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Predicting the structure of quantum many-body systems from the first principles of quantum mechanics is
a common challenge in physics, chemistry, and material science. Deep machine learning has proven to be a
powerful tool for solving condensed matter and chemistry problems, while for atomic nuclei it is still quite
challenging because of the complicated nucleon-nucleon interactions, which strongly couple the spatial, spin,
and isospin degrees of freedom. By combining essential physics of the nuclear wave functions and the strong
expressive power of artificial neural networks, we develop FeynmanNet, a deep-learning variational quantum
Monte Carlo approach for ab initio nuclear structure. We show that FeynmanNet can provide very accurate
solutions of ground-state energies and wave functions for 4He, 6Li, and even up to 16O as emerging from
the leading-order and next-to-leading-order Hamiltonians of pionless effective field theory. Compared to the
conventional diffusion Monte Carlo approaches, which suffer from the severe inherent fermion-sign problem,
FeynmanNet reaches such a high accuracy in a variational way and scales polynomially with the number of
nucleons. Therefore, it paves the way to a highly accurate and efficient ab initio method for predicting nuclear
properties based on the realistic interactions between nucleons.

DOI: 10.1103/PhysRevC.107.034320

I. INTRODUCTION

Atomic nuclei are self-bound systems consisting of pro-
tons and neutrons, which interact with each other via strong
interactions. However, it is a great challenge to describe
nuclear structure directly from the fundamental theory of
strong interactions, quantum chromodynamics (QCD), due
to its nonperturbative nature at the low-energy regime.
The advent of the effective field theory (EFT) paradigm in
the early 1990s [1,2] has opened the way to linking QCD
and the low-energy nuclear structure by establishing nuclear
EFTs [3], which are nowadays the main inputs [4–7] to ab
initio nuclear many-body approaches. The nuclear EFTs pro-
vide the nuclear Hamiltonian with controlled approximations
and the corresponding many-nucleon Schrödinger equation is
then solved with state-of-the-art many-body methods. Such
a combination has achieved a great success in describing
many nuclear properties including binding energies and radii
[8–10], β decays [11], α-α scattering [12], etc.

Nevertheless, some major challenges remain because the
nucleon-nucleon interaction is extremely complex, in contrast
to the Coulomb force and/or the van der Waals potential used
in atomic and molecular physics. It contains a strong tensor
component involving both the spin and isospin of the nu-
cleons and also significant spin-orbit forces, inducing strong
coupling between the spin-isospin and spatial degrees of free-
dom [13]. These features lead to complex nuclear many-body
phenomena, whose description requires a consistent treatment
of both short-range (or high-momentum) and long-range (or
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low-momentum) correlations. Among the variety of nuclear
many-body methods, quantum Monte Carlo (QMC) methods
[14] based upon Feynman path integrals formulated in the
continuum have proven to be quite valuable for these prob-
lems. They are able to deal with a wide range of momentum
components of the interaction and, thus, can accommodate
“bare” potentials derived within nuclear EFTs. However, the
QMC methods are presently limited to either light nuclei with
up to A = 12 nucleons [15–18] or larger systems but with sim-
plified nuclear Hamiltonians [19,20]. This is mainly because
of the infamous fermion-sign problem [21], which leads to an
exponential increasing ratio of error to signal with the number
of nucleons. Therefore, an accurate and polynomial scaling
solution is highly desired to extend the QMC calculations to
medium-mass nuclei.

Machine learning has provided the opportunity for a poly-
nomial scaling solution of quantum many-body problems,
especially for many-electron systems [22]. It is motivated
by the fact that artificial neural networks (ANNs) can com-
pactly represent complex high-dimensional functions and,
thus, should be able to provide efficient means for repre-
senting the wave function of quantum many-body states. A
variational representation of ANN-based many-body quantum
states has been originally introduced for prototypical spin
lattice systems [23], and then generalized to several quantum
systems in continuous space [24,25]. Recently, deep neural
networks trained within variational Monte Carlo (VMC) have
been further developed to tackle ab initio chemistry problems
[26–29].

