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Fusion reactions in collisions of neutron halo nuclei with heavy targets
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We investigate fusion reactions in collisions of neutron-halo projectiles with heavy targets. For this purpose,
we use a recently developed theoretical approach to calculate cross sections for fusion processes in 11Be + 209Bi,
6He + 209Bi, and 6He + 238U collisions and compare the results with the available data. The overall agreement
between theory and experiment is good. Comparing the cross sections with predictions of a barrier penetration
model that ignores the cluster structure of the projectile, we conclude that the fusion cross sections are suppressed
above the Coulomb barrier and enhanced below. Further, we find that the deviations from predictions of
the barrier penetration model depend exclusively on the breakup threshold of the projectile, increasing as it
decreases.
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I. INTRODUCTION

Nuclear reactions involving weakly bound nuclei became
one of the main research topics in low energy nuclear physics
[1–7]. The low binding energy affects elastic scattering and all
nuclear reactions. The influence is particularly strong in colli-
sions of projectiles far from the stability line, rich in neutrons
or protons, where the breakup threshold may be lower than
1 MeV.

Fusion reactions are affected in two ways. Owing to the
low breakup threshold, the nuclear density of the projectile
has a long tail, leading to a lower Coulomb barrier. This static
effect is expected to enhance fusion at all collision energies.
On the other hand, the low breakup threshold strongly affects
the reaction dynamics, leading to new fusion processes. First,
there is the usual fusion reaction, where the whole projec-
tile is directly absorbed by the target. This process, which
also takes place in collisions of tightly bound projectiles, is
usually called direct complete fusion (DCF). Owing to the
strong breakup couplings, the projectile tends to dissociate
into fragments as it approaches the target. This dynamic effect
of the low breakup threshold hinders DCF. On the other hand,
it gives rise to new fusion processes. If the target absorbs
one (or more) but not all fragments, the process is called
incomplete fusion (ICF). Of course, there is more than one ICF
process, according to which particular piece of the projectile
fuses with the target. Finally, there is the sequential complete
fusion (SCF), the process where all projectile fragments fuse
sequentially with the target. From the experimental point of
view, DCF cannot be distinguished from SCF. Only the cross
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section for the sum of the two processes, called complete
fusion (CF), can be measured.

Over the last few decades, considerable efforts have been
made to determine individual CF and ICF cross sections.
However, it remains a significant challenge for theorists and
experimentalists. Several theoretical approaches have been
proposed. Some are based on classical and semiclassical
physics [8–14], and some are based on quantum mechanics
within the continuum discretized coupled channel (CDCC)
approximation [15–23]. Other promising models [22,24,25]
are not yet in the stage of making realistic predictions for
fusion cross sections of weakly bound nuclei. Recently, Lei
and Moro [26] used an indirect method to determine the CF
cross section for the 6,7Li + 209Bi systems. They obtained
it by subtracting from the total reaction cross sections the
contributions of the elastic breakup, inelastic scattering, and
inclusive nonelastic breakup. The latter was evaluated using
the participant-spectator model of Ichimura, Austern, and
Vincent (IAV) [27], whereas the cross sections for the other
processes were obtained by coupled channel (CC) and CDCC
calculations.

In a recent paper, we proposed a new method to calculate
individual CF and ICF cross sections [20]. In this method, the
cross sections are calculated in two steps. In the first, DCF and
inclusive capture probabilities are evaluated through CDCC
calculations. Then, the CF and ICF cross sections are obtained
from these probabilities through intuitive assumptions based
on classical probability theory. This method has been used to
evaluate CF and ICF cross sections in collisions of the stable
weakly bound 7Li [21] and 6Li [28] projectiles with heavy
targets. The results were compared to the available data, and
the overall agreement between the theory and the experiment
was good.

Most experiments on the fusion of weakly bound projec-
tiles can only determine the total fusion (TF) cross sections,
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which corresponds to the sum of all fusion processes. How-
ever, there are CF and ICF data for a few particular systems.
Experimental CF and ICF cross sections have been measured
for the stable weakly bound projectiles 6,7Li [8,29–42] and
9Be [29,43–53] on several heavy and medium-heavy targets.
There are also fusion data for unstable weakly bound nuclei
exhibiting neutron haloes. However, the number of such ex-
periments is very small, owing to the difficulties in dealing
with radioactive beams.

The first experiment on fusion of the neutron-rich nuclei
was performed by Kolata et al. [54,55]. They measured fusion
cross section in collisions of 6He, a two-neutron halo nucleus,
with 209Bi at near-barrier energies. Comparing their data to the
prediction of a barrier penetration model, the authors reported
a large enhancement of fusion below the Coulomb barrier
and no appreciable effect (enhancement or suppression) above
it. However, it was pointed out that their findings resulted
from the particular barrier penetration model (BPM) used in
the comparison [56]. One would reach different conclusions
by using a BPM based on a nuclear potential of a system-
atic approach (like the double folding model with a standard
nucleon-nucleon interaction).

In 2000, Trotta et al. [57] measured the fusion cross
section for the 6He + 238U system. Their experiment cov-
ered a wide energy range, reaching several MeV below the
Coulomb barrier. They reported a huge enhancement at sub-
barrier energies. However, a subsequent experiment by Raabe
et al. [58], involving several authors of the previous paper,
pointed out that the cross section was contaminated by fission
following neutron transfer, which could be confused with
fusion-fission events. They estimated this spurious contribu-
tion and corrected the previous data. Then, the resulting CF
cross section showed no enhancement at sub-barrier energies.
Nevertheless, owing to the extremely large error bars of the
corrected data, one could not reach any conclusion about the
behavior of the CF cross section at sub-barrier energies.

