wigner’s surmise prefers a “picket-fence-like” sequence
of resonances within a spin group.

We note that a spacing distribution made of resonances
from many spin groups will destroy the correlations encoded
in Wigner’s surmise and the nearest-neighbor spacing distri-
bution will tend toward a Poisson distribution.
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(b) Spacing-spacing distribution (SSD). A slightly longer-
range correlation is the spacing-spacing correlation, denoted
ρ:

ρn = DnDn+1

D
2 . (3)

The distribution of spacing-spacing correlations Pssc(ρ) is not
known analytically but has been mapped out numerically
[19]. The mean spacing-spacing correlation is known to be
ρ = ∑

n ρn/N ≈ −0.27. The implication of the average anti-
correlation between spacings is that resonance spacings tend
to follow a short-long-short-long pattern.

(c) Channel width distribution (CWD). We can imagine
expanding our random Hamiltonian to include random cou-
plings to continuum states outside of the considered space,
then looking to the poles of the resulting scattering matrix
[20]. This train of reasoning eventually explains the empiri-
cally known Porter-Thomas distribution of resonance widths
[17,21]:

Ppt (x|ν) = 1

2ν/2
(ν/2)
xν/2−1e−x/2. (4)

Here x = 
/
 (where 
 is the average width). We may also
write this in terms of the reduced width amplitudes, x =
γ 2/γ 2, where 
 = 2Pcγ

2 and Pc is the penetrability factor
for the channel2 c in question [8,17]. This distribution is a χ2

distribution with ν degrees of freedom where ν represents the
number of channels coupled to this spin group with matching
quantum numbers.

For moderate to large ν � 5, width distributions peak at
the average channel width. For small ν, width distributions are
strongly peaked toward zero widths. This complicates fitting
widths distributions mainly because small width resonances
are more likely to be lost in the noise of an experiment.

For elastic scattering, νel = 1 and, owing to the strong
energy dependence of the neutron penetrability factor, one
typically uses reduced width amplitudes to avoid bias. For
capture, in which the compound nucleus can couple to a very
large number of states below it, νγ is assumed to be very large
(νγ → ∞). In practice, we may also determine νγ from a fit to
the width distribution, provided detailed capture width data is
available. For fission, ν f is observed empirically to lie around
two to three [17].

C. Energy dependence of average resonance parameters

The correlations we seek to exploit from RMT rely on
knowing the average widths or mean spacings for resonances
within a spin group. Here we quickly review relevant results.
We will remind the reader that the mean spacing and the
average widths vary slowly on the energy scales of the typical
resonance width or inter-resonance spacing. Thus, we can use
an entire resonance sequence to determine these parameters
without worrying about an energy dependent bias.

2The channel index includes the quantum numbers of the spin
group as well as the identity of the two particles which are coupling
together within this channel.

(a) Average level spacing. Phenomenologically, we know
that for light nuclei, the average spacing D is of the order of
≈ MeV, so there are very few resonances, and our classifi-
cation algorithm should not be applicable. A direct fit with
R matrix code is the best option and, as there are very few
resonances, there is no real need for automation. For medium-
mass nuclei, D ≈ keV, so there are enough resonances to
enable robust classification by L and a potential for classifi-
cation by J . Here we can begin to address poor classification
of resonances at high energy that impact neutron capture
and leakage. For heavy nuclei, D ≈ eV, so there are many
resonances very close together. This is the ideal situation for
our classification code. The average level spacing is inversely
proportional to the level density for the corresponding spins
and parities. From consideration of backshifted Fermi gas
models of level density, we expect the energy dependence of
D(E ) to be rather weak and only noticeable on energy scales
of ≈ MeV [17,22].

(b) Average neutron width. The neutron (or elastic) width
of a given resonance is directly related to the reduced width
[8,17]


nc = 2Pcγ
2
nc = 
nc(|En|) PL(E )

PL(|En|) . (5)

Here the neutron penetrability factor Pc is related to the imag-
inary part of the logarithmic derivative of the neutron-target
relative wave function at the channel radius boundary ac in
the R-matrix approach [8]. In the case of neutron projectiles,
the penetrability only depends on the orbital angular momen-
tum L. Thus we have a handle on the average neutron width
through the average reduced neutron width γ 2

el.

The average reduced neutron width γ 2
el is independent

of the incident energy and all energy dependence of the
average neutron width comes from the penetrability factor
whose energy dependence is weak on the energy scales of the
inter-resonance spacing. Also, the average reduced width is
proportional to the pole strength, sc = γ 2

c /D, and, therefore,
the neutron strength function [8,17],

S� = 2kcacsc

√
(1 eV)/E = 2kcac

γ 2
c

D

√
(1 eV)

E
.

Here kc is the neutron wave number and ac is the channel
radius in the R-matrix formalism. This suggests that we can
compute the average width directly from either systematics or
using an optical model calculation. Either way, it varies slowly
on the energy scale of interest, so we may take it as constant.
While reduced neutron widths may be slowly varying with
energy in accordance with the neutron strength function, the
average neutron width decreases with energy on average be-
cause of the additional factor of the neutron penetrability.

(c) Average capture width. The gamma width of a given
resonance can be written in terms of a penetrability in a way
analogous to neutrons, but using a very different language:


γ XLn(single γ ) = ε2L+1
γ n γ 2

γ XLn. (6)

Here εγ is the energy of a specific gamma and equals the dif-
ference in energy of the resonance n (including the separation
energy) and a given state in the residual nucleus and γ 2

γ XLn
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is reduced width amplitude squared for the particular gamma
with multipolarity XL from resonance n.

Unfortunately, it is rare that transitions from a resonance to
a given state in the residual are measured. More often we only
measure the total radiative width of a resonance


γ XLn =
∑

γ

ε2L+1
γ n γ 2

γ XLn. (7)

Here the sum runs over all gamma transitions starting from
resonance n and having the same multipolarity XL. Thus,
while 
γ XLn(single γ ) in Eq. (6) would be distributed by χ2

distribution with νγ = 1, the same cannot be said for the
total radiative widths 
γ XLn. Usually the direct average of the
measured widths is all that can be determined empirically and
the fluctuations in the capture widths are strongly damped. In
these cases, the large number of open capture channels causes
νγ → ∞ and the capture width distribution to approaches a δ

function. On the other hand, for closed shell or light nuclei,
one may expect νγ to be rather small.

Nevertheless, starting from Eq. (6), one can relate the aver-
age gamma width to the gamma strength function in analogy
with the neutron strength function [17]:


γ XL = Dε2L+1
γ fXL. (8)

Here εγ is the gamma energy, XL is the gamma multipolarity
and fXL is the gamma strength function. εγ and fXL vary
slowly on the energy scale of D [17].

(d) Average fission width. The average fission width is
expected to be related to the fission barrier penetration prob-
ability and, in the Hill-Wheeler approach, is estimated to be
[17]


 f = D

2π

∑
f

1

1 + exp[2π
(
Vf − E

)
/h̄ω]

. (9)

Here Vf is the fission barrier height and ω is related to the
curvature of the barrier. For actinides, ω is typically ≈0.5
MeV and Vf ≈ 5–6 MeV [22] so the average fission width
is also slowly varying. As our understanding of the fission
channel is still very much phenomenological, we cannot write
the widths in terms of a “fission penetrability” factor.

