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Half-lives of deformed nuclei for exotic cluster decays
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In this paper, we considered the cluster radioactivity half-lives for all known cluster decay modes (i.e., from
14C up to 34Si) that these nuclei were first satisfied by the observed systematics [Silisteanu and Scheid, Phys. Rev.
C 51, 2023 (1995), Poenaru et al., Phys. Rev. C 83, 014601 (2011); Ni et al., Phys. Rev. C 78, 044310 (2008)].
The Coulomb and proximity potential model for deformed nuclei is considered as penetration of the emitter
particle through the potential barrier formed by the nuclear, Coulomb, and centrifugal interactions between the
emitter particle and nucleus. The spins and parities of the parent and daughter nuclei in addition to the quadrupole
(β2) and hexadecapole (β4) deformations of the parent nuclei are taken into account for the calculation of the
cluster radioactivity half-lives. Our results exhibit, which the minimum log10T1/2 value denotes doubly magic
208Pb (Z = 82, N = 126) as the daughter nuclei.
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I. INTRODUCTION

Cluster radioactivity (CR) by heavy nuclei with an emit-
ted cluster (EC) heavier like carbon and oxygen is heavier
than an alpha particle but lighter than fission fragments,
which was theoretically proposed in 1980 by Sandulescu, Poe-
naru, and Greiner [1]. In 1984, Rose and Jones [2] observed
the emission of 14C (carbon) nucleus by 223Ra. Since then,
other cluster radioactivity has been observed leading to 20O
(oxygen) radioactivity, 23F (florine) radioactivity, 22,24−46Ne
(neon) radioactivity, 28,30Mg (magnesium) radioactivity, and
32,34Si (silicon) emission, and calculated their partial half-
lives. In recent years, many theoretical models have been
published to estimate the half-lives for the exotic decay pro-
cedures [3–10]. Several theoretical models have been used to
describe the cluster radioactivity phenomenon. These models
may generally be characterized into the preformed cluster
model (PCM) [11] in which the cluster is preformation within
the parent nucleus [12,13] (like that of Gupta and collabo-
rators based on collective potential energy surfaces) and the
superasymmetric fission model (SAFM) [3] (or the analytic
superasymmetric fission model (ASAFM) [14]) in which the
parent nucleus is assumed to be deformed continuously as it
penetrates the nuclear barrier and the cluster is formed like
a fission fragment. Poenaru et al. [14] considered the cluster
radioactivity, alpha decay, and fission for Ne, Mg, and Si.
The radioactive decay of heavy nuclei 232Th, 236U, 236Pu, and
242Cm was studied by Tretyakova [15]. The CR processes
using the preformed cluster model (PCM) approach were
evaluated by Refs. [16,17]. Zhongzhou et al. [18] investigated
the experimental data of cluster radioactivity and expressed an
empirical formula. Poenaru et al. [19] calculated the half-lives
of spontaneous emission of C, O, F, Ne, Mg, and Si. Based on
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inclusion or noninclusion of the concept of cluster preforma-
tion probability P0, the exotic CRs are generally classified [14]
as the preformed cluster models (PCMs) (where P0 �= 1) and
the unified fission models (UFMs) (P0 = 1). Also, a method
extensively used in nuclear cluster physics is the local poten-
tial model (LPM), as introduced originally by Buck et al.,
[20]. Souza et al., [21] investigated the α + core proper-
ties of 104Te along with a global discussion on the α-cluster
structure above the double-shell closures based on the LPM.
In this process, the nucleus is supposed to be a cluster +
core system where the two components interact through a
deep local phenomenological potential V(r) containing the
nuclear and Coulomb terms where α+ core interaction is
defined by the local potential, V (r) = VC (r) + VN (r). Detailed
information about the LPM can be found in papers [22–25].
Many other suitable studies have also been expanded, such as
Refs. [26–31], but will not be further propounded in this paper.
In the present paper, we consider the decay of radioactive
nuclei which emit heavy clusters such as C, O, Ne, Mg, and
Si within the Coulomb and proximity potential model for
deformed nuclei (CPPMDN).

