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Cassini-oval description of the multidimensional potential energy surface for 236U:
Role of octupole deformation and calculation of the most probable fission path

K. Okada,1 T. Wada ,1 R. Capote,2 and N. Carjan3,4,5,*

1Department of Pure and Applied Physics, Kansai University, 564-8680 Suita, Osaka, Japan
2NAPC–Nuclear Data Section, International Atomic Energy Agency, 1400 Vienna, Austria

3Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
4Centre d’Etudes Nucleaires de Bordeaux-Gradignan, UMR 5797, CNRS/IN2P3-University Bordeaux I, BP 120,

33175 Gradignan Cedex, France
5Horia Hulubei - National Institute for Nuclear Physics and Engineering, P.O.Box MG-6, RO-76900, Bucharest, Romania

(Received 5 September 2022; accepted 17 February 2023; published 20 March 2023)

Multidimensional potential energy surfaces (PES) are calculated using the microscopic-macroscopic ap-
proach. The nuclear shapes are described by Cassinian ovals generalized by the inclusion of α1, α3, and α4

shape parameters in addition to the main fission coordinate α. The influence of the octupole deformation (α3)
on the PES is studied in the case of the nuclear fission of 236U. It is found that α3 plays an important role in the
last stage of the fission process; for instance, it lowers the third minimum and the third barrier. Two methods
to calculate the static fission path are investigated. They are found to be consistent in the sense that they lead
to the same fission barrier. In certain subspaces, the least energy paths from the ground state to scission present
discontinuities around one of the saddles. They are caused by sharp changes in the nuclear shapes involved
occurring without a change in energy. Such transitions are smoothed out by the principle of stationary action,
which transforms a discontinuous path into a continuous one. Finally, various macroscopic models have been
employed in order to study their influence on the energies and positions of the saddles and the minima.
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I. INTRODUCTION

The recent discussions of the role of the octupole degree
of freedom in the formation of the fission fragments brought
some freshness to the old field of nuclear fission. In particular,
it was shown [1] that in the super-heavy elements (SHE)
region, inclusion of α3 produces a spectacular change from
symmetric to asymmetric fission. In Ref. [2] α3 was brought
to the highest level of importance: it is the main reason for
the asymmetric fission of actinides removing 132Sn from the
bench. New experimental information on low-energy fission
of neutron-deficient pre-actinides [3] indicates a large defor-
mation of the fragments at scission that can be explained,
using a stationary energy density functional approach [4], by a
quadrupole-octupole correlation with a large octupole compo-
nent. If α3 is important at scission, it could also matter before.
For instance, it could modify the fission barriers affecting the
calculation of the fission cross sections.

The importance of nuclear octupolar vibrations has been
also highlighted in nuclear structure studies of actinide nuclei.
The energies of excited states of the ground-state rotational
band of even-even actinides below 500 keV are well described
by a rigid rotor model, however, the first excited vibrational
band in actinides usually corresponds to octupolar vibrations
of the deformed core [5–9]. In 238U for instance, negative
parity levels built on top of the band head at 680 keV are
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interpreted as an octupolar vibrational band, which is the low-
est excited rotational band above the ground state rotational
band.

The octupolar rotational band, built on the vibrational
octupolar band head for even-even targets, needs to be con-
sidered in the fast neutron inelastic scattering studies on
even-even actinides. Those excited states with excitation ener-
gies from 400 up to 1200 keV are very strongly coupled to the
ground state band in fast neutron scattering, and correspond
to neutron energies with a maximum flux of fission neutrons
which are critical for a proper description of fast nuclear
reactors. Such a vibrational-rotational description within a
coupled-channels approach [10] has been widely used to de-
scribe scattering data [11–15].

Hence, octupolar vibrations in actinides are a well-
established phenomenon which is important both for low- and
high-amplitude vibrations.

It is therefore useful to study the effect of the octupole
deformation on the fission path and this is the main purpose
of the present work. We choose the particular case of 236U fis-
sioning compound, having in mind the reaction 235U(nth, f ).