Other experiments on the fusion of neutron-halo nuclei
were performed by Signorini et al. [59] and Penionzhkevich
et al. [60]. The former studied fusion of 11Be with 209Bi
at near-barrier energies. The latter measured fusion of the
6He + 197Au system at near-barrier energies. So far, the fusion
of neutron-rich nuclei still needs to be satisfactorily under-
stood. The behavior of the cross section at collision energies
below and above the Coulomb barrier needs to be better
established. Although it is a topic of great intrinsic interest,
and plays an essential role in nucleosynthesis [61], theoretical
and experimental works on this subject still need to be made
available. Thus, further studies are called for.

In the present paper, we investigate fusion reactions
of neutron-halo nuclei using the theoretical approach of
Refs. [20,21]. We perform calculations of fusion cross sec-
tions for the 11Be + 209Be, 6He + 209Be, and 6He + 238U
systems and compare the results to the available data. Con-
trasting the fusion cross sections to predictions of barrier
penetration models (BPM), we investigate the influence of the
low binding of the neutron halos.

The paper is organized as follows. In Sec. II, we briefly
describe our theoretical approach. In Sec. III, we calculate CF
and ICF cross sections for some systems and compare them

to experimental data. We also present a comparative study
of enhancement and suppression of fusion in the collisions
studied in this work, reducing the cross sections by the fusion
function method [56,62]. Finally, in Sec. IV, we present the
main conclusions of our work.

II. THE THEORETICAL APPROACH

To evaluate fusion cross sections in collisions of neutron
halo nuclei, we use the method of Refs. [20,21], as formulated
in Ref. [28]. This method is briefly described below.

We consider fusion reactions of weakly bound light pro-
jectiles in collisions with heavy targets. The present version
of our theory assumes that the projectile has a cluster struc-
ture formed by two fragments, c1 and c2. In a reference
frame fixed at the center of the target, the position vector of
the two fragments are r1 and r2, and the center of mass of the
projectile is represented by R. Denoting the relative vector
between the two fragments by r, we have the relations

r1 = R + A2

AP

r; r2 = R − A1

AP

r. (1)

Above, AP is the mass number of the projectile while A1 and
A2 are, respectively, the mass numbers of the fragments c1 and
c2 (AP = A1 + A2).

Neglecting target excitations, the collision is governed by
the Hamiltonian

H(R, r) = h(r) + T̂R + U (R, r), (2)

where h(r) is the intrinsic Hamiltonian of the projectile within
the cluster model, T̂R is the kinetic energy operator of the
projectile-target relative motion, and

U (R, r) = V (R, r) − i W (R, r) (3)

is the complex potential that accounts for the collision part-
ners’ whole interaction.

The total wave function of the system for a collision with
energy E , � (+) (R, r), satisfies the Schrödinger equation

H(R, r) � (+) (R, r) = E � (+) (R, r). (4)

Usually, this equation is solved by the coupled channel
method. However, collisions of weakly bound nuclei are more
complicated. The difficulty is that they are strongly influenced
by the continuum space of the projectile (breakup channels),
leading to an infinite number of coupled equations. This prob-
lem can be handled by the CDCC method [63–65], in which
the continuum is approximated by a finite set of wave func-
tions. In the present paper, these functions are wave packets
(bins) generated by scattering states in a c1 − c2 collision.
With the discretization of the continuum, one gets a finite
number of coupled equations, as in a standard coupled channel
problem.

The total wave function of the system can be split into its
bound (B) and continuum discretized (C) components

� (+) (R, r) = �B(R, r) + �C(R, r), (5)
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and one can carry out the channel expansions

�B(R, r) =
NB−1∑
n=0

ψn(R) ⊗ φn(r), (6)

�C(R, r) =
N−1∑
n=NB

ψn(R) ⊗ φn(r). (7)

Above, NB and NC are, respectively, the numbers of bound and
unbound (breakup) channels in the expansions, N = NB + NC

is the dimension of the coupled channel space, and φn are
the eigenstates of h. φ0 is the ground state of the projec-
tile, φn=1,...,NB−1 are excited bound states and φn=NB,...,N−1 are
CDCC bins.

Inserting the above expansion into Eq. (4) and taking the
scalar product with each of the intrinsic states, one gets a set
of coupled equations that can be solved by standard methods
(details can be found in Ref. [20]). We performed the numeri-
cal calculations using the FRESCO code [66].

A. The projectile-target interaction

The real potential in Eq. (3) is given by the sum

V (R, r) = V (1)(r1 ) + V (2)(r2 ), (8)

where V (i) stands for the interaction between fragment ci and
the target. The expectation value of V (R, r) with respect to
the ground state of the projectile

V 00(R) =
∫

d3r|φ0(r)|2 V (R, r), (9)

plays the role of the real part of the optical potential in the
elastic channel. On the other hand, the off-diagonal matrix
elements of V account for the couplings between the channels
included in the expansions of Eqs. (6) and (7). Throughout this
paper, we use the São Paulo potential (SPP) [67,68] for the
nuclear interactions between the two clusters and the target
(V (1) and V (2)).

If the off-diagonal matrix elements of the potential are
neglected, the CDCC equations reduce to a one-channel prob-
lem. In this case, the real part of the optical potential is given
by Eq. (9). Owing to the long tail of φ0(r), the corresponding
Coulomb barrier is lower than the one associated with the SPP
for the projectile-target system neglecting the cluster structure
of the projectile, V PT(R). The barriers for the two potentials are
denoted respectively by V 00

B and V PT
B . This feature is illustrated

in Table I, which shows the barrier parameters of the two
potentials for the systems studied in the present work. The
barrier lowering is a static effect of the low breakup threshold,
which enhances the CF cross section in the whole energy
interval. It competes with the suppression arising from the
breakup couplings. A detailed study of these effects will be
presented in Sec. III D.