For ab initio nuclear structure, due to the complexity of
the nucleon-nucleon interaction, the application of machine-
learning approaches to nuclear many-body problems is still
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in its infancy. They are often split into two main categories,
supervised and unsupervised [30]. Here, the many-nucleon
Schrödinger equation is solved directly with unsupervised
learning. The first attempt was given to solve deuteron, a two-
body bound state, in momentum space [31]. Subsequently,
an ANN quantum state ansatz defined by the product of a
Jastrow factor and a Slater determinant was introduced to
solve nuclei with up to A = 6 nucleons in coordinate space
within the VMC method [32,33]. It outperforms the rou-
tinely employed ansatz based on two- and three-body Jastrow
functions, while there are still significant deviations from the
numerically exact results for three- and four-body nuclei,
mainly caused by the incorrect nodal surface of the single
Slater determinant.1 The incorrect nodal surface can be largely
improved with an augmented Slater determinant involving
hidden nucleonic degrees of freedom [34], but the nuclear
Hamiltonian is limited to contain central forces only, thereby
preventing the application to realistic nuclear structure prob-
lems, which depend crucially on the tensor and spin-orbit
forces [16].

A key development improving the nodal surface in the
present work is the consideration of a many-body backflow
transformation, which was originally proposed by Feynman
and Cohen for liquid helium [35]. While the traditional back-
flow does not reach a very high accuracy, a series of recent
works showed that representing the backflow with a neural
network is a powerful generalization [36] and can greatly
improve the accuracy in solving many-electron problems
[26,27].

In this work, we develop a novel deep-learning QMC
approach for nuclear many-body problems, FeynmanNet,
which includes multiple Slater determinants and backflow
transformation based on powerful deep-neural-network repre-
sentations encompassing both continuous spatial and discrete
spin-isospin degrees of freedom for nucleons. In particular,
to incorporate many-body correlations induced by the tensor
and spin-orbit forces, the deep neural networks are designed to
represent complex-valued nuclear wave functions. Moreover,
physics related to low-energy nuclear structure including the
major shell structure and the point symmetries is explicitly
encoded in the neural-network architecture, and it makes the
obtained FeynmanNet not only highly accurate, but also ro-
bust and efficient in the training process. We demonstrate
the high performance of FeynmanNet by benchmarking our
results against the hyperspherical-harmonics (HH) method
for 4He and 6Li and the auxiliary-field diffusion Monte
Carlo (AFDMC) approach for 16O. Considering that Feyn-
manNet scales polynomially with the number of nucleons,
the present work opens the way to highly accurate ab initio
studies of medium-mass nuclei with quantum Monte Carlo
approaches.

1Because of the fermionic nature of the nuclear many-body wave
function, it must have a nodal surface where its value takes zero. For
the ANN ansatz in Ref. [32], the nodal surface is mainly determined
by the single trial Slater determinant, which is fixed during the
variation process and, thus, usually incorrect.

II. ARCHITECTURE

At the core of our approach is a deep-learning architecture,
dubbed FeynmanNet, designed for a compact representation
of the nuclear wave function. Due to the strong tensor and
spin-orbit interactions among nucleons, it is essential to ex-
plicitly write the nuclear wave function to be complex-valued,

�(x1, . . . , xA) = � (R)(x1, . . . , xA) + i� (I)(x1, . . . , xA), (1)

where xi = (r̄i, si, ti ) are the single-nucleon variables, includ-
ing the intrinsic spatial coordinates r̄i = ri − rc.m. with rc.m.

being the position of the center of mass, the spin si = ±1/2,
and the isospin ti = ±1/2. The introduction of the intrinsic
spatial coordinates r̄i assures the translational invariance of the
wave function and avoids the spurious center-of-mass motions
[14].

Both the real and imaginary parts of the wave function
are constructed by considering Jastrow correlations and mul-
tiple Slater determinants consisting of backflow transformed
orbitals,

� (α)(x1, . . . , xA)

= eU
(α) (x1,...,xA )

Ndet∑
n=1

w(α)
n det[f (α,n)(x1, . . . , xA)],

α = R, I. (2)

Here, U (α) are the permutation-invariant Jastrow factors, Ndet

the number of Slater determinants, and w(α)
n the weight of

the corresponding Slater determinant. The weights w(α)
n are

determined variationally during the training process.
Following the basic idea of the backflow transformation

[35], the single-nucleon orbitals of the ith nucleon in the
determinant depend not only on its own variables xi, but also
on the variables of all other nucleons in an exchangeable way.
Specifically, as the architecture illustrated in Fig. 1, the matrix
elements of f (α,n) are represented row by row with neural
networks,

f (α,n)
iμ (x1, . . . , xA)

= ρ (α,n)
μ

⎛
⎝φ(α,n)(xii ) +

∑
j �=i

η(α,n)(xi j )e
−r2

i j/R2

⎞
⎠, (3)

where μ = 1, . . . , A is the index of the orbitals for the ith
nucleon.

