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Excited states of zero seniority based on a pair condensate
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We study the excited states of zero seniority for various like-particle systems interacting by pairing forces and
by general two-body interactions. We consider two types of excitations, generated from a ground state described
by a pair condensate. One type is obtained by breaking a pair from the ground-state condensate and replacing it by
“excited” collective pairs built on time-reversed single-particle orbits. The second type of zero-seniority excited
states is described by a condensate of identical excited pairs. The structure of these excited states is analyzed for
the picket fence model and for the valence neutrons of 108Sn. For a state-depending pairing interaction, the first
type of excited states agree well with the J = 0 states which are known in 108Sn. At the same time, these states
can be also associated unambiguously with those exact states which are the closest in energy to the experimental
levels. The states corresponding to the excited pair condensate (EPC) appear at low energies, around the energy
of the second-excited state of the first type, and they do not have a simple correspondence with exact eigenstates.
However, at a much higher excitation energy there is an exact state which is similar in structure to an EPC state.
It is shown that this EPC state has the features of a giant pairing vibration.
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I. INTRODUCTION

As pointed out many years ago [1], basic nuclear properties
can be simply explained in the framework of the BCS ap-
proach [2]. Presently, BCS-like approximations are employed
to treat the pairing correlations in almost all mean-field calcu-
lations based on realistic energy density functionals (EDFs).
The main drawback of these calculations is the fact that they
break particle-number conservation. Restoring the right num-
ber of particles in the EDF calculations is not a trivial task [3].
The simplest alternative, which can be applied to any Hamil-
tonian in which the mean field and the pairing are decoupled,
is to use from the beginning not the BCS but the particle-
number projected-BCS (PBCS) approach [4–6]. Recall that,
in the PBCS approach, the ground state is approximated by a
pair condensate in which the number of pairs is fixed by the
actual number of particles involved in the pairing calculations.
The accuracy of BCS and PBCS approximations in describing
ground-state properties of like-particle systems interacting by
pairing forces has been analyzed in several studies. The main
conclusions are the following: (a) BCS underestimates signifi-
cantly the pairing correlations energies for finite systems, even
in the limit of strong coupling [7]; (b) PBCS provides much
better results [8], especially when applied in model spaces of
the order of one major shell [9].

The BCS approach provides a simple scheme for under-
standing not only the ground-state properties of nuclei but
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also the pattern of their excitation spectra. In BCS the ex-
cited states are associated with quasiparticles generated by
breaking particles from the BCS condensate and distributing
them in single-particles states which are not participating to
the pairing correlations. This is a rather crude approximation
because it does not take into account the interaction between
the quasiparticles and also because these excited states do not
have a well-defined particle number. In addition, as pointed
out already many years ago [7], in the BCS approximation one
cannot unambiguously define the excited states of zero senior-
ity. A better alternative is to start with the PBCS ansatz for the
ground state and to construct excited states by breaking pairs
from the PBCS condensate and replacing them by “excited”
collective pairs (e.g., see Refs. [6,10–12] and the references
quoted therein). In this study we shall focus on a particular
type of these PBCS-based excited states, namely, the states
of zero seniority. Apart from one-broken-pair states we also
study another type of excited states of zero seniority. These
excited states have the structure of a pair condensate built by
identical excited pairs. The two types of zero-seniority excited
states will be analyzed for various systems and their accuracy
will be probed with Hamiltonians which can be solved exactly.

II. FORMALISM

In the present study we consider systems formed by an
even number of spin-1/2 fermions, e.g., neutrons or protons,
distributed on � single-particle states |i〉 of energies εi and
interacting by a two-body force. For a force of pairing type
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these systems are described by the Hamiltonian

H =
�∑
i

εi(a
†
i ai + a†

ī
aī ) + 1

4

�∑
i, j=1

vi ja
†
i a†

ī
a j̄a j . (1)

In the equation above, ī denotes the time-reversed state |ī〉 =
T̂ |i〉 and vi j ≡ 〈iī|V̂ | j j̄ − j̄ j〉.