III. RECASTING SPIN-GROUP ASSIGNMENT AS A
MACHINE-LEARNING PROBLEM

We assume we have a collection of N resonances, each
one of index n with an associated energy En, a prior spin-
group assignment (Lprior

n , Sprior
n , Jprior

n ), and widths associated
with each open channel 
el,n, 
γ ,n, and possibly 
 f ,n. In
the language of machine learning, we seek to reclassify the
resonances according to labels (in our case, the L or both L
and J of a sequence) using a series of quantities which are
built from this collection of resonances which we believe are
important in distinguishing characteristics of the data. These
distinguishing characteristics are called features. In Sec. III A,
we describe our use of labels, and in Sec. III B, our feature
choices.

All classifiers require a training step in order to properly be
able to make predictions. This step can be as simple as fitting

a function or a more complex statistical study of the input fea-
tures. While the nature of this training is algorithm-dependent,
we require test data that can be used to perform this training.
Once the classifier is trained, we use a second set of data to
validate the quality of the now-trained classifier. Section III C
describes our training data and our training strategy in this
initial study.

Each classification algorithm has its own strategy and pros
and cons. In Sec. III D, we discuss our classifier choice and
how we optimize its operation.

A. Labels

We seek to assign the quantum numbers L and J (and by
extension S) to a sequence of resonances. Collectively we
refer to the full set of quantum numbers as the “spin group”
of the resonances. In general, it is much easier experimentally
to assign L than J . Often the correct L can be assigned on
the basis of the shape of a resonance; this is particularly
true of s-wave resonances. The J quantum number is usually
assigned using a shape analysis of the outgoing neutron an-
gular distributions in a scattering experiment, a detailed study
of the postcapture gamma cascade in a capture experiment,
or some other complex and expensive experiment or series
of experiments. To complicate the situation, multiple J are
possible for a given L, each with no obvious distinguishing
characteristic other than the interference pattern between res-
onances with the same quantum numbers. As a result, in some
situations, we may not have enough information to reliably
classify resonances by the J quantum number.

Given this situation and the fact that we are using the
classifiers in the SCIKIT-LEARN package [16], we either label
by L or by spin group. We will note below that certain features
only make sense when classifying by spin group because
the features require “pure” sequences corresponding to reso-
nances with common quantum numbers. We have considered
a multistage approach where we first classify by L, then by full
spin group, but this would be outside of the scope of present
work and it is thus not discussed in this paper.

B. Features

Table I lists the features used for classification in our
approach. The overall principle is that we define enough
relevant features to characterize the resonances within their
spin groups, at the same time that we avoid overloading the
classifier with redundant or nondiscriminative features. We
have experimented with a much larger feature list [23], and
detailed studies using the SHAP metric [24,25] demonstrated
that only a handful of targeted features are needed. The fea-
tures J_prior and L_prior can be thought of as labels that
may be “overridden” in the classification process and should
be viewed as prior estimates based on experimental inference.

Several of the features test whether a given feature is
consistent with a known distribution, otherwise known as
out-of-distribution (OOD) tests [26]. These tests require
knowledge of feature distributions and, therefore, we exploit
the predictions of RMT, as discussed above: the tendency
of resonances to be relatively even-spaced with a spacing
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TABLE I. List of features used by our classifier. The “Labels” column denotes whether the particular feature is used when classifying by L
alone (“L”) or by the full set of spin-group quantum numbers (“sg”). The “Indep. Params.” column lists the resonance independent parameters
needed to compute this feature. Similarly, the “Dep. Params.” column lists the parameters of a given resonance (or neighboring resonance)
needed to compute this feature.

Feature Labels Indep. Params. Dep. Params. Description

L_prior L, sg n/a Ln The orbital angular momentum of the nth resonance. Assigned prior
to classification.

J_prior sg n/a Jn Total angular momentum of the nth resonance. Assigned prior to
classification.

pos/len L, sg n/a n/N The position n of the resonance within the sequence divided by the
length of the sequence N . Experimentally, resonances of higher energy
are more likely to be misplaced or missed, so this feature is a way to
predict whether or not a resonance in a given region of the sequence
may be problematic. We note for the training data described below,
pos/len does not help because the training data are not biased in this way.

d (Dleft ) L, sg D Dn The quadratic difference [see Eq. (14)] between the nth spacing

and the average spacing, |Dn − D|2/D
2

where Dn = En − En−1. Small
values signal OOD.

d (Dright ) L, sg D Dn+1 The quadratic difference [see Eq. (14)] between the (n + 1)st spacing

and the average spacing, |Dn+1 − D|2/D
2

where Dn+1 = En+1 − En.
Small values signal OOD.

p′(Dleft ) sg D Dn For the current energy En, this is the signed P value [see Eq. (13)]
for the spacing between the current energy and the next lower energy,
Dn = En − En−1 Small values signal OOD. In particular, positive
values signal missing resonances while small negative values signal the
presence of extra resonances.

p′(Dright ) sg D Dn+1 For the current energy En, this is the signed P value [see Eq. (13)]
for the spacing between the current energy and the next higher energy,
Dn+1 = En+1 − En. Small values signal OOD. In particular, positive
values signal missing resonances while small negative values signal the
presence of extra resonances.

d (ρ ) sg D, ρ = −0.27 Dn, Dn+1 The quadratic difference between [see Eq. (14)] the nth
spacing-spacing correlation and the expected correlation coefficient, ρ = −0.27:

|DnDn+1/D
2 − ρ|2/ρ2. Small values signal OOD.

d (
el ) L, sg 
el 
el,n The quadratic difference [see Eq. (14)] between the nth elastic width

and the average elastic width, |
el,n − 
el|2/
2
el. Small values signal

OOD. In the future, we will explore the use of the p value to replace
this feature.

d (
γ ) L, sg 
γ 
γ ,n The quadratic difference [see Eq. (14)] between the nth capture width

and the average capture width, |
γ,n − 
γ |2/
2
γ Small values signal

OOD. We use this rather than the p value because this feature is insensitive
to uncertainty or bias in νγ .

distribution given by the Wigner surmise distribution and the
tendency of spacings to follow a “short-long-short-long” pat-
tern. The final group of features exploit the known or expected
width distributions of the resonances.

We note the features d (Dleft ) and d (Dright ) [and by exten-
sion p′(Dleft ), p′(Dright )] are poor proxies for d (ρ), but can be
used when classifying by L alone.

1. Out-of-distribution tests

We need a mechanism to test whether a given value of x is
consistent with a given distribution. In other words, an “out-
of-distribution” (OOD) test [26].