This paper is organized as follows. The theoretical model
used for the study of the CR is presented in Sec. II. In Sec. III,
the cluster radioactivity half-lives have been calculated by
using the semiempirical formula. The results and discussions
are involved in Sec. IV. A summary is given in Sec. V.

II. DETAILS OF THE MODEL WITH PROXIMITY 1977
(PROX 77)

In the present model, for exotic cluster decays, the EC is
supposed to be spherical but the parent and daughter nuclei
may have axially been a symmetric deformation where θ is
the polar angle between the axis of symmetry of the parent or
daughter and the direction of EC. The decay half-life T1/2 is
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defined as [32,33]

T1/2 = ln 2

λ
= ln 2

νP
= h ln 2

2

1

EvP
, (1)

where P is the quantum penetrability of the barrier,
ν = ω/2π , is the frequency of collision with the bar-
rier per second and “h” is the Planck constant, and
Ev = hν/2 is the zero-point vibration energy. We know
that the electron charge e = 1.43998 MeV fm. The other
numerical constants are given by h ln 2/2 = 1.4333 ×
10−21 MeV s and 2

√
2m/h̄ = 2

√
2/

√
41.47 MeV−1/2 fm−1 =

0.43921 MeV−1/2 fm−1/2 and h̄2/m = 41.47 MeV fm2 where
m is the nucleon mass. Using a one-dimensional Wentzel-
Kramers-Brillouin (WKB) approximation, the penetration
probability is given as

P = exp

(−2

h̄

∫ Rb

Ra

√
2μ [V (r̄) − Q]dr

)
, (2)

where Ra and Rb are the turning points and Q is the decay
energy expressed in MeV. The Q value in Eq. (2) is the energy
released as carrying the shell correction part only as the value
at the touching point in the cluster decay process. The turning
boundaries are calculated via V	(Ra) = V	(Rb) = Q. Also, μ

in the above equation is the reduced mass of the cluster-core
(daughter) system measured in units of the nucleon mass,
i.e., μ = mAd Ac/(Ad + Ac), where m is the nucleonic mass
measured in units of MeV/c2 and Ad and Ac denote the mass
numbers of daughter and emitted cluster, respectively. We
must notice that, in this paper, we approximate nuclear inertia
with the reduced mass [13]. Within CPPMDN, the potential
energy barrier is considered as a sum of the Coulomb VC(r),
nuclear proximity VN(r), and centrifugal V	(r) potentials for
the touching configuration and the separated fragments. The
potential V(r) is made up of two parts in the overlapping
(r̄ < C̄t ) and nonoverlapping (r̄ � C̄t ) regions [34,35], which
is given by

V (r̄) =
{

a0+a1r̄+a2r̄2, for Rp � r̄ � Ct

VC (r̄)+VProx(z)+V	(r̄), for r̄ � Ct

,
(3a)

(3b)

where a0, a1, a2 are the constants determined form the conti-
nuity conditions of the potential and its derivative equations,
V (R̄p) = Q ,V (r̄) = V (C̄t ) ,V ′(r̄) = V ′(C̄t ). In Eq. (3b), VC is
the Coulomb potential between the deformed daughter and the
spherical emitted particle. It is defined by Z1Z2e2/r̄ where Zα

and Zd are the atomic numbers of alpha and daughter nuclei.
Also, in Eq. (3b), V	(r̄) by defining 	(	 + 1)/2μr̄2 depicts
the centrifugal potential, l is the orbital angular momentum
of the cluster nucleus and r̄ = z + C̄d (θ ) + Cc is the distance
between the fragment centers, and z is the distance between
the near surfaces of the fragments. The touching configuration
of two nuclei Ct is evaluated by averaging the Ct over the
polar angle between the symmetry axes of axially symmetric
deformed parent or daughter nuclei and the direction of alpha
emission, i.e., Ct is obtained by averaging Ct (θ ) along the
orientation θ [36],