Usually, the ground and excited states of Hamiltonian (1)
are approximated by employing BCS-based models. Here we
focus on zero-seniority excited states which can be generated
starting from the PBCS condensate. These states, introduced
in Sec. II A, will be compared with the exact solutions of
the Hamiltonian (1). For the state-independent pairing forces,
i.e., g = vi j , we use the exact analytical solutions found by
Richardson many years ago [7]. The Richardson solutions,
and their relations to the PBCS-based states, are presented
shortly in the Sec. II B.

A. Zero-seniority states based on the projected-BCS condensate

In the BCS approximation, the ground state of Hamiltonian
(1) is expressed as a coherent superposition of Cooper pairs,
i.e.,

|BCS〉 ∝ e�† |−〉 ≡
∑

n

(�†)n

n!
|−〉, (2)

where the Cooper pairs are defined by

�† =
∑

i

xia
†
i a†

ī
. (3)

The mixing amplitudes of the pair operator are usually written
as xi = vi/ui, where the parameters vi and ui are determined
by solving the well-known BCS equations.

The particle number projected-BCS (PBCS) approxima-
tion is obtained by restricting the expansion in Eq. (2) to the
term having the required number of pairs N . Thus, in PBCS
the ansatz for the ground state is the pair condensate

|PBCS〉 = (�†)N |−〉. (4)

In the majority of applications the pairing is supposed to act
only in a finite region around the Fermi level. In this case, N
denotes only the particles involved in the pairing correlations,
while the other particles of the system are included in the
“vacuum” state |−〉.

The mixing amplitudes xi of the pair operator (3) are
determined variationally by minimizing the average of the
Hamiltonian in the PBCS state (4) and imposing the nor-
malization condition 〈PBCS|PBCS〉 = 1. The corresponding
PBCS equations satisfied by the parameters xi can be found by
employing the residual integrals technique [8]. Alternatively,
if the number of pairs is not too large, the amplitudes xi can be
obtained by using the recurrence relations method [13]. These
relations are given in the Appendix.

In the framework of PBCS approach the excited states are
usually obtained by breaking pairs from the PBCS conden-
sate and constructing new collective “excited” pairs which
are attached to the remaining PBCS condensate [6,10–12].
In the present study we are interested in those excited states
in which the excited collective pairs are built from pairs of

fermions distributed in time reversed orbits. For the case of
one-broken-pair approximation these excited states have the
expression

|N ; 1k〉 = �̃
†
k (�̄†)N−1|0〉, (5)

where

�̄† =
∑

i

yia
†
i a†

ī
(6)

and

�̃
†
k =

∑
i

z(k)
i a†

i a†
ī
. (7)

The mixing amplitudes yi and z(k)
i are determined varia-

tionally by minimizing the average of the Hamiltonian on
the state (5) under the constraints 〈N ; 1k|N ; 1k′ 〉 = δk,k′ and
〈N : 1k|PBCS〉 = 0. It can be shown that these conditions
are satisfied if the amplitudes y(k)

i and z(k)
i are satisfying the

recurrence relations given in the Appendix.
In the same manner one can construct excited states with

more broken pairs. Of special interest for this study are the
excited states in which all the pairs are broken and replaced by
a unique excited collective pair. These excited pair condensate
(EPC) states have the expression

|EPC(k)〉 = (�̂†
k )N |0〉, (8)

where �̂
†
k = ∑

i w
(k)
i a†

i a†
ī
. The mixing amplitudes w

(k)
i are

determined variationally from the minimization of the aver-
age of the Hamiltonian on the state (8) under the constraints
〈EPC(k)|EPC(k′)〉 = δk,k′ and 〈EPC(k)|PBCS〉 = 0. The
calculation scheme for the EPC states is similar to the one
employed for the ground PBCS state.

As it can be noticed, in all the states introduced above
the collective pairs are built as a superposition of two par-
ticles configurations a+

i a+
ī

. Due to this reason, these states
are referred to as zero-seniority states. If the single-particle
states are spherically symmetric, both the ground state and the
excited states of the system defined by Eqs. (4), (5), and (8)
have the angular momentum J = 0.