The choice of W (R, r) is more complicated. First, one
should keep in mind that it is introduced to simulate the influ-
ence of fusion processes on the channels explicitly included
in the calculations. Thus, it must be strong in the inner region
of the Coulomb barriers but negligible elsewhere. Further,
when acting on unbound channels, it should allow calculating

TABLE I. Barrier parameters for the potentials V 00(R) and
V PT(R) for the systems studies in this work. The table shows also
the barrier lowering, �VB, arising from the low breakup threshold of
each system.

target 6He + 209Bi 6Li + 209B 6He + 238U 11Be + 209Bi

R00
B 12.0 11.8 12.3 12.0

V 00
B 18.6 28.2 20.1 36.3

h̄ω00 3.6 4.4 3.9 3.7
RPT

B 11.6 11.3 11.9 11.8
V PT

B 19.4 29.8 21.0 38.2
h̄ωPT 4.0 4.8 4.3 4.1
�VB 0.8 1.6 0.9 1.9

ICF cross sections. For this purpose, it must account for the
absorption of each fragment individually. This condition is
satisfied by an imaginary potential of the form

W (R, r) = W (1)(r1 ) + W (2)(r2 ), (10)

where W (i) are strong short-range potentials. In our calcula-
tions they are given by the Woods-Saxon functions

W (1)(ri) = W0

1 + exp [(ri − Rw)/aw]
, (11)

where Rw = rw [A1/3

i + A1/3
T ] with the parameters W0 =

50 MeV, rw = 1.0 fm, and aw = 0.2 fm.
However, using this imaginary potential in the elastic chan-

nel leads to the wrong physics [28]. This becomes clear in
a simplified picture, where one neglects all couplings. Then,
one is left with a one-channel calculation with the optical
potential given by the expectation value of Eq. (3) with respect
to the g.s. of the projectile, V 00(R) − i W 00(R). Owing to the
extended tail of φ0(r) (due to the low breakup threshold),
W 00(R) has a very long range, leading to strong absorption
at large distances. Consequently, the fusion cross section at
sub-barrier energies, arises exclusively from the action W 00

outside the Coulomb barrier [28]. Therefore, the absorption
cross section obtained this way cannot be associated with the
fusion process. For this reason, W 00(R) cannot be used to
account for fusion through bound channels. Then, for these
channels, we replace the potential of Eqs. (10 )–(11) by

W (R, r) ≡ W PT(R) = W0

1 + exp [(R − Rw)/aw]
, (12)

which is diagonal in channel space. The parameters rw and aw

are the same as in Eq. (11), but here we use W0 = 100 MeV
[to keep the depth of W 00(R)] and Rw = rw [A1/3

P + A1/3
T ]. This

potential leads to strong absorption in the inner region of
the barrier, but it is negligible around the barrier radius and
beyond it.

B. The fusion cross sections

The method of Refs. [20,21,28] assumes that bound chan-
nels contribute exclusively to DCF whereas unbound channels
contribute to fusion processes following breakup. That is,
ICF1, ICF2, and SCF. Using a standard expression for
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absorption cross sections [69], one obtains [28]

σDCF = 1

|A|2

K

E
〈�B|W PT|�B〉, (13)

σ (1)
F = 1

|A|2

K

E
〈�C|W (1)|�C〉, (14)

σ (2)
F = 1

|A|2

K

E
〈�C|W (2)|�C〉, (15)

where K is the wave number corresponding to the energy E ,
and A is the normalization constant of the scattering wave
function. Above, σDCF is the cross section for DCF, and the
other two are inclusive cross sections to capture one of the
fragments. That is, cross sections for the fusion of one frag-
ment with the target, independently of what happens to the
other.

Note that Eqs. (13), (14), and (15) involve off-diagonal
matrix-elements of the imaginary potentials, but only within
the subspace associated with the cross section. That is, B in
the case of σDCF, and C in the cases of σ (1)

F and σ (2)
F . This can be

seen more clearly if one replaces �B and �C by the channel
expansions of Eqs. (6) and (7). On the other hand, these
expressions do not include matrix elements between channels
in different subspaces. The theoretical model assumes that
matrix elements of the imaginary potentials between channels
in different subspaces are negligible [20].

By carrying out angular momentum projections, the above
expressions can be put in the form

σDCF = π

K2

∑
J

(2J + 1) PDCF(J ), (16)

σ (1)
F = π

K2

∑
J

(2J + 1) P (1)(J ), (17)

σ (2)
F = π

K2

∑
J

(2J + 1) P (2)(J ), (18)

where PDCF(J ), P (1)(J ), and P (2)(J ) are, respectively, the prob-
abilities of DCF, and of the inclusive captures of c1 and c2, in
a collision with total angular momentum J . Expressions for
these probabilities can be found in the Appendix of Ref. [21].

We remark that the above expressions are based on full
quantum mechanics within the CDCC approximation.

CF and ICF

The fusion cross sections of Eqs. (16)–(18) alone are not
very useful since they cannot be directly compared to the CF
and ICF data when they are available. Experimental CF cross
sections are sums of the DCF and SCF, and experimental ICF
cross sections correspond to exclusive events where one of
the fragments is captured by the target while the other is not.
Then, to make predictions of observable cross sections, one
has to make further assumptions.