In the subsequent OOD feature definitions, we adopt the
following: For a given probability density function (PDF)
P(x) defined on the interval (xmin, xmax), we define the cumu-
lative distribution function (CDF)

CDF (x) =
∫ x

xmin

dx′P
(
x′) (10)

and the survival function (SF)

SF (x) =
∫ xmax

x
dx′P

(
x′) = 1 − CDF (x). (11)

For the OOD tests considered, we use one of four classes
of metrics:
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FIG. 2. Spacing distribution OOD features. The use of the
“signed” p value allows us to distinguish between overly small
spacings (indicating one or more extra resonances in the sequence)
and overly large spacings (indicating one or more missing resonances
from the sequence).

(1) The value of the PDF at x, v(x) = P(x).
(2) P value

p(x) =
{

CDF (x) x < x
SF (x) x > x,

(12)

which gives the probability that a more extreme value
of x may be drawn. Here x is the mean of the distribu-
tion in question.

(3) “Signed” P value

p′(x) =
{−CDF (x) x < x

SF (x) x > x.
(13)

For the spacing distribution, it is useful to distinguish
whether a spacing is too small (indicating an extra
resonance is found in the current sequence) or too large
(indicating a resonance is missing from the current
sequence).

(4) Distance to mean, normalized by the mean value to
remove the overall scale from the metric

d (x) = |x − x|2/x2. (14)

The various OOD testing features are illustrated in Figs. 2
and 3. In other extreme value testing (EVT) methods, one

FIG. 3. Width distribution OOD features. The Porter-Thomas distribution is divergent at small widths for ν = 1 so it is a poor choice for
OOD testing.
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assigns a criteria for an OOD data point (say more than three-
sigma). Here we use the OOD metric as a feature and provide
properly labeled training data so that the classifier can learn
what criteria should be used for OOD detection.

2. Spacing features

Several feature distributions require a predetermined value
of the average spacing DLJ for each spin group. We can
achieve this several ways:

(1) direct averaging of spacings;
(2) fit the cumulative level distribution to extract 1/D;
(3) fit the nearest-neighbor spacing distribution to

Wigner’s surmise distribution;
(4) take values from a pre-existing compilation.

Options 1–3 can be performed as an initial training step for
our classifiers or even iteratively improved as we reclassify
resonances. Both options 2 and 3 can be achieved by fitting
empirical distributions (either cumulative level distribution for
option 2 or cumulative Wigner surmise distribution for option
3). We note that the breadth of the Wigner surmise means
that option 3 converges slowly as the number of spacings
increases.

Options 1 and 2 may also be used if one does not have
robust J assignments to determine DL. Simple consideration
of the number of energies on a given interval leads one to the
follow sum rules for the resonance spacings for the full se-
quence D, the subsequence of resonances with a given orbital
angular momentum DL and the subsequence of resonances
within a spin group DLJ :

1

D
=

∑
L

1

DL
, (15)

and

1

DL
=

∑
J

1

DLJ
. (16)

3. Width features

Many feature distributions require knowledge of the aver-
age width 
 and the number of degrees of freedom (parameter
ν) of the appropriate Porter-Thomas distribution. We approach
each width and ν pair the same way. As a technical aside,
small-width resonances tend to be missed experimentally, and
we need a method for determining these widths that is robust
against this bias. When determining the average widths, we fit
the width survival function of the Porter-Thomas distribution.
By integrating from large to small widths, the dominant part
of the integral comes from the region in widths that are most
accurately determined experimentally. This also can be used
to yield the ν for the fission channels and the total width.

For elastic reactions, ν is assumed to be unity when classi-
fying by spin group or the number of allowed J values when
classifying by L. Also, when fitting elastic width distributions,
we can either fit the experimental width distribution or the
reduced neutron width distribution. We note that the presence
of doorway states may distort the neutron width distribution
[27]. We may explore this effect in future work.

For neutron capture, the width distribution is often very
narrow and νγ → ∞. In this case, it is appropriate to di-
rectly average the capture widths. We note that in many
older datasets, the capture widths were assigned based on the
average widths which can introduce serious bias in the clas-
sification. To counter this bias, we implemented in our codes
the option to “turn off” capture widths as an active feature.
When the distribution is not so narrow, we must approach the
capture distribution in the same manner as elastic or fission
widths.

C. Training

Supervised machine-learning algorithms, such as those
used in this work, rely on having a large amount of la-
beled data for training purposes. With this training data, the
machine-learning algorithm will “learn” the solution physics,
without a need for an explicit solution formulation. While
experimental resonance data might be used for training, there
are several problems with such an approach:

(i) the number of resonances available for a given nu-
cleus are often only on the order of hundreds of
resonances, on the borderline of what is needed for
robust training;

(ii) experimental data are not guaranteed to have the cor-
rect labeling by either L or the spin group;

(iii) experimental data may be missing smaller resonances
or have “contamination” by resonances from other
nuclei in the target or surrounding experimental ap-
paratus.

Compilations such as the Atlas of Neutron Resonances [17]
and/or evaluations such as the ENDF library [1] are attractive
sources of training data, but even these do not always have
enough statistics and/or are not guaranteed to have correct
labeling, either. Thus, we are forced to consider synthetic
training data.

Synthetic data can be constructed in a way nearly in-
distinguishable from real data and can be generated from
the well-understood statistical properties of nuclear scattering
physics described in Sec. II B. In Ref. [28], the authors de-
scribe the addition of a stochastic resonance generator to the
FUDGE processing system [29]. This tool takes advantage of
many known results from GOE random matrices [18–20]:

(i) Realizations are GOE consistent by construction
since a GOE Hamiltonian matrix is generated as the
first step in making a resonance realization and the
eigenvalues of this matrix provide the resonance en-
ergies.

(ii) The eigenvalues of this matrix are not quite the res-
onance energies, since the mean level spacing D is
incorrect. We rescale the eigenspectrum so that the
mid-range of the spectrum’s level spacing matches the
required D.

(iii) The widths are drawn from a Porter-Thomas distri-
bution as in traditional ladder generators found in
nuclear data processing codes.
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(iv) The reconstructed pointwise cross sections generated
from this resonance realization can be generated using
any level of approximation to the R-matrix. Although
we could use the Reich-Moore approximation as it is
generally regarded as the most appropriate and accu-
rate approximation for nuclei with Z > 10, we do not
need the reconstructed cross section for this project.

To simulate the quantum number misassignments seen in
the real world, we randomly misassigned a fraction of the
resonances in these synthetic sequences. The fraction of re-
assigned resonances can be varied to test the reliability of
our method. Because such reassignments occur independent
of either resonance energy or width, they do not currently
fully mimic actual experimental effects. We also do not con-
sider other experimental effects, such as resonance energy
shifts caused by moderation in the neutron source, Doppler
broadening in the target, or target contamination. These and
other effects impact the initial resonance quantum number
assignments in an uneven way—in a shape analysis L = 0
resonances are easy to identify but higher L resonances have
less certain assignments at higher energies. Other methods
of spin group assignments have their own biases. We will
explore these experimental impacts in future works. We have
considered adding additional metadata to each resonance to
help the classifier understand the quality of the spin group
assignment, and this is another topic for a future work.

