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Shear viscosity of nuclear matter in the spinodal region
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Based on Boltzmann-Uehling-Uhlenbeck simulations calibrated by previous efforts of the transport model
evaluation project, we have studied the specific shear viscosity η/s of nuclear matter in the spinodal region using
the Green-Kubo method. With the momentum-independent mean-field potential which reproduces reasonably
well empirical nuclear matter properties and the nuclear phase diagram, we have generated dynamically stable
and thermalized nuclear cluster systems in a box with the periodic boundary condition. Extensive results of η/s
at different average densities and temperatures in uniform and nonuniform systems are compared, and we found
that the shear viscosity is smaller with nuclear clusters due to the enhanced correlation of the energy-momentum
tensor and the stronger collision effect. The temperature dependence of η/s has a minimum only at low average
densities of ρ < 0.3ρ0. The present study serves as a rigorous baseline calculation of η/s in nuclear systems
with clusters, and helps our understanding of the relation between the shear viscosity and the nuclear phase
diagram.
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I. INTRODUCTION

Transport properties of nuclear matter are important for
understanding the dynamics in intermediate-energy heavy-ion
collisions and the behavior of the nuclear liquid-gas phase
transition. In recent decades, the shear viscosity of strong-
interacting matter has been studied with various approaches.
By comparing collective flows from hydrodynamic simula-
tions with the experimental data, it was found that quark-gluon
plasma produced in ultrarelativistic heavy-ion collisions is a
nearly ideal fluid and has a very small specific shear viscos-
ity [1–6], i.e., the ratio η/s of the shear viscosity η to the
entropy density s is only a few times the Kovtun-Son-Starinets
(KSS) bound [7]. In heavy-ion collisions at lower collision
energies, where the dynamics is mostly dominated by hadron
resonance gas or nucleon degree of freedom, the specific shear
viscosity is much larger (see, e.g., Ref. [8]). Interestingly, a
minimum value of η/s is observed around the temperature of
the hadron-quark phase transition [9,10]. In the presence of
the liquid-gas phase transition in nuclear matter, a minimum
η/s is also observed based on different approaches [11–15]. In
this sense, the behavior of η/s is related to the phase diagram
of strong-interacting matter (see, e.g., Refs. [16,17]).

Among various approaches of studying the shear viscosity
of hadron resonance gas [18–21] and nuclear matter [22,23],
directly using the Green-Kubo formula [24] is the most rig-
orous method (see Ref. [25] for a comparison of different
approaches). On the other hand, the accurate calculation of
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the shear viscosity by using the Green-Kubo formula requires
a well calibrated transport model [26], and such simulation
is generally carried out in a box system with the periodic
boundary condition [27,28]. In the semiclassical approxima-
tion, the shear viscosity is proportional to 1/σ , with σ being
the scattering cross section, so reproducing the theoretical
limit of the collision rate is crucial for obtaining an accurate
shear viscosity via the Green-Kubo formula. Fortunately, this
has bee achieved in Ref. [29], where different collision treat-
ments were compared in detail and a few optimized collision
treatments, which are necessary for reproducing the Boltz-
mann limit of the collision rate, were recommended. In order
to study the behavior of the shear viscosity in the presence
of the nuclear liquid-gas phase transition, a well calibrated
mean-field calculation is needed to generate reasonable den-
sity fluctuations, and this has also been achieved in Ref. [30]
by comparing the resulting response function of the density
fluctuation with the theoretical limit predicted by the Landau
parameter of the mean-field interaction.

In the present study, we investigate the behavior of the
specific shear viscosity in the spinodal region of isospin
symmetric nuclear matter based on a well calibrated isospin-
dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport
model, where nucleon-nucleon elastic scatterings are imple-
mented by using a modified Bertsch’s prescription [31], and
the mean-field evolution is simulated by using a lattice Hamil-
tonian framework [32]. The phase diagram of nuclear matter
is obtained from a simplified momentum-independent poten-
tial, which reproduces empirical nuclear matter properties at
the saturation density. This mean-field potential is also im-
plemented in the dynamical simulation to generate density
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fluctuations in the spinodal region. After the density evolu-
tion reaches a dynamic equilibrium, the Green-Kubo formula,
which we will show is also valid in nonuniform systems, is
then used to calculate the shear viscosity from the correlation
of the energy-momentum tensor. Results from uniform and
nonuniform nuclear systems are compared, and we find that
the density fluctuations due to the nuclear liquid-gas phase
transition reduce considerably both η and η/s.

The rest part of the paper is organized as follows. Section II
gives the theoretical framework, including thermodynamic
properties of isospin symmetric nuclear matter, transport sim-
ulations in a box system, and the Green-Kubo method for
calculating the shear viscosity. Section III presents the way
to generate dynamic and thermal equilibrated clusterizations
from transport simulations in a box system, and discusses
the corresponding behavior of the specific shear viscosity
from the Green-Kubo method in the nuclear liquid-gas mixed
phase. We conclude and give an outlook in Sec. IV.