Ct = 1

2

∫ π

0
Ct (θ ) sin θdθ, (4)

and Ct (θ ) is defined as

Ct (θ ) = Cd (θ ) + Cc, (5)

where Cc and Cd (θ ) are the Sussmann central radius of the EC
and daughter respectively. Cc refers to the sharp radii (Rc) as

Cc = Rc − b2/Rc, (6)

and Cd (θ ) is related to Rd (θ ) via [36]

Cd (θ ) = Rd (θ ) − 1
2 kb2, (7)

where k is the total curvature of the surface at the point under
consideration. Rd is obtained by averaging Rd (θ ) along the
orientation θ as

Rd = 1

2

∫ π

0
Rd (θ ) sin θdθ. (8)

In the above expressions, the total curvature of the surface
at the point under consideration is defined as

k = 1

Rθ

+ 1

Rφ

, (9)

where Rθ and Rφ , the two principal radii of curvature of the
surface, are defined as [36]

Rθ (θ ) = R

λ

u(θ )3

w(θ )
, (10a)

Rφ (θ ) = R

λ
u(θ )

β1 + β2cos3θ + β3cos4θ

β1 + 3β2cos3θ + 5β3cos4θ
; (10b)

also in Eq. (10a), u(θ ) and w(θ ) are expressed asfollows:

u(θ ) = [
β2

1 + 2β2(β1 + 2β2)cos2θ + (
2β1β3 + 16β2β3

− 3β2
2 cos4θ + 2β3(8β3 − 7β2)cos6θ

− 15β2
3 cos8θ

]1/2
, (11)

and

w(θ ) = (
β2

1 − 2β1β2
) + 6

(
β1β2 + β2

2 − 2β1β3
)
cos2θ

+ 3
(
6β1β3 + 6β2β3 − β2

2

)
cos4θ + 10β3(2β3 − β2)

× cos6θ − 15β2
3 cos8θ, (12)

where β1, β2, and β3 parameters are

β1 = 1 − 1

2
α2 + 3

8
α4,

β2 = 3

2
α2 − 15

4
α4, (13)

β3 = 35

8
α4.

The deformation parameter β1 = β10 is determined via
[37]

βlm =
√

4π

∫
Ri(θ, ϕ)Y m

l (θ, ϕ)d�∫
Ri(θ, ϕ)Y 0

0 (θ, ϕ)d�
, (14)
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TABLE I. Comparison of considered values of the logarithm of half-life time for the case with parent and daughter deformation with
experimental values [48,49] and with the values of UNIV and UDL. The deformation β2 and β4 are taken from [47].

Deformation log10(T1/2)

P D

PN DN EC πp πd 	min Qc (MeV) β2 β4 β2 Expt. Present work UDL UNIV

221Fr 207Tl 14C 5/2− 1/2+ 3 31.28 0.098 -0.060 0.003 14.52 15.22 15.83 14.24
221Ra 207Pb 5/2+ 1/2− 3 31.39 0.098 -0.060 0.003 13.39 13.41 16.68 14.92

2 13.32
222Ra 208Pb 0+ 0+ 0 32.40 0.104 −0.060 0.003 11.01 11.05 14.48 13.06
223Ra 209Pb 3/2+ 9/2+ 4 30.62 0.138 −0.075 0.003 15.04 15.10 18.30 16.29
224Ra 210Pb 0+ 0+ 0 30.53 0.144 −0.075 0.003 15.68 14.95 18.46 16.42
225Ac 211Bi 3/2− 9/2− 4 30.48 0.151 −0.080 0.003 17.16 16.41 19.65 17.39
226Ra 212Pb 0+ 0+ 0 28.21 0.151 −0.080 0.003 21.34 20.30 23.98 21.17