To achieve this goal the microscopic-macroscopic ap-
proach proposed by Strutinsky [16] is employed to obtain
the potential energy surface (PES) as a function of several
shape parameters. Not doing self-consistent calculations, it
is important to use a well-converged shape parametrization
suited for extremely elongated nuclei since we need a reli-
able description of the last stage of the fission process. Such
parametrization is the generalization of the Cassini ovals [17]
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FIG. 1. Pure Cassini ovals that conserve the volume at five values
of their deformation ε.

because one of the basic lines (i.e., before multipolar expan-
sion) corresponds to a zero-neck scission configuration (see
further the discussion of Fig. 1). In the present study, we use
four deformation parameters (α, α1, α3, and α4) to explore the
PES from a spherical nucleus to the scission configuration for
the first time. In Ref. [17] only two parameters were used:
mass asymmetry (α1) and elongation (α). In Refs. [18,19] the
calculations were restricted to a narrow deformation region
around the scission line.

Although the generalized Cassini ovals are the most ef-
ficient shape parametrization when the fissioning nucleus
approaches the scission line, the combined role of neck and
mass-asymmetry degrees of freedom have been emphasized
many times in the past. References [20–26] represent just a
few examples.

For calculation of fission observables or for applications
it is necessary to localize the most probable fission path on
the PES, in particular the minima (isomers) and maxima (bar-
riers). Two static methods are used to determine the most
probable fission path: 1) minimization of the potential energy
of deformation as a function of the main fission coordinate,
and 2) search for the path in the two-dimensional deformation
space (obtained from the four-dimensional space by mini-
mization on the other two deformations) that leads to the
minimum value of the action integral.

II. FORMALISM

The microscopic-macroscopic approach [27] is used to cal-
culate the total deformation energy as a function of the nuclear
shape

Edef (shape) = ELD
def (shape) + δE (shape) (1)

with

δE =
∑
n,p

[
δE (n,p)

shell + δE (n,p)
pair

]
. (2)

The summation in Eq. (2) is carried out over the protons (p)
and neutrons (n).

The microscopic shell and pairing corrections are calcu-
lated with a Woods-Saxon–type potential suitable for nuclear
shapes with pronounced neck [28]. The parameters are taken
from [29]. Details on the numerical calculation of the single-
particle energies are given in the Appendix.

The δEshell was calculated by the Strutinsky method as the
difference between the sum of single-particle energies of oc-
cupied states and the Strutinsky averaged quantity. The δEpair

was evaluated in Bardeen-Cooper-Schrieffer (BCS) approxi-
mation as the difference between the calculated pairing energy
and the Strutinsky averaged quantity. The pairing strength was
taken variable as recommended by Moller and Nix [30].

The ELD
def in Eq. (1) is the macroscopic liquid-drop defor-

mation energy

ELD
def = E (0)

surf{Bsurf (shape) − 1 + 2xLD[BCoul(shape) − 1]},
where Bsurf and BCoul are the ratios of deformation de-
pendent surface and Coulomb energies to those for the
spherical shape: E (0)

surf = 4πR2
0� and E (0)

Coul = 3/5(Ze)2/R0. It
turns out that the zero energy is the energy of a spheri-
cal liquid drop. xLD is the fissility parameter of a nuclear
liquid drop, xLD ≡ E (0)

Coul/2E (0)
surf . The parameters are taken

from [31].
A convenient orthogonal system to describe the shape of a

fissioning nucleus is the lemniscate coordinate system (R, x)
[17,32]. In this parametrization, some (scaled) cylindrical
coordinates {ρ, z} are related to the lemniscate coordinates
{R, x} by the equations

ρ = 1√
2

√
p(x) − R2(2x2 − 1) − s,

z = sign(x)√
2

√
p(x) + R2(2x2 − 1) + s,

p2(x) ≡ R4 + 2sR2(2x2 − 1) + s2,

0 � R � ∞,−1 � x � 1. (3)

In Eq. (3) s ≡ εR2
0 is the squared distance between the

focus of Cassinian ovals and the origin of coordinates. R0 is
the radius of the spherical nucleus.

The deviation of the nuclear surface from pure Cassini
ovals is defined by expansion of R(x) in a series of Legendre
polynomials Pn(x),

R(x) = Rε

[
1 +

∑
n

αnPn(x)

]
. (4)

This expansion converges rapidly since the basic lines
R(x) = Rε = const represent a sequence of shapes (Cassinian
ovals) that surprisingly resemble the sequence of shapes of a
fissioning nucleus, as can be noticed in Fig. 1.