We use classical probability theory to relate the cross
sections of Eqs. (16)–(18) to the observed CF, ICF1, and ICF2
cross sections. Following Ref. [28], the ICF1, ICF2, and SCF
probabilities are related to the probabilities of Eqs. (16)–(18)

through the equations

P ICF1(J ) = P (1)(J ) × [1 − P (2)(J )], (19)

P ICF2(J ) = P (2)(J ) × [1 − P (1)(J )], (20)

PSCF(J ) = P (1)(J ) × P (2)(J ), (21)

and the corresponding cross sections are

σSCF = π

K2

∑
J

(2J + 1)PSCF(J ), (22)

σICF1 = π

K2

∑
J

(2J + 1)P ICF1(J ), (23)

σICF2 = π

K2

∑
J

(2J + 1)P ICF2(J ). (24)

Then, one gets the observed cross sections

σCF = σDCF + σSCF, (25)

σICF = σICF1 + σICF2, (26)

σTF = σCF + σICF. (27)

C. Fusion functions

In Sec. III, we will use the theory of the previous sec-
tion to calculate fusion cross sections for different systems
attempting to find general trends of the fusion processes.
However, comparisons of cross sections for different systems
are only meaningful if one first eliminates the influence of
trivial properties of the system, like the height and radius of
the Coulomb barrier. This can be achieved by reducing the
fusion cross sections (a discussion of the reduction methods
available in the literature can be found in Ref. [70]). We use
the fusion function (FF) reduction method [56,62], which is
briefly described below. In this method, the collision energy
and the cross section are respectively transformed into the
dimensionless variables x and F (x), according to the relations

x = Ec.m. − VB

h̄ω
and F (x) = 2Ec.m.

h̄ωR2
B

σ. (28)

The system dependence of the cross section is completely
eliminated if it can be approximated by the Wong formula [71]

σ (W)
F = R2

B

h̄ω

2E
ln

[
1 + exp

{
2π (E − VB)

h̄ω

}]
. (29)

In this case, inserting this expression into Eq. (28), one gets
the universal fusion function (UFF)

F0(x) = ln [1 + exp(2πx)]. (30)

In typical situations, the fusion cross section is influenced by
the intrinsic structure of the collision partners, so the Wong
formula cannot approximate it. Then the corresponding fusion
function deviates from the UFF. In this way, F0(x) can be
considered a benchmark to assess the influence of particular
nuclear properties. It is well known that fusion functions asso-
ciated with the CF of weakly bound systems at above-barrier
energies are suppressed concerning the UFF (for a detailed
discussion, see, e.g., Ref. [4]). Usually, this effect is measured
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by a suppression factor, which is related to the strength of the
breakup couplings.

However, one should keep in mind that the fusion function
method is based on the assumption that the Wong formula
(σW) is a good approximation to the BPM cross section (σBPM).
This approximation is very good for heavy systems where
ZP ZT > 500 (see Ref. [56]). For lighter systems, it may over-
estimate the BPM cross section at sub-barrier energies badly.
Nevertheless, this problem can be fixed if one replaces the
fusion functions with their renormalized versions, given by
the relation [56,62]

F (x) = F (x) × σW

σBPM

. (31)

For the systems studied in the present work, the products
of atomic numbers are in the range 332 � ZP ZT � 166. Thus,
the comparisons of Sec. III D must be based on the renormal-
ized fusion function of Eq. (31).

III. APPLICATIONS

Now we use the theory of the previous section to study
collisions of the one-neutron halo nucleus 11Be and the
two-neutron halo nucleus 6He. We consider the systems:
11Be + 209Bi, 6He + 209Bi, and 6He + 238U. As mentioned
in the introduction, there are also available data for the
6He + 197Au system [60]. However, in this experiment, the
error bars associated with the collision energies and the cross
sections are extremely large. Then, comparing our model’s
predictions with this data set would lead to no reliable con-
clusion. For this reason, we will not consider this system in
the present paper.

In comparing theoretical and experimental CF cross
sections, one should keep in mind that theorists and exper-
imentalists may adopt different definitions of CF. From the
theoretical point of view, CF is the process where the whole
projectile (all nucleons) fuses with the target. From the ex-
perimental point of view, any process where the full charge
of the projectile is captured by the target, independently of
what happens to its neutrons, is frequently considered CF. The
two definitions coincide when the projectile breaks up into
two charged fragments, like 6Li (6Li → 4He + 2H). How-
ever, they differ in collisions of neutron halo nuclei, like 6He
(6He → 4He +2n). In this case, only the 4He fragment is
charged. Then, the CF data correspond to 6He fusion but it
may also have contributions from the capture of the 4He frag-
ment following the breakup. In such cases, the experimental
fusion data should be compared with the sum of the theoretical
CF and ICF2 cross sections.

A. 11Be + 209Bi

1. Intrinsic states and continuum discretization
11Be is a weakly bound nucleus with cluster configuration.

It is formed by a 10Be core (c2) surrounded by a halo of one
neutron (c1) bound by 0.5 MeV. Owing to the low binding,
collisions of 11Be are strongly influenced by the breakup
channel (11Be → 10Be + n). From the theoretical point of

view, 11Be + 209Bi scattering can be treated by the three-body
CDCC method [63–65].

The relative c1 − c2 motion is governed by the intrinsic
Hamiltonian

h(r) = − h̄2

2μ12

∇2
r + v12(r), (32)

where μ12 = m0 A1A2/(A1 + A2 ), with A1 and A2 standing for
the mass numbers of c1 and c2 (A1 = 1 and A2 = 10 in the
present case), and m0 is the nucleon mass. In Eq. (32), v12(r)
is the interaction between the two clusters, which is parame-
terized by a Woods-Saxon function and its derivative (for the
spin-orbit term).