228Th 208Pb 20O 0+ 0+ 0 44.72 0.182 0.112 0 20.72 19.01 23.56 21.90

230U 208Pb 22Ne 0+ 0+ 0 61.40 0.199 0.115 0 19.57 19.33 21.38 20.18

230Th 206Hg 24Ne 0+ 0+ 0 56.20 0.185 −0.075 −0.003 24.61 24.59 28.76 26.99
231Pa 207Tl 3/2− 1/2+ 2 58.15 0.185 −0.080 0.003 22.88 22.65 26.71 25.30
232U 208Pb 0+ 0+ 0 60.26 0.192 −0.080 0.003 20.40 20.47 24.48 23.48
233U 209Pb 5/2+ 9/2+ 2 57.85 0.192 −0.080 0.003 24.84 24.63 28.76 26.87

0 24.58
234U 210Pb 0+ 0+ 0 57.09 0.198 −0.075 0.003 25.92 25.87 30.12 27.95

233U 208Pb 25Ne 5/2+ 0+ 0 58.01 0.207 0.117 0 24.82 24.63 29.17 27.63

232Th 206Hg 26Ne 0+ 0+ 0 59.52 0.192 −0.070 −0.003 >29.20 29.81 23.76 23.93
234U 208Pb 0+ 0+ 0 62.21 0.196 −0.075 0.003 25.88 25.79 22.11 22.55

234U 206Hg 28Mg 0+ 0+ 0 70.52 0.198 −0.075 −0.003 27.54 27.47 31.07 29.79
236Pu 208Pb 0+ 0+ 0 76.42 21.67 21.57 24.80 24.88
238Pu 210Pb 0+ 0+ 0 73.72 0.205 −0.060 0.003 25.70 25.57 29.00 28.07

237Np 207Tl 30Mg 5/2+ 1/2+ 2 72.11 0.198 −0.070 0.003 >26.90 26.98 31.07 30.65
238Pu 208Pb 0+ 0+ 0 74.04 0.025 −0.060 0.003 25.70 25.51 29.54 29.42

238Pu 206Hg 32Si 0+ 0+ 0 88.41 0.205 −0.060 −0.003 25.27 25.22 27.75 28.53

241Am 207Tl 34Si 5/2− 1/2+ 3 89.41 0.212 −0.050 0.003 >25.30 25.83 28.77 30.21
0 25.76

242Cm 208Pb 0+ 0+ 0 92.44 0.224 0.079 0 23.15 23.22 26.06 28.18

where Ylm(θ, ϕ) denotes the spherical harmonics and is given
by [37]

Ylm(θ, ϕ) ≡ (−1)m

√
2l + 1

4π

(l − m)!

(l + m)!
Pm

l
(cos θ ) eimϕ . (15)

The radii of the deformed nuclei are considered as [38]

Ri(θ ) = Ri0

[
1 +

∞∑
n=0

αlPl [cos(θ )]

]
, (16)

where i = 0, 1, 2, respectively, denote the parent, daughter,
and the alpha particle and αl = √

2l + 1/4πβl is the deforma-
tion parameter. The proximity potential VP is given by Blocki

et al. [39] as

VProx(z) = 4πγ b

(
CdCα

Ct

)
�

(
r − Cd − Cα

b

)
, (17)

where ε = z/b = (r − Ct )/b. The nuclear surface tension co-
efficient for this potential is defined by [39] γ = γ0[1 −
ksI2](MeV/fm2), where γ (MeV/fm2) is called the surface
energy constant in the Lysekil mass formula. This potential is
related to Prox 1977 [39],γ = 0.9517[1−1.7826(N−Z/A)2],
with γ0 = 0.9517 MeV/fm2 and ks = 1.7826. The universal
proximity potential was obtained from the Thomas-Fermi
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model with the inclusion of a momentum dependent nucleon-nucleon interaction potential, and is given by [40]

�1(ε) = −1.7817 + 0.9270ε + 0.0169ε2 − 0.051 48ε3, for 0 � ε � 1.9475,

�2(ε) = −4.41 exp(−ε/0.7176), for ε � 1.9475 .