First, the single-nucleon variables xi = (r̄i, si, ti ) for the
ith nucleon are combined with those of all other nucleons
j ( j �= i) to form pairwise inputs xi j = (ri j, ri j, si, s j, ti, t j )
with ri j = r̄i − r̄ j and ri j = |ri j |. In principle, the distances ri j

are redundant inputs. However, it was found that inputting ri j

could improve the performance of the neural-network wave
functions in both electronic [26] and nuclear [37] systems.
This should be due to the fact that the inclusion of distances
ri j respects the rotational invariance of the ground state.

Then, the pair-wise inputs are successively mapped into
Nlat latent variables via a feed-forward neural network η(α,n).
The summation of these latent variables over j assures
the permutation invariance for nucleons other than the ith
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FIG. 1. Architecture of a backflow neural network in FeynmanNet. The input single-nucleon variables of A nucleons are transformed row
by row to the A × A Slater matrix elements consisting of the backflow transformed orbitals. φ, η, and ρ, feed-forward neural networks; Nlat ,
number of latent variables for each row.

nucleon. The Gaussian function e−r2
i j/R2

in Eq. (3), with R as
a hyperparameter characterizing the range of nuclear force, is
adopted to reduce the correlations of two nucleons which are
outside the interacting range. For the case of j = i, the pair-
wise inputs should be reduced to xii = (r̄i, r̄i, si, ti ), and they
are mapped into Nlat latent variables via another feed-forward
neural network φ(α,n). The summation of these latent variables
over all nucleon pairs are then input to a new feed-forward
neural network ρ(α,n) with A outputs, providing the A matrix
elements for the ith row. The designed architecture ensures the
antisymmetry of the nuclear wave function, because one can
exchange two nucleons by swapping two rows of the matrix
f (α,n), the determinant of which then changes its sign.

The Jastrow factors U (α) in Eq. (2) are represented by
neural networks similar to the ones adopted in the previous
work [33] based on the Deep Sets architecture [38,39]. The
pair-wise inputs of each pair of nucleons (i, j) are mapped
separately into a latent-space representation, and a summa-
tion over all pairs is then applied to enforce permutation
invariance,

U (α)(x1, x2, . . . , xA)

= ρ (α,U )

⎛
⎝∑

i �= j

φ(α,U )(ri j, ri j, si, s j, ti, t j )

⎞
⎠. (4)

Here, φ(α,U ) and ρ (α,U ) are feed-forward neural networks.
In the present work, all the feed-forward neural networks,

namely η, φ, and ρ, are comprised of one fully connected
hidden layer with 16 nodes. Each of them translates mathe-
matically into the following mapping from the inputs to the
outputs:

xout = σ (W[σ (Vxin + a)] + b). (5)

In the above equation, W, V, a, and b are the weights and
biases of the network, which serve as variational parameters
of the wave function. The activation function σ is taken to be
the Softplus function [40]. The number of latent variables Nlat ,

i.e., the output dimensions of η and φ, as well as the input
dimension of ρ, is taken to be 16.

Besides the essential antisymmetry, we also encode other
physical knowledge about the nuclear wave function into
FeynmanNet, and this significantly strengthens the expressive
power of the network and accelerates the training process.
First, the major shell structure of nuclei is embedded in each
Slater determinant in Eq. (2) by replacing the matrix elements
with f (α,n)

iμ (x1, . . . , xA) · ϕμ(xi ), where ϕμ(xi ) takes the form

ϕμ(xi ) =
Nf∑

k=1

wμkϕ̃k (xi ). (6)

Here, ϕ̃k (xi ), k = 1, 2, . . . , Nf , is a set of single-particle shell
model orbitals within a closed major shell (nl ), and wμk

the expansion coefficients determined variationally during the
training process. The shell model orbitals are of the form

ϕ̃k (xi ) = Rnl (r̄i)Yllz (r̂i )χst (si, ti ), (7)

where Rnl are radial functions of a harmonic oscillator

R1s(r) = e−r2/2b2
, R1p(r) = re−r2/2b2

, . . . , (8)

Yllz the spherical harmonics, and χst ∈ {↑n,↓n,↑p,↓p} the
spinors in the spin-isospin space.

