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Muon catalyzed fusion (μCF) has recently regained considerable research interest owing to several new
developments and applications. In this regard, we have performed a comprehensive study of the most important
fusion reaction, namely, (dtμ)J=v=0 → α + n + μ + 17.6 MeV or (αμ)nl + n + 17.6 MeV. The coupled-
channel Schrödinger equation for the reaction is thus solved, satisfying the boundary condition for the muonic
molecule (dtμ)J=v=0 as the initial state and the outgoing wave in the αnμ channel. We employ the dtμ-
and αnμ-channel coupled three-body model. All the nuclear interactions, the d-t and α-n potentials, and the
dt-αn channel-coupling nonlocal tensor potential are chosen to reproduce the observed low-energy (1–300 keV)
astrophysical S factor of the reaction d + t → α + n + 17.6 MeV, as well as the total cross section of the α + n
reaction at the corresponding energies. The resultant dtμ fusion rate is 1.15×1012 s−1. Substituting the obtained
total wave function into the T matrix based on the Lippmann-Schwinger equation, we have calculated absolute
values of the fusion rates λbound

f and λcont.
f going to the bound and continuum states of the outgoing α-μ pair,

respectively. We then derived the initial α-μ sticking probability ω0
S = λbound

f /(λbound
f + λcont.

f ) = 0.857%, which
is ≈7% smaller than the literature values (≈ 0.91%–0.93%) and can explain the recent observations (2001)
at high D-T densities. We have much improved the sticking-probability calculation by employing the D-wave
α-n outgoing channel with the nonlocal tensor-force dt-αn coupling and by deriving ω0

S based on the absolute
values of the λbound

f and λcont.
f . We also calculate the absolute values for the momentum and energy spectra of the

muon emitted during the fusion process. The most important result is that the peak energy is 1.1 keV although
the mean energy is 9.5 keV owing to the long higher-energy tail. This is an essential result for the ongoing
experimental project to realize the generation of an ultraslow negative muon beam by utilizing the μCF for
various applications, e.g., a scanning negative muon microscope and an injection source for the muon collider.

DOI: 10.1103/PhysRevC.107.034607

I. INTRODUCTION

In the mixture of deuterium (D) and tritium (T), an injected
negatively charged muon μ forms a muonic molecule with a
deuteron d and a triton t , namely, dtμ. Since the mass of a
muon is 207 times heavier than that of an electron, the nuclear
wave functions of d and t overlap inside the dtμ molecule,
which instantly results in an intramolecular nuclear fusion
reaction d + t → α + n + 17.6 MeV. After this reaction, the
muon becomes free and can facilitate another fusion reaction
(Fig. 1). This cyclic reaction is called muon catalyzed fusion
(μCF). Among various isotopic species of muonic molecules
(ppμ, pdμ, ddμ, dtμ, and ttμ), the dtμ has attracted par-
ticular attention in μCF with the expectation that it may be
exploited as a future energy source.

The μCF has been studied since 1947 [1,2] and is reviewed
in Refs. [3–6]. Efficiency of the μCF has been discussed in
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the literature as follows: As seen in Fig. 1, the muon emitted
after the d-t fusion sticks to the α particle with a probability
ω0

S and is lost from the cycle due to spending its lifetime
(τμ = 2.2×10−6 s) as a coupled entity, although the muon is
reactivated (stripped) with a probability R during the collision
of an (αμ)+ ion with the D-T mixture. The net loss probability
ωeff

S = ω0
S (1 − R) is called the effective sticking probability,

whereas ω0
S is referred to as the initial sticking probability.

The number of fusion events, Yf , catalyzed by one muon is
essentially represented as [4]

Yf � (
ωeff

S + λ0/λcφ
)−1

, (1.1)

where λ0 = 1/τμ = 0.455×106 s−1, λc is a cycle rate, and φ

is a target density relative to the liquid hydrogen (4.25×1022

atoms cm−3). A typical parameter set of ωeff
S ≈ 0.5% [7]

and λc ≈ 1.1×108 s−1 [8] at φ = 1.25 results in Yf ≈ 120,
which produces ≈2.1 GeV per a muon. The literature reported
Yf ≈ 150 [9], which was the highest value known to date and
results in ≈2.6 GeV, whereas ≈5 GeV of energy is required
to generate a muon in an accelerator. The efficiency of μCF
for energy production is approximately half that required to
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achieve a scientific break-even. If ωeff
S is omitted in Eq. (1.1),

Yf ≈ 300 cycles is obtained. On the other hand, if we omit
λ0/λcφ from Eq. (1.1), we have Yf ≈ 200. Therefore, the low
efficiency of μCF comes from both parameters ωeff

S and λc. It
is thus desirable to examine ω0

S , R, and λc carefully.
Although the fusion yield Yf as well as the fundamental

parameters ω0
S , R, and λc have been often investigated in liquid

or solid targets thus far, such a cold target μCF would not be
realistic as a practical energy source due to the low thermal
efficiency of the Carnot cycle. The experimental knowledge of
μCF under high-temperature conditions, however, is limited.

The μCF has recently attracted considerable interest ow-
ing to several new developments and applications. They are
grouped into the following two types:

(I) To realize the production of energy by the μCF using
the high-temperature gas target of the D-T mixture
with high thermal efficiency.

(II) To realize an ultraslow negative muon beam by utiliz-
ing the μCF for various applications, e.g., a scanning
negative muon microscope and an injection source for
the muon collider.

These are explained as follows:

A. Type (I)

The μCF kinetics model in high-temperature gas tar-
gets is reexamined, including the excited (resonant) muonic
molecules and fusion in-flight processes [10,11]. Recent
improvements in the energy resolution of x-ray detectors
facilitate the examination of the dynamics of muon atomic
processes [12–14] and may allow for the detection of the res-
onance states of muonic molecules during the μCF cycle. An
intense muon beam [15] also creates the upgraded conditions
required to explore these μCF fundamental studies. In parallel
to the reexamination of the μCF kinetics model, there is a new
proposal to strongly reduce the α-μ sticking probability by
boosting the negative muon stripping using resonance radio-
frequency acceleration of (αμ)+ ions in a spatially located
D-T mixture gas stream [16]. In addition to studies on the μCF
as possible energy sources, the 14.1 MeV neutron has been
considered as a source for the mitigation of long-lived fission
products (LLFPs) with nuclear transmutation [17]. Since the
mitigation of LLFPs requires a well-defined condition for a
neutron beam, μCF-based monochromatic neutrons would
be more suitable than those from a nuclear reactor and/or
spallation neutron sources.

B. Type (II)

In general, muon beams generated by accelerators have
≈MeV kinetic energies. At present, the negative muon beam,
with a size of a few tens of millimeters, has proven to be suit-
able for nondestructive elemental analysis [18–20] in various
research fields such as archeology, earth-and-planetary sci-
ence, and industry. In contrast with an accelerator-based muon
beam, the mean kinetic energy of the muon released after the
μCF reaction is ≈10 keV since the dtμ molecule nearly takes
the (5Heμ)1s configuration at the instant of the fusion reaction.

FIG. 1. Schematic diagram of the μCF cycle by a muon injected
into the D-T mixture. (a) Formation of dtμ molecule, (b) fusion
reaction, (c) α-μ initial sticking, and (d) muon reactivation.

Therefore, the μCF can be utilized as a means for beam cool-
ing [21–25]. Recently, the aim has been to produce a negative
muon beam by reducing the beam size to the order of 10 µm
using a set of beam optics, by utilizing the muons emitted
by the μCF. This beam is called an ultraslow negative muon
beam [21,23,26], which will facilitate various applications
such as a scanning negative muon microscope, as well as an
injection source for a muon collider [23]. The scanning neg-
ative muon microscope that can utilize characteristic muonic
x-rays will allow for three-dimensional analysis of elements
and isotopes. Owing to the high penetrability of muons, such
a microscope can be applied to biological samples under an
atmospheric environment. Experiments for direct observation
of the muon released after the μCF using a layered hydrogen
thin disk target are in progress [21–25,27,28].

Here, we note that two of the present authors (Y.K. and
T.Y.) have contributed to the aforementioned studies of Type
I in Refs. [10,11] and Type II in Refs. [27,28].

The purpose of the present paper is that, considering the
latest developments regarding the new μCF applications, we
now thoroughly investigate the mechanism of the nuclear re-
action

(dtμ)J=v=0 → α + n + μ + 17.6 MeV, (1.2a)

↘ (αμ)nl + n + 17.6 MeV, (1.2b)

by employing a sophisticated framework.
The reaction (1.2) is the most important among the nuclear

reactions in μCF, but it has a complicated mechanism. Fig-
ure 2 illustrates schematically the energy relation between the
dtμ and αnμ channels; the molecular bound state (dtμ)J=v=0

becomes an extremely narrow Feshbach resonance with � ≈
10−3 eV [29–37] that decays into the α + n + μ and (αμ)nl +
n continuum states, owing to the nuclear interactions.

Therefore, due to the difficulty of the problem, the reaction
(1.2) has not been studied in the literature using sufficiently
sophisticated methods. Another reason is that such a precise
calculation of the reaction has not been required in previous
μCF studies; the required quantities were the fusion rate
λf (= �/h̄) and the α-μ initial sticking probability ω0

S , which
were calculated using approximate models (cf. Secs. 7 and 8
of the μCF review paper [5]), for example, in Ref. [29] by one
of the present authors (M.K.).
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FIG. 2. Schematic illustration of the energy relation between the
dtμ and αnμ channels. Owing to the nuclear interaction, the muonic
molecular bound state (dtμ)J=v=0 at E00 = −3.030 keV becomes an
extremely narrow Feshbach resonance that decays into the α + n +
μ and (αμ)nl + n continuum states. The width of the resonance (� ≈
10−3 eV) was already derived, for example, using the d-t optical-
potential-model calculation of the reaction (1.3) [29–31] and by the
R-matrix method [32–37].

For the new situation of μCF mentioned in the definition
of Types I and II, it is desirable to precisely calculate the
following quantities of the reaction (1.2):

(a) reaction rates, in absolute values, going to the indi-
vidual bound and continuum states of the outgoing
α-μ pair, together with the α-μ sticking probability ω0

S
based on those reaction rates;

(b) momentum and energy spectra, in absolute values, of
the muon emitted by the fusion reaction.

To calculate these quantities and conduct additional analy-
ses, we employ the dtμ- and αnμ-channel coupled three-body
model and perform the following:

(i) We first determine all the nuclear interactions (the d-
t and α-n potentials and the dt-αn channel coupling
potential) to reproduce the observed astrophysical S
factor of the reaction

d + t → α + n + 17.6 MeV (1.3)

at the low-energies of 1–300 keV [38] as well as
the total cross section of the α + n reaction at the
corresponding energies [39] (see Sec. II).

(ii) We solve a coupled-channel three-body Schrödinger
equation on the Jacobi coordinates in Fig. 3, sat-
isfying the boundary condition to have the muonic
molecular bound state (dtμ)J=v=0 as the initial state
(as the source term of the Schrödinger equation)
and the outgoing wave in the αnμ channel with the
17.6-MeV D-state α-n relative motion based on ob-
servation (see Sec. III).

(iii) We calculate the quantities (a) and (b) by substituting
the obtained total wave function into the T -matrix
elements for (a) and (b) based on the Lippmann-
Schwinger equation [40] (see Secs. IV–VI).

FIG. 3. All sets of Jacobi coordinates in the dtμ system (c = 1,
2, and 3) and in the αnμ system (c = 4, 5, and 6).

The reliability of these calculations shall be carefully ex-
amined as follows: The fusion rate λf (the number of fusions
per second) is calculated in three different prescriptions:

(A) λf from the S matrix of the asymptotic amplitude
of the total wave function solved using the coupled-
channel Schrödinger equation (see Sec. III);

(B) λf from the T -matrix calculation of the reaction rates
mentioned in item (a) (see Sec. V);

(C) λf from the T -matrix calculation of the muon spectra
mentioned in item (b) (see Sec. VI).

If our total wave function is the exact rigorous solution of
the coupled-channel Schrödinger equation, the fusion rates
λf obtained by (A)–(C) should be equal according to the
Lippmann-Schwinger equation, which is equivalent to the
Schrödinger equation. However, since the function space em-
ployed in our total wave function is not complete, the resultant
λf are not equal, but they should be consistent with each other.
This check of λf is one of the highlights of the present paper.

The authors possess their own three methods to solve
the present coupled-channel three-body Schrödinger equa-
tion. Namely, the Kohn-type variational method for the
reactions between composite particles [41], the Gaussian ex-
pansion method (GEM) for few-body systems [42–44] here
for describing the (dtμ) molecule nonadiabatically [42], and
the continuum-discretized coupled-channel (CDCC) method
[45–47] here for discretizing the α-μ and α-n continuum
states.