(18a)

(18b)

The results are listed in Table I. The resulting potential
barriers for the cluster 14C emission of 223Ra with decay equa-
tion 223Ra → 14C + 209Pb (Q = 30.62 MeV) are displayed in
Fig. 1

III. COMPARISON WITH THE SEMIEMPIRICAL
FORMULA

In the past few decades, several efforts were made to
develop theoretical and semiempirical formulas for the esti-
mation of the α-decay and cluster radioactivity half-lives. It is
well known that the majority all the defined formulas depend
on the mass number of the parent and cluster emitter (Ap, Ac),
the charge number of the parent and cluster emitter (Zp, Zc),
and the released energy of the EC (Qc). Also, the authors
strived to define the modifiable parameters of these equations
by fitting them into the available experimental cluster radioac-
tivity and α-decay half-lives.

A. UNIVERSAL DECAY LAW OF QI

A linear universal decay formula started from the micro-
scopic mechanism of the charged particle emission and the
α-like (extension to the heavier cluster of α-decay theory)
R-matrix theory for all kinds of clusters and isotopic modes
defined by Qi et al. [41], and it is entitled the universal
decay law (UDL). The UDL formula holds for the monopole
radioactive decay of all clusters and depends only on the mass,

FIG. 1. Potential barrier including a nuclear proximity en-
ergy term corrections vs emission of 14C from the 223Ra mother
nucleus vs the distance between the mass centers [r (fm)] for
223Ra → 14C + 209Pb with Q = 30.62 MeV. Rin = 7.13 (fm) and
Rout = 23.18 (fm) are the inner and outer turning points. We consider
three parts for the potential barrier; a � r � ct , this is an overlapping
region where a is the first turning point, c (fm) is the touching
configuration, ct � r � c and c � r � b, and b is the second turning
point.

atomic numbers of the parent nuclei and EC, and the Q value.
The UDL formula thus obtained is given as

log10T1/2 = aZCZd

√
A

QC
+ b

√
AZCZd

(
A1/3

d + A1/3
C

) + c

= aχ ′ + bρ ′ + c, (19)

where A = Ad AC/(Ad + AC ), Ad and AC are the mass num-
ber of daughter and cluster emitter respectively. QC is the
kinetic energy of cluster decay. The constants a = 0.4314
(the constant a is a free parameter that takes into account the
effect of higher order terms of the Coulomb penetrability),
b = −0.4087, and c = −25.7725 are the coefficient sets of
Eq. (19). They are determined by fitting to the available exper-
imental data, and the term bρ ′ + c defines the clusterization
in the parent nucleus [42]. Equation (19) includes the Geiger-
Nuttall Law (GNL) [42] as a special case, given as

χ ′ = Zd Zα

√
A

Q
(20)

and

ρ ′ =
√

Ad Aα

(Ad + Aα )
Zd Zα

(
A1/3

d + A1/3
α

)
(21)

B. UNIVERSAL CURVE (UNIV) OF POENARU ET AL.

Poenaru et al. [43] presented the estimation of the half-lives
against the decay of transuranium nuclei including super-
heavies by three methods: a semiempirical formula taking
into account the magic numbers of nucleons, the analytical
superasymmetric fission model, and the universal curves. The
universal (UNIV) curves, resulting from the development of
a fission theory to larger mass asymmetry, should be named,
among them, with major importance [44–46]. Based on the
quantum mechanical tunneling procedure, in UNIV, the partial
decay half-life T of the parent nucleus is defined as

T = ln 2

λ
= ln 2

vSPs
, (22)

where three model-dependent quantities are ν = 1022.01 s−1,
S (according to Poenaru and Greiner’s work [45], Sα =
0.0143153), and Ps is the frequency of assaults on the barrier
per second, the preformation probability of the cluster at the
nuclear surface that S depends only on the mass number of
the EC, Ae (equal to the penetrability of the internal part of
the barrier in a fission theory), and the quantum penetrability
of the external potential barrier by fitting to the available
experimental data for α decay, the corresponding numerical
values [44], respectively. By using the decimal logarithm,

log10T (s) = −log10P + log10S + [log10(ln 2) − log10ν].