II. THEORETICAL FRAMEWORK

With a simple nuclear mean-field potential that reproduces
empirical nuclear matter properties around the saturation den-
sity, we briefly present in this section the main features of
the thermodynamics and the phase diagram of isospin sym-
metric nuclear matter. Details on transport simulations in a
box system with the periodic boundary condition will also be
provided, and the major focuses will be on the treatments of
nucleon-nucleon elastic collisions with a modified Bertsch’s
prescription and the mean-field evolution based on the lattice
Hamiltonian framework. We will further discuss how we ob-
tain the shear viscosity through the Green-Kubo method.

A. Thermodynamics of nuclear matter

We adopt in the present study the momentum-independent
single-nucleon potential in isospin symmetric nuclear matter
of density ρ as

U (ρ) = α

(
ρ

ρ0

)
+ β

(
ρ

ρ0

)γ

, (1)

with coefficients α = −0.218 GeV, β = 0.164 GeV, and γ =
4/3 which reproduce the saturation density ρ0 = 0.16 fm−3,
the binding energy E0 = −16 MeV at ρ0, and the incom-
pressibility K0 = 237 MeV. Although the above mean-field
potential is simple and far from realistic, we will see that it
reproduces the main features of the nuclear phase diagram and
is adequate for the present study.

With the single-nucleon potential given above, the corre-
sponding potential energy density εp is then written as

εp = α

2

ρ2

ρ0
+ β

1 + γ

ρ1+γ

ρ
γ

0

. (2)

In the quasifree nucleon approximation, the kinetic energy
density εk can be expressed as

εk = 4
∫

d3 p

(2π )3
(
√

p2 + m2 − m) f (�r, �p), (3)

where m = 939 MeV is the bare nucleon mass, f (�r, �p) is the
nucleon phase-space distribution function, which in the ther-
mal equilibrated system at temperature T is the Fermi-Dirac
distribution expressed as

f (�r, �p) = 1

exp
(√

p2+m2−m+U−μ

T

) + 1
. (4)

In the above, μ is the nucleon chemical potential deter-
mined by

ρ = 4
∫

d3 p

(2π )3
f (�r, �p). (5)

For a quasifree Fermion system, the entropy density can be
calculated from the phase-space distribution function through
the expression

s = −4
∫

d3 p

(2π )3
[ f ln f + (1 − f ) ln(1 − f )]. (6)

The above relations give densities of quantities at local
position �r, while for a uniform system the binding energy per
nucleon can be expressed as E = ε/ρ with ε = εp + εk being
the total energy density, and the pressure P can be calculated
from the thermodynamic relation

P = T s − ε + μρ. (7)

The pressure can be used to identify the spinodal region of
the nuclear matter (see, e.g., Ref. [33]), corresponding to a
liquid-gas mixed phase [34,35]. In the region of(

∂P

∂ρ

)
T

< 0, (8)

the system is mechanically unstable. This is because increas-
ing (reducing) the local density reduces (increases) the local
pressure so more particles will flow into (away from) the
local area, further reducing (increasing) the local pressure,
thus any small density fluctuations may grow and the nuclear
matter becomes mechanically unstable. We discuss properties
of isospin symmetric nuclear matter in the present study, and
neglect the chemical instability which exists only in isospin
asymmetric nuclear matter.

Figure 1(a) displays the pressure of nuclear matter at differ-
ent temperatures T based on the nucleon mean-field potential
as in Eq. (1). The mechanical instability region that satisfies
Eg. (8) shrinks with increasing temperature, and disappears
at Tc = 17.6 MeV, above which the pressure P increases
monotonically with increasing density ρ. The boundary of the
mechanical instability region is determined by(

∂P

∂ρ

)
T

= 0. (9)

A simple phase diagram of isospin symmetric nuclear matter
is plotted in Fig. 1(b) in the (ρ, T ) plane. As mentioned above,
density fluctuations are expected to appear within the spinodal
region, where the liquid phase with a higher density and the
gas phase with a lower density coexist. Outside the spinodal
region, the nuclear matter is expected to stay uniform.
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FIG. 1. Upper: Pressure of hot nuclear matter at different tem-
peratures as a function of nucleon density ρ. Lower: Boundaries of
mechanical instability in the (ρ, T ) plane.