This paper is organized as follows: In Sec. II we determine
all the nuclear interactions used in this work to reproduce
the observed S factor of the reaction (1.3) and the total
cross section of the α + n reaction. In Sec. III we solve
the coupled-channel Schrödinger equation for the reaction
(1.2). Section IV is devoted to providing an overview of the
T -matrix framework based on the Lippmann-Schwinger equa-
tion. In Sec. V, based on the T -matrix calculation, we derive
the reaction rates going to the α-μ bound and continuum
states. In Sec. VI, we also derive the momentum and energy
spectra of the muon ejected from the fusion reaction. Finally,
a summary is given in Sec. VII.
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II. NUCLEAR INTERACTIONS FOR LOW-ENERGY
d + t → α + n REACTION

To investigate the mechanism of the μCF reaction (1.2)
based on the dtμ- and αnμ-channel coupled three-body
model, it is necessary to use the nuclear interactions (the d-t
and α-n potentials and the dt-αn coupling potential) that re-
produce the observed low-energy astrophysical S factor of the
reaction (1.3) (cf. Fig. 4) as well as the total cross section of
the α + n reaction at the corresponding energies (cf. Fig. 5).

Considering that a similar framework for channel coupling
will also be used in the study of μCF reaction (1.2), we apply
the same coordinates r3 and r4 in Fig. 3 to the d-t and α-n
relative coordinates, respectively, in this section.

The total wave function of the system has spin-parity I =
3
2

+
in the energy region of the resonance and below. It is

known that the d-t channel has S wave and spin 3
2 and the

α-n channel has D wave with spin 1
2 coupled to I = 3

2
+

. Let
E denote the center-of-mass (c.m.) energy of the d-t relative
motion. The total wave function is written as

� 3
2 M (E ) = φ0(r3)χ 3

2 M (dt ) + [
ψ2(r4)χ 1

2
(αn)

]
3
2 M

= φ̄0(r3)

r3
Y00 (̂r3)χ 3

2 M (dt )

+ ψ̄2(r4)

r4

[
Y2 (̂r4)χ 1

2
(αn)

]
3
2 M, (2.1)

FIG. 4. Calculated and observed S factor S(E ) of the d + t →
α + n reaction with respect to the c.m. energy E of the incom-
ing d-t wave. The three curves for sets A, B, and C are obtained
using the nuclear interactions listed in Table I. The black curve
(EXP) is taken from a review paper [38]; it fits the literature
data using the function S(E ) = (26 − 0.361E + 248E 2)/{1 + [(E −
0.0479)/0.0392]2} MeV b (E in MeV). The calculated curves lie
within the error range of the data.

which has the asymptotic behavior

φ̄0(r3)
r3→∞−→ U (−)

0 (k3, r3) − S(dt )
0 U (+)

0 (k3, r3), (2.2)

ψ̄2(r4)
r4→∞−→ −

√
v3

v4
S(dt,αn)

2 U (+)
2 (k4, r4), (2.3)

U (±)
L (k, r) = GL(k, r) ∓ iFL(k, r), (2.4)

where k3 (k4) and v3 (v4) are the wave number and the velocity
of relative motion along r3 (r4), and FL and GL are the regular
and irregular Coulomb functions, respectively.

We assume that the S- and D-state wave functions are
coupled to each other by the following tensor force, which
is nonlocal between r3 and r4:

V (T)
dt,αn(r3, r4) = v(T)(r34, R34)[Y2 (̂r34)S2(dt, αn)]00, (2.5)

v(T)(r34, R34) = v
(T)
0 r2

34e−μr2
34−μ′R2

34 , (2.6)

where r34 = r3 − r4 and R34 = r3 + r4. In Eq. (2.5),
S2(dt, αn) is a spin-tensor operator composed of spins of dt
and αn pairs. However, it is not necessary to know the explicit
form of S2(dt, αn) in the present work, as will be explained
in the paragraph below Eq. (2.12).

The coupled-channel Schrödinger equation required to
solve φ0(r3) and ψ2(r4) is written as

(Hdt − E )φ0(r3)χ 3
2 M (dt )

= −V (T)
dt,αn

[
ψ2(r4)χ 1

2
(αn)

]
3
2 M

, (2.7a)

[Hαn − (E + Q)]
[
ψ2(r4)χ 1

2
(αn)

]
3
2 M

= −V (T)
αn,dtφ0(r3)χ 3

2 M (dt ), (2.7b)

FIG. 5. The total cross section σT (En) of the α + n reaction
based on the observation [39] and the present calculation with the
nuclear interactions set B (the red curve), where En is the neutron
incident energy. The dotted line denotes the background cross sec-
tion based on partial waves other than the D3/2+ wave [39,53]. The
calculated red curve for the I = 3

2

+
state is piled on the background

dotted line. The peak at En ≈ 22.1 MeV corresponds to the peak in
Fig. 4 for the d-t channel. The d-t threshold (E = 0) corresponds to
En = 22.03 MeV (at the red arrow) in the α-n channel.
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where Q = 17.589 MeV and

Hdt = Tr3 + V (N)
dt (r3) + V (C)

dt (r3), (2.8)

Hαn = Tr4 + V (N)
αn (r4), (2.9)

V (T)
dt,αn =

∫
dr4V

(T)
dt,αn(r3, r4). (2.10)

The coupled-channel Schrödinger equation (2.7) with the
scattering boundary conditions (2.2)–(2.4) can be accurately
solved by using the couple-channel Kohn-type variational
method for composite-particle reactions that was proposed
by one of the authors (M.K.) [41] and has been employed in
the literature in three-body transfer reactions, for example, in
Refs. [48–50].

When the matrix element of the tensor force is calculated,
the spin part S(T)

0 is factored out as follows:〈[
φ2(r4)χ 1

2
(αn)

]
3
2 M

∣∣V (T)
αn,dt |

[
φ0(r3)χ 3

2
(dt )

]
3
2 M〉

= v
(T)
0 S(T)

0 〈φ2m(r4)|r2
34e−μr2

34−μ′R2
34
∣∣[Y2 (̂r34)φ0(r3)

]
2m

〉
,

(2.11)

where

S(T)
0 = 1√

10

〈
χ 1

2 ms
(αn)

∣∣[S2(αn, dt )χ 3
2
(dt )

]
1
2 ms

〉
. (2.12)

The right-hand side (r.h.s.) of Eqs. (2.11) and (2.12) are in-
dependent of m and ms, respectively, and hence the left-hand
side (l.h.s.) of Eq. (2.11) does not depend on M. We verify,
in Secs. III, V, and VI, that the same v

(T)
0 S(T)

0 as above is
factored out when calculating the three-body matrix elements
of the tensor force and the T -matrix elements due to the same
force. Consequently, we can treat the tensor force consistently
throughout the present work without knowing the explicit
forms of S2(dt, αn) and S(T)

0 . It is sufficient to search for the
optimum value of the product v

(T)
0 S(T)

0 when producing the
observed data.

The nuclear d-t potential and accompanying Coulomb po-
tential are employed, respectively, in the form

V (N)
dt (r3) = V0/

{
1 + e(r3−R0 )/a

}
, (2.13)

V (C)
dt (r3) =

⎧⎨⎩ e2

Rc

(
3
2 − r2

3
2R2

c

)
(r3 < Rc = R0)

e2

r3
(r3 � Rc = R0).

(2.14)

As the α-n potential V (N)
αn (r4), we employ the Kanada-Kaneko

α-n potential [51,52] (see Fig. 6), which is derived based on
an equivalent local potential to the nonlocal kernel of the
resonating-group method for the α-n system and is often used
in the α-cluster-model calculations of light nuclei [52]. We
then fix the potential as V (N)

αn (r4) throughout this work.
As the nuclear interactions V (N)

dt (r3) and V (T)
dt,αn(r3, r4) in-

troduced above are phenomenological ones, it is desirable to
be shown that the calculated results for the reaction (1.2) are
independent of the interaction details as long as they repro-
duce the observed data in Figs. 4 and 5. Consequently, three
sets of the interactions, sets A, B, and C shown in Table I,
are examined. V (N)

dt (r3) is acquired from the real part of the
d-t optical potentials A, B, and C in Ref. [29] with a slight

FIG. 6. The nuclear d-t potential V (N)
dt (r) of set B (the dashed

curve) and the Kanada-Kaneko α-n potential V (N)
αn (r) [51,52] for the

even-parity case (the solid curve).

change in V0 while R0 and a0 are the same; in the study, the
fusion rate λf = (1.22–1.28)×1012 s−1 was derived by using
the optical-potential model. The potentials V (N)

dt (r3) of set B
and V (N)

αn (r4) are illustrated in Fig. 6.
The reaction cross section σdt→αn is given by

σdt→αn(E ) = 2I + 1

(2Id + 1)(2It + 1)

π

k2
3

∣∣S(dt,αn)
2

∣∣2, (2.15)

and the S factor S(E ) is derived from

σdt→αn(E ) = S(E )e−2πη(E )/E , (2.16)

where η(E ) is the Sommerfeld parameter.
The calculated S factor S(E ) using the nuclear interactions

of sets A, B, and C is illustrated in Fig. 4. The black curve
represents the observed data summarized in a review paper
[38]. All the calculated curves well reproduce the observed
data within the error range of the data that are not shown here.

We then discuss the observed total cross section σT (En)
of the α + n reaction for the I = 3

2
+

state [39] given in
Fig. 5. The nuclear interactions of set B is used. The data
should be explained by our calculation simultaneously as
the S factor S(E ) of the d + t → α + n reaction. The total
cross section can be expressed using our model as the sum
of elastic and reaction cross sections, with the spin factor

TABLE I. Parameter sets A, B, and C of the nuclear interactions
V (N)

dt (r3) in Eq. (2.13) and V (T)
dt,αn(r3, r4) in Eq. (2.5) for reproducing

the observed data in Figs. 4 and 5.

V0 R0 a0 v(T)
0 S(T)

0 μ μ′

(MeV) (fm) (fm) (MeV fm−5) (fm−2) (fm−2)

Set A −57.0 2.5 0.3 7.04 1/1.162 1/6.02

Set B −37.2 3.0 0.5 5.43 1/1.162 1/6.02

Set C −27.7 3.0 1.0 4.76 1/1.202 1/6.02
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(2I + 1)/[(2Iα + 1)(2In + 1)] = 2,

σT (En) = σel.(En) + σre.(En)= 4π

k2
4

[
1−Re

(
S(αn)

2

)]
, (2.17)

with

σel.(En) = 2π

k2
4

∣∣1 − S(αn)
2

∣∣2, σre.(En) = 2π

k2
4

∣∣S(αn,dt )
2

∣∣2,
(2.18)

and the unitarity |S(αn)
2 |2 + |S(αn,dt )

2 |2 = 1. The S-matrix ele-
ments are determined by the asymptotic behavior, similarly to
Eqs. (2.2) and (2.4),

φ̄0(r3)
r3→∞−→ −

√
v4

v3
S(αn,dt )

2 U (+)
0 (k3, r3), (2.19)

ψ̄2(r4)
r4→∞−→ U (−)

2 (k4, r4) − S(αn)
2 U (+)

2 (k4, r4). (2.20)

Recall that when tuning the potential parameters to repro-
duce the S factor S(E ) in Fig. 4, we fixed the α-n potential
V (N)

αn (r4) and did not include the observed α + n data for
fitting. Therefore, it is impressive to see in Fig. 5 that our
result (the red curve) agrees well with the data.

However, this is not unexpected because of the following
reason: The reaction d + t → α + n in Fig. 4 is known as
one of the most strongly channel-coupled reactions in nu-
clear physics [54,55]. Actually, at the peak, our calculation
shows |S(dt,αn)

2 | ≈ 1 and S(dt )
0 ≈ 0. Accordingly, we see that

at the peak of the α + n reaction, |S(αn,dt )
2 | = |S(dt,αn)

2 | ≈ 1

and S(αn)
2 ≈ 0 and hence σT (I = 3

2
+

) ≈ 4π/k2
4 = 0.19 b with

k4 = 0.824 fm−1. This is the peak value of σT (I = 3
2

+
) of the

calculation (observation) in Fig. 5 piled on the dotted back-
ground line. It is asserted that, even if we employ another α-n
potential instead of the above V (N)

αn (r4), the same situation will
be repeated as long as the observed data of the d + t → α + n
reaction are reproduced using the replaced α-n potential.