(23)
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The decimal logarithm of the preformation factor is given
by

log10S = −0.598(Ae − 1)s, (24)

and the additive constant for an even-even (e-e) nucleus is
given as

cee = [−log10ν + log10(ln 2)] = −22.169 17, (25)

For even-odd (e-o), odd-even (o-e), and odd-odd (o-o) nu-
clei, we change cee by

ceo = cee + heo,

coe = cee + hoe,

coo = cee + hoo, (26)

where hoe = 0.445, heo = 0.294, and hoo = 0.842 are the
mean values of the hindrance factors in these groups of
nuclides for even-odd, odd-even, and odd-odd nuclei, re-
spectively. The penetrability of an external Coulomb barrier,
having separate distance at the touching configuration, i.e., the
first turning point Ra = Rt = Rd + Re, may be found system-
atically as

−log10Ps = 0.228 73(μAZd ZeRb)1/2

× {arccos
√

r −
√

r(1 − r)}, (27)

where r = Rt/Rb, Rt = 1.2249(A1/3
d + A1/3

C ) and Rb =
1.43998Zd ZC/Q and the liquid-drop-model radius constant
r0 = 1.2249 fm.

IV. DISCUSSION AND RESULTS

In this paper, we have studied the influence of the de-
formation of the daughter and parent nuclei on half-lives
in exotic cluster decay. The effect of quadrupole (β2) and
hexadecapole (β4) deformations of parent and fragments on
half-life times are also calculated. It is significant to in-
vestigate the role of deformation parameters of nuclei and
cluster decaying fragments because both the daughter and
parent nuclei are deformed, and there is a motivation behind
the introduction of the effect of the deformation of nuclei.
Deformations depict their effect principally for the heavy
and super heavy mass fragments. Therefore, the deformation
influences are of importance for considering exotic cluster
decays. The CR properties for different modes of exotic decay
have been studied by evaluating the decay half-lives using
the CPPMDN and the numerical results for C, O, Ne, Mg,
and Si cluster radioactivity are given in Table I. The first
six columns of Table I identify, respectively, the parent (PN)
and daughter nuclei (DN), EC, and the ground-state spin and
parity of them (πP, πd ), in addition to the considered value
of minimum angular momentum which was carried out by the
emitted particle 	min. The seventh column denotes the values
of the released energy (Q value) in MeV. The quadrupole
(β2) and hexadecapole (β4) deformation components [47] of
the deformed parent nuclei and the quadrupole (β2) [47] of
the deformed daughter nuclei as used in the calculations are
summarized in Table I. The cluster half-life calculations have
also been done using the universal decay law (UDL) of Qi

et al. [41] and the universal curve (UNIV) of Poenaru et al.
[43]. The logarithms of the experimental half-lives (taken
from the review of Refs. [48,49]) and the results from the
CPPMDN, UNIV, and UDL models are also listed in the
last column of Table I for comparison. A further compari-
son of CPPMDN with these two theoretical models shows
that our data match these theoretical model calculations well.
These evaluations and the comparisons have also been com-
prehended in Table I and we see that on comparison with the
experimental cluster half-lives, it can be found that the half-
lives estimated using CPPMDN are in good agreement with
the experimental data. A model for studying exotic cluster
radioactivity was developed by Silisteanu and Scheid [50]
in 1995 so that one can study the main behaviors of clus-
tering and penetration phenomena in nuclear many-particle
systems. In 2003, Balasubramaniam et al. [49] proposed a
new formula, a model-independent three parameter formula,
as the semiempirical AZ formula (SemAZF), for cluster decay
half-lives of nuclei and calculated the logarithms of decay
half-lives of different ECs from various radioactive nuclei. In
2008, Ni et al. [51] presented a general formula (NRDX) of
half-lives and decay energies for α decay and cluster radioac-
tivity based on the WKB barrier penetration probability with
some approximations. For comparison, in the last column of
Table II the logarithms of the experimental half-lives [48,49]
and the logarithms of the work of Balasubramaniam et al.
[49] (SemAZF), Silisteanu and Scheid [50], and Ni et al. [51]
(NRDX) are listed. In order to study the agreement between
the experimental and calculated data, we have estimated the
standard deviation σ for the half-lives. For the estimation of
σ , we have calculated a total of 25 transitions as experimental
data which are available only for these decays. Now we can
obtain the standard deviation,