In this first incarnation of a machine-learning tool, we used
the SCIKIT-LEARN test_train function [16] to split input
data into training data and test data. The fraction of data
randomly selected for training, with the remaining input data
reserved for testing, can be chosen through a parameter in the
function call. In the future, we aim to improve the training reg-
imen using a combination of expert knowledge and numerical
experimentation.

D. Classifier

The approach presented in Sec. III A defines labels, and the
approach described in Sec. III B converts sequences of neutron
resonances into sets of features which can be coupled into any
machine-learning classifier. As the main focus of the work
is on the methodology of spin classification of neutron reso-
nances through machine learning, we employed prepackaged
ML classifiers from SCIKIT-LEARN [16]. While we performed a
preliminary assessment of different classifiers and associated
hyperparametrizations, we illustrate the approach with a mul-
tilayer perceptron classifier. Multilayer perceptrons belong to
the family of neural network algorithms.

This assessment with multiple classifiers and hyper-
parametrizations was done in a preliminary fashion, using
only training and test datasets, with bias mitigated through
multiple training events. Ideally, however, independent vali-
dation sets should be used in a rigorous optimization and/or
using approaches such as K-fold cross-validation [30]. Never-
theless, the choice of classifier and hyperparameters should
not significantly impact the conclusions presented in this
work, and the results should be transferable to other choices
of classifier and hyperparametrizations. Now that the proof of

principle is established in this work, we leave the optimization
step for a future work.

1. Multilayer perceptron

As with other supervised learning algorithms, the multi-
layer perceptron (MLP) “learns” a function that defines a
hyperplane that optimizes the separation of data points with
different labels. One difference from other ML algorithms,
such as logistic regression, for example, is that in MLP, there
can be one or more nonlinear layers, called hidden layers,
between the input and the output layers [16,31]. The learn-
ing process is done by training on a dataset, whose data are
characterized by a set of features, for which the labels are
known. The training uses back-propagation [32–34], which
adjusts the weights in each hidden layer to approximate the
nonlinear relationship between the input and the output layers.

While the MLP can learn a nonlinear function approx-
imator for either classification or regression, we use the
MLPClassifier function from SCIKIT-LEARN [16] solely for
classification. Our MLP has the number of nonlinear hidden
layers as an input hyperparameter and optimizes the log-loss
function using the L-BFGS solver for weight optimization [35].
The L-BFGS is an optimizer based on quasi-Newton methods
which approximates the Broyden-Fletcher-Goldfarb-Shanno
algorithm (BFGS), requiring significantly less memory. For
smaller datasets, L-BFGS is expected to converge faster and
with a better performance [16] than alternatives, such as
stochastic gradient descent (SGD) [36] or Adam [37]. Our
MLP trains iteratively since at each step the partial derivatives
of the loss function with respect to the model parameters
are computed to update the parameters, with the maximum
number of iterations also being a model hyperparameter.
In our calculations, we ensured convergence relative to the
maximum number of iterations. The strength of the L2 reg-
ularization term, which is divided by the sample size when
added to the loss, can be used to avoid overfitting by intro-
ducing a penalty term in the loss function. Apart from those
aforementioned hyperparameters, we assumed SCIKIT-LEARN

default values for all other parameters. Performance could
likely be improved by testing different classifiers and by per-
forming a grid search to optimize the hyperparametrizations.
As a matter of fact, preliminary investigations in that direction
have been done by the authors. However, the scope of this
current work is to define and present the method as a proof of
principle. We, therefore, leave to present optimization efforts
for a future presentation.

The classifiers from SCIKIT-LEARN are set up to randomly
split the input data into training and testing subsets. The al-
gorithm is trained only on the training set while the testing
one serves as a somewhat independent test of the quality of
the training process. Because the splitting of data points (res-
onances) is random, the classifier is trained in each run with a
different training dataset, leading to slightly different predic-
tions. We define a training seed as the particular training set
obtained through a given random split, and a training event as
each pass of the input data through the training process, which
includes the random split into a training seed and complemen-
tary testing subset, defining slightly different classifiers. For
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TABLE II. Average resonance parameters extracted from the actual ENDF/B-VIII.0 resonance evaluation [38]. Fitting the cumulative level
distribution for all resonances with a given L, we find D0 = 31.686 ± 0.280 keV, D1 = 11.748 ± 0.089 keV, and D2 = 8.003 ± 0.028 keV,
consistent with the above values.

L J Num. res. D (keV) 
n (eV) νn 
γ (eV) νγ

0 1/2 69 31.69±0.28 13839±210 1.131±0.020 1.2036±0.0030 411 ± 23
1 1/2 46 28.72 ± 0.80 485 ± 41 0.769 ± 0.066 0.4332 ± 0.0041 211 ± 99
1 3/2 75 19.47 ± 0.12 308.9 ± 6.8 0.994 ± 0.024 0.44647 ± 0.00046 (16.9 ± 4.4) × 103

2 3/2 58 22.38 ± 0.24 376 ± 13 0.676 ± 0.016 0.5331 ± 0.0082 40.3 ± 6.7
2 5/2 126 11.23 ± 0.10 259.3 ± 4.5 1.098 ± 0.021 0.6381 ± 0.0022 (5.4 ± 2.0) × 103

this reason, in the application of the method shown in Sec. IV,
we define an averaged classifier by averaging the performance
and predictions of many different training events, each with
different training seeds.

IV. APPLICATION TO 52Cr

To assess the efficacy of our approach, we applied our
method to the analysis of the 52Cr resonances from the most
recent evaluation for chromium isotopes [38]. The average
resonance parameters are presented in Table II. 52Cr has
ground state 0+ spin and parity so it has five spin groups for
0 � L � 2.

The 52Cr resonance evaluation in Ref. [38] is taken from
the ENDF/B-VIII.0 evaluation published in Ref. [1] and de-
scribed in Leal et al. [39]. The Leal et al.evaluation is a
Reich-Moore fit using SAMMY [5] to a combination of pub-
lished and unpublished data from the Oak Ridge Electron
Linear Accelerator (ORELA). Below 100 keV, the fit relied

on natCr (83.789% 52Cr) data of Guber et al. [40]. Above
100 keV, the evaluation relied on unpublished high-resolution
transmission data of Harvey et al.on a pair of enriched 52Cr
samples. No neutron capture or scattering angular distribution
data were available above 600 keV, therefore, above 600 keV,
the spin-group assignments in Ref. [39] are purely based on a
shape analysis and evaluator judgment. Neither dataset used
in Ref. [39] were used in the Atlas of Neutron Resonance
compilation [17].

The ENDF/B-VIII.0 evaluation extends from 10−5 to
1.450 MeV. Above 1.450 MeV, resonances were included
mainly to provide background and interference effects to the
resonances below 1.450 MeV. This is a common practice in
ENDF evaluations and is done to ensure an accurate represen-
tation of the reconstructed cross section over the given energy
region.

To illustrate the approach adopted in the current work,
which will be described in detail in the following sections,
and to facilitate its understanding, we present in Fig. 4 a flow

FIG. 4. Flowchart illustrating the machine-learning approach adopted in this work to reclassify 52Cr neutron resonances.
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TABLE III. The parameters used in our test and train simulated
resonance set. Average resonance parameters are similar to those
extracted from the ENDF/B-VIII.0 resonance evaluation [38]. The
average spacings below give D0 = 34.9 keV, D1 = 12.0 keV, and
D2 = 7.72 keV, with D = 4.14 keV.