The cylindrical coordinates {ρ, z} are related to {ρ, z} by

ρ ≡ ρ/c, z ≡ (z − zc.m.)/c, (5)

where zc.m. is the z coordinate of the center of mass of Cassini
ovaloid (4). The constant c is introduced in order to insure
that the volume of the ovaloid is equal to the volume of the
spherical nucleus.

Instead of the elongation parameter ε, it is convenient to in-
troduce another parameter, α so that at α = 1 the neck radius
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is zero for any values of all other deformation parameters αn,

ε = α − 1

4

[(
1 +

∑
n

αn

)2

+
(

1 +
∑

n

(−1)nαn

)2]

+ α + 1

2

[
1 +

∑
n

(−1)nα2n(2n − 1)!!/(2nn!)

]2

. (6)

So we consider α to be the main fission coordinate. It was
demonstrated [33] that even a one-dimensional family of
Cassinian shapes, {α = 0.98, α1} is very close to the optimal
scission shapes [34].

For fundamental studies or applications, it is necessary to
locate the extreme points on the multidimensional PES, i.e.,
the minima and the saddles. It is also useful to know the most
probable scission configuration where the neck connecting
the nascent fragments ruptures. It is at this configuration that
the fission fragment properties, such as masses and kinetic
energies, are determined. In other words, we need to find the
fission path that connects these points and the values of the
deformation energy along it, that is usually called the fission
barrier. For this we use here two methods:

(1) along the main fission coordinate α, we minimize the
deformation energy with respect to all other deformations (α1,
α3, and α4);

(2) we find the path L that minimizes the action integral
S(L) between two points on the PES, usually between the
ground state and the outer turning point. It is the path followed
by a classical system in the inverted potential.

As mentioned in the Introduction, this path of minimum
action is compared with the path of minimum values of Edef as
a function of α. For this we need to take a constant (any value)
inertia. Only in this situation the two methods are equivalent:
the particle moves along the bottom of the potential valley.

Dynamical effects that may modify this path (such as a
coordinate-dependent inertia) are not included in the present
study. On one side they are not reasonably well known and
on the other side all tabulated fission barriers, calculated with
microscopic self-consistent or microscopic macroscopic mod-
els, are static [35–41]. They are used to compare with directly
measured barrier heights (for fertile nuclei) or deduced from
measurements of fission cross sections (for fissile nuclei)
[42–44]. In fact, as a next step, we are planning to extend
our calculations to series of actinide nuclei and confront them
with “experimental” values and values from other theoretical
approaches.

The action integral along a path L in the deformation space
is given by

S(L) = 23/2h̄−1B1/2
∫ l2

l1

[Edef (l ) − E ]1/2dl. (7)

E is the energy of the fissioning nucleus. In the case of spon-
taneous fission, it is the energy of the ground state. B is taken
equal to the reduced mass for symmetric division (= 59). As
in most applications to nuclear fission, Eq. (8) is calculated in
a plane defined by two of the deformation coordinates (αk, α)
on a PES minimized with respect to the rest of them.

The minimization of the action integral is done by the
von Ritz method. We rotate the (αk, α) plane till the line

final point

initial point

final point

initial point

FIG. 2. Coordinate transformation used in the von Ritz method.

connecting l1 and l2 becomes the abscissa and choose the
initial point as origin (see Fig. 2). The corresponding trans-
formation writes(

α − αi

αk − αi
k

)
=

(
cos θ − sin θ

sin θ cos θ

)(
x
y

)
,

where

tan θ = α
f
k − α0

k

α f − α0
.

In this new system we expand the path y(x) in Fourier series

y(x) =
N∑
k

ak sin

[
kπx

x f

]
(8)

and the action integral

S(L) = 23/2B1/2

h̄

∫ x f

0

√
V (x, y(x)) − Edx

becomes a function of N variables ak .
The path of minimum action satisfies the conditions

∂S(L)

∂ak
= 21/2

h̄

∫ x f

0

∂V
∂y sin( πk

x f x)
√

V (x, y(x)) − E
dx = 0

k = 1, . . . , N. (9)

This nonlinear system of equations is solved by iterations
starting from a guessed path. The initial set a0

k is obtained by
fitting the guess path with Eq. (9) by the least-squares method.
Then at each iteration m, we increment the coefficients using
the gradient descent method

am+1
k = am

k − c
∂S

∂ak

until convergence is attained√√√√∑
k

(
∂S

∂ak

)2

< δ.