As is frequently done in CDCC calculations, different pa-
rameters were used to describe bound and unbound (CDCC
bins) states of the projectile. We have adopted the parameters
of di Pietro et al. [72] based on the paper of Capel et al.
[73]. The radius and diffusivity parameters and the strength
of the spin-orbit term were fixed. The depth of the volumetric
part of the potential for even parity was adjusted to give
the correct binding energy (BE) of the ground state of this
nucleus. This potential also correctly describes the resonant
state (Jπ = 5/2+, εres = 1.28 MeV, 
res = 100 keV).

Our CDCC calculations included bins with orbital angular
momenta up to lmax = 4h̄, and we took into account cou-
pling matrix elements with multipolarities up to λmax = 5.
The continuum was truncated at the energy εmax � 8 MeV.
For nonresonant angular momenta (l 	= 2), we used four bins
with the constant width, �ε = 2 MeV. For l = 2, we used a
sharper mesh in the resonance region. Below the resonance
energy, we set two bins of 0.5 MeV (from 0 to 1.0 MeV).
These bins were followed by a bin of 0.4 MeV containing the
resonance energy, going from 1.0 to 1.4 MeV. The remaining
part of the [0–8] MeV interval was covered by five bins of
equal widths (�ε ≈ 1.3 MeV). The continuum discretization
described above leads to very good convergence of the cal-
culated fusion cross sections. We point out that continuum
discretization in the presence of sharp resonances deserves
particular attention. In the neighbourhood of a sharp reso-
nance, the phase-shift approaches π/2 very fast. Then, the
scattering states generating the bins change rapidly, leading
to numerical instabilities. To avoid this problem, the FRESCO

code gives special treatment to the bin, including the reso-
nance energy. The usual normalization factor, exp[−iδ(k)], is
multiplied by the extra factor sin[δ(k)].

As we pointed out in our previous papers [21,28], we use
the cluster model to calculate bound states of the projec-
tile. Although the cluster configuration is expected to be a
large component of these states, its amplitude is not equal to
one. To fix the problem, one should multiply the matrix ele-
ments between bound states and bins by some spectroscopic
amplitude, S . This amplitude, which needs to be better deter-
mined, is expected to be of the order of one, but not exactly
one. The value adopted for each system will be discussed
below.

2. The CF cross section

The collision dynamics in 11Be + 209Bi scattering is
strongly affected by breakup couplings, which are dominated
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FIG. 1. Experimental fusion cross section for the 11Be + 209Bi
system [59], in comparison with the prediction of our model and of
the BPM. See the text for details.

by the Coulomb dipole term. The experimental B(E1) for the
transition between the g.s. of 11Be to its bound excited state is
B(E1)exp = 0.115 e2 fm2 [72], whereas the value obtained by
the cluster model is B(E1)calc = 0.261 e2 fm2. Then, we infer
that the spectroscopic amplitude can be approximated by

S � √
B(E1)exp/B(E1)calc = 0.66.

We compare the data of Signorini et al. [59] with the
results of our calculations, setting S = 0.66. The experiment
determined the fusion cross section by detecting characteristic
alpha particles and fission fragments emitted by the fusion
evaporation residues. However, the same evaporation residues
are produced by the fusion of 11Be and by the capture of the
10Be fragment following the breakup of the projectile. Thus,
the data actually correspond to the sum of cross sections for
the CF and ICF2 (capture of 10Be) fusion processes. Then,
for consistency, one should compare the data to the calculated
cross section

σCF+ICF2 = σCF + σICF2. (33)

Figure 1 shows the fusion data of Ref. [59] compared to
two theoretical cross sections: σCF+ICF2 and σ PT

BPM. The former is
the cross section Eq. (33). The latter is the prediction of the
barrier penetration model (BPM) for the São Paulo potential
neglecting the cluster structure of the projectile, denoted by
V PT(R). The results are shown in logarithmic [Fig. 1(a)] and
linear [Fig. 1(b)] scales. Around and below the Coulomb bar-
rier, the predictions of our model are in very good agreement
with the data. However, above 45 MeV, the agreement is
much worse. The data exhibit large fluctuations as the energy
increases. They are spread between the lines representing σ PT

BPM

FIG. 2. The theoretical cross section σF [Eqs. (16), (22), and
(25)] for the 11Be + 209Bi system, and its CF and ICF2 components.
For details see the text.

and σCF+ICF2. Although the data are clearly suppressed with
respect to σBPM, it is impossible to estimate a suppression factor
from this data set.

Although the experiment of Ref. [59] could not distinguish
σCF from σICF2, the authors claim that the contribution of the
latter is small, not exceeding 30% of the former. Since our
model leads to individual cross sections for the two fusion pro-
cesses, we can check if they are consistent with this statement.
Figure 2 shows the theoretical cross sections σCF, σICF2, and
σCF+ICF2. Indeed, σICF2 is much smaller than σCF. At the highest
energies, where the relative importance of σICF2 is maximal,
it is about 20% of σCF. We conclude that the relative impor-
tance of the two fusion processes agrees with the findings of
Refs. [59,74].

B. 6He + 209Bi

1. Intrinsic states and continuum discretization

The 6He projectile has a strong cluster structure consisting
of an α particle plus a halo of two neutrons. The projec-
tile breaks up into three fragments, as 6He → 4He +n + n,
with the breakup threshold B = 0.97 MeV. Then, the ideal
treatment of the collision would be through the four-body
CDCC approach, where the intrinsic states of the projectile are
complicated three-body wave functions [17,75–78]. However,
Moro et al. [76] have shown that the right rms radius of 6He
and good descriptions of elastic scattering data in collisions
of this nucleus with a heavy target can be achieved by ap-
proximating the two valence neutron by a single particle, the
dineutron, provided that one uses an effective breakup thresh-
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old of B = 1.6 MeV. This approximation greatly simplifies
the problem since the simpler three-body CDCC can treat the
collision.