L J Num. res. D (keV) 
n (eV) νn 
γ (eV) νγ

0 1/2 583 34.9 104 1 2.0 ∞
1 1/2 673 30 406.0 1 0.58 ∞
1 3/2 969 20 303.0 1 0.56 ∞
2 3/2 826 24 299.0 1 0.63 ∞
2 5/2 1772 11.4 329.0 1 0.69 ∞

chart summarizing the steps taken. The reader is encouraged
to use Fig. 4 as a guiding reference while reading the text that
will follow.

A. Training with synthetic data

We generated train and test sets in accordance with the
methods in Sec. III C. The train-test simulated data consist
of 4823 resonances over an energy range 0–20 MeV. In
Table III we list the spin groups taken from the ENDF/B-
VIII.0 evaluation and the average parameters in the train-test
sets that correspond to the ENDF/B-VIII.0 spin groups. We
note that although the νγ is known for each ENDF/B-VIII.0
spin group, we assume that νγ → ∞ in our train-test data sets.

To simulate the misassignments seen in real data, we
randomly misassign resonances in the train-test sets in accor-
dance to the prescription in Sec. III C. In Fig. 5, we show the
cumulative level distributions for the L � 2 spin groups for
the original simulated set and three different levels of ran-

FIG. 6. Average spacings DL for different values of L (L = 0, 1,
and 2). As shown, the average spacings can vary significantly as a
function of the sequence RMF.

dom misassignment, represented by the different line colors
(shades of gray). In the following, we refer to the fraction of
resonances that receive a random misassignment as the ran-
dom misassignment fraction (RMF). In each case, we extract
the average spacing for the simulated sets. In Fig. 6, we show
the extracted average spacing for each L after combining the
spacings from each spin group in accordance with Eq. (16),
represented by the different line colors (shades of gray). We
note that as the degree of misassignment increases, each spin
group’s average spacing tends to the global average value of
Dsg = 5 × 4.14 keV = 20.7 keV. Thus, the extracted average

FIG. 5. Cumulative number of resonances for synthetic resonance sequences based on 52Cr for all the spin groups allowed up to Lmax.
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FIG. 7. Examples of confusion matrices obtained in the training process, taken from a single training event when training with a synthetic
sequence with RMF = 50%. Each panel shows a different combination of label mode (L and spin group) and adoption or not of features related
to capture widths. Spin group labels are described as 100L + J .

spacing tends to 20.7 keV for L = 0 and 10.4 keV for both
L = 1 and 2.

With these sets, we trained a MLP algorithm, employing
the L-BFGS solver, regularizer α set to 1.0 and maximum
number of iterations set to 2000 with 20 hidden layers. Unless
noted otherwise, the results shown consider 50 training events.
Each training event corresponds to the training of the classifier
using one random training seed, using the complementary
testing dataset for benchmarking the training. In each syn-
thetic set used for training, we randomly reserve 60% of the
data points in each training event for the actual training while
40% is used for testing, as explained in Sec. III D 1. This is
done as a way to assess the quality of the training process, or
how well the algorithm can be trained to describe the training
dataset specifically.

The training was performed both with and without the
use of features that use the capture widths and categorizing
either by L or full spin group. Figure 7 shows examples of the

typical confusion matrices that are obtained by the classifier in
the training process, taken from a single training event when
training with a synthetic sequence with RMF = 50%. We see
the excellent training performance when capture widths are
considered. However, as it will be further discussed in the
text, this may be due to a strong training bias that may not
translate to high-quality predictions if the trained classifier is
applied to real resonance data. Many of the aspects seen in
Fig. 7 are discussed in more detail later in the current work,
where we consider results averaged over many training events
and training sequences with different RMFs.

To quantify the performance of the classifier, we calculated
accuracies based on the fraction of resonances that have the
correct label. We are aware that there are many other impor-
tant performance metrics (precision, recall, ROC curves, etc.)
[41, Chap. 3] that would complement the accuracy analysis
and help develop a full picture of the results and optimization
pathways. However, being a work focused on the proof of
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FIG. 8. Training accuracies for considering different number of training events, as a function of the RMF in the training set. Each panel
shows a different combination of label mode (L and spin group) and adoption or not of features related to capture widths. We show also a
“No classification” curve corresponding to the original accuracy of the training set (1 minus the training RMF), which is the accuracy if no
classification effort is made on that particular resonance sequence. We also plot, although it is off-scale, the “naïve” constant accuracy that one
would get if choosing randomly among the allowed labels (1/3 for classification by L; 1/5 for classification by spin groups).

principle of the method, we leave such more complete analysis
for a future work. Figure 8 shows the average training accu-
racy of the classifier as function of the misassigned fraction of

the training set for all the combinations of label mode option
(by L or spin group) and usage of capture width features. Each
curve, represented by the different line colors (shades of gray),

FIG. 9. Validation accuracies for different RMFs in the synthetic validation set, as a function of the RMF in the training set (solid lines).
Each panel shows a different combination of label mode (L and spin group) and adoption or not of features related to capture widths. We show
as dashed lines the original accuracy of the validation set (1 minus the validation RMF), which is the accuracy if no classification effort is made
on that particular resonance sequence, with the same color of the validation accuracy for the corresponding sequence. We also plot, although it
is sometimes off-scale, the “naïve” constant accuracy that one would get if choosing randomly among the allowed labels (1/3 for classification
by L; 1/5 for classification by spin groups).
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FIG. 10. Average fraction of ENDF resonances reclassified as a function of total number of training events. Although the average values
oscillate with a small number of training events, they converge well after around 200–400 training events.

corresponds to an average obtained with a different number of
maximum training events, showing that by 50 training events
the accuracy of each run has converged to the corresponding
average accuracy.

When using capture widths, whether classifying by L alone
or by spin group, we achieve nearly perfect reclassification.
However, even though capture widths can be very discrim-
inative, this may not be a reasonable feature option when
applying to the classification of real resonance distributions
that may contain biases towards average widths, as discussed
in Sec. II C 0 c. Indeed, because we chose νγ → ∞, our cap-
ture width distributions are essentially δ functions so a perfect
capture width match is needed to be considered in the distri-
bution for a given label.

When capture width features are not employed, we see
a consistent pattern of highest training accuracy for low-
misassigned datasets, with average accuracies decreasing as
misassignment increases until it flattens or even upends with
mostly misclassified sets. As a reference, each plot in Fig. 8
shows the “do nothing” line—a line representing the degree
of accuracy of the training set (basically a line function 1 -
RMF), which indicates the overall accuracy of the set if no
classification attempt is made. We also plot reference lines
corresponding to “random guess,” being the accuracy one

obtains by randomly selecting among the allowed labels. The
accuracies obtained, although, are much higher than the ran-
dom guess, so the lines are off the scale in Fig. 8.