50 to 100 iterations are usually enough. c is a small number
adjusted by trial and error.
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Consistency between the macroscopic and microscopic
terms of Edef in Eq. (1) requires a proper choice of the param-
eters involved. It is usually attained by fitting the coefficients
of the macroscopic energy to the known ground state masses.
This choice may depend on the description of the nuclear
shapes and on the parameters of the microscopic energy used.
Since the present work is the first evaluation of the fission
barriers using generalized Cassini ovals, it is necessary to
test the stability of the results against existing macroscopic
models.

There are two types of macroscopic models: 1) for nuclei
with sharp surfaces (the standard LDM) and 2) for nuclei
with diffused surfaces (the finite-range LDM). We will use
parameter sets from each category.

The terms dependent on deformation are

ELD
def = A2/3{[Bsurf (shape) − 1]as

+ Z2

A
[BCoul(shape) − 1]ac}. (10)

We will use this form to compare different sets (ac, as), i.e.,
different existing models.

III. NUMERICAL RESULTS

In this study, we will take into account α3 (octupole) and
α4 (hexadecapole) deformation parameters in addition to α1

(asymmetry of fragment masses) and α (main fission elonga-
tion). Results are presented for the low energy fission of 236U.

A shortcoming of our approach is that only axially sym-
metric shapes are considered. It is known that nonaxiality
lowers the mass symmetric first barrier but axiality is usually
restored at the second barrier which in turn becomes mass-
asymmetric [45–53]. It is also known that fission observables
(such as cross sections) are mainly determined by the fission
threshold energy (i.e., by the higher of the two barriers). As
long as the second barrier is the highest (as in 236U), neglect-
ing nonaxiality is an acceptable approximation.

Even self-consistent approaches seem to agree with the
above statement. Calculations using nuclear density func-
tional theory beyond the second fission barrier [54] show no
effect of nonaxiality for 236U when the octupole deformation
is taken into account. The results of self-consistent covariant
calculations are more ambiguous [55,56]. While the impor-
tance of the triaxial deformation on the inner barrier and that
of the octupole deformation on the outer barrier are well con-
firmed [57], the outer barriers are found to be lower (by about
1 MeV) when triaxial deformations are included although it is
not clear if the octupole is constrained or not.

A. Potential energy surfaces, paths, and barriers

In the lower part of Fig. 3, the potential energy of deforma-
tion, Eq. (1), is plotted from a spherical nucleus to the scission
point (rneck = 0) in the plane (α, α1). Then, in Fig. 4, the
deformation energy is minimized, at each point, with respect
to α4. On these PES, we calculate the most probable fission
paths. Three static methods are used. Besides the line of min-
imum Edef values and the path of minimum action integral,
the path of steepest descent is added for comparison. The

FIG. 3. Total deformation energy as a function of overall elonga-
tion (α) and mass asymmetry (α1) for 236U between a sphere and the
scission line. On it the fission path calculated in three different ways
is drawn. The red circles represent the minimum energy, the blue
squares follow the steepest descent, and the solid curve represents
the path of minimum action (von Ritz). The fission barriers along
each path are plotted in the upper part.

three derived paths are in good agreement. The corresponding
fission barriers calculated along different fission paths are
represented in the upper part of the figures. A perfect agree-
ment between them is seen. So static fission barriers can be
extracted unambiguously from PES calculations.

FIG. 4. The same as in Fig. 3 but with inclusion of (α4) and
minimization with respect to it.
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FIG. 5. Total deformation energy as a function of overall elonga-
tion (α) and hexadecapole (α4) for 236U between the ground state and
the second minimum. The points of minimum deformation energy
(red circles), of steepest descent (blue squares), and the path of
minimum action (solid black) are also shown. The fission barriers
along each path are plotted in the upper part.

From the ground state (α = 0.24) to the second well (α =
0.51) the fission path stays along the α1 = 0 line, i.e., the
nucleus keeps its reflection symmetry. At larger elongations,
the path goes into the mass asymmetry region reaching the
second saddle point at α = 0.64 and α1 = 0.15. A triple-
humped barrier can be observed in both figures, with the third
barrier at about α = 0.81 and α1 = 0.11 and an outer well of
≈ 1 MeV depth.