√
〈σ 2〉 =

√√√√ N∑
i=1

[
log10

(
T i

exp ./T i
cal.

)]2
/N (28)

and the mean deviation is given by

〈σ 〉 =
N∑

i=1

∣∣log10

(
T i

exp ./T i
cal.

)∣∣/N . (29)

In Table III, the first column denotes the results of
Refs. [41], [43], and [49–52]. The second column denotes
the number of nuclei for all the nuclei groups. The standard
deviations are listed in the fourth column of Table III.

The standard deviation of the logarithm of the half-life
value is found to be 0.519 for CPPMDN, 0.537 for Silisteanu
and Scheid [50], 0.560 for PGG [52] for the e-e group, 0.655
for PGG [52] for an o-e group, 0.734 for NRDX [51], 0.848
for PGG [52] for an e-o group, 1.034 for the semiempiri-
cal AZ formula (SemAZF) [49], 2.832 for UNIV (universal
curve [43]), and that for UDL (universal decay law [41])
is found to be 3.556. Among the several models, the stan-
dard deviation is least for CPPMDN. The next-lowest data
of standard deviation can be seen for Silisteanu and Scheid’s
work [50], which is attributed to the addition of the param-
eters of resonance scattering effects, and PGG [52] for the
e-e group respectively. Therefore, it could be mentioned that
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TABLE II. The comparison of the calculated CR half-lives with experimental values and with the values of SemAZF, NRDX, and Silisteanu
and Scheid.

log10(T1/2)

Mode of cluster radioactivity Qc (MeV) Expt. SemAZF [49] Silisteanu and Scheid [50] NRDX [51]
221Fr → 207Tl + 14C 31.28 14.52 14.54 14.68 14.63
221Ra → 207Pb + 14C 31.39 13.39 12.96 12.39 13.47
222Ra → 208Pb + 14C 32.40 11.01 11.98 10.91 11.02
223Ra → 209Pb + 14C 30.62 15.04 13.81 15.85 14.54
224Ra → 210Pb + 14C 30.53 15.68 15.94 16.27 15.87
225Ac → 211Bi + 14C 30.48 17.16 16.20 17.33 18.23
226Ra → 212Pb + 14C 28.21 21.34 20.08 21.20 20.91

228Th → 208Pb + 20O 44.72 20.72 21.90 21.53

230U → 208Pb + 22Ne 61.40 19.57 21.78 20.09

230Th → 206Hg + 24Ne 56.20 24.61 25.77 24.89 24.57
231Pa → 207Tl + 24Ne 58.15 22.88 23.62 22.48 23.09
232U → 208Pb + 24Ne 60.26 20.40 22.24 20.44 20.36
233U → 209Pb + 24Ne 57.85 24.84 23.87 24.52 24.41
234U → 210Pb + 24Ne 57.09 25.92 25.42 25.86

233U → 208Pb + 25Ne 58.01 24.82 24.15 24.41

232Th → 206Hg + 26Ne 59.52 >29.20 29.07
234U → 208Pb + 26Ne 62.21 25.88 25.85 25.77