For classification by L, the training accuracy decreases
from about 99% accuracy at low RMF to a minimum of
≈60% average accuracy at 70%–80% RMF. It is noteworthy,
however, that this is still much more accurate than the “no
classification” baseline. On the other hand, when classifying
by spin group, the classifier has more difficulty to assign
the correct label, with average training accuracies remaining
closer to the “no classification” line at low RMFs and stabi-
lizing at ≈40% for higher RMFs, although still much higher
than simply guessing. This is somewhat expected as there are
five possible labels when classifying by spin groups instead
of only three with label mode L, making it a more difficult
problem to solve.

B. Validating on synthetic data

Once the performance of the classifier during the training
process was better understood and benchmarked, we validated
the method by applying the fully trained MLP algorithm to
a second realization of synthetic data based off 52Cr. We
again implemented random misassignments to this second

034612-14



NOVEL MACHINE-LEARNING METHOD FOR SPIN … PHYSICAL REVIEW C 107, 034612 (2023)

FIG. 11. Frequency of reclassification of each ENDF resonance. The dashed-gray vertical lines indicate the beginning and end of the
resonance region in the evaluated file.

realization of synthetic data with RMFs ranging from 1% to
99%. Figure 9 shows representative results of the validation
analysis.

In Fig. 9, we show the validation accuracies averaged over
50 training events for the validation sequences having RMFs
of 1%, 50%, and 80%, as a function of the RMFs in the
training set, represented by the solid color lines (different
shades of solid gray). We also display as dashed lines of
corresponding colors the starting accuracies of each validation
sequence (e.g., the validation sequence with 80% RMF is 20%
correct). A comparison from the dashed line with the solid
line of the same color (shade of gray) shows how much the
machine-learning classification has improved (or worsened)
the set relative to the original resonance sequence. In all cases,
we see that the maximum validation accuracies happen when
the training sequences have around the same RMFs as the se-
quences being validated. This is somewhat expected as those

are the cases in which the validation sequences are the most
statistically similar to the training sequences. Interestingly
though, for classifications both by L and by spin group, these
peaks in accuracy are much sharper when employing capture
width features and much smoother when not using them. This
indicates that capture widths are very discriminative. How-
ever, given the known bias in the use of the capture widths, we
focus our discussion in the cases where capture widths were
not used as a feature.

First, we shall focus on the case of label mode L with-
out capture widths from Fig. 9, bottom right panel. In the
case of validation sequence with RMF of 1%, represented
by the blue (dark gray) lines, the original sequence was al-
ready very accurate and for low RMFs in the training set the
classifier preserves that, worsening it minimally with training
sequences up to around 20% RMF. Above that, the reclassifi-
cation accuracy decreases quickly. For a validation sequence

FIG. 12. Frequency of reclassification of each resonance in a synthetic sequence with 20% RMF. The dashed-gray vertical lines indicate
the beginning and end of the resonance region in the evaluated file.
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FIG. 13. Plot showing the observed and reclassified fraction of resonances in a given energy interval. The expected fraction of resonances
is taken using all resonances in the ENDF/B-VIII.0 file. For a given L, over a given energy interval �E , the expected number of resonances is
given by NL = �E/DL; therefore, the fraction of resonances of a given L is NL/Ntot = D/DL with D taken from Table II. The dashed vertical
lines denote the limits of the resonance region in the ENDF file.

of RMF = 50%, represented by the magenta (medium gray)
lines, the reclassified sequence is consistently more accurate
than the original one, up to training RMF of around 90%.
For the validation sequence with RMF = 80%, represented by
the orange (light gray) lines, the machine-learning algorithm
provides a substantially more accurate sequence regardless of
how much is the RMF for the training set. This shows that,
with the appropriate training set (or range of training sets), the
classifier is able to deliver a resonance sequence that is more
accurate than the one provided as input. This suggests that an
iterative process in which, under the appropriate conditions, a
sequence of arbitrarily low accuracy related to L assignments
could be incrementally improved until being fully correct. The
development of such iterative method will be pursued in a
future work.

We now turn to the validation results of Fig. 9, top right
panel, corresponding to label mode by spin group, without
capture widths. In this case, similar considerations can be
made when the validation sequence initial accuracy is low
(meaning high RMF), as is the case of the solid orange (light
gray) curve corresponding to RMF = 80%. We see that the
reclassified accuracy is consistently better than the original
accuracy marked as the dashed orange (light gray) curve, for
all values of RMF in the training set. For lower validation
RMFs, indicated by the solid magenta (medium gray) and
blue (dark gray) curves), the accuracies as function of training
RMF are similar to the case of label mode L, although a little
lower. Also, resulting average accuracies seem closer to or
lower than the initial accuracies (corresponding dashed lines)
in a larger training RMF range, indicating that an iterative
process may be trickier for spin group classification than it
would be for label mode L. This may be explained by the fact
that the classification by spin group is much more challenging
than by L: the number of possible labels is larger as for each
L �= 0 as there will be two spin groups allowed per L. Still, an

iterative method for spin groups may still be effective if one
tackles it in two steps: first classifying by L, and later by spin
group within fixed L values. Again, this is outside of the scope
of this work and will be investigated in the future.

C. Reclassifying real resonance data

After validating the reclassification method in synthetic
data with known RMF, we applied the trained algorithm to
the ENDF/B-VIII.0 52Cr resonance data from Ref. [38].

The first step is to estimate how many training events are
needed to allow us to assume the reclassification process has
converged. For that, we determined the average fraction of
evaluated resonances that were reclassified as a function of
the maximum number of training events considered as shown
in Fig. 10. Here we show the resulting fraction of reclassified
ENDF resonances for different values of RMF in the training
set, represented by the lines in different colors (shades of
gray).

We see that by 1000 training events, all values of fraction of
reclassified resonances have clearly converged to their average
value. As a matter of fact, for all cases the average fraction of
reclassified resonances converge after around 200–400 train-
ing events. While for label mode L without capture widths,
the average fraction of reclassified resonances seem to always
increase as the training RMF increases; this is not an observed
trend in the other cases.

We turn our attention for the individual resonances from
the evaluated file that are being reclassified. From the discus-
sion above, it is clear that we cannot trust results using the
capture width distribution. Furthermore, from the discussions
in Sec. IV B, we see that the most reliable reclassification
process is obtained by classifying only by L. With these,
we require a training set that has a RMF that is similar to
the one being reclassified. However, it is challenging to de-
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TABLE IV. List of 52Cr resonances most reclassified in more than 50% of the training events. The references corresponding to the lead
authors below are given in Table V. The asterisk ∗ indicates that the given resonance’s energy is above the upper limit of the resolved resonance
region and that this resonance is present to provide a background contribution to the reconstructed cross section. L values in brackets indicate
multiple possible assignments as per the original author.