Following Moro et al. [76], we used the same WS nu-
clear potential for the g.s. of 6He (its only bound state) and
scattering states with l 	= 2h̄. The parameters of the potential
were determined by fitting the effective separation energy of
1.6 MeV. For l = 2h̄, the depth of the potential was modified
by fitting the energy of the sharp 2+ resonance at εres = 197
keV. The details of these potentials can be found in Ref. [76].

In our CDCC calculations, we considered bound and un-
bound states of the projectile with angular momentum up to
lmax = 2h̄ and truncated the continuum at εmax = 8 MeV. We
considered coupling matrix elements with multipolarities up
to λmax = 4h̄. In the absence of resonances (l 	= 2h̄), the con-
tinuum was split into three intervals. The first, ranging from
ε = 0 to ε = 2 MeV, was discretized by ten bins with width

 = 0.2 MeV. The next, from 2 to 4 MeV, was covered by two
bins with width 
 = 1 MeV. The last interval, ranging from
4 to 8 MeV, was discretized by two bins with 
 = 2 MeV.
For l = 2 we used a sharper mesh in the resonance region.
Below the resonance energy, we set a thin bin, going from
ε = 0 to ε = 0.1 MeV, followed by the resonant bin, from
ε = 0.1 to 0.2 MeV. These bins were followed by nine bins
of width 
 = 0.2 MeV, covering the region between ε = 0.2
to ε = 2 MeV. To discretize the continuum between ε = 2 to
ε = 8 MeV, we used the same procedures adopted for l 	= 2h̄.

With the treatment of the continuum described above, we
got very good convergence of the calculated fusion cross
sections.

2. The CF cross section

Kolata et al. [54,55] measured fusion cross sections in
6He + 209Bi collisions at near-barrier energies. CF of this
system leads to the formation of 215At, which evaporates
neutrons, forming lighter At isotopes. PACE calculations in
the energy range of the experiment indicate that 215At decays
exclusively by evaporation of two, three, and four neutrons,
forming respectively 213At, 212At, and 211At. Further, these
calculations indicated that the contribution from 213At are
only relevant at energies well below the Coulomb barrier.
Then, they were neglected. The fusion cross section was then
determined by measurements of the characteristic alpha parti-
cles emitted in the decays of 212At and 211At.

On the other hand, ICF leads to 213At, which forms 212At
and 211At through the evaporation of one and two neutrons, re-
spectively. We can discard contributions from 213At to the data
because they were not measured in this experiment. However,
some of the detected alpha particles could result from ICF
events. To investigate this possibility, we consider the excita-
tion energies of the 212At and 211At nuclei formed in the ICF
chain. The Q value of the 4He + 209Bi → 212At +n reaction
has the highly negative value of Q = −15 MeV. The highest
beam energy (converted to the c.m. frame) in the experiment
is 29 MeV. Subtracting the energy to break 6He up, ≈1 MeV,
there is 28 MeV to be shared by the alpha particle and the
neutrons. In the most favorable situation, where the fragments
have roughly the velocity as the incident beam, the α particle

FIG. 3. Experimental CF cross section for the 6He + 209Bi sys-
tem [54,55]. The figure shows also the theoretical CF cross section of
our model, σCF, and that of the BPM with the potential V PT(R), σ PT

BPM.
See the text for further details.

carries 2/3 of the incident energy, namely ≈19 MeV. Then,
most experimental points are below the threshold of 212At
formation. The formation of 211At is still more unlikely, as
in this case, the Q value is −19 MeV. Then, it is reasonable to
assume that the data of this experiment correspond, basically,
to CF, although the data points at the highest energies could
have some contribution from ICF.

Figure 3 shows the data of Kolata et al. [54,55], together
with the CF cross section of our model, σCF. In our calcula-
tions, we used the spectroscopic amplitude S = 0.7 (the same
value adopted for 6Li in collisions with the same target [28]).
For comparison, we also show the cross section predicted by
the BPM neglecting the cluster structure of the projectile, σ PT

BPM.
All cross sections are shown in logarithmic [Fig. 3(a)] and
linear [Fig. 3(b)] scales.

Inspecting Fig. 3, one concludes that our model describes
the data very well, although the theoretical curve is slightly
below the lowest energy data point. It also underpredicts the
data at the highest energies of the experiment. This might
indicate a contribution from ICF, as discussed earlier in this
section. On the other hand, comparing the data to σ PT

BPM, we
find that the experimental cross section is suppressed above
the barrier and enhanced below it. The suppression is due to
couplings with breakup channels, whereas the enhancement
is due to the reduction of the Coulomb barrier, arising from
the low breakup threshold, �VB ≡ V PT

B − V 00
B = 0.8 MeV (see

Table I). This point will be further discussed in Sec. III D.
Comparing CF suppressions in collisions of 6He and 6Li

(a stable weakly bound isobar of 6He) with the same 209Bi
target nucleus is interesting. For this purpose, we reduce the
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FIG. 4. Fusion functions in collisions of 6He and 6Li projectiles
on a 209Bi target, corresponding to the data of Refs. [54,55] and
[8,29], respectively, based on the parameters of V PT(R). See the text
for details.

experimental CF cross sections of Refs. [54,55] and [8,29]
by the fusion function method. We evaluated fusion functions
through Eq. (28), using the barrier parameters of the potential
V PT(r) (see Table I). These fusion functions are denoted by
F PT

exp (x). The results are shown in Fig. 4.
One finds that the experimental fusion functions for the two

systems are very similar and appreciably lower than the UFF.
They closely follow the trend of the red dashed line, which
represents the UFF multiplied by the factor 0.60, except for
the two data points for 6He at the highest energies, which
are somewhat higher. Thus, the CF cross sections for the two
systems are suppressed by ≈40%.