III. COUPLED-CHANNEL SCHRÖDINGER EQUATION
FOR dtμ FUSION REACTION

In this section, we formulate and solve the Schrödinger
equation for the fusion reaction (1.2) using the nuclear in-
teractions that were determined in the previous section and
satisfying the boundary conditions to have the muonic
molecule (dtμ)J=v=0 as the initial state and the outgoing wave
in the αnμ channel. We first divide the fusion decay process
into the following two steps:

Step 1. Construction of the nonadiabatic wave function,
denoted as �̊

(C)
0 (r3, R3) [cf. Eq. (3.15)], of the ini-

tial (dtμ)J=v=0 state using the Coulomb potentials
only [42]. The eigenenergy of the state, E00, is
given by

E00 = −0.003 030 MeV (3.1)

with respect to the d + t + μ threshold (cf. Fig. 2).
Step 2. Decay of the (dtμ)J=v=0 state (now a Fesh-

bach resonance after the nuclear interactions are

switched on) into the outgoing wave due to the nu-
clear d-t , α-n, and dt-αn interactions. The kinetic
energy of the outgoing wave with the wave number
k4 is given by

h̄2

2μr4

k2
4 = E00 + Q, Q = 17.589 MeV. (3.2)

By employing the Step 1 wave function �̊
(C)
0 (r3, R3) as

the fixed source term of the coupled-channel Schrödinger
equation, it becomes possible to impose the outgoing-wave
boundary condition upon the αnμ channel with no incoming
wave for the entire system. The symbol (̊) placed on the
top of �̊

(C)
0 (r3, R3) is to show “given” before solving the

Schrödinger equation of Step 2. �̊
(C)
0 (r3, R3) will be calcu-

lated in Sec. III A.
The total angular momentum of the entire system is 3/2

with its z-component M similarly to the dt-αn case in Sec. II B
(muon spin is neglected). We then describe the total wave
function in term of the three parts based on the aforemen-
tioned two steps as follows:

�
(+)
3
2 M

(E ) = �̊
(C)
3
2 M

(dtμ) + �
(N)
3
2 M

(dtμ) + �
(+)
3
2 M

(αnμ), (3.3)

with

�̊
(C)
3
2 M

(dtμ) = �̊
(C)
0 (r3, R3)χ 3

2 M (dt ), (3.4)

�
(N)
3
2 M

(dtμ) = �
(N)
0 (r3, R3)χ 3

2 M (dt ), (3.5)

�
(+)
3
2 M

(αnμ) = [
�

(+)
2 (r4, R4)χ 1

2
(αn)

]
3
2 M . (3.6)

Here, �̊
(C)
0 , �

(N)
0 , and �

(+)
2 are spatially S-, S-, and D-

wave functions, respectively. The spin functions χ 3
2 M (dt ) and

χ 1
2 M (αn) were introduced in Eq. (2.1). However, the explicit

form of the spin functions is not necessary because the phe-
nomenological spin-tensor operator S2(dt, αn) and its matrix
element S(T )

0 of Eq. (2.12) are used.
In Eq. (3.3), the first component �̊

(C)
3
2 M

(dtμ) becomes the

fixed source term of the coupled-channel Schrödinger equa-
tion. The second component �

(N)
3
2 M

(dtμ) is introduced to

describe the d-t relative motion due to the nuclear interac-
tions. The third term �

(+)
3
2 M

(αnμ) is for the outgoing αnμ

channel. We can then derive the fusion rate from the asymp-
totic behavior of �

(+)
3
2 M

(αnμ).

The coupled-channel Schrödinger equation required to
solve �

(N)
3
2 M

(dtμ) and �
(+)
3
2 M

(αnμ) can be written as

(Hdtμ − E00)
[
�̊

(C)
3
2 M

(dtμ) + �
(N)
3
2 M

(dtμ)
]

= −V (T)
dt,αn�

(+)
3
2 M

(αnμ), (3.7a)

[Hαnμ − (E00 + Q)]� (+)
3
2 M

(αnμ)

= −V (T)
αn,dt

[
�̊

(C)
3
2 M

(dtμ) + �
(N)
3
2 M

(dtμ)
]
, (3.7b)
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where

Hdtμ = Trc + TRc + V (C)
tμ (r1) + V (C)

dμ
(r2)

+V (C)
dt (r3) + V (N)

dt (r3), c = 1, 2, 3, (3.8)

Hαnμ = Tr4 + TR4 + V (N)
αn (r4) + V (C)

αμ (r5), (3.9)

V (T)
dt,αn =

∫
dr4V

(T)
dt,αn(r3, r4). (3.10)

An outline of the manner in which the three-body coupled-
channel Schrödinger equation (3.7) is solved is provided
based on the following scenario presented in (i) to (iv):

(i) The kinetic energy (17.6 MeV) of the α-n relative mo-
tion is much larger than the potential energy (on the
order of 10 keV) of V (C)

αμ (r5), which can be neglected;
the muon is located nearly around the (Heμ)1s orbital
with the Bohr radius ≈130 fm when the fusion takes
place in the dtμ molecule. Therefore, when solving
the Schrödinger equation (3.7), the Coulomb poten-
tial V (C)

αμ (r5) is omitted from Hαnμ (3.9) for the αnμ

channel. The contribution of the potential V (C)
αμ (r5) to

the fusion rate λf is afterwards estimated by calcu-
lating the related T -matrix elements, which are then
added to λf as a correction. A similar methodology
can be followed for the contribution to the energy
and momentum spectra of the emitted muons. Those
contributions are found to be small (cf. Sec. VI).

(ii) First, Eq. (3.7a) is solved by switching off the cou-
pling to the αnμ channel and treating �̊

(C)
0 (r3, R3)

as the given source term. The resulting nuclear-
correlated amplitude, say �̂

(N)
0 (r3, R3) [here, instead

of �
(N)
0 (r3, R3) in Eq. (3.5)], is found to be very

well separated in the form [cf. Eqs. (3.21)–(3.23) and
Figs. 7 and 8)

�̂
(N)
0 (r3, R3) = ϕ̂

(N)
0 (r3)ψ (N)

0 (R3). (3.11)

This separation can be attributed to the fact that
the nuclear d-t interaction is very short-ranged,
whereas the d-μ and t-μ Coulomb potentials are
quite long-ranged. Furthermore, the muon is lo-
cated far away approximately in the 1s orbital
around the 5He nucleus when the nuclear fu-
sion takes place. Therefore, the Coulomb potentials
do not affect the nuclear part of the d-t mo-
tion. Moreover, because

∫ |�̂(N)
0 (r3, R3)|2dr3dR3 �∫ |�̊(C)

0 (r3, R3)|2dr3dR3 = 1 (cf. Fig. 9), the renor-
malization of �̊

(C)
0 (r3, R3) due to �̂

(N)
0 (r3, R3) does

not need to be considered.
(iii) The short-range nuclear interaction V (T)

αn,dt (r4, r3) to

couple �
(N)
0 (r3, R3) and �

(+)
2 (r4, R4) does not affect

the muon motion ψ
(N)
0 (R3), and the α-μ Coulomb

potential is omitted.
Therefore, it is trivial that, after the dt-αn cou-

pling is switched on, �̂
(N)
0 (r3, R3) changes into

�
(N)
0 (r3, R3), taking the form

�
(N)
0 (r3, R3) = ϕ

(N)
0 (r3)ψ (N)

0 (R3), (3.12)

FIG. 7. Amplitude ψ
(N)
0 (R3) of the (dt )-μ relative motion in

the nuclear-correlated term �̂
(N)
0 (r3, R3) is represented by the solid

curve, whereas the dotted curve represents the wave function of the
(5Heμ)1s atom, ∝e−R3/a0 with a0 = 131 fm, normalized to ψ

(N)
0 (R3)

at R3 = 0 for comparison. The solid curve is well simulated by the
function ∝e−R3/a with a = 154 fm; this will be used in Eqs. (6.14)
and (6.15). Here, the nuclear interactions of set B is employed.

and the αnμ outgoing wave function is generated in
the form (note R4 = R3)

�
(+)
2m (r4, R4) = ϕ

(+)
2m (k4, r4)ψ (N)

0 (R4). (3.13)

(iv) The unknown functions ϕ
(N)
0 (r3) and ϕ

(+)
2m (k4, r4) are

determined by solving the Schrödinger equation (3.7)
without V (C)

αμ (r5) in a straightforward manner. The

FIG. 8. Amplitude of the d-t relative motion ϕ̂
(N)
0 (r3) in the

nuclear-part wave function �̂
(N)
0 (r3, R3) without the coupling of the

αnμ channel is illustrated by the solid curve. The curves have one
node at r3 ≈ 2 fm due to the orthogonality to the Pauli-forbidden
(spurious) 0s wave function for the 5He nucleus of the d-t potential
model. Here, the nuclear interactions of set B is employed.
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FIG. 9. Three types of the densities of the d-t relative motion
associated with r3, which are defined in Eqs. (3.32)–(3.34). The
dashed curve illustrates ρ̊ (C)(r3) multiplied by 100 for r3 < 10 fm,
whereas the entire behavior of ρ̊ (C)(r3) is given in the inserted figure.
The red curve shows ρ (N)(r3) for the nuclear part of the d-t relative
motion when the dtμ-αnμ coupling is switched on. The black solid
curve for ρ̂ (N)(r3) represents the case for which the dtμ-αnμ cou-
pling is switched off. We have

∫
ρ̊ (C)(r3)dr3 = 1 (〈�̊(C)

0 |�̊(C)
0 〉 = 1),∫

ρ (N)(r3)dr3 = 7.5×10−9 and
∫

ρ̂ (N)(r3)dr3 = 2.4×10−9. Here, the
nuclear interactions of set B is used.

fusion rate of the dtμ molecule is derived from the
asymptotic behavior of ϕ

(+)
2m (k4, r4) [cf. Eq. (3.25)].

A. Structure of �̊
(C)
3
2 M

(dtμ), �
(N)
3
2 M

(dtμ), and �
(+)
3
2 M

(αnμ)

First, we calculate the initial-state (dtμ) wave function
�̊

(C)
0 (r3, R3) of Eq. (3.4) and its energy E00 by solving the

Coulomb three-body Schrödinger equation

(
H0

dtμ − E00
)
�̊

(C)
0 (r3, R3) = 0, (3.14)

where H0
dtμ is given by Eq. (3.8) omitting V (N)

dt (r3). Since
we study fusion decay starting from one dtμ molecule, we
normalize �̊

(C)
0 as 〈�̊(C)

0 |�̊(C)
0 〉 = 1.

We solve Eq. (3.14) by using the Gaussian expansion
method (GEM). This method was proposed by one of the
present authors (M.K.) to accurately solve the dtμ molecule
[42] and has been applied to various few-body systems (cf. its
review papers [44,56–58]).

The Coulomb three-body wave function �̊
(C)
0 (r3, R3) is

described as a sum of the amplitudes of three rearrangement
channels c = 1, 2, 3 (cf. Fig. 3):

�̊
(C)
0 (r3, R3) = �

(1)
IM (r1, R1) + �

(2)
IM (r2, R2) + �

(3)
IM (r3, R3).

(3.15)

Each amplitude is expanded in terms of the Gaussian basis
functions of the Jacobi coordinates rc and Rc (c = 1–3):

�
(c)
IM (rc, Rc) =

∑
nclc,NcLc

A(c)
nclc,NcLc

[φnclc (rc)ψNcLc (Rc)]IM,

(3.16)

φnlm(r) = Nnl r
le−νnr2

Ylm (̂r), n = 1 − nmax, (3.17)

ψNLM (R) = NNLRLe−λN R2
YLM

(
R̂
)
, N = 1 − Nmax,

(3.18)

where Nnl and NNL are the normalization constants. The Gaus-
sian ranges are postulated to lie in geometric progression:

νn = 1/r2
n , rn = r1an−1, n = 1 − nmax, (3.19)

λN = 1/R2
N , RN = R1AN−1, N = 1 − Nmax. (3.20)

lc and Lc are restricted to 0 � lc � lmax and |I − lc| � Lc �
I + lc.

The eigenenergy E00 and coefficients A(c)
nclc,NcLc

are de-
termined by the Rayleigh-Ritz variational principle. In the
precise calculation [42] of the eigenenergies of the (dtμ)J,v

molecule, we took lmax = 4, but lmax = 1 is sufficient in
the present fusion reaction problem. The Gaussian-basis pa-
rameters employed are the same as those in Ref. [42].
Although the large-size calculation [42] of the J = v = 0 with
lmax = 4 gave an eigenenergy of −319.14 eV with respect
to the (tμ)1s + d threshold, the case of lmax = 1 results in
−319.12 eV, which is sufficient in the present reaction cal-
culations. We have E00 = −0.003 030 MeV, as mentioned in
Eq. (3.1) (cf. Fig. 2).