In this work, we take the oscillator length b2 = 10 fm2,
and using a different value should not affect FeynmanNet after
training. The harmonic oscillator orbitals up to the 1s shell are
adopted for 4He, and 1p shell for 6Li and 16O.

Moreover, FeynmanNet explicitly preserves the total
isospin projection on the z axis Tz and the parity π by writing
the nuclear wave function as

�π
A,Z (x1, . . . , xA) = δTz,

A
2 −Z (1 + πP̂ )�(x1, . . . , xA), (9)

where A and Z are, respectively, the mass and proton numbers
of nuclei, and P̂ denotes the operator of space inversion. For
even-even nuclei, the time-reversal symmetry of the wave
function is additionally imposed by multiplying (1 + T̂ ) with
T̂ being the time-reversal operator.
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III. TRAINING DETAILS

FeynmanNet is trained with the VMC approach by mini-
mizing the energy expectation

E [�] = 〈�|Ĥ |�〉
〈�|�〉 . (10)

The stochastic reconfiguration method [41], closely related
to the natural gradient descent method [42] in unsupervised
learning, is employed in the training progress to minimize
the energy iteratively. During the training, the parameters at
iteration t are updated as

pt+1 = pt − γ [Re(St )]
−1gt , (11)

where γ = 5 × 10−4 is the learning rate, g is the gradient of
the energy ∂pE ,

ga = 2Re

(
〈∂pa�|Ĥ |�〉

〈�|�〉 − E
〈∂pa�|�〉
〈�|�〉

)
, (12)

and S is a precondition matrix

Sab = 〈∂pa�|∂pb�〉
〈�|�〉 − 〈∂pa�|�〉

〈�|�〉
〈�|∂pb�〉
〈�|�〉 . (13)

Only the real part of S is employed because the parameters
in the neural networks are real-valued. Moreover, to achieve
a robust and efficient training process, the matrix elements
Sab associated with the mixed derivatives with respect to the
parameters in the neural network η and the parameters in other
networks are neglected.

In practice, the precondition matrix S could be ill-
conditioned, namely, with very small eigenvalues, and its
inversion could lead to numerical instability. Therefore, the
precondition matrix is regularized by S → S + εdiag(

√
vt +

10−8) with the regularization parameter ε = 10−3 and vt =
βvt−1 + (1 − β )g2

t [34]. Here, vt accumulates the exponen-
tially decaying averages of the squared gradients and β is
the exponential decay factor taken to be 0.9. In addition, a
constraint on the Fubini-Study distance between the wave
functions of two adjacent iterations,

dFS[�(pt+1), �(pt )]

= arccos

√
|〈�(pt+1)|�(pt )〉|2

〈�(pt )|�(pt )〉〈�(pt+1)|�(pt+1)〉 < dmax,

(14)

is employed to prevent accidental large changes of the param-
eters that might lead to instability. The limit dmax is initially
set to be 0.1 and lowered to 0.05 when the iteration nearly
converges.

At each iteration, a large set of configuration samples
(x(n)

1 , . . . , x(n)
A ) with n = 1, . . . , N is generated following

the probability distribution |�|2 by the standard Metropolis
Monte Carlo sampling [43]. Then, the energy expectation
E , gradient g, and precondition matrix S are evaluated on
these samples as in conventional variational Monte Carlo

approaches

E = Re〈E (n)〉,
ga = 2Re

[〈
O∗(n)

a E (n)
〉 − E

〈
O∗(n)

a

〉]
,

Sab = 〈
O∗(n)

a O(n)
b

〉 − 〈
O∗(n)

a

〉〈
O(n)

b

〉
. (15)

Here, the brackets denote the averages over the N configura-
tion samples and

E (n) = Ĥ�
(
x(n)

1 , . . . , x(n)
A

)
�

(
x(n)

1 , . . . , x(n)
A

) , O(n)
a = ∂pa�

(
x(n)

1 , . . . , x(n)
A

)
�

(
x(n)

1 , . . . , x(n)
A

) .

(16)

The derivatives of the wave function with respect to either
the spatial coordinates or the neural-network parameters are
calculated based on the automatic differentiation framework
of TensorFlow [44].