C. 6He + 238U

The intrinsic states and the details of the continuum
discretization for this system are identical to those of the
6He + 209Bi system.

1. Fusion cross sections

The fusion cross section for this system at sub- and near-
barrier energies has been measured by Trotta et al. [57]. They
found a huge enhancement at sub-barrier energies. In this
experiment, the signature of fusion events was the detection
of two fission fragments emitted back to back, unaccompanied
by a third charged fragment with a projectile-like kinematic.
CF leads to the formation of a highly excited 244Pu CN. Since
the excitation energy is well above the fission barrier, it decays
exclusively by fission. On the other hand, fusion of the 4He
fragment with 238U is a highly endothermic reaction, so that
the excitation energy of the resulting 242Pu CN is well below
the fission barrier. Then, it decays through other modes that
were not measured in this experiment. For this reason, the
authors of the experiment argue that their data correspond
exclusively to CF.

However, a subsequent experiment of the same group [58]
led to the conclusion that the large CF cross sections at
sub-barrier energies were mainly due to the contribution of

FIG. 5. Experimental CF section for the 6He + 238U system [58],
in comparison with the prediction of our model. The BPM cross
section for the potential V PT(r) is also shown. See the text for details.

fission following two-neutron transfer, which were not fully
discarded. This contribution was estimated by DWBA cal-
culations and was subtracted from the fission cross section.
The CF cross section obtained through this procedure did not
confirm the very large enhancement found in the previous
experiment.

Figure 5 shows the data of Raabe et al. [58] in comparison
with the predictions of our model. The cross section, σ PT

BPM(E )
is also shown. Above the Coulomb barrier (Ec.m. > 21 MeV),
one observes that the data are very well described by our
model and that it is suppressed with respect to σ PT

BPM. At Ec.m. =
30 MeV, the ratio of the two cross sections is about ≈0.6.
Below the Coulomb barrier, the predictions of our model are
enhanced with respect to σ PT

BPM, and they are consistent with
the data. Nevertheless, the agreement between theory and
experiment in this energy region is not meaningful, owing to
the large error bars of the CF data. The lowest data points,
several MeV below the barrier, have error bars about one
order of magnitude larger than the data. Although one cannot
learn much from this comparison, it called our attention to the
abrupt change in the slope of σCF between 17 and 18 MeV
(a few MeV below the Coulomb barrier). The origin of this
change is addressed below.

2. The low energy behavior of CF

According to Eq. (25), the CF cross section is the sum of
the DCF and SCF components. The former are the contribu-
tions from bound channels, whereas the latter arises from the
continuum. As the energy decreases well below the Coulomb
barrier, the influence of breakup couplings becomes very
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FIG. 6. The CF fusion cross section for the 6He + 238U system,
together with its direct and sequential components.

weak, and the population of the continuum becomes very
small. Then, one might be led to conclude that the CF cross
section would be dominated by σDCF. However, one should
keep in mind that sub-barrier fusion involves transmission
coefficients that become vanishingly small well below the
Coulomb barrier. Further, these coefficients strongly depend
on the reduced mass, decreasing rapidly as it increases. In
this way, the transmission coefficient for the whole projectile,
involved in DCF, could be much lower than the ones for the
clusters involved in ICF and SCF. The situation is particularly
favorable in the SCF of 6He since there is no Coulomb barrier
for the dineutron.

FIG. 7. Renormalized fusion functions associated with the CF
cross section of our model, evaluated with the barrier parameters
RPT

B ,V PT
B , and h̄ωPT. See the text for details.

FIG. 8. Renormalized fusion functions for σ 00
BPM(E ), evaluated

with the barrier parameters V PT(r).

To clarify the situation, Fig. 6 shows the CF cross sec-
tion of the previous figure, together with its DCF and SCF
components. One observes that the contribution from the
latter is small at above-barrier energies, less than 10% at
Ec.m. ≈ 30 MeV. On the other hand, it is the dominant com-
ponent below ≈18.5 MeV, becoming more than one order of
magnitude larger at 16 MeV. Note that a similar situation
would be found for the 6He + 209Bi system. The change of
slope in the CF cross section has not been observed in Fig. 3
because the energy range of the figure was restricted to the
energies of the experiment. This will be shown in the next
section.

D. Comparative study of CF

As we mentioned earlier, the low breakup threshold of
11Be and 6He affect the CF cross sections in two ways. First,
the low binding of the fragments leads to a reduction of the
Coulomb barrier. That is, V 00

B < V PT
B (see Table I). This leads

to an enhancement of the fusion cross section at all collision
energies. On the other hand, the low breakup threshold of
the projectile makes breakup couplings very important, trans-
ferring an appreciable part of the incident flux to breakup
channels. This dynamic effect is expected to suppress the CF
cross section.

In this section, we carry out a comparative study of
these effects in the 11Be + 209Bi, 6He + 209Bi, and 6He + 238U
systems. However, a study of this kind must be based on
something other than the fusion cross sections as they are.
One should first reduce them to eliminate the influence of
charges and sizes of the collision partners. We achieve this
goal using the fusion function method (see Sec. II C). Further,
since the systems considered here are not heavy enough, we
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FIG. 9. Renormalized fusion functions associated with the
CF cross section of our model, evaluated with the barrier parameters
R00

B ,V 00
B , and h̄ω00. See the text for details.

use the renormalized fusion function of Eq. (31) rather than
its original form [Eq. (28)].