We then derive the nuclear-part amplitude in Eq. (3.11) for
the case of the dtμ-αnμ coupling switched off; namely, we
solve the linear equation

(Hdtμ − E00)�̂(N)
0 (r3, R3) = −(Hdtμ − E00)�̊(C)

0 (r3, R3),

(3.21)

where E00 and the source term �̊
(C)
0 (r3, R3) were given above.

�̂
(N)
0 (r3, R3) is expanded in terms of the Gaussian basis func-

tions of the c = 3 channel as in Eqs. (3.17)–(3.20); namely,
the Gaussian-range parameters with l = L = 0 lie in the geo-
metric progressions of (nmax, r1, rnmax ) = (20, 0.5 fm, 20 fm)
and (Nmax, R1, RNmax ) = (15, 10 fm, 1500 fm), which are suit-
able for correlating with the nuclear interactions. The bases
with l = L > 0 are not employed for the nuclear-interaction
region since they have negligible contributions.

The resulting �̂
(N)
0 (r3, R3) is found to be well expressed in

the separated form of Eq. (3.11) with

ψ
(N)
0 (R3) = �̂

(N)
0 (0, R3), (3.22)

ϕ̂
(N)
0 (r3) = �̂

(N)
0 (r3, 0)/�̂(N)

0 (0, 0). (3.23)

As the separation ambiguity [γ ϕ̂
(N)
0 (r3)][ 1

γ
ψ

(N)
0 (R3)] does not

affect the expression (3.28) because λf , γ = 1 is taken here.
ψ

(N)
0 (R4) and ϕ̂

(N)
0 (r3) are illustrated by the solid curves in

Figs. 7 and 8, respectively. The dotted curve in Fig. 7 is the
wave function of the (5Heμ)1s atom, normalized to ψ

(N)
0 (R3)

at R3 = 0 for comparison. The less-steep slope of the solid
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curve is due to that the charge density of the d-t pair along r3

spreads up to r3 ≈ 20 fm as shown in Fig. 8. The rms radius
〈R2

3〉1/2 of the solid- and dotted-curve wave functions in Fig. 7
are 260 and 227 fm, respectively.

Thus, we have reached a step closer to solving the coupled-
channel Schrödinger equation (3.7) with the Coulomb force
V (C)

αμ (r5) omitted. As shown in Eqs. (3.12) and (3.13), the

problem is deduced to solve the unknown functions ϕ
(N)
0 (r3)

and ϕ
(+)
2m (k4, r4). We expand ϕ

(N)
0 (r3) in terms of the Gaus-

sian basis functions in Eq. (3.17) with the parameters
(nmax, r1, rnmax ) = (20, 0.5 fm, 20 fm) as used in the case of
ϕ̂

(N)
0 (r3) in Eq. (3.23).

We rewrite ϕ
(+)
2m (k4, r4) as

ϕ
(+)
2m (k4, r4) = u(+)

2 (k4, r4)

r4
Y2m (̂r4) (3.24)

and impose the outgoing boundary condition as

u(+)
2 (k4, r4)

r4→∞−→ S2eik4r4 . (3.25)

The amplitude S2 of the outgoing wave (3.25) is slightly
different from the usual definition of S matrix in the scattering
with an incoming wave. In the present case, the dimension of
S2 is L1 owing to the dimension L−3 of the initial (dtμ) bound
state �̊

(C)
3
2 M

(dtμ) in Eq. (3.3).

The flux of the α-n relative motion at r4 → ∞ into the full
direction (4π sr) in a unit time is given as (note r̂4 = k̂4)

v4Nμ

∫ ∣∣S2
[
Y2 (̂k4)χ 1

2
(αn)

]
3
2

∣∣2dk̂4 = v4Nμ|S2|2, (3.26)

where v4 = h̄k/μr4 is the velocity of the α-n relative motion,
and Nμ is given by

Nμ =
∫ ∣∣ψ (N)

0 (R4)
∣∣2dR4. (3.27)

The right-hand side of Eq. (3.26) gives the fusion rate, namely,
the number of α-n pairs (number of muon) outgoing from one
(dtμ)J=v=0 molecule:

λf = v4Nμ|S2|2. (3.28)

B. Results

According to the above procedure, the coupled-channel
Schrödinger equation (3.7) with the outgoing boundary
condition (3.25) can be precisely solved by using the couple-
channel Kohn-type variational method for composite-particle
scattering [41], which was used in Sec. II.

The S matrix S2 in Eq. (3.25) is obtained as

S2 = (0.5934 + 0.1985i) fm. (3.29)

Therefore, using |S2|2 = 3.915×10−1 fm2, v4 =
6.50×1022 fm s−1 and Nμ = 4.045×10−11 fm−3 in Eq. (3.27),
the calculated fusion rate is given as

λf = 1.03×1012 s−1. (3.30)

This result is obtained by using the nuclear interaction set B.
Table II lists the fusion rates for three sets A, B, and C; the

TABLE II. Calculated fusion rate λf of (dtμ)J=v=0, Eq. (3.28),
using the nuclear-interaction parameter sets A, B, and C in Table I.

Set A Set B Set C

λf (s−1) 1.03×1012 1.03×1012 1.02×1012

rates imply that the present fusion-rate calculation is indepen-
dent of the details of the employed nuclear interactions that
reproduced the observed data in Figs. 4 and 5. Therefore, only
set B is used in Secs. V and VI.

A correction to λf owing to the α-μ Coulomb potential,
which is omitted when solving the Schrödinger equation, is
discussed in Sec. VI A.

The above value of λf in (3.30) supports the literature
results (1.0–1.3)×1012 s−1(cf. Table 8 in the μCF review
paper [5]) obtained in 1980s to 90’s by using the d-t optical-
potential model [29–31] and by the R-matrix method [32–37].

It is found that ϕ
(N)
0 (r3) is well simulated by

ϕ
(N)
0 (r3) � (1.67 + 0.59i )̂ϕ(N)

0 (r3). (3.31)

This enhancement in Eq. (3.31) by the dtμ-αnμ coupling will
play an important role in the analysis in Secs. V and VI with
the use of the T -matrix calculational method based on the
Lippmann-Schwinger equation to be introduced in Sec. IV.

Figure 9 illustrates the three types of densities of the d-t
relative motion along r3:

ρ (N)(r3) =
∫ ∣∣�(N)

0 (r3, R3)
∣∣2dR3, (3.32)

ρ̂ (N)(r3) =
∫ ∣∣�̂(N)

0 (r3, R3)
∣∣2dR3, (3.33)

ρ̊ (C)(r3) =
∫ ∣∣�̊(C)

0 (r3, R3)
∣∣2dR3, (3.34)

where the integration over the muon-coordinate R3 is per-
formed. In Fig. 9, ρ̊ (C)(r3) multiplied by 100 is illustrated
by the dashed curve for r3 < 10 fm, whereas the inserted
figure shows ρ̊ (C)(r3) for the entire region. The red curve gives
ρ (N)(r3) for the d-t relative motion when all the nuclear inter-
actions are employed. It should be emphasized that ρ̊ (C)(r3)
is significantly smaller than ρ (N)(r3) in the nuclear interaction
region. Therefore, �̊

(C)
0 (r3, R3) is expected to play a minor

role compared with �
(N)
0 (r3, R3) in the estimation of the α-μ

sticking and the ejected muon’s spectrum after the fusion. This
will be discussed in detail in Secs. V and VI.

IV. USE OF LIPPMANN-SCHWINGER EQUATION
FOR dtμ FUSION REACTION

A. T -matrix element

In this section, we propose the use of the Lippmann-
Schwinger equation [40] as another method for studying the
fusion reaction (1.2), in particular, to calculate the initial stick-
ing of a muon to an α particle and the momentum and energy
spectra of the emitted muon in Secs. V and VI, respectively.

Let us suppose that the reaction from a plane-wave initial
α-channel is outgoing to the final β channels assuming the
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following wave functions:

Total wave function: � (+)
α (Eα ),

Initial α-channel wave function: eiKα ·Rαφα (ξα ),

Asymptotic form of final β-channel wave function:

fβα (�β )
eiKβ Rβ

Rβ

φβ (ξβ ),

where φα (ξα ) and φβ (ξβ ) are orthonormalized intrinsic wave
functions of the α- and β-channels, respectively, and fβα (�β )
is the scattering amplitude to be determined.

One can calculate the transition matrix elements Tβα

from the well-known integral formula [40,59] based on the
Lippmann-Schwinger equation as

Tβα = 〈eiKβ ·Rβ φβ (ξβ )|Vβ |� (+)
α (Eα )〉, (4.1)

where Vβ is the interaction in the β channel. Using this Tβα ,
the β-channel asymptotic form of the total wave function
� (+)

α (Eα ) is written as

〈φβ (ξβ )|� (+)
α (Eα )〉 Rβ→∞−→ − μRβ

2π h̄2 Tβα

eiKβ Rβ

Rβ

, (4.2)

where μRβ
is the reduced mass associated with Rβ . Therefore,

we have

fβα (�β ) = − μRβ

2π h̄2 Tβα. (4.3)

The reaction cross section σβα is usually defined by the flux
of the outgoing wave with a velocity vβ (= h̄Kβ/μRβ

) into the
full direction (4π sr) in a unit time divided by the flux of the
incident wave (= vα ) as

σβα = vβ

vα

∫
| fβα (�β )|2d�β = vβ

vα

(
μRβ

2π h̄2

)2 ∫
|Tβα|2dK̂β.

(4.4)

The preceding expressions are exact provided that the total
wave function � (+)

α (Eα ) is rigorously exact. However, for
typical reaction calculations, � (+)

α (Eα ) in Eq. (4.1) is replaced
by an approximate wave function.

In the present fusion reaction (1.2), however, the initial
α-channel is not the plane wave eiKα ·Rαφα (ξα ), but the dtμ
bound state �̊

(C)
3
2 M

(dtμ) in Eq. (3.3). Therefore, in Eq. (4.4), we

omit the incoming-channel information and replace the total
wave function by our �

(+)
3
2 M

(E ) of Eq. (3.3) and introduce the

“reaction rate” rβα as

rβα = vβ

(
μRβ

2π h̄2

)2 ∫
|Tβα|2dK̂β. (4.5)

Since the initial-state wave function �̊
(C)
3
2 M

(dtμ) is nor-

malized to unity (namely, starting with one molecule), rβα

represents the number (probability) of a molecule decaying
into the β channel per unit time. Therefore, the sum of rβα

over β becomes the T -matrix expression of the fusion rate λf :

λf =
∑

β

rβα. (4.6)

Note that we call rβα the reaction rate and λf the fusion rate
throughout this work.

The definition of reaction rate rβα is applied to the study
of α-μ sticking in Sec. V and to the momentum and energy
spectra of the emitted muon in Sec. VI. In these applications,
the fusion rates λf are calculated using rβα; these two types of
additional calculations of the fusion rate should be consistent
with the value already obtained in Eq. (3.30), which will be a
significant test of the reliability of the present calculations.

B. Discretization of two-body continuum states

In the definition of the T matrix (4.1), φβ (ξβ ) are treated
as orthonormalized states. As the β-channel intrinsic states,
however, we will consider the α-μ continuum states associ-
ated with r5 (Sec. V) and the α-n continuum states associated
with r4 (Sec. VI).

It is difficult to directly treat the continuum states in
the T -matrix calculation. Instead, we discretize these states
and construct the orthonormalized discretized continuum
states, such as φ̃ilm(r3) using i to number the discretized
states; we then consider their convergence back to the con-
tinuum. This discretization is performed by employing the
continuum-discretized coupled-channel (CDCC) method that
was developed by one of the present authors (M.K.) and his
collaborators (for example, see review papers [45–47]) for the
study of projectile-breakup reactions. At present, this is one of
the standard methods for investigating various reactions using
light- and heavy-ion projectiles.

The discretization of continuum states is performed as fol-
lows: Let φlm(k, r) denote k-continuum states with angular
momentum lm that satisfies the Schrödinger equation[

− h̄2

2μr
∇2

r + V (r) − ε

]
φlm(k, r) = 0, ε = h̄2k2

2μ
. (4.7)

We confine the range of momentum as 0 < k < kN and di-
vide it based on the interval Δki = ki−1 − ki (i = 1, . . . , N );
usually, Δki is taken to be independent of i. We then take an
average of the continuum wave functions in each momentum
bin as

φ̃ilm(r) = 1√
Δki

∫ ki

ki−1

φlm(k, r)dk, i = 1, . . . , N, (4.8)

where the integration is performed numerically with the re-
quired accuracy.