B. Zero-seniority states and the Richardson solution
of state-independent pairing

As shown in Ref. [7], for a state-independent pairing inter-
action, the pairing Hamiltonian (1) can be solved analytically.
For an even number of particles, the exact solution for the
ground state has the expression [7]

|�〉 =
N∏
ν

B†
ν |0〉, (9)

where the pair operators B†
ν are defined by

B†
ν =

∑
i

1

2εi − Eν

a†
i a†

ī
. (10)
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They depend on the parameters Eν which satisfy the set of
nonlinear equations

1

g
−

∑
j

1

2ε j − Eν

+
∑
μ �=ν

2

Eμ − Eν

= 0. (11)

The sum of the parameters Eν gives the total energy of the
system, i.e.,

E =
∑

ν

Eν . (12)

In the limit g = 0, the pair energies Eν associated with the
ground state coincide with twice the lowest single-particle
energies, i.e., Eν = 2εν, (ν = 1, 2, . . . , N ), where N is the
number of pairs. At specific finite values of the interaction
strength, the pair energies turn two by two from real to
complex-conjugate quantities.

There are two kinds of excited states which can be con-
structed starting from the ground state (9). One kind is
obtained by breaking pairs and distributing the corresponding
particles on different single-particle states, which will not
participate in the pairing correlations. These excitations are
analogous to BCS states of nonzero seniority. The second kind
of excited states, corresponding to zero-seniority states, are
obtained by keeping the number of collective pairs unchanged
and modifying the initial conditions for the energies Eν in
the limit g = 0. For example, the lowest excited state corre-
sponds, in the limit g = 0, to Eν = 2εν for ν = 1, 2, . . . , N −
1 and EN = 2εN+1. In Ref. [7] this excited state is labeled
(−1)2(+1)2, indicating that this state is obtained, in the limit
g = 0 by promoting a pair from the last occupied level to the
next unoccupied level. By this procedure one can generate
excited states which have, formally, the same structure as the
ground state (9), but expressed in terms of new “excited” Bν

pairs. The latter are defined by new parameters Eν which are
determined by solving the Richardson equations (11) with the
new initial conditions at g = 0.

As it can be seen, the exact and the PBCS-based states
are quite different from each other. Contrasting them allows
us to evince the limits of the PBCS approximations. For the
PBCS-based states it is assumed that all the pairs B+

ν of the
exact solution, except of an “excited” pair in the case of the
states (5), can be represented by a unique collective pair �+,
which is supposed to average out the effect of the distinct pairs
B+

ν . This is a reasonable approximation for those pairs B+
ν

which have similar structures. These are the pairs with the pa-
rameters Eν not too far from the Fermi level and not too close
to a single-particle energy. Consequently, the PBCS-based
approximations are expected to work well if they are applied
in a finite region around the Fermi level and for a rather strong
pairing strength, typically greater than the critical BCS value.

Another difference between the exact and the PBCS-based
solutions is in the number of parameters which defines them.
In the case of the exact solution the number of parameters,
Eν , is equal to the number of pairs. On the other hand, for
the PBCS-based states (4) and (8), the number of parameters
is equal to the number of single-particle orbits included in
the model space and twice this number for the states (5).

Therefore, the accuracy of the PBCS-based approximations
is expected to be better for large model spaces.

A specific feature of the exact solution, which is absent in
the PBCS-based approximations, is the correlations between
the B+

ν pairs. These correlations appear when some of the
parameters Eν become complex, which happens beyond a
critical value of the pairing strength. In this case, the two
pairs B+

ν corresponding to the complex-conjugate parameters
(Eν, E∗

ν ) are entangled. More precisely, they form correlated
four-body structures [14]. How important are these four-body
structures in nuclei is still an open issue.

III. ACCURACY OF EXCITED STATES
OF PROJECTED-BCS TYPE

To probe how well the approximations (5) and (8) work
for the excited states, we consider first the case of a state-
independent pairing Hamiltonian, which can be solved exactly
by using the Richardson method. Then we shall analyze the
PBCS-based states for a state-dependent pairing interaction
and a general two-body force of shell-model type.