The existence of triple-humped fission barriers in light
actinides has been documented both experimentally and the-
oretically [46–52]. The present calculations, using a shape
parametrization suitable for extremely deformed (pronounced
neck) nuclear configurations, can describe triple-humped bar-
riers with only two shape parameters. However, as we will
see in the following, the inclusion of the octupole deforma-
tion (α3) makes the third minimum shallower and therefore
unlikely to be experimentally observed in the case of 236U.

As compared with Fig. 3, Fig. 4 has a hidden dimension
α4. To disclose the missing information, we show in Fig. 5
the results in the (α4, α) plane between the ground state and
the second minimum. This is where α4 really matters since,
although the inclusion of α4 lowers Edef everywhere, this de-
crease is important only around the ground state. The resulting
fission paths obtained by the three methods are also plotted.

The curve of minimum energy as a function of the main fis-
sion coordinate presents, at the first saddle, a shape transition
that makes the fission path discontinuous. It is therefore not a
path in the usual sense of a set of contiguous points. However,
such a sharp decrease in the hexadecapole deformation along
the trajectory of a fissioning nucleus in the multidimensional
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FIG. 6. Total deformation energy as a function of overall elonga-
tion (α) and hexadecapole (α4) for 236U between the ground state and
the second minimum. The lines corresponding to ∂Edef

∂a4
=0 (red) and

∂Edef
∂a =0 (blue) are superposed. Their intersection precisely defines

the extreme points on the PES, i.e., the GS, the 1stB, and the 2ndM.

deformation space is physically possible since there is no dis-
continuity in energy. It is even possible to project on another
axis, at an angle with α, and make the discontinuity disappear.
In addition, if we minimize the action integral we obtain a
line that smoothly joins the two minima with the first saddle.
Although the two paths are very different, the correspond-
ing barriers are almost identical (see upper part). Therefore
such discontinuities do not have dramatic consequences. The
advantage of the von Ritz method is that it allows an easier
localization of the top of the barrier.

The simplest exact way to find the extreme points is il-
lustrated in Fig. 6. They are at the intersection of the lines
corresponding to ∂Edef

∂a4
= 0 and ∂Edef

∂a = 0. This is an original
method worth to be studied further.

Discontinuities in the multidimensional PES have been
extensively discussed both in the frame of a phenomenolog-
ical model (finite number of shape parameters) [53] and a
self-consistent model (automatic minimization in the noncon-
strained degrees of freedom) [58,59] and methods to avoid
them have been suggested. These studies concern complex
discontinuities in the potential energy and not only in the
nuclear shape. In the present study, however, only pure shape
transitions that preserve the energy, are encountered. More-
over, the simple principle of stationary action, transforming
a discontinuous trajectory into a continuous one, naturally
smoothes out such transitions. In Fig. 7, the one-to-one cor-
respondence between α1 and the fragment-mass ratio is used
to put the heavy fragment mass on the ordinate. The value of
the light fragment mass along the valley towards scission is
identical to the most probable experimental value (AL = 96).
It is an ideal situation with no discontinuity along the fission
path from the second minimum to the scission point. In this
case the good agreement between the paths obtained by the
two procedures (points of minimum energy and of minimum
action) is not surprising.

Coming next is the inclusion of the octupole deformation
α3 together with α and α1. It is worth mentioning that the
fission fragment mass depends both on α1 and on α3. In order
to use AF (an observable) on the vertical axis (like in Fig. 7),
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6
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6
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FIG. 7. Total deformation energy as a function of overall elon-
gation (α) and fragment mass (AF ) for 236U between the second
minimum and the scission line. α4 = 0. The points of minimum
deformation energy (red) and the path of minimum action (black)
are also shown.

one needs to minimize Edef with respect to α1 and α3 for each
point (α, AF ).

The result is presented in the planes (α, AF ) in Fig. 8. The
plots cover the region from the second well to the scission
line. The fission path is again discontinuous because of a
shape transition (similar to the one encountered in Fig. 5) that
occurs around the second barrier (i.e., at α = 0.65), namely a
transition from AF = 164 to AF = 142.