B. Transport simulation in a box system

The simulation is carried out in a cubic box with a length
L = 20 fm in x, y, and z directions based on the IBUU trans-
port model. The periodic boundary condition is applied, i.e.,
a nucleon that leaves the system on one side of the cubic box
will enter the box from another side with the same momentum,
and the distance between two nucleons in each dimension is
less than L/2 considering the periodic nature of the system.
We use 1000 test particles for each nucleon, to assure accurate
calculations of the mean-field evolution and the Pauli block-
ing, and we find that the results remain almost unchanged
by further increasing the number of test particles. The initial
coordinates of nucleons are uniformly distributed within the
box, and the initial momenta of nucleons are sampled accord-
ing to the Fermi-Dirac distribution for a given temperature
and density. A time step �t = 0.5 fm/c is used for both
nucleon-nucleon collisions and the nucleon propagation under
the mean-field potential.

For elastic nucleon-nucleon collisions, we use the geomet-
ric method as in Appendix B of Ref. [31] but with some
modifications. In Bertsch’s prescription, the minimum dis-
tance of two colliding particles in their center-of-mass (C.M.)
frame perpendicular to their relative velocity is

d�
⊥

2 = (�r�
1 − �r�

2 )2 − [(�r�
1 − �r�

2 ) · �v�
12]2

v�
12

2 , (10)

where �r�
1 and �r�

2 are positions of the two particles, and �v�
12 =

�v�
1 − �v�

2 is their relative velocity, with the asterisk representing
the quantity in the C.M. frame of the colliding particles. The
collision can happen if the condition

πd�
⊥

2
< σ (11)

is satisfied, and we use a constant and isotropic nucleon-
nucleon cross section σ = 40 mb in the present study.

Whether the collision happens in this time step is determined
by the condition of the closest approach, i.e.,∣∣(�r�

1 − �r�
2 ) · �v�

12/v
�
12

2∣∣ < 1
2δt . (12)

The relation between δt and �t is not specified in Ref. [31].
We set δt = �t/γ , where γ = 1/

√
1 − β2 is the Lorentz fac-

tor with β being the average velocity of the colliding pair in
the box frame.

With the original Bertsch’s prescription for collisions, the
particle pair that collide once have 50% chance to collide
again in the subsequent time step for an isotropic cross sec-
tion, if the final velocities point toward each other. This effect
is contradictory to the assumption of the Boltzmann equa-
tion that the collisions are independent of each other and are
not repeated. These spurious collisions can be avoided by
requiring that two particles that have collided once cannot
collide again unless one of them has collided with a third
particle. By doing this, we remove the leading-order corre-
lations induced by collisions, while higher-order correlations
still remain and can affect the collision rate, especially at high
densities or with a large nucleon-nucleon cross section. For
more details about the collision criterion, we refer the reader
to Refs. [26,29]. For systems with a density below ρ0 and a
temperature around T ≈ 10 MeV, and especially with Pauli
blocking, we will show that the above collision treatment is
good enough to achieve the attempted collision rate from the
theoretical limit.

Due to the Fermionic nature of nucleons, the collision
can happen only if the final state of either colliding nucleon
has not been occupied. The Pauli blocking probability is
1 − (1 − f1)(1 − f2), where f1 and f2 are the local phase-
space distribution functions for the final states of the colliding
nucleons 1 and 2. To obtain the local phase-space distribution
function, we divide the box system into cells and assume that
the local thermal equilibrium is always maintained in each cell
of volume 2 × 2 × 2 fm3. The local phase-space distribution
is calculated according to Eq. (4), where the temperature T
and the chemical potential μ are determined from simulations.

Although point particles are used for collisions and Pauli
blocking, the mean-field evolution is based on the lattice
Hamiltonian framework using finite-size test particles. The
coordinate space is divided into cubic cells with the volume
l3, and the density at the site �rα of the lattice is then given by

ρL(�rα ) = 1

NT P

ANT P∑
i=1

G(�rα − �ri ), (13)

where NT P is the test-particle number per nucleon, A is the
total nucleon number determined by the average density, and
G is the shape function defined as

G(�rα − �ri ) = 1

(nl )6
g(x)g(y)g(z) (14)

with x = xα − xi, y = yα − yi, z = zα − zi, and

g(q) = (nl − |q|)�(nl − |q|), (15)

where l is the lattice spacing, n determines the range of G,
and � is the Heaviside function. We set n = 2 and l = 1 fm
in the present study. The total potential energy of the system is
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the sum of that in each cubic cell, i.e., Ep = l3 ∑
α εp[ρL(�rα )].

For a momentum-independent mean-field potential U as in the
present study, the canonical equations of motion for the ith
nucleon can be expressed as

d�ri

dt
= �pi√

�p2
i + m2

, (16)

d �pi

dt
= −l3

∑
α

∂εp[ρL(�rα )]

∂ρL

∂ρL

∂�ri

= − l3

NT P

∑
α

U [ρL(�rα )]
∂G(�rα − �ri )

∂�ri
. (17)

We note that the relativistic kinematics is used, consistent with
Eqs. (3) and (4) as well as the collision treatment. The accurate
mean-field evolution with rigorous energy conservation can be
achieved by solving numerically the above differential equa-
tions. For more details, we refer the reader to Refs. [30,32].