Energy Times Original Times Times Times Agrawal Beer Bilpuch Bowman Brusegan Carlton Hibdon Kenny Rohr Stieglitz

Index (keV) reclassified L L = 0 L = 1 L = 2 L J� L L L L J L J L L L J L

358 1587.7* 951 0 111 840
311 1344.005* 947 0 11 936
355 1497.4* 947 0 34 913
360 1730.9* 944 0 76 868
372 2260.9* 943 0 72 871
362 1832.6* 943 0 73 870
364 1888.5* 943 0 73 870
373 2307.7* 943 0 72 871
366 1959.5* 943 0 73 870
367 1999* 943 0 72 871
369 2178* 943 0 72 871
371 2238.2* 943 0 72 871
361 1791.9* 934 0 75 859
370 2204.2* 934 0 71 863
368 2078.5* 933 0 72 861
365 1929.2* 932 0 72 860
363 1868.2* 908 0 76 832
0 1.625867 870 1 178 692 [1,2] 3

2 1 3
2

2 22.95014 861 1 165 696 [1,2] 3
2 1 1 3

2 1 3
2

4 27.59859 859 1 161 698 1
1 19.35777 854 1 165 689
3 24.85516 853 1 163 690
6 33.91804 848 1 158 690 1
7 34.32529 848 1 157 691
8 47.9453 827 1 134 693

9 48.25253 826 1 132 694 1 1
2

−
1 1 1 3

2
−

10 50.12 823 1 127 696 0 0 0

11 50.32564 822 0 228 594 0 1
2

+
0 0 1

2 0 1
2

+
0 0 1

2
342 1449 822 2 821 1

5 31.63829 815 0 184 631 0 1
2

+
0 0 1

2 0 1
2

12 57.7435 801 1 104 697 1 1
2

−
1 1 3

2 1 1
2

−
1 1

2
359 1606.4* 757 0 79 678
13 68.23 740 1 68 672

50 258.1997 732 1 2 730 [1,2] 3
2 1 1 3

2 1 3
2

−
1 3

2
14 78.82184 724 1 34 690 1

46 247.3901 689 1 78 611 [1,2] 3
2 1 3

2 1 3
2

−
1 3

2

82 399.5334 575 1 0 575 [1,2] 3
2 0 1

2 1 1
2

−
1 1

2

49 251.6374 552 1 15 537 [1,2] 3
2 1 1

2 0 1
2

+
1 1

2

55 283.2405 551 1 99 452 [1,2] 3
2 1 0 1 1

2 1 1
2

−
0 1 1

2

22 121.94 542 0 60 482 0 1
2

+
0 0 0 1

2 0 1
2

+
0 0 0 1

2

52 265.1415 541 0 220 321 0 1
2

+
0 1

2 0 1
2

+
0 1

2
51 260.8998 525 1 4 521

48 250.5283 504 1 17 487 [1,2] 3
2 1 1

2 1 1
2

−
1 1

2
354 1493* 502 1 1 501

fine a priori what is the real RMF of a resonance sequence
in an ENDF-evaluated file that originates from real mea-
sured data. To proceed, some realistic considerations based on
expert judgment is necessary. It is very unlikely that the reso-
nances for the major isotope of a well-known, well-measured
material, such as chromium would have more wrong spin
assignments than correct ones. At the same time, it is unre-

alistic to assume that practically all assignments are correct.
It is thus reasonable to assume that the RMF in real data
of 52Cr is somewhere in the range between ≈10% to 50%.
From Fig. 10, for the cases without capture widths, we see
that the fraction of reclassified resonances does not change
much around training RMF = 20%, with RMF = 50% be-
ginning to distance from lower RMFs, indicating that the
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TABLE V. List of 52Cr datasets in literature, as found in the EXFOR database [42,43], in which partial complete spin group assignments
are given. These do not necessarily agree with the choices of the ENDF/B-VIII.0 evaluators in Ref. [39].

Reference EXFOR entry Spin-group determination method

Agrawal et al. (1984) [44] 12830 Shape analysis of transmission data coupled with measurement of the scattered neutron
angular distribution. The forward and backward asymmetry allowed a
determination of � and, coupled with L, a J assignment.

Allen et al. (1975) [45] 30393 Used methods from Refs. [46,47]. Combined transmission and capture measurements
at ORELA. In some cases, the authors could measure capture width (mainly
s-wave resonances) while in others only capture area (L > 0). L assignments are
based on the transmission measurement. While paper suggests this assignment was
performed, only average resonance parameters are in the publication.

Beer et al. (1975) [48] 20374 Used methods from Refs. [46,47]. Combined transmission and capture measurements
at Karlsruhe. In some cases, the authors could measure capture width
(mainly s-wave resonances) while in others only capture area (L > 0). L assignments
are based on the transmission measurement.

Bilpuch et al. (1961) [49] 11599 Shape analysis of transmission data.
Bowman et al. (1962) [50] 11600 Shape analysis of transmission data.
Brusegan et al. (1986) [51] 22041 Used methods from Refs. [46,47]. Combined transmission and capture measurements

at GELINA. In some cases, the authors could measure capture width (mainly
s-wave resonances) while in others only capture area (L > 0). L assignments are
based on the transmission measurement.

Carlton et al. (2000) [52] 13840 Shape analysis of transmission data coupled with measurement of the scattered
neutron angular distribution. The forward and backward asymmetry allowed a determination
of � and, coupled with L, a J assignment.

Hibdon (1957) [53] 11674 Shape analysis of transmission data.
Kenny et al. (1977) [54] 30393 Used methods from Refs. [46,47]. Combined transmission and capture measurements

at ORELA. In some cases, the authors could measure capture width (mainly
s-wave resonances) while in others only capture area (L > 0). L assignments are
based on the transmission measurement.

Rohr et al. (1989) [55] 22131 Shape analysis of transmission data.
Stieglitz et al. (1970) [46] 10074 Combined transmission measurements and capture measurements at RPI Linac.

The capture measurement registered capture events using a scintillator. In some
cases, the authors could measure capture width (mainly s-wave resonances) while
in others only capture area (L > 0). L assignments
are based on the transmission measurement.

reclassification process for the evaluated resonance data is
somewhat stable at RMF=20%. For this reason, we show in
Fig. 11 the normalized number of times each ENDF resonance
was reclassified by the MLP algorithm trained on synthetic
data with 20% RMF over the course of 1000 training events,
shown as the magenta (medium gray) curve, as a function
of the resonance energy. As a stability test, we also plot the
results using training sets with RMF = 10% and 30%, shown
in Fig. 11 as the cyan (light gray) and blue (dark gray) curves,
respectively.

We see in Fig. 11 that indeed there is very little difference
among the calculations with training data of the different
RMFs listed. In general, we observe many regions in which
no resonances are reclassified, or some of them very rarely.
There are, on the other hand, some resonances, and some-
times, cluster of resonances, that are frequently, if not almost
always reclassified. In particular, we note the two clusters
of reclassified resonances: one near the beginning of the se-
quence and the other at the end, above ≈1.6 MeV. To rule
out any intrinsic bias from this classification process, we re-
peated the exact same calculations, but this time, instead of
applying the trained algorithm into real data, we applied it to

an independent realization of synthetic data with 20% RMF.
This is shown in Fig. 12 as the magenta (medium gray) curve.
We see that the peaks of resonances reclassified most times
for the synthetic sequence seen in Fig. 12 are more randomly
distributed, without significant clusters. This is expected since
the synthetic sequence had 20% of its resonances misassigned
randomly. This lends confidence that the real resonances re-
classified in multiple training events, with multiple training
seeds, seen in Fig. 11 may actually correspond to incorrect
assignments.