One can easily distinguish in Fig. 8 a third well (at α =
0.72, AF = 135 with E3 = 4.3 MeV) and a third barrier (at
α = 0.78, AF = 135 with B3 = 4.5 MeV). The values of E3

and B3 are, respectively, 0.5 MeV and 1.0 MeV lower than the

8
76

5

4.5
4.5 4 3

5

4.5

4

3

2

6

6

2

FIG. 8. Total deformation energy as a function of overall elonga-
tion (α) and fragment mass (AF ) for 236U between second minimum
and scission. At each point, the energy is minimized as a function
of the octupole deformation α3. The points of minimum deformation
energy (red) and the path of minimum action (black) are also shown.

4.5

5 54

3

2
4.5

4 3 2

6 7 8

E
FIG. 9. The same as in Fig. 8 but with additional minimization

on α4.

corresponding values from Fig. 3 obtained without inclusion
of α3. Hence the octupole deformation plays a significant role
beyond the second saddle. In this case, it lowers the third
barrier making the third well extremely shallow.

In Fig. 8 there is another valley to scission that corresponds
to symmetric mass division. This second valley is steeper
than the asymmetric valley and the barrier leading to it is 1
MeV higher. There is however a non-negligible probability of
populating it in a dynamical Langevin approach.

At this point, it is appropriate to comment on the fission
modes that received much attention following the publication
of the multi-modal random neck rupture model [60]. Using
the generalized (five parameters) Lawrence [61] description
of the nuclear shapes, it predicts several valleys on the PES
leading to different scission configurations. Precise measure-
ments [62–65], performed at JRC-Geel, of fragment mass
and kinetic energy distributions in neutron induced fission
of 235U and 238U at incident neutron energies from 1.2 to
5.8 MeV have been quantitatively explained in terms of two
asymmetric and one symmetric (superlong) modes. Why do
other parametrizations (like ours but not only) not reveal the
second asymmetric valley? It is intriguing.

In principle, in a phenomenological model like ours, if the
number of selected parameters is not enough or if we did not
select the ones that are relevant for our problem, an additional
shape parameter may considerably change the landscape of
the PES invalidating the previous result. This does not seem
to be the case in the present calculations. As compared with
Fig. 8, in Fig. 9 we include an additional parameter (α4) and
minimize the deformation energy with respect to it. One sees
no significant change in the PES from the second minimum
until scission. This is an expected behavior for a well con-
verged multipolar shape expansion.
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FIG. 10. Dependence of the minimum action integral S on the
number of terms N in Eq. (9).

In conclusion the generalization of the Cassini ovals,
Eq. (5), is an efficient parametrization for the sequence of
shapes that a fissioning nucleus goes through. Practically
(α, α1 and α3) are enough from the second minimum to the
scission point. α4 is important only from around the ground
state till the second minimum. In the rest, it is used to verify
that convergence has been attained.

B. Input for the von Ritz method

The definition of the fission path as the one which leads to
a minimum action integral is more physical than the determi-
nation of the path connecting the points of lowest deformation
energy in the sense that the former is equivalent to the classical
path. We analyze this method in more detail here. It has
two inputs: an initial guess for this path, necessary to solve
Eq. (10) and the number of terms N in the Fourier series (9).
Figure 10 shows the dependence on N . Viewing the scale of
S even N = 5 gives enough precision. The minimum paths
corresponding to three values of N are shown in Fig. 11. The
differences are negligible.

So far, as initial trial path, we have taken the minimum
energy points. To see the dependence of the minimum action
path on this choice, a parabola connecting the inner and the
outer points was also considered. Figure 12 shows that these

FIG. 11. Influence of the number of terms N in Eq. (9) on the
minimum path. N = 7 (red), N = 8 (blue), N = 9 (green). The PES
is minimized with respect to α3.

FIG. 12. Influence of the initial trial path (parabola or points of
minimum deformation energy) on the minimum path. N = 5. The
two paths are identical. The PES is minimized with respect to α3.

two choices (although very different) lead to the same path.
This independence on the initial path is valid for any value of
N (see Fig. 13). Therefore, our method to find the path that
minimizes the action integral does not depend on the input.

C. Calculation of the extreme points on the PES with different
macroscopic models

We now study the effect of the macroscopic model cho-
sen to calculate ELD

def . For this we use Eq. (11) in which the
deformation dependent surface and Coulomb terms are char-
acterized by the coefficients as and ac. The five sets of values
used are listed in Table I. The first four models consider sharp
nuclear surfaces while the last uses a diffused surface. For this
calculation, we restrict to the plane (α, α1), i.e., (overall elon-
gation, mass asymmetry). (See Fig. 3 for an example of such
a PES.) One should remember that, in a restricted space, the
first minimum does not necessarily coincide with the ground
state, i.e., it does not always have the lowest energy.