IV. NUCLEAR HAMILTONIAN

The nuclear Hamiltonian adopted in this work is derived
within the pionless EFT, which is based on the tenet that the
typical momenta of nucleons in nuclei are much smaller than
the pion mass [3]. The nuclear Hamiltonian reads

Ĥ =
A∑

i=1

−∇2
i

2mN
+

∑
i< j

vi j +
∑

i< j<k

Vi jk, (17)

where mN is the nucleon mass, A the number of nucle-
ons, vi j the nucleon-nucleon (NN) interaction, and Vi jk the
three-nucleon (3N) interaction. The NN interactions consists
of an electromagnetic (EM) term and charge-independent
(CI) contact terms at leading order (LO) and additionally
charge-dependent (CD) contact terms at next-to-leading-order
(NLO),

vLO = vEM + vCI
LO,

vNLO = vEM + vCI
LO + vCI

NLO + vCD
NLO. (18)

The Coulomb repulsion between finite-size (rather than
point-like) protons is considered for vEM [45]. The contact
interactions are regularized by Gaussian cutoff functions [46],
and can be conveniently expressed in terms of radial functions
multiplying spin and isospin operators. The CI contact terms
take the form

vCI
LO(ri j ) =

4∑
p=1

v
p
LO(ri j )Op

i j, vCI
NLO(ri j ) =

8∑
p=1

v
p
NLO(ri j )Op

i j

(19)

with ri j = ri − r j , ri j = |ri j |, and Op=1,2,...,8
i j = 1, τ i · τ j, σ i ·

σ j, σ i · σ jτ i · τ j, Si j, Si jτ i · τ j, L · S, L · Sτ i · τ j . Here, σ i

(τ i) are the Pauli spin (isospin) matrices of the ith nucleon, and
Si j = 3σ i · r̂i jσ i · r̂i j − σ i · σ j , L = − i

2 ri j × (∇i − ∇ j ), and
S = 1

2 (σ i + σ j ) are the tensor operator, the relative angular
momentum, and the total spin of a pair of nucleons (i, j),
respectively. Only central forces (p = 1–4) are present at LO,
while the tensor and spin-orbit forces (p = 5–8) appear at
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FIG. 2. Performance of FeynmanNet on the 4He, 6Li, and 16O ground states. (a) The 4He energy, calculated with the pionless effective
field theory Hamiltonian at leading order (LO), as a function of the iterations in the training progress of FeynmanNet. The statistical errors
of the energies from the Metropolis Monte Carlo sampling are shown by error bars. The solid line is obtained by applying exponential
moving average to the energies. The ground-state energies given by the artificial neural network with Slater-Jastrow (ANN-SJ) ansatz and
the hypershperical-harmonics (HH) method [33] are displayed for comparison. (b) Same as (a) but for 6Li. The ANN-SJ and HH results are
displayed, with shadow areas indicating the corresponding statistical and extrapolation errors, respectively. (c) Same as (a) but for 16O. The
ground-state energy provided by the auxiliary-field diffusion Monte Carlo (AFDMC) method [46] is displayed with shadow areas indicating
the statistical error. (d) Same as (a) but with the Hamiltonian at next-to-leading-order (NLO). The results of FeynmanNet with the LO and
NLO Hamiltonians are shown in blue and orange, respectively.

NLO. The CD contact term at NLO takes the form

vCD
NLO(ri j ) = vT

NLO(ri j )Ti j (20)

with Ti j = 3τizτ jz − τ i · τ j being the isotensor operator of
the nucleon pair (i, j). The specific expressions of the radial
functions in Eqs. (19) and (20) can be found in Ref. [46].

The regularized 3N contact interaction reads

Vi jk (ri j, r jk, rki ) = cE

f 4
π�χ

(h̄c)6

π3R6
3

∑
cyc

e−(r2
i j+r2

jk )/R2
3 , (21)

where �χ = 1 GeV, fπ = 92.4 MeV is the pion decay con-
stant, cE is a three-nucleon low-energy constant (LEC), and∑

cyc stands for the cyclic permutation of i, j, k.
The LECs in the nuclear Hamiltonian are adjusted to the

experimental NN scattering data and 3H binding energy [46],
and we use the optimal set (model “o”) with R3 = 1.0 fm
at LO and R3 = 2.0 fm at NLO given in Ref. [46] that was
proved to yield reasonably well ground-state energies for sev-
eral light- and medium-mass nuclei [46].

The range of the adopted NN is typically 2 fm, so we use
this value for R in the backflow neural network in Eq. (3).
In addition, for the LO Hamiltonian, only the real part of the
FeynmanNet wave function is needed as the tensor and spin-
orbit forces are not present [Eq. (19)].