In the default calculation of the present study, we do not
include the Coulomb potential, which is excepted to have no
effect in uniform systems but may have some influence in
nonuniform systems. In the lattice Hamiltonian framework,
the Coulomb force acting on the ith particle is calculated from
the Coulomb potential energy density V cou

α according to(
d �pi

dt

)
c

= �Fc = −l3Zie
2
∑

α

∂V cou
α (�rα )

∂�ri
, (18)

with Zi being the charge number of the ith nucleon, and the
summation is over the lattice sites �rα . Including both the direct
and exchange contributions from the Coulomb interaction, the
Coulomb potential energy density V cou

α can be expressed as

V cou
α = l3

2

∑
α′,α′ �=α

ρc
L(�rα )ρc

L(�rα′ )

|�rα − �rα′ | − 3

4

[
3ρc

L(�rα )

π

]4/3

. (19)

In the above, ρc
L(�rα ) is the net-charge number density at the

lattice site �rα and is calculated in a way similar to Eq. (13)
for the particle density. Substituting Eq. (19) into Eq. (18)
leads to the following Coulomb force acting on the ith charged
particle:

�Fc = − l3Zie2

NT P

∑
α

⎧⎨
⎩ l3

NT P

∑
α′,α′ �=α

NT Pρc
L(�rα )

|�rα − �rα′ |
∂G(�rα′ − �ri )

∂�ri

− 3

π

[
3ρc

L(�rα )

π

]1/3
∂G(�rα − �ri )

∂�ri

}
. (20)

C. Green-Kubo method

The Green-Kubo formula relates linear transport coeffi-
cients to near-equilibrium correlations of dissipative fluxes,
and treats dissipative fluxes as perturbations to local thermal
equilibrium [24,36,37]. The shear viscosity from the Green-
Kubo formula is expressed as

η = 1

T

∫
d3r

∫ ∞

t0

dt〈π xy(�0, t0)π xy(�r, t )〉equil , (21)

where T is the temperature of the system, t − t0 is the post-
equilibration time with t0 being the time when the system has
reached dynamic equilibrium, and π xy is the shear component
of the energy-momentum tensor, which can be expressed as

π xy =
∫

d3 p

(2π )3

px py

E
f (�r, �p), (22)

with E =
√

�p2 + m2 being the nucleon energy. Given the mo-
menta of test particles, the local π xy can be calculated from
the summation of nucleons in a local cell,

π xy = 1

Vc

∑
i

px
i py

i

Ei
, (23)

where Vc is the volume of the cell, and px
i , py

i , and Ei =√
m2 + �p2

i are, respectively, the momenta in the x and y di-
rections and the energy of the ith nucleon in the local cell
obtained from transport simulations. The average over parallel
events is applied in the calculation but omitted in the formu-
laes.

In a box system with the periodic boundary condition as in
the present study, we show in the following that Eq. (21) can
be calculated through

η = V

T

∫ ∞

t0

dt〈�xy(t0)�xy(t )〉equil, (24)

where V = L3 is the volume of the box, and �xy is calculated
similar to Eq. (23) but by summing all nucleons in the box
system. The integrand in the above equation can be further
expressed as

�xy(t0)�xy(t )

= 1

V

(∑
i

px
i py

i

Ei

)
t0

1

V

⎛
⎝∑

j

px
j py

j

E j

⎞
⎠

t

= 1

(NcVc)2

⎛
⎝∑

c1

∑
ic1

px
ic1

py
ic1

Eic1

⎞
⎠

t0

⎛
⎝∑

c2

∑
jc2

px
jc2

py
jc2

Ejc2

⎞
⎠

t

= 1

(NcVc)2

∑
c1

∑
c2

⎛
⎝∑

ic1

px
ic1

py
ic1

Eic1

⎞
⎠

t0

⎛
⎝∑

jc2

px
jc2

py
jc2

Ejc2

⎞
⎠

t

.

(25)

In the above, Nc = V/Vc is the number of cells, and
∑

c1(2)

in the third line represents the summation over all cells, with
ic1 ( jc2 ) being the nucleon label in cell c1(2). Comparing with
Eq. (21) which should be independent of the choice for the
cell �r = 0 in a box with the periodic boundary condition, we
can express π xy(�0, t0) as

π xy(�0, t0) = 1

Nc

∑
c1

⎛
⎝∑

ic1

px
ic1

py
ic1

Eic1

⎞
⎠

t0

. (26)

The above relation can be understood since choosing different
cell of �r = 0 is identical to choosing different starting time
t0 or parallel events once the system has reached dynamic
equilibrium. So one can now see that Eq. (24) is identical
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to Eq. (21) and thus valid for both uniform and nonuniform
systems.