We begin by assessing the net effect of the low breakup
threshold on σCF. Figure 7 shows renormalized fusion func-
tions for the 11Be + 209Bi, 6He + 209Bi, and 6He + 238U
systems compared to the UFF. To keep both the static and
the dynamic effects of the low breakup threshold, the fusion
functions were evaluated with the barrier parameters RPT

B ,V PT
B ,

and h̄ωPT. They are denoted by F
PT

CF (x). Comparing them to the
UFF, one finds the same qualitative behavior: enhancement
below the Coulomb barrier and suppression at above-barrier
energies. Further, one observes that the deviations from the
UFF depend exclusively on the breakup threshold of the pro-
jectile, at least for targets in the same mass range. In collisions
of 6He with the two heavy targets, the fusion functions are
extremely close, and in the case of the 11Be projectile, which
has a lower breakup threshold, the deviations from the UFF
are more pronounced.

One can also investigate the static or dynamic effect in-
dividually. To isolate the influence of the barrier lowering, we
switch off channel couplings in our CDCC calculations. Then,
it reduces to a one-channel calculation with the real potential
V 00(R) plus the short-range imaginary potential W PT(R). The
resulting cross section is essentially the one of the barrier
penetration model for V 00(R), denoted by σ 00

BPM. Next, we
evaluate renormalized fusion functions associated with this
cross section, using the barrier parameters of V PT(r). These
fusion functions, denoted by F

PT

00 (x), are shown in Fig. 8,
together with the UFF. As expected, one observes that they are
enhanced at all energies. Further, the enhancement increases

FIG. 10. Same as the previous figure, but considering only the
direct component of the CF cross section.

with the strength of the barrier lowering, �VB (see Table I),
which is strongly correlated with the breakup threshold. It in-
creases as the breakup threshold decreases. Thus, the strongest
enhancement is found in the case of 11Be, which has the
lowest breakup threshold. The two fusion functions can hardly
be distinguished in collisions of 6He with 209Bi and 238U.

We can also study the influence of breakup couplings
alone, eliminating the influence of the barrier lowering, �VB.
Although we cannot switch off �VB, we can suppress its
effects on the renormalized fusion functions by evaluating
them with V 00(R) parameters, namely R00

B ,V 00
B , and h̄ω00. These

fusion functions, denoted by F
00

CF(x), are shown in Fig. 9.
Above the Coulomb barrier, they are all suppressed with re-
spect to the UFF, and the strength of the suppression increases
as the breakup threshold decreases. The two curves for 6He
projectiles are very close, with the fusion function for 238U
being slightly lower. This is a consequence of the larger charge
of 238U, which leads to slightly stronger breakup couplings. In
principle, one would expect that the breakup couplings would
lead to CF suppression at all collision energies. However, it
is not so. For x � −0.5, the fusion functions are larger than
the UFF, especially the one for the 6He + 238U system. The
reason for this unexpected behavior is the contribution from
SCF. As we pointed out in the discussion of Fig. 6, sequen-
tial complete fusion becomes dominant a few MeV below
the Coulomb barrier, and this reaction mechanism does not
follow the same trend as the DCF component. In particular,
the renormalization of the fusion function is not appropriate
for SCF.

To show more clearly that SCF is responsible for the
unexpected low-energy behavior of the fusion functions, we
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present a new version of Fig. 9, considering only the DCF
component of the CF cross section. The resulting fusion
functions, denoted by F

00

DCF(x), are shown in Fig. 10. Since
above the Coulomb barrier, the contribution from SCF to σCF

is very small, Figs. 9 and 10 are quite similar. However, at
sub-barrier energies, they are very different. In Fig 10, the
fusion functions are always below the UFF, approaching it
asymptotically as the energy decreases.

IV. CONCLUSIONS

We presented a study of fusion reactions in collisions of
neutron-halo projectiles with heavy targets. We used a re-
cently developed theory to evaluate complete and incomplete
fusion for the 6He + 209Bi, 6He + 238U, and 11Be + 209Bi sys-
tems and compared the results with the available data. The
main conclusions of the present work are summarized below.

(1) Our theory describes fairly well the complete (or
complete + incomplete) fusion data in collisions of
neutron halo nuclei.

(2) Comparing the cross sections of our model with pre-
dictions of the barrier penetration model with the
São Paulo potential, we found that the overall effect
of the low breakup threshold is enhancement at sub-
barrier energies and suppression above the Coulomb
barrier (of ≈40% in the collision of 11Be with 209Bi,
and of ≈30% in collisions of 6He with the 209Bi and
209Bi targets).

(3) We found that the theoretical CF cross sections in 6He
collisions at energies well below the Coulomb barrier
exhibits a sudden change in its slope. This change was
traced back to the contribution of sequential complete
fusion. This fusion process becomes dominant in this
energy region, owing to the lack of a Coulomb barrier
to the neutrons. This behavior could not be checked
in the 6He + 238U data due to the large error bars at
sub-barrier energies. It would be interesting to check
this feature in new experiments.

(4) We investigated the static and dynamic effects of the
low breakup threshold in the three systems considered
in this work. This was achieved by using the appropri-
ate barrier parameters in the reduction procedures. We
found that the enhancement due to the barrier lowering
and the suppression arising from breakup couplings
depend exclusively on the breakup threshold. Further,
the strength of these effects grows as the threshold
decreases.

However, these conclusions are based on a very limited
set of systems. Further studies involving other neutron-rich
projectiles and lighter targets are called for.
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