V. RESULTS AND DISCUSSION

Figure 2 depicts the performance of FeynmanNet by tak-
ing 4He, 6Li, and 16O as examples. The FeynmanNet results
here are obtained using Ndet = 4 determinants. For 4He and
6Li, the obtained ground-state energies are compared with the
results given by the previous ANN Slater-Jastrow (ANN-SJ)
ansatz and the HH method [33]. The former works only for
the LO Hamiltonian, while the latter is valid for both LO
and NLO Hamiltonians and, more importantly, is numerically
exact for s-shell nuclei, e.g., 4He. For the 4He ground-state
energy at LO Fig. 2(a), FeynmanNet provides lower energy
than the ANN-SJ ansatz after training for only about 200
iterations, and the final result is also consistent with the nu-
merically exact HH value. This indicates that FeynmanNet
outperforms the ANN-SJ ansatz by introducing the multiple
determinants and backflow transformation, which improves
the nodal surface in both continuous spatial and discrete
spin-isospin spaces. Note that the extra energy given by Feyn-
manNet grows dramatically for heavier nuclei, e.g., about 7
MeV for 16O (see the MD-SJ result with Ndet = 1 in Fig. 4(c).

The experimental value of 4He ground-state energy is
−28.30 MeV, slightly lower than the HH value, −28.17 MeV
[33]. However, since the HH method provides a numeri-
cally exact solution of the Schrödinger equation for 4He, this
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FIG. 3. Point-nucleon densities of the 4He, 6Li, and 16O ground states obtained with FeynmanNet. The results for the LO and NLO pionless
EFT Hamiltonians are shown in blue and orange, respectively. The statistical errors from the Metropolis Monte Carlo sampling are smaller
than the points. For the LO Hamiltonian, also shown are the point-nucleon densities given by the ANN-SJ ansatz and the HH method for 4He
and 6Li [33] and the AFDMC method for 16O [34].

discrepancy originates from the model of the nuclear force,
which is out of the scope for this work.

Unlike the s-shell nucleus 4He, the p-shell nucleus 6Li is
strongly clustered in an α particle and a deuteron, and such
a cluster structure brings additional complexity in the calcu-
lations. As a result, the HH result for 6Li is not as accurate
as that for 4He [47]. FeynmanNet converges to the lowest
ground-state energies for 6Li in comparison with the ANN-SJ

and HH results Fig. 2(b), which are respectively higher by
about 500 keV and 300 keV than the FeynmanNet energy.

The expressive power of FeynmanNet is further high-
lighted for a larger system 16O. Such a system is too large
for the HH method, so we benchmark our results with the
AFDMC approach [46]. One can see that the energy given
by FeynmanNet is lower than the AFDMC energy by more
than 1 MeV Fig. 2(c). Note that the AFDMC calculations

FIG. 4. Roles of the number of determinants, Jastrow factor, and backflow transformation in FeynmanNet. The ground-state energies of
4He and 16O, obtained with the ansatz of multiple Slater determinants (MD) alone and in combination with the Jastrow factor (SJ) and an
optional backflow transformation (BF), are shown as functions of the number of the determinants Ndet. The numerically exact results for 4He
from the HH method [33] are shown by the black dashed line. The result for 16O from the AFDMC method [46] is displayed by the green
dash-dotted line and the shadow area indicating its statistical error.
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adopt the constrained-path approximation to mitigate the
fermion-sign problem in imaginary-time propagations, and
therefore could not solve the ground state exactly [48]. In
contrast, the strong expressive power of FeynmanNet allows
a variational approach to reach accurate solutions without
performing imaginary-time propagations.

Moreover, the calculation of 4He with the NLO Hamil-
tonian demonstrates the ability of FeynmanNet to deal with
tensor and spin-orbit forces Fig. 2(d). The NLO Hamiltonian
has lower symmetries than the LO one. At LO, the spatial and
spin angular momenta, namely L and S, are respectively con-
served in addition to the total angular momentum J. However,
they are broken by the tensor and spin-orbit forces introduced
at NLO. Despite these difficulties, it is remarkable that the
number of iterations for convergence of FeynmanNet at NLO
is similar to that at LO. FeynmanNet reaches an accuracy of
≈50 keV after training for only 200 iterations, and the energy
obtained after 500 iterations is consistent with the HH value
within 30 keV.