A. Excited states of zero seniority
for a state-independent pairing force

We start by investigating the excited states for the systems
formed by an even number of particles distributed in a set of
equidistant and doubly degenerate levels. More precisely, we
consider � levels of energies εi = 1, 2, . . . , �, and a number
of particles corresponding to half filling, i.e., 2N = �, where
N is the number of pairs. These systems, with N = 4–16,
have been considered by Richardson in order to analyze the
performance of the BCS approximation relative to the exact
solution [7]. Similar systems, with N = 4–40, have been used
later to analyze the accuracy of the PBCS approximation for
the ground state [9].

Here we take as an example a system with N = 4 and
� = 8. As for the pairing strength, we use the same range em-
ployed by Richardson, i.e., g = 0.7–1.1. For this system there
are eight zero-seniority states of the form (5). The energies
of these states are shown in Fig. 1. For the lowest state the
collective pairs (6) and (7) have a similar structure and both
of them are similar to the ground-state pair �+ of the PBCS
condensate (4). Therefore, the state (5) with the lowest energy
shown in Fig. 1 corresponds to the PBCS ground state.

The first-excited state (5) is calculated by variationally
determining both the pair �̄+ of the broken condensate and
the excited pair. A simpler approximation, which we apply
for the higher excited states (5), is to keep for �̄+ the same
structure as for the ground state.

For comparison, Fig. 1 also shows the exact energies for
the lowest eight states of zero seniority. The first energy cor-
responds to the ground state while the second corresponds to
the Richardson solution denoted by (−1)2(+1)2, i.e., a state
which is obtained, in the limit g = 0, by promoting a pair from
the last occupied level to the first unoccupied level. The next
energies correspond to doubly degenerate solutions. For ex-
ample, the third energy corresponds to the third and the fourth
degenerate states. In the limit g = 0 these states correspond to

034318-3



TH. POPA, N. SANDULESCU, AND M. SAMBATARO PHYSICAL REVIEW C 107, 034318 (2023)

0.6 0.8 1

g

10

15

20

25

E
n
er

g
y

approx (5)
exact
EPC 

FIG. 1. The energies of the states (4) and (5) compared with the
exact results as a function of pairing strength. By full diamonds we
show the energies of the excited pair condensate (8). The results
correspond to four pairs distributed in eight equidistant and doubly
degenerate states. The energies and the pairing strength are given in
units of single-particle level spacings.

the configurations (−1)2(+2)2 and (−2)2(+1)2, which have
the same energies.

From Fig. 1 one can notice that the ground-state energy
predicted by PBCS is very accurate. Indeed, the maximum
deviation from the exact value, corresponding to g = 1.1, is
about 0.26%. The energies of excited states (5) follow rather
closely the exact energies. In particular one can see that to the

exact doubly degenerate states correspond to two nondegen-
erate states (5) with energies close to the exact value.

The energy of the lowest excited pair condensate (EPC)
is shown in Fig. 1 by full diamonds. It can be seen that the
EPC energy follows closely the exact energy of the third and
the fourth degenerate states. The energy of the EPC state is
unexpectedly low, taking into account the fact that this state
is obtained by breaking all the pairs from the ground-state
condensate.

An indication of how close the wave functions (4), (5), and
(8) are to the exact states is obtained from the comparison
between the predicted occupation probabilities of the single-
particle orbits. This comparison is done here for the strength
g = 0.7. The occupation probabilities v2

i corresponding the
ground state (4) and the first-excited state (5) are shown
in Figs. 2(a) and 2(b). As it can be seen, the v2

i for these
states follow the exact results rather closely, especially for the
ground state (4).