III. RESULTS AND DISCUSSIONS

Since the shear viscosity of nuclear matter is dominated
by nucleon-nucleon collisions, we first compare the collision
rate from IBUU simulations in a box system with the theo-
retical limit as in Ref. [29]. Afterwards, we discuss the way
to prepare a dynamic and thermal equilibrated system in the
spinodal region in the presence of both the nucleon mean-field
potential and nucleon-nucleon collisions with Pauli blocking,
for the calculation of the shear viscosity via the Green-Kubo
method. Extensive density and temperature dependence of the
specific shear viscosity will be investigated, and results of
uniform and nonuniform systems will be compared.

A. Calibrating the collision rate

For a uniform box system, the theoretical limit of the colli-
sion rate, i.e., the total collision number of the system per unit
time, can be expressed as

dNcoll

dt
= 1

2
V ρ2σ

∫
d3 p1d3 p2vmol f̃ (p1) f̃ (p2). (27)

In the above,

vmol =
√

(E1E2 − �p1 · �p2)2 − m4

E1E2
(28)

is the Møller velocity with E1(2) =
√

�p2
1(2) + m2 . f̃ (p) is

the normalized nucleon momentum distribution, which can
be a Maxwell-Boltzmann (MB) distribution, i.e., f̃ (p) =

1
4πm2T K2(m/T ) exp(−

√
p2 + m2/T ), with Kn being the nth-

order modified Bessel function, or a Fermi-Dirac (FD)
distribution similar to Eq. (4) but normalized as

∫
d3 p f̃ (p) =

1. For a MB distribution, Eq. (27) can be simplified as [29](
dNcoll

dt

)
MB

= 1

2
V ρ2σ

1

4m4T K2
2 (m/T )

×
∫ ∞

2m
d
√

ss(s − 4m2)K1(
√

s/T ), (29)

while the collision rate (dNcoll/dt )FD for a FD distribution
has to be calculated numerically through a two-dimensional
integral after integrating analytically the polar angle.

Figures 2 compares the collision rates from IBUU sim-
ulations in the box system with the theoretical limits from
Eq. (27) at the density ρ = ρ0 and temperature T = 10 MeV.
Without Pauli blocking, the initial MB distribution is main-
tained with collisions, and the collision rate after a short
relaxation time is slightly higher than the theoretical limit
(dNcoll/dt )MB = 93.8 c/fm, as a result of the higher-order
correlations induced by collisions, consistent with the IBUU
result in Ref. [29]. With Pauli blocking, the initial FD distribu-
tion is maintained with collisions, and the attempted collision
rate is consistent with the theoretical limit (dNcoll/dt )FD =
126.8 c/fm, since most of attempted collisions are Pauli
blocked and the higher-order correlations are not as important
as in the case without Pauli blocking. As we use the analyt-

0 10 20 30 40 50
0
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FD, successful

dN
co
ll/d
t(
c/
fm
)

t (fm/c)
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solid: IBUU simulation
dashed: theoretical limit

T = 10 MeV, ρ = ρ0

FIG. 2. Comparison of the nucleon-nucleon collision rate from
IBUU simulations in a box system with the theoretical limits.
In IBUU simulations, the nucleon momenta follow a Maxwell-
Boltzmann distribution or a Fermi-Dirac distribution at the density
ρ = ρ0 and temperature T = 10 MeV.

ical FD expression [Eq. (4)] to calculate the Pauli blocking
probability 1 − (1 − f1)(1 − f2), the successful collision rate,
which dominates the shear viscosity, is reliable once the at-
tempted collision rate is correctly reproduced.

B. Dynamics in the spinodal region

In order to use the Green-Kubo method to calculate the
shear viscosity in the nuclear liquid-gas mixed phase, we
need to prepare a dynamically and thermally equilibrated sys-
tem with nuclear clusters. As the time evolves, the density
fluctuations are required to be dynamically stable, and the
temperature distributions are required to be approximately
uniform. To achieve this, we use the method described in the
following.