In addition to accurate ground-state energies, FeynmanNet
also provides a whole solution of the nuclear many-body
wave function that, in principle, gives access to all ground-
state properties. To elucidate the quality of FeynmanNet wave
function, the obtained point-nucleon densities of the 4He, 6Li,
and 16O ground states are shown in Fig. 3. The point-nucleon
densities are calculated as

ρN (r) = 1

4πr2

〈�| ∑A
i=1 δ(r̄i − r)|�〉
〈�|�〉 , (22)

where r̄i are the distance from the ith nucleon to the center
of mass and � taken to be the FeynmanNet wave function
after convergence. The obtained point-nucleon densities are
compared to the previous results with the LO Hamiltonian
given by the ANN-SJ ansatz and HH method for 4He and
6Li [33] and AFDMC method for 16O [34]. Note that the HH
method is also valid for 4He with the NLO Hamiltonian, but
we have not found the results of point-nucleon density from
the literature.

Similar to the energy, the FeynmanNet point-nucleon den-
sity for 4He is in an excellent agreement with the HH result
Fig. 3(a). For 6Li, FeynmanNet provides not only the lowest
ground-state energy but also a significantly more compact
point-nucleon density than the ANN-SJ ansatz and the HH
method Fig. 3(b). For 16O, the point-nucleon density given by
FeynmanNet is very close to the AFDMC one Fig. 3(c). These
results corroborate once again the accuracy of FeynmanNet
in representing nuclear wave functions. In the future, we en-
visage wide applications of FeynmanNet in realistic nuclear
structure studies of nuclear momentum distributions, form
factors, currents, etc.

Figure 4 highlights the specific roles of multiple Slater
determinants, the Jastrow factor, and the backflow trans-
formation in capturing nuclear many-body correlations. We
compare the 4He and 16O ground-state energies obtained with
FeynmanNet and its two simpler variants without the back-
flow transformation and additionally the Jastrow factor. For
4He at LO Fig. 4(a), the result obtained using the ansatz of

one Slater determinant alone is higher than the HH energy
by about 800 keV, and this deviation can be nicely removed
by the consideration of Jastrow correlations. While both the
Jastrow factor and the multiple Slater determinants are crucial
to improve the energy at NLO Fig. 4(b), the energy deviation
from the exact value remains about 300 keV with Ndet = 4,
which can only be further reduced by taking into account
the backflow transformation. This should be attributed to the
more complicated nodal surface of the nuclear wave function
with the NLO Hamiltonian, arising from the presence of ten-
sor and spin-orbit forces. The Jastrow factor can compactly
incorporate many-body correlations, but cannot modify the
nodal surface of the Slater determinants due to its nonnega-
tive feature. Therefore, the backflow transformation plays a
crucial role in improving the nodal surface and reaching a
significantly higher accuracy.

The importance of the backflow transformation is even
more evident in the larger nucleus 16O. As seen in Fig. 4(c),
the backflow transformation lowers the Slater-Jastrow energy
by about 7 MeV and achieves, with just one determinant, an
energy similar to the AFDMC result. By increasing the num-
ber of the determinants Ndet, the calculated energy is further
lowered by about 1 MeV.

VI. SUMMARY

We have developed FeynmanNet, a deep-learning QMC
approach aiming to solve the ab initio nuclear many-body
problems, and demonstrated that it can provide very accu-
rate solutions of 4He, 6Li, and 16O ground-state energies and
wave functions emerging from the LO and NLO Hamilto-
nians from pionless EFT. By introducing a well-designed
backflow transformation, it outperforms the previous ANN
Slater-Jastrow wave functions in not only the higher accuracy
but also the nice compatibility with the Hamiltonian contain-
ing tensor and spin-orbit forces, which induce a complicated
nodal surface of the wave function in the spatial and spin-
isospin space. Compared to the conventional nuclear QMC
approaches, FeynmanNet has a more favorable polynomial
scaling instead of an exponential scaling. Moreover, the strong
expressive power of the deep neural networks in FeynmanNet
allows a variational approach to reach or even exceed the
accuracy of diffusion Monte Carlo method and, thus, avoids
the imaginary-time propagations that suffer from the severe
inherent fermion-sign problem. Therefore, FeynmanNet is a
promising ab initio method that can accurately solve light
and medium-mass nuclei. Note that the adopted Hamiltonians
in the present work are based on the relatively simplified
pionless EFT. In the future, we plan to adopt more realistic
and sophisticated chiral EFT interactions.
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