A comparison with the exact wave functions correspond-
ing to the doubly degenerate states is not straightforward.
This is because any combination of the two degenerate so-
lutions is also exact eigenfunction of the Hamiltonian. Due
to this reason the occupation probabilities v2

i (1) and v2
i (2)

associated with the two degenerate states are not well-defined
because they depend on the chosen representation for these
states. What does not depend on the representation is the
sum v2

i (12) = v2
i (1) + v2

i (2). In Figs. 2(c)–2(e) one can see
the comparison between v2

i (12) and v2
i associated with the

two states (5) which are closest in energy to the exact de-
generate states. It can be seen that v2

i and v2
i (12) are rather

similar.
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FIG. 2. Occupation probabilities of single-particle states for the states (4), (5), and (8) and the exact states which are closest in energy. For
the exact degenerate states we show the sum of the occupation probabilities. For the states EPC∗ and EPC shown in panels (a) and (f), see the
text. The results are for the pairing strength g = 0.7.
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The occupation probabilities v2
i corresponding to the EPC

state are shown in Fig. 2(f). In the limit g = 0 the EPC state
corresponds to the configuration (−1)2(+2)2. Since, in the
limit g = 0, this is also the configuration of the third exact
state, we expect that the latter to be closer to the EPC state.
To check that, we have done another calculation in which we
have removed the degeneracy of the exact states by adding
a very small perturbation. The v2

i corresponding to the third
new state are shown in Fig. 2(f) by dashed-dotted line. One
can notice that the v2

i corresponding to the exact state and
to the EPC state are rather different for the fourth and the
fifth single-particle orbits. This indicates that the EPC state
shown in Fig. 1 has a structure which is distinct from that of
the nearby exact states.

An interesting question is whether there is an exact eigen-
state of the Hamiltonian which is similar in structure to a
EPC state. To answer this question, for each exact eigenstate
|�〉 of zero seniority we determined the EPC state which
maximizes the overlap 〈EPC|�〉 and which is orthogonal to
the ground-state pair condensate. We found that the eigenstate
|�〉 with the highest energy, equal to −49.935, is the one that
resembles the most a EPC state. The overlap of this eigenstate
with the corresponding EPC state, called below the EPC∗

state, is equal to 0.986. The energy of the EPC∗ state is equal
to −49.596, a value rather close to the exact energy of the |�〉
state. The occupation probabilities v2

i of the single-particle
orbits for the EPC∗ state are shown in Fig. 2(a). As can be
seen, they follow closely the exact values. By contrast to the
EPC state shown in Fig. 2(f), the occupation probabilities for
the EPC∗ state have a smooth dependence on single-particle
energies, as in the case of the ground-state condensate. As
seen from Fig. 2(a), the EPC∗ state looks as the reverse of the
ground-state condensate, in the sense that in the two states the
role of the lower and higher energy orbitals is interchanged.

B. Excited states of zero seniority
for a state-dependent pairing force

To benchmark the accuracy of the states (4), (5), and (8)
in the case of state-dependent pairing forces, we consider a
pairing interaction derived from G-matrix calculations [15].
Its matrix elements and the energies of the single-particle
states are given in Ref. [16]. With this interaction we have
calculated the zero seniority states for 108Sn, taking 100Sn as
core. As in the previous section, the first-excited state (5) is
calculated by variationally determining both the excited pair
and the pair �̄+ which defined the broken pair condensate. For
the other excited states we determine variationally only the
excited pair while for the pair �̄+ we take the same structure
as for the ground-state condensate.

The predictions of the states (4), (5), and (8) for the en-
ergies are shown in Fig. 3. In the same figure we show the
energies of the exact states with J = 0 obtained by diago-
nalization. The exact energies which correspond to the states
(4), (5) are indicated by dashed lines. This correspondence is
supported by the very good agreement between the occupation
probabilities of the orbits, shown in Fig. 4.

Figure 3 also includes the experimentally known levels
which, most probably, have the spin J = 0. One can notice

0

2

4

6

E
 (

M
eV

)

EXACT EXP

EPC(1)

EPC(2)

(-52.832) (-52.820)

Approx (5)

( 0
+
)

( 0
+
)

( 0
+
)

FIG. 3. Energies corresponding to the states (4), (5), and (8)
compared with the exact spectrum and experimental energies [17].
The exact energies which correspond to the states (4), (5) are in-
dicated by dashed line. EPC are the energies of the excited pair
condensate. The numbers within round brackets are the ground-state
energies, in MeV. All calculated levels have J = 0. The results are
for the neutrons in the valence shell of 108Sn interacting through a
state-dependent pairing interaction.

that the energies of these levels are reasonably described by
the states (5). The largest discrepancy is for the first-excited
state, which is predicted at lower energy. In the energy region
of the experimental levels there are six exact J = 0 states.
It can be seen that the exact states which are the closest to
experimental levels are those which correspond to the three
lowest states (5). Consequently, it appears that the lowest
three known J = 0 states in 108Sn have a simple physical
interpretation: they have a structure of one-broken-pair type.