As an example, we start from a uniform nuclear matter
system with a density ρ = 0.3ρ and an initial temperature
T = 5 MeV. The system then evolves in the box system with
both the nucleon mean-field potential and nucleon-nucleon
collisions, and the occupation probability for the Pauli block-
ing is taken to be the Fermi-Dirac distribution [Eq. (4)], where
the temperature T and the chemical potential μ can be in-
versely calculated from the local kinetic energy density εk

and the local number density ρ according to Eqs. (3) and (5).
In this way, the time evolutions of physics quantities are dis-
played in Fig. 3, and we first refer the reader to the behavior
for t < 500 fm/c. One sees that the average potential energy
density 〈εp〉 decreases with time, due to the clusterization of
nucleons in the spinodal region [38]. According to the energy
conservation as maintained in the simulation based on the
well-established lattice Hamiltonian framework, the average
kinetic energy density 〈εk〉 increases with time, and the aver-
age temperature 〈T 〉 and the average entropy density 〈s〉 also
increase with time, with the 〈T 〉 calculated by averaging the
local temperature T (�r) weighted by the local density, i.e.,

〈T 〉 =
∫

d3r ρ(�r)T (�r)∫
d3r ρ(�r)

, (30)
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at t = 500 fm/c. Top: Average kinetic energy density 〈εk〉, potential
energy density 〈εp〉, and total energy density 〈εk〉 + 〈εp〉. Middle:
Average entropy density 〈s〉. Bottom: Average temperature 〈T 〉.

and the 〈s〉 calculated similarly with the local entropy density
obtained according to Eq. (6). The corresponding contours of

the number density and the temperature at typical times in
the x-0-y plane are displayed in Figs. 4 and 5, respectively.
Initially, both the number density and the temperature are uni-
formly sampled, but with small statistical fluctuations. These
fluctuations grow with time and serve as seeds for clusteri-
zation, since the (ρ, T ) state of the nuclear system is in the
mechanical instability region. At t = 300 fm/c, clusters are
obviously formed, and the overall temperature is increased.
At t = 500 fm/c, clusterization becomes stable, and the tem-
perature is further increased. One sees that the temperature
is slightly lower at high densities compared to that at low
densities.

In the above process, we start from the system at a lower
temperature, but ends up with a system at a higher tempera-
ture, and with a not very satisfactory temperature distribution.
By changing the initial temperature of a uniform system, we
find that we are unable to achieve a system with clusters at
low temperatures, e.g., T � 5 MeV. To achieve a system with
dynamically stable clusterizations and a more uniform tem-
perature distribution at T = 5 MeV, we reset the temperature
at t = 500 fm/c and use it as a new initial state. To do this, we
resample the momentum distribution of nucleons in each cell
according to the Fermi-Dirac distribution [Eq. (4)], with the
temperature T reset to be about 3 MeV in this case, and the
chemical potential μ determined by the local number density.
The average potential energy density 〈εp〉 determined by the
density distribution is unchanged after the reset of the temper-
ature, while there is a sudden decrease of 〈εk〉, 〈εk〉 + 〈εp〉, and
〈s〉, as shown in Fig. 3. To achieve a more uniform temperature
distribution in the subsequent box simulations, we use the
average temperature to calculate the occupation probability in
the Pauli blocking factor, where the chemical potential is de-
termined by the local density. Since the clusterization effect is
even stronger at a lower reset temperature, 〈εp〉 decreases but
〈εk〉, 〈s〉, and 〈T 〉 increase during a short time after the reset of
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FIG. 4. Contours of the density at different times in the x-0-y plane with |z| < 1 fm from IBUU simulations in a box system at an average
density 〈ρ〉 = 0.3ρ0 and initial temperature T = 5 MeV but with a reset of the temperature at t = 500 fm/c.
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FIG. 5. Contours of the temperature at different times in the x-0-y plane with |z| < 1 fm from IBUU simulations in a box system at an
average density 〈ρ〉 = 0.3ρ0 and initial temperature T = 5 MeV but with a reset of the temperature at t = 500 fm/c.

the temperature. Afterwards, the system gradually evolves to
a dynamically stable state, since all physics quantities remain
almost unchanged in the later process, as seen from Fig. 3.
From the corresponding contours of the number density and
the temperature as shown in Figs. 4 and 5, it is seen that the
clusterization is only slightly enhanced after the temperature
is reset, and this leads to only a weak correlation between
the density distribution and the temperature distribution. By
resetting the temperature for additional times and with more
test particles, a liquid-gas mixed system with a more uniform
temperature distribution can be obtained, while we expect the
results of the shear viscosity to remain almost unchanged.