Since φlm(k, r) is normalized as

〈φlm(k, r)|φlm(k′, r)〉 = δ(k − k′), (4.9)

the discretized-continuum wave functions φ̃ilm(r) have the
orthonormal relation

〈φ̃ilm(r)|φ̃i′lm(r)〉 = δii′ . (4.10)

Namely, φ̃ilm(r) becomes an L2-integrable function because of
the cancellation between the asymptotic (oscillating) ampli-
tudes of φlm(k, r) during the k integration. A typical example
of such a damping in the asymptotic region by averaging
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oscillating functions is as follows:∫ ki+Δki

ki

sinkrdk = 2sin Δki
2 r

r
sin

(
ki + Δki

2

)
r. (4.11)

Each φ̃ilm can be regarded as if it were a discrete excited-state
wave function with energy ε̃il given by the expectation value
of the Hamiltonian as

ε̃i = h̄2k̃2
i

2μ
, k̃2

i =
(

ki + ki−1

2

)2

+ Δk2
i

12
, (4.12)

Convergence of the calculated results with Δki → 0 is well
discussed in review papers of the CDCC method [45–47].
Therefore, we can treat the T -matrix elements of three-body
break-up systems similar to those of “two-body” systems with
many “discrete excited” states.

V. MUON STICKING TO α PARTICLE

After the fusion reaction (1.2) takes place, the emitted
muon sticks to the α particle or goes to the α-μ continuum
states. The probability that this muon sticks to the bound state
is referred to as the initial sticking probability, ω0

S , and is one
of the most important parameters for determining fusion effi-
ciency, since this muon is not available for further μCF cycles.
However, as summarized in a previously published review
paper [5], the α-μ sticking is not yet completely understood.

In this section, we study the muon sticking problem in a
much more sophisticated manner than that in the literature.
We derive, for the first time, absolute values of the reaction
(1.2) going to the α-μ bound and continuum states. This is
performed by calculating the T matrix (4.1) for the reaction
rate (4.5), in which the exact total wave function � (+)

α (Eα )
is approximated by �

(+)
3
2 M

(E ) of Eq. (3.3) that was already

obtained by solving the Schrödinger equation (3.7). In this
section, set B is employed for the nuclear interactions.

A. T -matrix calculation of fusion rate

We calculate the T matrix (4.1) for the reaction rate (4.5)
of the fusion reaction

(dtμ)J=v=0 → (αμ)il + n + 17.6 MeV,

↘ (αμ)nl + n + 17.6 MeV, (5.1)

where (αμ)nl denotes the nth (αμ) bound state with l
presented by φnlm(r5) with the eigenenergy εnl , whereas
(αμ)il describes the ith discretized α-μ continuum state that
is obtained by discretizing φlm(k, r5) into {̃εil , φ̃ilm(r5), i =
1, . . . , N} by performing Eqs. (4.8) and (4.12). We take
l = 0 to 25, N = 200, and the maximum momentum h̄kN =
10 MeV/c (εN � 487 keV) in this section.

In T matrix (4.1), we replace the exact total wave function
� (+)

α (Eα ) by �
(+)
3
2 M

(E ) that was given in Eq. (3.3) as the sum

of the three components. Correspondingly, we divide the T
matrix (4.1) into three parts employing channel c = 5 with

the Jacobi coordinates (r5, R5) as

T (C)
nl,mms

=
〈
eiKn·R5φnlm(r5)χ 1

2 ms
(n)
∣∣V (T)

αn,dt

∣∣�̊ (C)
3
2 M

(dtμ)
〉
,

T (N)
nl,mms

=
〈
eiKn·R5φnlm(r5)χ 1

2 ms
(n)
∣∣V (T)

αn,dt

∣∣� (N)
3
2 M

(dtμ)
〉
,

T (+)
nl,mms

=
〈
eiKn·R5φnlm(r5)χ 1

2 ms
(n)
∣∣Vαn

∣∣� (+)
3
2 M

(αnμ)
〉
, (5.2)

for the α-μ bound states φnlm(r5) with the energy εnl , and

T̃ (C)
il,mms

=
〈
eiK̃i ·R5 φ̃ilm(r5)χ 1

2 ms
(n)
∣∣V (T)

αn,dt

∣∣�̊ (C)
3
2 M

(dtμ)
〉
,

T̃ (N)
il,mms

=
〈
eiK̃i ·R5 φ̃ilm(r5)χ 1

2 ms
(n)
∣∣V (T)

αn,dt

∣∣� (N)
3
2 M

(dtμ)
〉
,

T̃ (+)
il,mms

=
〈
eiK̃i ·R5 φ̃ilm(r5)χ 1

2 ms
(n)
∣∣Vαn

∣∣� (+)
3
2 M

(αnμ)
〉
, (5.3)

for the α-μ discretized continuum states φ̃ilm(r5) with ε̃il .
In Eqs. (5.2) and (5.3), the plane-wave momenta Kn and K̃i

are determined, respectively, as

h̄2

2μR5

K2
n = E00 + Q − εnl , (5.4)

h̄2

2μR5

K̃2
i = E00 + Q − ε̃i, ε̃i = h̄2

2μr5

k̃2
i . (5.5)

The reaction rate (4.5) is written as

rnl = vnl

(
μR5

2π h̄2

)2 ∑
m,ms

∫ ∣∣T (C)
nl,mms

+ T (N)
nl,mms

+ T (+)
nl,mms

∣∣2dK̂n,

(5.6)

r̃il = vil

(
μR5

2π h̄2

)2 ∑
m,ms

∫ ∣∣T̃ (C)
il,mms

+ T̃ (N)
il,mms

+ T̃ (+)
il,mms

∣∣2d̂̃Ki,

(5.7)

respectively, for the bound state (nl ) and for the discretized
continuum state (il ). vil = h̄K̃i/μR5 is the velocity of the
(αμ)il -n relative motion associated with R5, and similarly for
vnl = h̄Kn/μR5 . Since the reaction rates rnl (̃ril ) do not depend
on M (z component of the total angular momentum 3/2), it is
not necessary to take the average with respect to M.

The components of the T -matrix elements are explicitly
expressed to identify the dominant contribution to the reaction
rates rnl (̃ril ). This is a new approach for analyzing the initial
sticking probability ω0

S in Sec. V B.
We then transform the summation

∑
i r̃il into the integra-

tion of a smooth continuum function rl (k) of k as

KN∑
i=1

r̃il =
KN∑
i=1

(
r̃il

Δk

)
Δk

Δk→0−→
∫ kN

0
rl (k)dk ≡ rcont.

l . (5.8)

A test of this procedure is well explained in the review papers
of the CDCC method [45–47].

The calculated reaction rates rl (k) are shown in Fig. 10 for
angular momenta l between α and μ. The dotted black curve
represents the summed rates

∑25
l=0 rl (k) multiplied by 1/5. We

see that the peak of the dotted curve is at h̄k ≈ 4.3 MeV/c
(ε ≈ 88 keV). This is understood as follows: With the kinetic
energy 3.5 MeV (with speed vα/c = 0.043), the α particle
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FIG. 10. Calculated reaction rates rl (k) going to the α-μ contin-
uum states with the angular momentum l defined in Eq. (5.8). The
dotted black curve represents

∑25
l=0 rl (k) multiplied by 1

5 . The rates
are given in units of s−1 (MeV/c)−1.

escapes from the muon cloud which has approximately the
(5Heμ)1s wave function of R4. Conversely, the muon cloud
is moving with respect to the α particle with the same speed
vα/c, namely, h̄k ≈ 4.3 MeV/c. The width of the peak of
the dotted curve corresponds to the width of the momentum
distribution within the muon cloud.

Furthermore, the reason why so many angular momenta
l appear in rl (k) in Fig. 11 is as follows: In the T -matrix
elements (5.3), the component “|V |�(dtμ)〉” is composed of

FIG. 11. Calculated reaction rates rbound
l (red circles) to the α-μ

bound states in Eq. (5.9) and rcont.
l (black circles) to the α-μ contin-

uum states in Eq. (5.8) with respect to the angular momentum l . They
are given in units of s−1.

TABLE III. Fusion rates λcont.
f and λbound

f of the reaction
(dtμ)J=v=0 → (αμ)cont. + n or (αμ)bound + n, respectively, and their
sum λf , defined by Eqs. (5.10)–(5.11) on the Jacobi-coordinate chan-
nel c = 5. Contribution to them from the full T matrix and from
the individual T -matrix elements T (C), T (N), and T (+) are listed.
The initial sticking probability ω0

S (= λbound
f /λf ) is given in the last

line. Since the contribution from T (C) and T (+) are minor, ω0
S is not

calculated there.

|T (C)+T (N)+T (+)|2 |T (C)|2 |T (N)|2 |T (+)|2

λf (s−1) 8.05×1011 3.70×108 7.73×1011 1.18×106

λcont.
f (s−1) 7.98×1011 3.67×108 7.66×1011 1.17×106

λbound
f (s−1) 6.90×109 3.14×106 6.63×109 9.41×103

ω0
S (%) 0.857 — (0.857) —

very-short-range functions of r4 and long-range functions of
R4. Therefore, many angular momenta l are necessary to ex-
pand this unique function of (r4, R4) in terms of the functions
eiK̃i ·R5 φ̃ilm(r5) on the different Jacobi coordinates (r5, R5).

For comparison with rcont.
l in Eq. (5.8), we introduce

rbound
l =

∑
n

rnl (5.9)

for the transition to all the α-μ bound states with l . Figure 11
illustrates how rbound

l and rcont.
l depend on the angular mo-

mentum l of 0 � l � 25. rbound
l are given by the red circles

and rcont.
l by the black ones. The rates rbound

l decrease quickly
with increasing l , whereas rcont.

l changes slowly with respect
to l . The ratio (≈1%) of the strength of the red-circle group to
that of the black-circle group is the essence of the initial α-μ
sticking probability, which is discussed in the next section.

Finally, we define the fusion rates to all the bound states
and to all the continuum states, respectively as

λbound
f =

5∑
l=0

rbound
l , λcont.

f =
25∑

l=0

rcont.
l (5.10)

and the sum of them as

λf = λbound
f + λcont.

f . (5.11)

This λf is the fusion rate of the reaction (1.2) defined by using
the T matrix in channel c = 5.

In Table III, the calculated results of λf , λbound
f , and λcont.

f
are listed together with the contributions from the individual
T -matrix elements T (C), T (N), and T (+). We see that the fusion
rate λf is obtained as

λf = 8.05×1011 s−1. (5.12)

We consider that this value is consistent with 1.03×1012 s−1

in Eq. (3.30) obtained by solving the couple-channel
Schrödinger equation with the outgoing wave in channel c =
4, taking into account the significant difference in the calcula-
tional methods and the fact that the c = 5 channel component
is not included in the total wave function �

(+)
3
2 M

(E ).

Another important result in Table III is that the contribution
to the fusion rates from T (C) is much smaller than that from
T (N); this was expected from Fig. 9 since ρ̊ (C)(r3) is much
smaller than ρ (N)(r3) in the nuclear interaction region. This
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will be referred to in the next section for the α-μ sticking
probability ω0

S .

B. Initial sticking probability ω0
S

The absolute values of the fusion rates λcont.
f and λbound

f
have been explicitly calculated in the present three-body
reaction calculation. This requires a change in the way of
discussing the α-μ sticking, as will be emphasized later.

Now it is possible to calculate the initial muon-sticking
probability by the definition

ω0
S = λbound

f

λbound
f + λcont.

f

(5.13)

that is based on the original idea for ω0
S [cf., for example,

Eq. (192) in Ref. [5] ], employing the nuclear interactions that
reproduce the observation quantities in Figs. 4 and 5.