In Fig. 3 are shown the energies of two EPC states (8).
They correspond to the first two minima obtained variation-
ally with the state (8). The occupation probabilities of the
single-particle states corresponding to the two EPC states are
shown in Fig. 4(f). The lowest EPC state is practically built
on the first two single-particle orbitals, g7/2 and d5/2. On the
other hand, the second EPC state is spread out on all the
orbits. In the limit of small pairing strength the two EPC states
correspond to three pairs promoted from the orbit g7/2 to the
orbit d5/2 and, respectively, to one pair promoted from g7/2

to 3s1/2. In the Richardson notations these configurations are
(−1)6(+1)6 and (−1)2(+2)2. In the energy region of the EPC
states there are few exact states. In Fig. 4(f) we show the
comparison with the third exact excited state, which has the
closest similarity to the EPC(2) state. It can be noticed that this
exact state has a significantly lower occupation probability
for the orbit 3s1/2. Summarizing, the EPC states (8) have a
peculiar structure, different from the eigenstates of the pair-
ing Hamiltonian and different also from the experimentally
known J = 0 states.

As in the case of the picket fence model, we have searched
whether there is an exact eigenstate of the state-depending
pairing Hamiltonian which is similar in structure to a EPC
state. To find this state we have used the procedure we
explained at the end of the previous section. The search
was done for the 49 exact seniority-zero states obtained by
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FIG. 4. Occupation probabilities of single-particle (s.p.) orbits corresponding to the states (4), (5), and (8) compared with the exact states
which have the closest similarity with the former. For the states EPC∗ and EPC(1,2) shown in panels (a) and (f), see the text. The five s.p. states
on the x axis are, from the left to the right, 1g7/2, 2d5/2, 3s1/2, 1h11/2, and 2d3/2. The results are for the neutrons in the valence shell of 108Sn
interacting through a state-dependent pairing interaction.

diagonalizing the Hamiltonian in the space of pairs. We have
found that the 46th state, of energy −31.854, resembles the
most an EPC state. This eigenstate has the largest overlap with
an EPC state, equal to 0.995. The EPC state, which we shall
denote by EPC∗, as in the previous section, has an energy
equal to −31.905, which is very close to the energy of the
corresponding exact state. The occupation probabilities of the
single-particle orbits associated with the EPC∗ state are shown
in Fig. 4(a). As can be seen, they can be hardly distinguished
from the occupation probabilities of the corresponding exact
state. From Fig. 4(a) one can notice that the EPC∗ state is
mainly built on the high-energy orbits 1h11/2 and 2d3/2. This
is the reversed situation compared with the ground-state con-
densate, in which the low-energy orbits 1g7/2 and 2d5/2 have
the highest occupation probabilities.

In the context of tin isotopes, the EPC∗ state discussed
above has common features with the so-called giant pairing
vibration (GPV). For a recent overview of the theoretical and
experimental work done on GPV, see Ref. [18]. Here we recall
that the GPV is usually defined as a collective excited state
composed of a coherent superposition of particle-particle con-
figurations, analogous to the ground state. However, contrary
to the ground state, the GPV state is expected to be formed by
a particle-particle configuration built on the next major shell
rather than the valence shell. This is the standard scenario for
the formation of the GPV state, which was initially considered
for the case of lead isotopes [19,20]. The light tin isotopes,
in particular the isotope 108Sn considered in this paper, offer
an interesting alternative to the standard scenario mentioned
above. As it is known, in tin isotopes the neutron number

N = 64 is a quasimagic number. This is due to the fact that
the lowest two orbits 1g7/2 and 2d5/2 are rather well separated
in energy from the last two orbits 1h11/2 and 2d3/2. In between
these orbits there is the state 3s1/2, but, since its degeneracy is
small, this state does not affect much the quasimagic character
of N = 64. Consequently, since in 108Sn the two first orbits
play the role of the valence shell while the last two orbits
act as the next major shell, the EPC∗ state discussed above
has the characteristic of a GPV state built on the orbits 1h11/2

and 2d3/2.