We also display in Fig. 6 the correlations 〈�ρ(r)�ρ(0)〉
of density fluctuations at different times in the same system
as Figs. 4 and 5, where �ρ(r) = ρ(r) − 〈ρ〉 represents the
density fluctuation in a cell with a distance r from the original
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FIG. 6. Correlations of density fluctuations at different times
from IBUU simulations in a box system corresponding to the same
evolution in Figs. 4 and 5.

cell, with 〈ρ〉 being the average density of the box system.
The periodic boundary condition is taken into account in eval-
uating the correlation of density fluctuations, so the maximum
value of r is

√
3(L/2)2 ≈ 17.3 fm. Initially, there is no density

fluctuation and thus zero correlation. As time evolves, with
the appearance of clusterization, the correlation of the density
fluctuation grows at t = 300 and 500 fm/c. After the tempera-
ture is reset at t = 500 fm/c, there are small modifications on
the density fluctuation, and the correlation further grows and
becomes saturated at t = 1000 and 1200 fm/c. For the density
fluctuations at later times as shown in Fig. 4, the correlation
of density fluctuations is positive for small r corresponding
to the liquid drop of nucleons with a certain volume, and
negative for large r corresponding to the gas phase away from
the liquid drop. The radius of the cluster can be estimated as
the half-height width of 〈�ρ(r)�ρ(0)〉, which is about 5 fm,
consistent with the observation from Fig. 4.

From monitoring the time evolutions of the density distri-
bution, the average kinetic and potential energy density, the
average entropy density, the average temperature, and the cor-
relation of density fluctuations, we found that the dynamical
equilibrium is completely reached after t = 1200 fm/c. We
thus set t0 = 1200 fm/c as the starting time for the calculation
of the shear viscosity based on the Green-Kubo method. For
other (ρ, T ) states in the spinodal region as in Fig. 1(b), a
similar process is used to achieve dynamic and thermal equi-
librium, while t0 can be slightly different. Since in nonuniform
systems we mostly talk about average quantities, the average
symbol “〈· · · 〉” will be omitted in most cases of the subse-
quent discussions.

C. Specific shear viscosity

The shear viscosity is calculated based on the Green-
Kubo method by evaluating the correlation of the energy-
momentum tensor according to Eq. (24), whose time
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FIG. 7. Correlations of the energy-momentum tensor as a func-
tion of time from IBUU simulations in a box system. Left: Uniform
system at a density ρ = ρ0 and temperature T = 10 MeV. Right:
Uniform (w/o MF) and nonuniform (with MF) system at an average
density ρ = 0.3ρ0 and temperature T = 5 MeV.

evolutions for typical systems from IBUU simulations are dis-
played in Fig. 7 for illustration, based on the statistical average
of about 10 000 events for each case. Figure 7(a) displays the
results from a uniform system at a density ρ = ρ0 and tem-
perature T = 10 MeV out of the spinodal region, and IBUU
simulations are performed with and without Pauli blocking
(PB). The correlations of the energy-momentum tensor in the
two cases start from the same value, and then decrease ex-
ponentially with time. The decreasing trend reflects how fast
the system forgets its initial state, and it is stronger for the case
without PB due to more successful nucleon-nucleon collisions
compared to the case with PB. Figure 7(b) compares the re-
sults at an average density ρ = 0.3ρ0 and temperature T = 5
MeV with and without the mean-field potential (MF), corre-
sponding to nonuniform and uniform systems, respectively.
The correlation of the energy-momentum tensor for a nonuni-
form system starts from a larger value due to the enhanced
correlation from the clusterization, and decreases exponen-
tially with time more rapidly as a result of more successful
nucleon-nucleon collisions within high-density clusters, com-
pared to the case for a uniform system. Using the least-squares
fit method, the function 〈�xy(t0)�xy(t )〉 can be parametr-
ized as

〈�xy(t0)�xy(t )〉 = Ae−B(t−t0 ), (31)

where A is determined by the correlation of the energy-
momentum tensor at t = t0, and B reflects how rapidly the
correlation decreases. According to Eq. (24), the shear vis-
cosity can then be expressed as

η = AV

BT
, (32)

where a larger B from a stronger collision effect reduces the
value of η.

Figures 8 and 9 display, respectively, the shear viscosity
η, the average entropy density s, and the specific shear vis-
cosity η/s as a function of average density ρ at different
temperatures and as a function of temperature T at different

FIG. 8. Shear viscosity η (first row), entropy density s (second
row), and specific shear viscosity η/s (third row) as a function of
average density ρ from IBUU simulations in a box system at the tem-
peratures T = 3 (first column), 6 (second column), 9 (third column),
and 12 MeV (fourth column) with and without mean-field poten-
tial (MF).

average densities, where results with and without mean-field
potential are compared. The error bars mostly originate from
the fitting error according to Eq. (31). The shear viscosity
generally increases with increasing average density due to
the stronger Pauli blocking effect at higher densities, and
decreases with increasing temperature due to the weaker Pauli
blocking effect and thus more successful collisions at higher
temperatures. The average entropy density generally increases
with both increasing density and temperature, as a result of a

FIG. 9. Shear viscosity η (first row), entropy density s (second
row), and specific shear viscosity η/s (third row) as a function of
temperature T from IBUU simulations in a box system at average
densities ρ = 0.1ρ0 (first column), 0.2ρ0 (second column), 0.5ρ0