Before discussing our calculation of ω0
S , we review the es-

sential point of previously reported studies on the α-μ sticking
probability referring to the review papers of μCF [4,5]. Since
the sudden approximation was used in the literature to define
ω0

S , we first derive the same representation of their ω0
S using

our precise framework. We start from our definition (5.13) and
make the following approximations (i) to (v):

(i) In the T -matrix elements (5.2) and (5.3), the αnμ

outgoing wave �
(+)
3
2 M

(αnμ) is excluded from the to-

tal wave function �
(+)
3
2 M

(E ) of (3.3). Omitting the

spin component, the wave function of (dtμ)J=v=0 is
represented by �

(dtμ)
0 (r3, R3), which was obtained,

for example in Ref. [29], by diagonalizing the dtμ
Hamiltonian (3.8). �

(dtμ)
0 (r3, R3) is almost the same

as �̊
(C)
0 (r3, R3) + �̂

(N)
0 (r3, R3) obtained using the lin-

ear equation (3.21) (cf. Fig. 9).
(ii) In Eqs. (5.2) and (5.3), the dt-αn transition interaction

(3.10), V (T)
αn,dt , is replaced as∫

dr3V
(T)

dt,αn(r3, r4) → Vδ

∫
dr3δ(r3)δ(r4), (5.14)

which is the essence of the sudden approximation.
(iii) The momentum Kn of the plane wave eiKn·R5 is fixed

to K given by h̄2K2/2μR5 = 17.589 MeV.
(iv) The T -matrix elements and the fusion rates are given

by

Tnlm = 〈eiK·R5φnlm(r5)|Vδ

∫
dr3δ(r3)δ(r4)

× ∣∣�(dtμ)
0 (r3, R3)

〉
r5,R5

,

= Vδ〈eiK·R5φnlm(r5)
∣∣δ(r4)�(dtμ)

0 (0, R4)
〉
r5,R5

,

= Vδ〈eiq·r5φnlm(r5)
∣∣�(dtμ)

0 (0, r5)
〉
r5
, (5.15)

λbound
f = v

(
μR5

2π h̄2

)2 ∑
nlm

|Tnlm|2, (5.16)

λf = v

(
μR5

2π h̄2

)2

V 2
δ

〈
�

(dtμ)
0 (0, r5)

∣∣�(dtμ)
0 (0, r5)

〉
r5
,

(5.17)

where q = [mμ/(mα + mμ)]K and v = h̄K/μR5 .
The completeness of the α-μ basis functions
{φnlm(r5), φlm(k, r5)} is used to derive λf . The use
of δ(r4) in Eq. (5.15) is based on the approximation
that the nuclear interactions can be regarded as a
contact interaction because the interaction range is
much smaller than the muonic molecular size. This
choice of the interaction, however, imposes an S wave
for the α-n relative motion denoted with r4, which
contradicts the observed fact of a D wave.

(v) Finally, the sticking probability ω0
S defined by (5.13)

is approximated by ω̂0
S as

ω̂0
S =

∑
nlm

∣∣〈eiq·r5φnlm(r5)
∣∣�(dtμ)

0 (0, r5)
〉
r5

∣∣2〈
�

(dtμ)
0 (0, r5)

∣∣�(dtμ)
0 (0, r5)

〉
r5

, (5.18)

wherein no calculation is performed on the absolute
values of λbound

f , λcont.
f , and λf , since the dt-αn cou-

pling interaction Vδ

∫
dr3δ(r3)δ(r4) is not appropriate

for the purpose.

We see that Eq. (5.18) is the same as the previous expres-
sion for ω0

S under the sudden approximation [for example, see
Eq. (207) of Ref. [5] and Eq. (36) of Ref. [4] ]. Most of the
literature calculations gave values in the region of

ω̂0
S � 0.88%–0.89% (5.19)

without nuclear d-t interactions (see the lines for “Theory:
Coulombic problem” in Table 10 of the μCF review paper
[5]). Similarly, with the nuclear d-t ,

ω̂0
S � 0.91%–0.93% (5.20)

were obtained by the optical-potential model [29,31] and the
R-matrix method [32–37]. [In Refs. [35–37], an internuclear
distance adt = 0.51 fm was taken in place of r3 = adt = 0 in
Eq. (5.18).] One of the present authors (M.K.) [29] partici-
pated in those calculations.

However, it should be noted that there is a serious problem
in the discussion of ω̂0

S in the case of (5.19) with the Coulomb
force only for �dtμ(r3, R3). This problem occurs because
attention was not paid to the absolute values of λbound

f and
λcont.

f . This is made clear in Table III for λbound
f and λcont.

f
together with their contributions from the three types of T
matrixes, namely, T (C), T (N), and T (+). The column |T (C)|2
is responsible for the calculation of (5.19). We see that the
contribution from T (C) to λcont.

f and λbound
f is much smaller

than that from T (N); this is known from Fig. 9 since ρ̊ (C)(r3) is
much smaller than ρ (N)(r3) in the nuclear-interaction region.

Therefore, we say that such a calculation of ω̂0
S using the

minor components of λcont.
f and λbound

f is not so meaningful
(although it is useful when comparing the accuracy of the
employed calculation methods with each other). In this sense,
we placed the symbol “—” in the column of |T (C)|2 in the last
line for ω0

S and similarly in the column of |T (+)|2. We also
note that the statement “the additional effect of the nuclear
force to the sticking probability” is not appropriate since T (N)

dominantly contributes to λf (Table III), not additionally.
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TABLE IV. The initial α-μ sticking probability ω0
S (%) of the

(dtμ)J=v=0 state together with the (αμ)nl components. The present
wave function includes the αnμ channel with D-wave α-n relative
motion. The last column is from our previous result [29] which em-
ployed the sudden approximation (5.18); the d-t nuclear interaction
was included but the αnμ channel was not considered.

J =v=0 Present Ref. [29]
�

(+)
3
2 M

(αnμ) α-nD wave No α-n wave

(sudden approx.)

λf (s−1) 8.05×1012

λbound
f (s−1) 6.90×1010

ω0
S (%) 0.857 0.9261

1s 0.6583 0.7141

2s 0.0950 0.1021

2p 0.0233 0.0248

3s 0.0289 0.0310

3p 0.0084 0.0089

3d 0.0002 0.0002

4s 0.0123 0.0132

4p 0.0038 0.0040

4d + 4 f 0.0001 0.0001

5s 0.0063 0.0068

All others 0.0204 0.0208

Our final result on the initial sticking probability is, as
shown in the full T -matrix column of Table III,

ω0
S = 0.857% (present), (5.21)

which is reduced by ≈7% from the value in (5.20). The
origin of this reduction will be discussed in the next-to-last
paragraph of Sec. V C.

Table IV lists the calculated result of the muon initial stick-
ing probability ω0

S (%) of the (dtμ)J=v=0 state together with
the (αμ)nl -components. The last column is shown, only for
reference, and is from our previous result in Ref. [29] based
on the sudden approximation (5.18), in which the d-t nuclear
interaction is included but the α-n channel is not considered.

C. Effective sticking probability ωeff
S

Finally, we discuss the effective sticking probability ωeff
S

that is defined as

ωeff
S = ω0

S (1 − R), (5.22)

where R is the muon reactivation coefficient that expresses the
probability that the muon is shaken off from the (αμ)nl state
during slowing down from the initial kinetic energy 3.5 MeV.
The effective sticking ωeff

S is the most crucial parameter in the
μCF cycle because it sets a limit on the maximum possible
fusion output per muon.

Regarding the sticking problem, we understand as follows
from Secs. 8.4–8.6 of the μCF review paper [5] (1992):
Using R = 0.287 (for a low density φ = 0.17) of Ref. [60],
the theoretical values of ω0

S � 0.91%–0.93% in (5.20) result
in ωeff

S ≈ 0.66%, which is 10% larger than the experimental

FIG. 12. Comparison of the calculated effective sticking prob-
ability ωeff

S with the observed values based on from the precise
high-density experiments EXP1 [7], EXP2 [7], and EXP3 [62] in
2001. CAL1 is given by the previous work with ω0

S ≈ 0.91%–0.93%
[29,31–37], and CAL2 is owing to the present result with ω0

S =
0.857% of (5.21), with the definition ωeff

S = ω0
S (1 − R) taking the

reactivation coefficient as R = 0.35 for high densities [60,63–65].

value ωeff
S = 0.59 ± 0.07% (φ = 0.175) at PSI [61] (1991).

Reference [5] states that the 10% difference is large enough
to motivate further studies, because it may be a signal that the
sticking problem is not yet completely understood.

In 2001, the final (last) precise experimental data on ωeff
S

were reported from RIKEN-RAL [7] and PSI [62] at high
densities (φ = 1.2–1.4). The results showed that

ωeff
S =

⎧⎨⎩0.532 ± 0.030% (Liquid [7])
0.515 ± 0.030% (Solid [7])
0.505 ± 0.029% (Liquid [65]).

(5.23)

We derive our ωeff
S with the use of ω0

S = 0.857% in (5.21)
and R = 0.35 [60,63–65] for high densities (density depen-
dence seems to be very small for φ ≈ 1.2–1.5 in Table VI of
Ref. [60]). We obtain

ωeff
S = 0.557%(present), (5.24)

which can explain the observed values illustrated in Fig. 12,
whereas the ω̂0

S ≈ 0.91%–0.93% by the previous work gives
ωeff

S ≈ 0.60%.
To consider the origin of the change to ω0

S = 0.857% in
(5.21) from 0.91%–0.93% in (5.20), we perform an additional
calculation in which the α-n outgoing D wave is replaced by
an S wave. This is performed only for a reference calculation
since this change contradicts the observation that the outgoing
α-n channel with Iπ = 3

2
+

has D-wave angular momentum.
We consider the following nonlocal central-force coupling

instead of the tensor force V (T)
dt,αn(r3, r4) in Eq. (2.5):

V (S)
dt,αn(r3, r4) = v

(S)
0 e−μr2

34−μ′R2
34 , (5.25)

with μ = 1/(1.0 fm)2, μ′ = 1/(6.0 fm)2, and v
(S)
0 = 0.81

MeV fm−3 with a slight change to V0 = −38.05 MeV in the
d-t potential. The quality of the fitting to the observed S
factors is almost the same as the red curve in Fig. 4.
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We have obtained λf = 8.87×1011 s−1 by solving
the coupled-channel Schrödinger equation (3.7) and λf =
7.56×1011 s−1 by calculating the T -matrix elements (5.2) and
(5.3); this result is not unreasonable. As for the α-μ sticking
problem, we see the change as follows:

λbound
f,S−wave = 7.09×109 s−1 → λbound

f,D−wave = 6.90×109 s−1,

λcont.
f,S−wave = 7.49×1011 s−1 → λcont.

f,D−wave =7.98×1011 s−1,

which gives the change of ω0
S = λbound

f /(λbound
f + λcont.

f ) from
0.938% (S wave) to 0.857% (D wave). Furthermore, we see
that the former number of ω0

S is close to that in (5.20) by the
sudden approximation.

In conclusion, we have much improved the sticking-
probability calculation by employing the D-wave α-n outgo-
ing channel with the nonlocal tensor-force dt-αn coupling and
by deriving the probability based on the absolute values of
the λbound

f and λcont.
f . The calculated result can reproduce the

experimental value as mentioned above.
For more progress in the theoretical study of the effective

sticking probability ωeff
S , development of studying the reac-

tivation coefficient R is expected. Our result on the absolute
values of the transition rates to the individual (αμ) bound and
continuum states in Table IV and Fig. 10 will be useful.

VI. MOMENTUM AND ENERGY SPECTRA
OF EMITTED MUON

In this section we calculate the momentum and energy
spectra (in absolute values) of the emitted muon after the
dtμ fusion (1.2). It is often stated that “10-keV” muons are
emitted during the reaction. However, it should be noted that
10 keV is the “average” of the muon kinetic energy in the
(Heμ)1s atom wherein the muon momentum distribution has
a long higher-momentum tail. If one considers the utilization
of such muons, for example, as the source of an ultraslow
negative muon beam [21–28], it is important to determine the
momentum and energy spectra of the released muon. In this
section, set B is employed for the nuclear interactions.

For simplicity in expression, in this section, we refer to K,
Ki, and K̃i as “muon momentum,” or, more precisely, it is the
momentum of the relative motion between the muon and the
α-n pair, and similarly for “muon energy” E , Ei, and Ẽi.

To derive the momentum (energy) spectra as a continuous
function of K (E ), precise discretization of the momentum
space both in the (αn)-μ and the α-n relative motions is
required while maintaining the energy conservation of the
energy-sum of such motions. Such a correlated discretization
is shown in Fig. 13. We start by assuming an upper limit of the
muon momentum KN at the top of the left end of the figure,
whereas the minimum momentum is K0 = 0. We then divide
the K space [K0, KN ] into N bins (Ki, i = 0 − N) with equal
intervals ΔK . Correspondingly, we divide the k space [kN , k0]
of the α-n relative motion on the right half of the figure into N
bins (ki, i = 0 − N) with the energy conservation kept as

Ei + εi = E00 + Q, Ei = h̄2

2μR4

K2
i , εi = h̄2

2μr4

k2
i , (6.1)

FIG. 13. Schematic illustration for discretization of the momen-
tum space [K0, KN ] of the (αn)-μ relative motion along R4 (left half)
and that of the α-n relative motion [kN , k0] along r4 (right half)
while maintaining Ei + εi = E00 + Q. The resulting discretized α-n
continuum states φ̃ilm(r4) (i = 1 − N ) are shown by the red lines and
the associated muon plane waves eiK̃i ·R4 are represented by the blue
lines in the left half. See text.

where Ki increases with increasing i, but ki decreases with
increasing i. The bin width ΔK = Ki − Ki−1 is constant in the
left-half muon momentum space, whereas Δki = |ki − ki−1|
on the right half depends on i. Now, φ̃ilm(r4) is constructed
using Eq. (4.8) but the k integration runs from ki until ki−1.
The energy ε̃i is given by Eq. (4.12). We take N = 200 as
the number of discretized momentum bins in Fig. 13, setting
h̄KN = 6.0 MeV/c (EN = 175 keV). This precise discretiza-
tion is necessary for deriving the continuous muon K (E )
spectrum.