C. Excited states of zero seniority for a general
shell-model-type interaction

To analyze the zero-seniority states for the case of a general
two-body force we consider as an example a shell-model
interaction [21] which was fit in order to get a reasonable
description of the low-lying states of tin isotopes [22]. The
one-broken-pair approximation was applied for tin isotopes
and realistic interactions in various studies [10–12,23], but in
none of them the accuracy of this approximation was analyzed
for the excited states of zero seniority. Here we examine the
states of zero seniority for the tin isotope 108Sn and the predic-
tions of the approximations (4), (5), and (8) will be compared
with the exact solutions provided by exact diagonalization.

All excited states (5) are calculated by replacing the pair
�̄+, which defines the broken condensate, by the pair of the
ground-state condensate (4). The energies of the states (4), (5),
and (8) are shown in Fig. 5. In Fig. 5 we also show the exact
shell-model (SM) energies, calculated with the code BIGSTICK
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FIG. 5. The same as in Fig. 3 but for a general two-body force of
shell-model type.

[24]. As expected, for the case of the general interaction the
correspondence between the states (5) and the exact states is
not so straightforward as for the pairing interactions. First of
all, from the occupation probabilities shown in Fig. 6 we ob-
serve that the SM ground state can be well approximated by a
pair condensate. There is also a very good agreement between
the first-excited state (5) and the second SM excited state. The
second state (5) corresponds to the fourth SM excited state,
but the agreement between the occupation probabilities is not
as good as for the first-excited state. In the energy region of
the third and the fourth excited states (5) there are many SM
states, which make the comparison difficult. In Fig. 6 we have
shown the comparison with the SM states which we found to
have the closest resemblance in occupation probabilities. As
it can be seen, for these states the differences are significant.

From Fig. 5 one can notice that the PBCS approximation
provides a binding energy which is very close to the exact
result. There is also a very good agreement between the en-
ergies of the second excited SM, the first one-broken-pair
state and the first experimental J = 0 level. Surprisingly, the
agreement between the other experimental J = 0 states and
the calculated states is less good for the general interaction
than for the state-dependent pairing interaction.

From Fig. 5 one can observe that the energy of the lowest
EPC state is between the first and the second-excited state (5).
At g = 0 this state corresponds to a pair moved from g7/2 to
3s1/2. The occupation probabilities corresponding to the EPC
state are shown in Fig. 6(f). In the same figure are shown the
occupation probabilities corresponding to the third SM state,
which has the closest resemblance to the structure of the EPC
state. As in the case of state-depending pairing interaction, the
occupation probability for the state 31/2 is much larger for the
EPC state than for the exact state.

At high excitation energies the SM calculations with the
general interaction predict a very large number of J = 0
states. As illustrated in Fig. 5, this happens already for ener-
gies around 6 MeV. For this reason, it is difficult to search for
the SM level which has the closest resemblance with a EPC
state, as we have done for the pairing forces.

IV. SUMMARY AND CONCLUSIONS

We have analyzed the properties of excited states of zero
seniority generated from the ground-state pair condensate.
One type of zero-seniority state is obtained by breaking a pair
from the pairing condensate and replacing it with an “excited”
pair. In addition, we have also considered a second type of
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FIG. 6. The same as in Fig. 4 but for a general two-body force of shell-model type.
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excited state which are obtained by breaking all the pairs from
the ground-state condensate and replacing them with identical
excited pairs. The first and the second type of zero-seniority
states are referred to as one-broken-pair and, respectively,
excited pair condensate (EPC) states. These states have been
analyzed for the picket fence model and for the nucleus 108Sn.
For this nucleus we first performed a calculation with a state-
dependent pairing interaction which is commonly used for tin
isotopes. We found that the one-broken-pair states agree well
with the known J = 0 states in 108Sn. In the energy region of
the one-broken-pair states there are many exact J = 0 states,
more than the experimentally known levels. Among the exact
states one can identify some states which are very similar in
energy and structure to the one-broken-pair states. Based on
these results, we concluded that the experimentally known
J = 0 excited states in 108Sn are of one-broken-pair type.