It is instructive to deconstruct the results shown in Fig. 11
by orbital angular momentum in order to see if there are
correlations in the resonances the reclassified resonance as-
signments. This is shown in Fig. 13, broken into 10 equally
spaced energy groups. We see that the resonances above 1450
keV are originally assigned to L = 0, shown as the cyan (light
gray) curves, and the reclassifier is attempting to reclassify
them mainly to L = 2, represented by the blue (dark gray)
curves. In this evaluated set of resonances, the resonances
above 1450 keV were added to provide a background and are
not expected to be correctly classified. Interestingly, we see a
similar behavior of the reclassifier in the lowest energy group.
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However, instead of reclassifying the L = 0 resonances, it is
reclassifying the L = 1 resonances, shown as the magenta
(medium gray) curves, to L = 2. It is clear that the classi-
fier expects more L = 2 resonances than are observed in the
evaluation. What is less clear is whether we should trust the
classifier’s assignments any more than the original evaluator’s
expert judgment.

To further explore the classifier’s choices, we show which
were the real resonances that were reclassified more than 50%
of the time and the distribution probability of the reclassifi-
cation label in Table IV. Here only the 44 most reclassified
resonances are listed which corresponds to about ≈12% of
the total number of real resonances in the evaluated file. This
fraction is consistent with the asymptotic converged value for
the average fraction of reclassified resonances for label mode
L, without capture width features, and 20% training RMF, as
seen in Fig. 10. In Table IV, we also show the L assignments
from other resonance quantum number determinations in the
literature. These references and the methods used to make
their quantum number determinations are given in Table V.
Interestingly, the 25 most commonly reclassified resonances
were not observed by any of the authors in Table V and the
L determination is based solely on the shape analysis of Leal
et al. [39]. If we were to adopt the reclassifier’s assignments
over those in Ref. [39], it would not have much measur-
able impact on the reconstructed cross-section values simply
because the resonances in question are far enough apart
with very narrow widths so the interference patterns between
resonances cannot be seen. It would, nevertheless, change
the scattering angular distributions somewhat. However, the
distributions are usually very close to isotropic at low energies
so this too would have a small impact.

V. SUMMARY AND CONCLUSIONS

In this paper, we have outlined the first application of
machine learning to the long-standing problem of classifying
neutron resonances by their appropriate quantum numbers.
We have outlined how we map statistical properties of res-
onances into OOD tests and then into features that can be
used for resonance classification. We have demonstrated the
efficacy of our approach both with synthetic data and with a
real study of the 52Cr ENDF/B-VIII.0 evaluation. We noted
problems with the use of capture widths when confronting
older datasets.

It is clear that our approach has many avenues for improve-
ment:

(i) There are many other features we wish to exploit,
including (a) Dyson-Mehta �3 statistic and associated
distribution, (b) use of the full spacing-spacing corre-
lation, (c) better capture width distributions, and (d)
per-resonance metadata, such as how were the quan-
tum numbers determined and how confident are we
in the determination. Some methods provide quite ro-
bust quantum number assignments while others only
work well only for S-wave resonances.

(ii) We would like to continue testing the method, espe-
cially against experimental data where the full spin

group assignment is believed to be correct (e.g., po-
larized neutron and target experiments on actinides or
from the TRIPLE Collaboration).

(iii) We would like to refine our classification strategies,
including (a) adopting iteration, namely refitting all
OODs after each round of classification since Fig. 9
demonstrates convergence under certain conditions;
(b) adopting a staged approach where we first deter-
mine L, then move to full spin group determination;
(c) optimizing choice of classifier and correspond-
ing hyperparametrization; (d) training and validating
in sections of real resonance sequence data that are
well-constrained experimentally; (e) exploring trans-
fer learning to determine to what extent we can train
on one nucleus’s data and apply the classifier to
another; and (f) benchmark the quality of the classi-
fier by incorporating additional performance metrics
(such as precision, recall, ROC curves, etc.) in the
analysis, better determining improvement routes.

(iv) In connection with the previous bullet, we would like
to explore different measures of classification accu-
racy. In this work, we used total accuracy. As there
are different numbers of resonances in each class
(whether classifying by L or spin group), we have
imbalanced sets of data. In such this case, a balanced
accuracy metric may be more appropriate [56].

(v) We would like to start a much broader discus-
sion of the development of reproducible uncertainty
quantification methods. Such methods must address
sensitivities to hyperparameters, feature weight, re-
classification frequency, etc., to both the results of our
classification and to the reconstructed neutron inte-
grated and differential cross sections with the chosen
spin group assignments.

In addition to these improvements, there are many other
issues we must consider. We have not attempted reclassifica-
tion of a target nuclei with ground state I� �= 0+. Therefore,
we were able to ignore the S quantum number and parity for
the most part. We also have not attempted to use fission res-
onances. Also, there are questions about how doorway states
and intermediate states might impact neutron width distribu-
tions. Finally, we would like to understand what experimental
effects may impact our results including, but not limited to,
resonance sequence contamination from other isotopes and
missing resonances.
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APPENDIX: GLOSSARY OF MACHINE-LEARNING
TERMS

To assist the reader who may not be fully familiarized
with some of the common terms and expressions employed
in machine-learning (ML) works, we briefly summarize some
of the definitions as commonly adopted and/or as used in the
current work:

(i) Features. A set of relevant quantities used to de-
scribe and characterize the data points associated
with the ML problem. Features can be vectorized
and define a feature space that is assumed to rep-
resent well the input data.

(ii) Labels. Quantities associated with the output of a
ML process. In other words, what the ML algo-
rithm is attempting to predict. If labels are discrete

quantities or objects or concepts, the ML algorithm
is said to be a classifier.

(iii) Training dataset. Collection of data points of known
labels that are used to train the ML algorithm. A
trained algorithm is tuned to optimize the identifi-
cation of labels from the training dataset.

(iv) Testing dataset. Collection of data points of known
labels of similar origin as of the training set but that
are not used in training. Their purpose is to assess
how well the ML algorithm was trained to recognize
data points similar to the training dataset.

(v) Validation dataset. Collection of data points of
known labels that are compatible but independent
(not of the same origin) of the training dataset. Their
purpose is to assess how well the trained algorithm
can perform in data points that it has never encoun-
tered before.

(vi) Hyperparameters. Parameters of the ML algorithm
that cannot be fully constrained by the model, and
may be tuned to optimize the performance of the ML
algorithm.

(vii) Training seed. The training subset randomly ob-
tained after the input training data are randomly split
in the classifier training process into a training and
testing dataset.

(viii) Training event. The definition of a trained classi-
fier using a particular training seed. Because each
training seed is a different sample of the complete
training data, each training event will lead to a differ-
ent classifier, and thus a different set of predictions.
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