(third column), and 0.8ρ0 (fourth column) with and without mean-
field potential (MF). Results with both the mean-field potential and
the Coulomb force (MF & cou) are compared for the average density
ρ = 0.2ρ0.
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more populated phase space at higher densities or tempera-
tures. The ratio of the shear viscosity to the average entropy
density, i.e., the specific shear viscosity, mostly decreases
with increasing temperature for a given average density, but
increases with the increasing average density for a given
temperature. For the average density and temperature out of
the spinodal region as shown in Fig. 1(b), the results with
mean-field potential agree with those without mean-field po-
tential within error bars, since the system is always uniform.
For the average density and temperature inside the spinodal
region, the system is nonuniform (uniform) with (without)
mean-field potential. The formation of high-density hot clus-
ters in the spinodal region enhances the collision effect and
thus reduces the shear viscosity, while the average entropy
density is reduced in nonuniform systems compared to that in
uniform systems. Taking the ratio of η to s, the specific shear
viscosity is seen to be reduced in nonuniform systems com-
pared to uniform systems at the same average densities and
temperatures.

The minimum of the specific shear viscosity as a func-
tion of temperature is of special interest, and in the present
framework it is seen only at very low average densities.
At an average density ρ = 0.1ρ0, a minimum η/s is seen
at about T = 6 MeV. At an average density ρ = 0.2ρ0,
a minimum η/s is seen at about T = 11 MeV. At even
higher average densities, the minimum of η/s is not obvi-
ously seen. At a given temperature, the density dependence
of η/s may also show a minimum behavior at higher tem-
peratures, and they are around ρ = 0.2ρ0 at both T = 9
and 12 MeV.

Once the Coulomb force is incorporated, the clustering
effect becomes weaker compared to what has been shown
in Sec. III B. This is understandable, since the energy con-
servation condition leads to a reduced maximum density of
clusters due to the repulsive nature of the Coulomb potential
for protons. The effect of incorporating the Coulomb force
on the shear viscosity is illustrated in Fig. 9 for the average
density of ρ = 0.2ρ0. It is seen that the reduced clustering
effect in the presence of the Coulomb force increases both η

and s at about T = 9–13 MeV, leading to a slightly increased
η/s and a lower temperature for the minimum η/s, while
the qualitative behaviors of these quantities remain generally
unchanged.

Figure 10 provides a global picture of the specific shear
viscosity in the (T, ρ) plane with and without mean-field po-
tential. The general feature that η/s is large at higher densities
and/or lower temperatures is seen in both cases. The distribu-
tion of η/s in uniform systems without mean-field potential in
the (T, ρ) plane is seen to be flatter, while a concavity is seen
in non-uniform systems with mean-field potential at lower
densities. For a constant and isotropic nucleon-nucleon col-
lision cross section σ = 40 mb used in the present study, the
value of η/s is much larger than the KSS bound h̄/4π ≈ 0.08.

IV. SUMMARY AND OUTLOOK

Based on simulations in a box system with the periodic
boundary condition using the IBUU transport model, we have
studied the specific shear viscosity η/s of nuclear matter at

FIG. 10. Specific shear viscosity η/s in the (T, ρ ) plane from
IBUU simulations in a box system without (a) and with (b) mean-
field potential (MF).

the average densities and temperatures around the spinodal
region through the Green-Kubo method. The present study
is based on previous efforts of the transport model evalua-
tion project with well calibrated nucleon-nucleon collisions
and mean-field evolutions. With the momentum-independent
mean-field potential, which reproduces empirical nuclear mat-
ter properties and the nuclear phase diagram, incorporated
through the lattice Hamiltonian framework, we have gener-
ated dynamically stable and thermalized systems with nuclear
clusters. By comparing results of the specific shear viscosity
at different average densities and temperatures in uniform
and nonuniform systems, we found that clusterizations may
enhance the correlation of the energy-momentum tensor and
the collision effect, thus reducing both η and η/s. This leads
to a minimum of η/s as a function of temperature at lower
average densities, while the minimum behavior disappears
at ρ > 0.3ρ0. Incorporating the Coulomb force reduces the
clustering effect while the results remain qualitatively similar.
The present study serves as a rigorous baseline calculation
of η/s with nuclear clusters, and helps our understanding of
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the relation between the shear viscosity and the nuclear phase
diagram.

The study can be easily generalized to incorporate isospin
degree of freedom as well as more realistic nucleon-nucleon
collision cross sections. The Green-Kubo method can also
be used to study other transport coefficients, e.g., the bulk
viscosity. It is of great interest to study transport properties
of isospin asymmetric nuclear matter in the mechanical and

chemical instability region through the Green-Kubo method.
Such studies are in progress.
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