A. T -matrix calculation of fusion rate

We calculate the muon spectra using the T -matrix pro-
cedure in Sec. VI A and the total wave function �

(+)
3
2 M

(E )

that was already obtained in Sec. III as the sum of three
components [cf. Eq. (3.3)]. Correspondingly, as in Sec. V A,
we divide the T matrix (4.1) into three components on the
Jacobi coordinates (r4, R4) in channel c = 4 (cf. Fig. 3) as

T (C)
il,mms

=
〈
eiK̃i ·R4 φ̃ilm(r4)χ 1

2 ms
(n)
∣∣V (T)

αn,dt

∣∣�̊ (C)
3
2 M

(dtμ)
〉
,

T (N)
il,mms

=
〈
eiK̃i ·R4 φ̃ilm(r4)χ 1

2 ms
(n)
∣∣V (T)

αn,dt

∣∣� (N)
3
2 M

(dtμ)
〉
,

T (+)
il,mms

=
〈
eiK̃i ·R4 φ̃ilm(r4)χ 1

2 ms
(n)
∣∣∣Vαμ

∣∣∣� (+)
3
2 M

(αnμ)
〉
, (6.2)

where φ̃ilm(r4) (i = 1 − N ) is the discretized α-n continuum
state with energy ε̃il , and eiK̃i ·R4 is the associated (αn)-μ plane
wave, satisfying the energy conservation

Ẽi + ε̃i = E00 + Q, i = 1 − N. (6.3)

The third component T (+) of (6.2) estimates the effect of the
Coulomb potential Vαμ(r5) on the T matrix. Here, we note that
it is not necessary to use the Coulomb wave function, instead
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TABLE V. Fusion rate λf (in units of s−1) calculated by (6.5) and
individual rates λ

(C)
f , λ

(N)
f , and λ

(+)
f by (6.6) on the Jacobi-coordinate

channel c = 4. The second line shows the type of T matrix used.

λf λ
(C)
f λ

(N)
f λ

(+)
f

|T (C)+T (N)+T (+)|2 |T (C)|2 |T (N)|2 |T (+)|2

1.15×1012 4.58×108 1.04×1012 1.80×1011

of the plane wave, in the bra-vector of the above T -matrix
elements; the reason is explained in the Appendix.

The reaction rate (4.5) for a muon emitted to the discretized
continuum state (αn)il -μ is written as

ril = vil

(
μR4

2π h̄2

)2 ∑
m,ms

∫ ∣∣T (C)
il,mms

+ T (N)
il,mms

+ T (+)
il,mms

∣∣2d̂̃Ki,

(6.4)

where vil = h̄K̃i/μR4 is the velocity of the (αn)il -μ relative
motion. Since ril does not depend on M (z component of the
total angular momentum 3/2), it is not necessary to take the
average with respect to M. The sum of the transition rates

λf =
∑

il

ril (6.5)

is the fusion rate of the reaction (1.2) using the T -matrix based
on channel c = 4. This λf is compared with the λf obtained in
Secs. II B and V C using different prescriptions.

To investigate the role of the three types of T -matrix ele-
ments in Eq. (6.4), we calculate the individual reaction rates

λ
(C)
f =

∑
il

r (C)
il , r (C)

il = vil

(
μR4

2π h̄2

)2 ∑
m,ms

∫ ∣∣T (C)
il,mms

∣∣2d̂̃Ki,

λ
(N)
f =

∑
il

r (N)
il , r (N)

il = vil

(
μR4

2π h̄2

)2 ∑
m,ms

∫ ∣∣T (N)
il,mms

∣∣2d̂̃Ki,

λ
(+)
f =

∑
il

r (+)
il , r (+)

il = vil

(
μR4

2π h̄2

)2 ∑
m,ms

∫ ∣∣T (+)
il,mms

∣∣2d̂̃Ki.

(6.6)

In the calculation of the λ
(C)
f and λ

(N)
f , the contribution

from the final states φ̃ilm(r4) with l �= 2 is negligible un-
der the dt-αn tensor coupling interaction. In λ

(+)
f for the

α-μ Coulomb force effect, the contribution from l > 4 is
negligible.

The calculated fusion rate λf and the individual contribu-
tions λ

(C)
f , λ

(N)
f , and λ

(+)
f are listed in Table V. Finally, we

obtain the full fusion rate as

λf = 1.15×1012 s−1. (6.7)

From λ
(C)
f and λ

(N)
f in Table V, it is observed that a fusion

reaction occurs mostly from �
(N)
3
2 M

(dtμ), whereas the contri-

bution from �̊
(C)
3
2 M

(dtμ) is minor; this was already expected

based on Fig. 9 since ρ̊ (C)(r3) is much smaller than ρ (N)(r3) in
the nuclear interaction region.

The term T (+) describes the effect of the Coulomb force
that acts on the α and μ in the outgoing αnμ channel. This
force was omitted when solving the Schrödinger equation
(3.7); however, this approximation is corrected via the T -
matrix calculation presented in this section. The correction
was obtained as λf − λ

(N)
f = 0.11×1012 s−1. Therefore, the

final result of the fusion rate in this study is expressed as
Eq. (6.7), 1.15×1012 s−1.

It should be noted that, in some cases, the calculation of
T -matrix elements for the Coulomb force between the contin-
uum states is hindered by a problem in the integration up to
the infinity. However, this issue is circumvented in the present
work since we employ the discretization of the continuum
states then smooth it as done in Eqs. (6.9) and (6.10).

Here, it is to be emphasized that both the solution of the
Schrödinger equation and the calculation of the T -matrix el-
ements are very accurate in the case wherein the Coulomb
force V (C)

αμ (r5) is omitted. The reason is as follows: As shown

in Sec. IV, provided that the total wave function �
(+)
3
2 M

(E )

obtained by solving the Schrödinger equation is exact, the
asymptotic behavior exhibited by the T -matrix calculation is
the same as that given by �

(+)
3
2 M

(E ). In the present case, the

fusion rate λf was obtained as 1.04×1012 s−1 by the T -matrix
calculation (cf. the case |T (C) + T (N)|2 � |T (N)|2 in Table V)
and as 1.03×1012 s−1 using the S matrix of �

(+)
3
2 M

(E ) [cf.

Eq. (3.30)].

B. Muon spectrum

The aim of this Sec. VI is to calculate the muon momentum
and energy spectra as continuous functions of K and the
kinetic energy E , respectively. Here, K (E ) is the momen-
tum (kinetic energy) of the (αn)-μ relative motion associated
with R4, whereas the muon momentum Kμ (kinetic energy
Eμ) measured from the center of mass of the αnμ system is
given by

Kμ = K, Eμ = γ E , (6.8)

with γ = (mα + mn)/(mα + mn + mμ) = 0.9779. We note
that the center of mass of the αnμ is almost at rest in the
laboratory system since the (dtμ) molecule is also almost at
rest at the fusion (1.2).

The momentum spectra r(K ) and r (N)(K ) can be obtained
by smoothing ril and r (N)

il , respectively, as

λf =
∑

il

( ril

ΔK

)
ΔK

ΔK→0−→
∫ KN

0
r(K )dK, (6.9)

λ
(N)
f =

∑
il

(
r (N)

il

ΔK

)
ΔK

ΔK→0−→
∫ KN

0
r (N)(K )dK, (6.10)

and similarly for r (C)(K ) and r (+)(K ).
The energy spectra r̄(E ) and r̄ (N)(E ) are derived, with the

use of E = h̄2K2/2μR4 , by

r̄(E )dE = r(K )dK, (6.11)

r̄ (N)(E )dE = r (N)(K )dK, (6.12)

and similarly for r̄ (C)(E ) and r̄ (+)(E ).
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FIG. 14. Momentum spectrum of the muon emitted by the dtμ
fusion. The red and black curves denote r(K ) and r (N)(K ) defined
in (6.9) and (6.10), respectively. The dotted curve shows r (N)

AD (K )
by the adiabatic approximation for r (N)(K ) (see text); r (N)

AD (K ) is
normalized to r (N)(K ) to have the same K-integrated values, λ

(N)
f =

1.04×1012 s−1.

The calculated momentum spectrum r(K ) is illustrated in
Fig. 14 by the red curve in units of s−1 (MeV/c)−1, whereas
r (N)(K ) is represented by the black curve. The energy spec-
trum r̄(E ) is shown in Fig. 15 by the red curve in units
of s−1 (keV)−1, whereas r̄ (N)(E ) is represented by the black
curve.

The difference between the red and black curves in Figs. 14
and 15 originates from the α-μ Coulomb-force contribution
T (+) in Eq. (6.4). The contribution from T (C) is minor. The
effect of T (+) is small at low energies but becomes relatively
large at high energies, which is seen in Fig. 16 for the log
scale, in the dotted green curve derived based on only |T (+)|2.

As shown in Fig. 15 and Table VI, the peak of the energy
spectrum is located at E = 1.1 keV both for r̄(E ) and r̄ (N)(E ).
Since the spectrum has a long high-energy tail, the average
energy is 9.5 keV (8.5 keV) for r̄(E ) [r̄ (N)(E )]. Therefore,
“muons with 1-keV peak energy and 10-keV average energy”

TABLE VI. Property of the energy spectrum of muon emitted
from (dtμ)J=v=0 → α + n + μ given by the present calculation,
r̄(E ) and r̄ (N)(E ), and the adiabatic approximation r̄ (N)

AD (E ) which
gives no absolute value (cf. Fig. 15).

Muon energy Peak Average Peak
spectrum energy energy strength

(keV) (keV) (s keV)−1

Present, r̄(E ) 1.1 9.5 1.60×1011

Present, r̄ (N)(E ) 1.1 8.5 1.47×1011

Adiabatic, r̄ (N)
AD (E ) 1.6 10.9

FIG. 15. Energy spectrum of the muon emitted during the dtμ
fusion. The red and black curves denote r̄(E ) and r̄ (N)(E ) defined in
(6.11) and (6.12), respectively. The peak position is at E = 1.1 keV
in the two cases. The dotted curve shows r̄ (N)

AD (E ) obtained using
the adiabatic approximation for r̄ (N)(E ) (see text). r̄ (N)

AD (E ) is nor-
malized to r̄ (N)(E ) to have the same E -integrated values, λ

(N)
f =

1.04×1012 s−1.

are emitted by the dtμ fusion. This result (more precisely,
Figs. 14 and 15) will be useful for the ongoing experimental
project to realize an ultraslow negative muon beam using the
μCF [21–26] (cf. Type II of Sec. I).

When the authors of Refs. [21–23] proposed the solid D-T
layer system that cools the incident muon beam by utilizing

FIG. 16. Energy spectrum of the muon emitted during the dtμ
fusion in log scale. The red and black curves denote r̄(E ) and r̄ (N)(E )
defined in (6.11) and (6.12), respectively. The dotted green curve
represents r̄ (+)(E ) when only |T (+)|2 is used.
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FIG. 17. Cumulative distribution function P(Ex ) associated with
the muon energy spectrum r̄(E ). P(Ex ) is defined by Eq. (6.13). The
red curve is derived by integrating r̄(E ) of Fig. 15, whereas the dotted
curve is given by using r̄ (N)

AD (E ) instead of r̄(E ).

the μCF, they used the calculated muon energy spectrum in
Fig. 1 of Ref. [66], wherein the spectrum was represented by
a shape that was set to unity at E = 0. However, the definition
of this energy spectrum is different from our energy spectrum
r̄(E ) (= 0 at E = 0) that is represented in absolute value
and

∫∞
0 r̄(E )dE gives the fusion rate λf = 1.15×1012 s−1.

The role of the α-μ Coulomb force, which was discussed
in Ref. [66] by using their convoy-muon approximation, is
properly included in our formulation via the T matrix T (+).

For the sake of the observation of the muon energy spec-
trum, we present a cumulative distribution function P(Ex)
associated with the muon energy spectrum r̄(E ) and defined
by

P(Ex) =
∫ EX

0 r̄(E )dE∫∞
0 r̄(E )dE

� 1, (6.13)

which is illustrated by the red curve in Fig. 17. The dotted
black curve is for P(Ex) calculated with the adiabatic approx-
imation, namely using r̄ (N)

AD (E ) instead of r̄(E ) in Eq. (6.13).
Here, absolute value of the energy spectrum is not concerned.