234U → 206Hg + 28Mg 70.52 27.54 26.24 26.16 25.24
236Pu → 208Pb + 28Mg 76.42 21.67 23.01 20.75
238Pu → 210Pb + 28Mg 73.72 25.70 25.70 26.51

237Np → 207Tl + 30Mg 72.11 >26.90 27.19
238Pu → 208Pb + 30Mg 74.04 25.70 25.71 25.87

238Pu → 206Hg + 32Si 88.41 25.27 25.99 26.02 25.57

241Am → 207Tl + 34Si 89.41 >25.30 25.75
242Cm → 208Pb + 34Si 92.44 23.15 23.51

the adequacy of the CPPMDN has been confirmed through
the comparison of the present rms with those of previous
works (which incorporated explicitly the deformation effect)
as declared in Table III. Fig. 2 represents the comparison

between the logarithms of decay half-lives for different ECs
from various radioactive parents, estimated by using CPP-
MDN, UNIV, UDL, and the available experimental values
for 222Ra → 14C + 208Pb decay. We see that the 14C emission

TABLE III. Comparison of the present RMS with other references.

Ref. n C emitters Group σ

Present work 25 (87 � Z � 96) all 0.519
Silisteanu and Scheid [50] 21 all 0.537
PGG (new universal plot [52]) (16 clusters) e-e 0.560

6 e-o 0.848
5 o-e 0.665

NRDX [51] 17 all 0.734
Semiempirical AZ formula (SemAZF) [49] 21 all 1.034
UNIV (universal curve [43]) 25 all 2.832
UDL (universal decay law [41]) 25 all 3.556
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FIG. 2. The logarithms of decay half-lives for different EC from
various radioactive parents, estimated by using CPPMDN, UNIV,
and UDL and compared with the available experimental values
(Exp.). The x axis is in terms of the mass number of the parent nuclei
and the corresponding EC by these parents is labeled at the bottom x
axis.

from 222Ra and the 14C emission from 221Ra have the low-
est half-lives among all the cluster emissions. The shortest
half-life in Fig. 3 (log10T1/2 = 11.05 s) corresponds to the 14C
emission from 222Ra(222Ra → 208Pb + 14C). In Fig. 3 we see
that the values for the logarithm of the half-lives (log10T1/2)
plotted vs the decay energy (Q−1/2), approximately lie on
a straight line for all of the different parent nuclei between
221Fr and 242Cm emitting the clusters 14C, 20O, 22, 24, 25, 26Ne,
28, 30Mg, and 32,34Si. We observed that this behavior is the
same as the Geiger-Nuttall systematic behavior that is well
known for the alpha half-lives.

V. CONCLUSION

In summary, the half-life of the decay of radioactive nuclei
which emit heavy clusters such as C, O, Ne, Mg, and Si have
been studied using the CPPMDN. The CR half-lives are also
calculated using the universal decay law (UDL) of Qi et al.,

FIG. 3. Estimated and experimental half-lives
[log10T (sec) values] of cluster radioactivity as a function of
Q−1/2 in a Geiger-Nuttall plot and the plot for the cluster emission
of 14C from 221Fr, 221–226Ra, and 225Ac (black), 20O from 228Th
(yellow), 22, 23–26Ne from 230U, 230Th, 231Pa, and 232–234U (green),
28, 30Mg from 234U, 236, 238Pu, 237Np, and 238Pu (red), and 32,34Si
from 238Pu, 241Am, and 242Cm (blue). Also, filled squares show
experimental data.

and the universal curve (UNIV) for cluster decay of Poenaru
et al. The results thus obtained were compared with the corre-
sponding experimental data and the models, the semiempirical
AZ formula (SemAZF), Silisteanu and Scheid work, and the
new universal plot of Poenaru et al., and it is found that
they match well over an extensive range. Also, the outcomes
depict excellent agreement between the experimental data and
the calculated values. When deformation effects are included,
half-life values are found to be decreased, even though it is
small. We hope that these predictions will be a guide for future
experimental research on CR phenomena.
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