Table II contains the total energies [Eq. (1)] of the minima
and of the saddles along the least energy path obtained with
the five macroscopic models explored here. For the energies
of the first minimum, the agreement is excellent. This is not
surprising since in all models as and ac are adjusted (together
with other model parameters) mainly to the ground-state
masses. Moreover compact configurations are well described
by all shape parametrizations.

It is worth noticing that all models predict close-together
positions for the extreme points in the plane (α, α1) as seen
in Table III. The second barrier, for instance, is always
situated at α = 0.638 + / − 0.002 and α1 = 0.136 + / −
0.003. This shows that it is the microscopic term, δE (shape),

TABLE I. Macroscopic parameters used for comparison.

Set as ac Ref.

(1) 16.390964 0.7053 [18]
(2) 16.0 0.7111 [17]
(3) 16.387185 0.720 [43]
(4) 16.159578 0.710 [66]
(5) 18.772828 0.744815 [51]
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FIG. 13. The same as in Fig. 12 but for N = 7, 8, and 9.

and not the macroscopic one, ELD
def (shape), that determines

these positions. The agreement of total energies is acceptable
up to the second minimum and deteriorates as the elongation
approaches the top of the LD barrier (α > 0.65) because, as
seen in Fig. 14, different sets (as, ac) lead to different heights
and shifted positions for this barrier.

So using parameters that reproduce ground-state masses
does not guarantee reliable fission barriers, the outer one being
the less precise. One reason is that only few barriers are
included in the least-square fit. In Refs. [53,67], for instance,
28 barriers as compared with 1654 masses are used. So the
barriers play a minor role in the fit. Moreover most terms
in the mass formula are independent of deformation and the
deformation window covered by nuclear ground states is very
narrow.

In conclusion, the usual procedure cannot generate a
unique deformation dependence of the total nuclear potential
energy.

It would be better to use only deformation dependent terms
and fit their coefficients to all existing data at large deforma-
tions, such as superdeformed ground states, shape isomers and
other observables related to fission; not only fission barriers.
It would also be safer to replace, when possible, the fit with
theoretically estimated parameters. A new fitting procedure
along the lines mentioned above requires a dedicated study
that is outside the scope of the present work.

For applications where precise energies of the extreme
points are needed, the best one can do, without redoing the fit,
is to choose the Finite-Range Liquid Drop Model (FRLDM)
[53] since it is based on a large number of masses and barriers.

The total deformation energy calculated self-consistently
does not contain two separate terms, so the problem of
consistency between macroscopic and microscopic contribu-

TABLE II. Comparison of total energies (with respect to the
energy of the spherical liquid drop) at the extreme points in MeV. The
symbols M and B are for the minima and the barriers, respectively.

Set 1stM 1stB 2ndM 2ndB 3rdM 3rdB

(1) 1.05 5.12 1.48 5.62 4.61 5.47
(2) 0.90 4.54 0.45 3.93 2.16 2.26
(3) 0.96 4.78 0.87 4.61 3.17 3.46
(4) 0.95 4.74 0.82 4.53 3.08 3.38
(5) 0.94 4.79 0.94 4.65 3.44 3.91

tions does not arise. However, the nucleon-nucleon effective
interaction is usually chosen to reproduce ground state masses
[68] and only rarely fission barriers [69].

IV. SUMMARY AND CONCLUSIONS

Calculations of PES as a function of four deformation
parameters are performed, for the fission of 236U, in the frame
of the microscopic-macroscopic model with a Cassini-oval
description of the nuclear shapes involved.

The existence of a triple-humped barrier with a shallow
third minimum in this nucleus is established. The octupole
deformation plays an important role in the last stage of the
fission process. It modifies the landscape and lowers the third
minimum and the third barrier.

The fission paths are calculated on these PES in order to
localize the minima and the saddles. Two definitions are used:

(1) the points of lowest deformation energy Emin
def (αi) as a

function of the main fission coordinate α, and
(2) the path in the deformation space L(αi) that corre-

sponds to the minimum value of the action integral obtained
by the von Ritz method.