The red curve indicates that 24% of the emitted muon is
in the region 0 keV < E < 2 keV and 35% is in 0 keV <

E < 3 keV, and hence 11% is from 2 keV < E < 3 keV,
whereas the muon having 0 keV < E < 4.7 keV is 50% and
the one with 0 keV < E < 10 keV amounts to 75%. The
curve reaches 99% when Ex = 80 keV.

It is found that the “shape” of the two black curves for
r (N)(K ) and r̄ (N)(E ) in Figs. 14 and 15, respectively, are well
simulated by simple functions as

r (N)(K ) ∝ K2

(1 + K2a2)4 , (6.14)

r̄ (N)(E ) ∝ K

(1 + K2a2)4 , E = h̄2K2/2μR4 , (6.15)

with a = 154 fm (this number appeared in Fig. 7). The reason
is as follows: Using the property (3.11) of �̂

(N)
0 (r3, R3), we

can represent the T matrix (6.2), without the spin part, as

T (N)
il,m = 〈

φ̃ilm(r4)
∣∣V (T)(r4, r3)

∣∣ϕ(N)
0 (r3)

〉〈
eiK̃i·R4

∣∣ψ (N)
0 (R4)

〉
.

(6.16)

Taking EN ≈ 0.2 MeV � Q and the relations (cf. Fig. 13)

Q − EN � εi � Q (namely, εi ≈ Q, ki ≈ k0) (6.17)

together with Eq. (6.1), we can derive

Δki ≈ μr4

μR4

Ki

k0
ΔK ∝ Ki. (6.18)

We then obtain, in the interaction region of V (T)(r4, r3),

φ̃ilm(r4) = 1√
Δki

∫ ki−1

ki

φlm(k, r4)dk ≈
√

Δkiφlm(ki, r4)

≈
√

Δkiφlm(k0, r4) ∝ √
Kiφlm(k0, r4). (6.19)

Substituting this φ̃ilm(r4) into Eq. (6.16) and smoothing Ki

and K̃i to K, we finally obtain (note vil ∝ K̃i)

r (N)(K ) ∝ K2
∫ ∣∣〈eiK·R4

∣∣ψ (N)
0 (R4)

〉∣∣2dK̂. (6.20)

As shown in Fig. 7 (note R4 = R3), ψ
(N)
0 (R4) is well repre-

sented by ∝e−R4/a with a = 154 fm. Putting this function form
into Eq. (6.20), we immediately obtain Eq. (6.14), from which
we have Eq. (6.15) with Eq. (6.12). We found that both of the
simulated functions well reproduce the corresponding black
solid curves in Figs. 14 and 15 within the width of the curves
under the normalization at the peaks.

Finally, we discuss the muon momentum and energy spec-
tra if we take the adiabatic approximation for the d-t relative
motion just before the fusion reaction occurs. In this case, the
wave function of the (dt )-μ relative motion is simply given by
∝e−R4/a0 with a0 = 131 fm (namely, the 1s wave function of
the Heμ atom as seen in Fig. 7), which has the mean kinetic
energy of 10.9 keV. Based on the preceding discussion, the
shape of the muon momentum spectrum, r (N)

AD (K ), is given by
Eq. (6.14) with a = a0; similarly for the muon energy spec-
trum, r̄ (N)

AD (E ), given by Eq. (6.15). The spectra are illustrated
in Figs. 14 and 15 by the dotted curves that are normalized
as explained in the figure captions. It should be noted that, in
both figures, the peak of the dotted curve has higher energy
and broader width than the solid black curve (cf. Table VI).

VII. SUMMARY

Recently, the study of μCF has regained significant in-
terest owing to several new developments and applications
as explained in the introduction. In this regards, we have
comprehensively studied the fusion reaction (dtμ)J=v=0 →
α + μ + n and (αμ)nl + n, by employing the dtμ- and αnμ-
channel coupled three-body model. For the first time, we have
solved the coupled-channel Schrödinger equation (3.7) under
the boundary condition whereby the muonic molecular bound
state (dtμ)J=v=0 is the initial state and the outgoing wave in
the αnμ channel. The total wave function (3.3) is composed of
the three components �̊ (C)(dtμ) + � (N)(dtμ) + � (+)(αnμ).
Here, �̊ (C)(dtμ) is the given function employed to describe
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nonadiabatically the (dtμ)J=v=0 state with only the Coulomb
force, and is treated as the source term in the Schrödinger
equation. � (N)(dtμ) is the additional dtμ wave function re-
quired to correlate with the nuclear interactions. � (+)(αnμ)
is the outgoing wave function of the αnμ channel.

We take the d-t and α-n nuclear potentials together with the
nonlocal tensor force to couple the S-wave d-t channel and the
D-wave α-n channel. They were then determined to reproduce
the observed low-energy S factor of the reaction d + t →
α + n + 17.6 MeV (Fig. 4). Use of the determined inter-
actions simultaneously accounted for the α + n total cross
section (Fig. 5). Applying the obtained total wave function to
the T -matrix framework based on the Lippmann-Schwinger
equation, we have investigated the reaction rates going to the
individual α-μ bound states and the continuum states together
with the α-μ sticking probability. We also studied the momen-
tum and energy spectra of the muon emitted via the μCF.

The main conclusions are summarized as follows:

(i) From the calculated S matrix of the outgoing wave,
we have derived the fusion rate λf = 1.03×1012 s−1.
This is consistent with the previously obtained val-
ues, for example, by utilizing the d-t optical-potential
model [29,31] and the R-matrix method [32–37]. As
the nuclear interactions employed in this work are
phenomenological ones, we examined three different
interactions, sets A, B, and C (Table I). We have found
that the calculated fusion rates λf (Table II) are in-
dependent of the details of the employed interactions
that reproduced the observed data in Figs. 4 and 5. Set
B is employed for other calculations in this work.

(ii) By performing the T -matrix calculation on the
Jacobi-coordinate channel c = 5 (Fig. 3) with the
use of the total wave function obtained in the above
item (i), we have calculated the absolute values of
the reaction (1.2) going to the α-μ bound and con-
tinuum states. Using those values we obtain the
fusion rate λbound

f = 6.90×109 s−1 to the (αμ)bound +
n states and λcont.

f = 7.98×1011 s−1 to the (αμ)cont. +
n states, giving their sum as λf = 8.05×1011 s−1.
According to the original definition of sticking prob-
ability ω0

S = λbound
f /(λcont.

f + λbound
f ), we obtain ω0

S =
0.857%. This is smaller by ≈7% than the litera-
ture result ω0

S � 0.91%–0.93% based on the sudden
approximation including the nuclear d-t potential.
Here, it is to be emphasized that we have much
improved the sticking-probability calculation by em-
ploying the D-wave α-n outgoing channel with the
nonlocal tensor-force dt-αn coupling and by deriving
the probability based on the absolute values of the
λbound

f and λcont.
f .

(iii) The value of ω0
S = 0.857% corresponds, with the re-

activation coefficient R = 0.35 [60,63–65], to ωeff
S =

(1 − R)ω0
S = 0.557% which can explain the exper-

imental data (Fig. 12). For further progress on the
study of ωeff

S , development in the calculation of R
is expected; our result on the absolute values of the
transition rates to the individual α-μ bound and con-
tinuum states (Fig. 10 and Table IV) will be useful.

(iv) In the T -matrix calculation of λcont.
f , λbound

f , and their
sum λf , we have found that � (N)(dtμ) dominantly
contributed to the fusion rates, whereas �̊ (C)(dtμ)
and � (+)(αnμ) play a minor role (Table III). We then
conclude that the calculation of the initial sticking
ω0

S using �̊ (C)(dtμ) only is not meaningful and that
the statement “the additional effect of the nuclear
force to the sticking probability” is not appropriate
since � (N)(dtμ) dominantly contributes to the fusion
rate λf .

(v) We have performed another T -matrix calculation to
derive absolute values for the momentum and energy
spectra of the muon emitted during the fusion process
(Figs. 14 and 15). The most important conclusion is
that the “peak” energy of the muon energy spectrum
is 1.1 keV, whereas the “mean” energy is 9.5 keV
(Table VI) owing to the long higher-energy tail. This
result will be useful to the new ongoing experimental
project to realize an ultraslow negative muon beam
by utilizing the fusion reactions in the dtμ molecule
as well as in the ddμ one, and for a variety of appli-
cations, e.g., a scanning negative muon microscope
and an injection source for the muon collider. The
T -matrix calculation for the channel c = 4 (Fig. 3)
gives λf = 1.15×1012 s−1. We have examined the
fusion rate λf and concluded that this value with the
correction owing to the α-μ Coulomb force is the final
result in this study (Sec.VI A).

(vi) As mentioned above, we have reported three num-
bers for the fusion rate λf in items (i), (ii), and (v),
which are calculated using very different methods.
The values are consistent with each other but not
equal. This is because the solution of the Schrödinger
equation (3.7) used in the T -matrix calculations is
not exact. However, before this situation will be im-
proved, we shall proceed, in the next presentation, to
the detailed study of nuclear fusion reactions in the
ddμ molecule because of its urgent importance, as
indicated in (v).
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APPENDIX

In Sec. VI for the muon spectrum emitted by the μCF, we
employed the T matrix (6.2). Here, we explain that it is not
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necessary to use the Coulomb wave function, instead of the
plane wave, in the bra-vector of the T -matrix elements.

Taking the α-μ Coulomb potential into account, we exam-
ined the following T -matrix elements:

T (C)
iLl,Mmms

= 〈
filLM (K̃i, R4)φ̃ilm(r4)χ 1

2 ms
(n)
∣∣V (T)

αn,dt

∣∣�̊ (C)
3
2 M

(dtμ)
〉
,

T (N)
iLl,Mmms

= 〈
filLM (K̃i, R4)φ̃ilm(r4)χ 1

2 ms
(n)
∣∣V (T)

αn,dt

∣∣� (N)
3
2 M

(dtμ)
〉
,

T (+)
iLl,Mmms

= 〈 filLM (K̃i, R4)φ̃ilm(r4)χ 1
2 ms

(n)|Vαμ(R5) − Uil (R4)
∣∣

×�
(+)
3
2 M

(αnμ)
〉
, (A1)

where φ̃ilm(r4) (i = 1 − N ) is the discretized α-n contin-
uum state with energy ε̃il , and filLM (K̃i, R4) is the associated
(αn)-μ Coulomb wave function which satisfies the energy
conservation

Ẽi + ε̃i = E00 + Q, Ẽi = h̄2

2μR4

K̃2
i i = 1 − N. (A2)

filLM (K̃i, R4) is obtained as the regular solution of

(TR4 + Uil (R4) − Ẽi ) filLM (K̃i ) = 0, (A3)

where the potential Uil (R4) is derived by folding the α-μ
Coulomb potential into the density of the ith discretized state
φ̃ilm(r4) of the α-n momentum space.

Uil (R4) =
〈
φ̃ilm(r4)

∣∣∣∣−2e2

r5

∣∣∣∣φ̃ilm(r4)

〉
r4

. (A4)

To understand the behavior of filLM (K̃i, R4) and Uil (R4)
both in the asymptotic region and the muon’s amplitude
[ψ (N)

0 (R3,4)] region in the total wave function �
(+)
3
2 M

(E ), we

explain by using Fig. 13, the discretization of the K space of
the (αn)-μ motion and associated k space in the α-n motion.

Figure 18 illustrates the folding potentials for the muon
energies Ei = 1, 10, and 175 keV (i = 16, 49, and 200, respec-
tively); note that 1 keV almost corresponds to the peak energy

FIG. 18. Folding potentials Uil (R4) used to determine the
Coulomb wave function filLM (K̃i, R4) with the muon energy Ẽi. The
green, red, and blue curves illustrate Uil (R4) for the cases of l = 2
and i = 16, 49, and 200, which correspond to the muon energies
Ẽi ≈ 1, 10, and 175 keV, respectively. The black line denotes the
pure Coulomb potential −2e2/R4.

of the muon spectrum Fig. 15) and 10 keV is almost the mean
energy of the emitted muon. The potentials asymptotically
converge to the pure Coulomb potential −2e2/R4, but we note
that they are very shallow in the region of muon amplitude
ψ

(N)
0 (R3,4) (R4 � 103 fm) of the total wave function �

(+)
3
2 M

(E )

which appears as the ket wave function in the third member of
the T matrix (6.2).

If the discretization is made more precise by using larger
N values, the attractive folding potentials become shallower.
Therefore, in actual calculations in Secs. VI A and VI B, we
can neglect Uil (R4) and replace filLM (K̃i, R4) by the plane
wave eiK̃i ·R4 .
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