TABLE III. Comparison of macroscopic energies, ELD (MeV),
and shape parameters α, α1 (next two lines) at the extreme points.
The symbols M and B are for the minima and the barriers
respectively.

Set 1stM 1stB 2ndM 2ndB 3rdM 3rdB

0.98 3.08 4.45 7.05 7.65 7.47
(1) 0.208 0.396 0.502 0.640 0.720 0.816

0.000 0.000 0.000 0.138 0.122 0.109
0.84 2.44 3.48 5.23 5.19 4.62

(2) 0.210 0.391 0.509 0.636 0.765 0.800
0.000 0.000 0.000 0.133 0.119 0.114
0.91 2.71 3.89 5.94 6.21 5.51

(3) 0.209 0.393 0.507 0.637 0.744 0.809
0.000 0.000 0.000 0.133 0.120 0.109
0.89 2.67 3.81 5.86 6.13 5.42

(4) 0.209 0.393 0.504 0.637 0.744 0.810
0.000 0.000 0.000 0.134 0.120 0.109
0.88 2.68 3.95 6.07 6.54 6.15

(5) 0.209 0.391 0.504 0.637 0.725 0.813
0.000 0.000 0.000 0.139 0.123 0.114
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FIG. 14. The liquid-drop fission barrier for three sets of parame-
ters (as, ac). The arrows indicate the barrier tops.

The former may contain a sudden shape transition around
the saddle point without a discontinuity in the value of Edef .
In this case, the latter smoothly connects the branches before
and after the transition. The two methods are consistent in the
sense that they lead to the same fission barrier. The indepen-
dence of the von Ritz method on its input (the initial trial path
and the number of terms in the Fourier series) is demonstrated.

Finally, the dependence of the results on the choice of the
LDM is calculated for five different models. It is found that
the method largely used to fix the parameters (as, ac) based on
the experimental ground-state nuclear masses cannot uniquely
predict the behavior at large deformations.

In conclusion, we developed a formalism to characterize
the extremal points along the fission path using a descrip-
tion of nuclear shapes that is proper to the fission process.
Four shape parameters are enough to provide the information
needed for fundamental research and applications, in particu-
lar for the calculation of fission cross sections.
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TABLE IV. Maximum quantum numbers and total number of states.

α ωz [h̄ω] ωρ [h̄ω] (nz )max (nρ )max total number

0.205 0.875 1.069 19 7 1011
0.985 0.425 1.534 39 5 1043

APPENDIX: NUMERICAL PARAMETERS: FREQUENCIES
AND NUMBER OF STATES IN THE BASIS; NUMBER OF

INTEGRATION POINTS

The Hamiltonian is diagonalized by the wave functions of
the deformed harmonic oscillator in cylindrical coordinates.
By adapting the frequencies of the deformed harmonic os-
cillator to the actual fission shape [70], we keep the number
of basis states relatively constant as a function of α (as seen
in Table IV). The frequencies ωρ and ωz depending on the
Cassini parameters are obtained by the equations

{(h̄ωρ )2h̄ωz}1/3 = h̄ω = 41A−1/3, (A1)

ω2
ρ

ω2
z

= 〈z2〉
〈ρ2〉

=
∫ 1
−1(z̄ − z̄c.m.)2ρ̄2 dz̄

dx dx∫ 1
−1 ρ̄4 dz̄

dx dx
. (A2)

In the present calculations, we adopt states that satisfy the
condition Enz, nρ , λ < 18.5h̄ω, where the single-particle energy
of the deformed harmonic oscillator Enz, nρ , λ is given as

Enz, nρ , λ =
(

nz + 1

2

)
h̄ωz + (2nρ + λ + 1)h̄ωρ. (A3)

Table IV contains information of the basis in two cases:
α = 0.205 (ground state) and α = 0.985 (scission). For sim-
plicity, αn = 0 are used. The maximum quantum numbers and
the total number of states. As can be seen, (nz )max increases
when the nucleus is elongated.

Concerning the number of integration points in the calcula-
tion of surface and Coulomb energies, we divided the domain
[−1,+1] of the Cassini coordinate x into four equal parts.
In each part, we performed a Legendre integral of 20 points.
Then we summed the four results. In this way the energies
have six exact digits.
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