For a state-independent pairing force we have first an-
alyzed the EPC states which minimize the average of the
pairing Hamiltonian. We have identified two such EPC states,
which appear at low energies, between the first and the third
one-broken-pair states. In this energy region we did not find
exact states similar in structure to the two EPC states. How-
ever, at a much higher excitation energy, of about 20 MeV,
we have found an exact state which is similar in structure to
an EPC state. This EPC state, denoted EPC∗, is the reverse of
the ground-state condensate in the sense that it is built on the
highest energy orbitals instead of the lowest one. It is shown
that the EPC∗ state has the features of a pairing vibration state.

We have also analyzed the zero-seniority states in 108Sn
for a general shell-model type interaction which was fit to
describe the low-lying states in tin isotopes. Compared with
the previous case, the agreement between the one-broken pair
states and the experimentally known J = 0 states is better for
the first level but less good for the other levels. In the region
of the high-energy states there are many shell-model states
with J = 0, which makes difficult the comparison with the
experimental data and also to the one-broken-pair states. For
the general interaction we found also a EPC state of relatively
low excitation energy. Whether one could excite nuclei in such
a particular low-energy state, described by a pair condensate,
is an interesting question which deserves further studies.
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APPENDIX

In this Appendix we provide the recurrence relations nec-
essary to calculate the average of the pairing Hamiltonian in
the states (4) and (5) as well as the norm of these states.
We consider the case of spherically symmetric single-particle
levels and we label them by the standard quantum numbers
|nili jimi〉 ≡ |imi〉. We express the Hamiltonian in terms of
spherically symmetric quantities, i.e.,

H =
�∑
i

εiNji +
�∑

i j=1

Vi jP
†
i Pj, (A1)

where Vi j = √
(2 ji + 1)(2 j j + 1)〈(ii)J = 0|V |( j j)J = 0〉.

The operators P† represent a pair of angular momentum
J = 0, i.e.,

P†
i = 1√

2 ji + 1

ji∑
mi=− ji

(−1) ji−mi a†
mi

a†
−mi

. (A2)

In what follows the states (4) and (5) are denoted by

|n; 0〉 = (�†)n|0〉, (A3)

|n; 1〉 = �̃†(�̄†)N−1|0〉. (A4)

Since the variational calculations involved only one state
(5) at a time, in Eq. (16) we have removed the index k.
With these notations the collective pair operators have the
expressions

�
† =

∑
i

xiP
†
i , (A5)

�̃† =
∑

i

yiP
†
i . (A6)

Below we give the recurrence relations for the overlaps and for
the operators which are involved in calculating the average of
the pairing Hamiltonian. For all the recurrence relations we
provide also the initial quantities required to evolve them.

1. Recurrence relations for the overlaps

〈n, 0|n, 0〉 = n
∑

i

x2
i 〈n − 1, 0|n − 1, 0〉 − 2n(n − 1)

∑
i

x3
i

2i + 1
〈n − 2, 0|Pi|n − 1, 0〉

〈n − 1, 1|n, 0〉 = (n − 1)
∑

i

x2
i 〈n − 2, 1|n − 1, 0〉 +

∑
i

xiyi〈n − 1, 0|n − 1, 0〉 − 2(n − 1)(n − 2)
∑

i

x3
i

2i + 1

×〈n − 3, 1|Pi|n − 1, 0〉 − 4(n − 1)
∑

i

x2
i yi

2i + 1
〈n − 2, 0|Pi|n − 1, 0〉〈n, 1|n, 1〉
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= n
∑

i

xiyi〈n − 1, 1|n, 0〉 +
∑

i

y2
i 〈n, 0|n, 0〉

−2n(n − 1)
∑

i

x2
i yi

2i + 1
〈n − 2, 1|Pi|n, 0〉 − 4n

∑
i

xiy2
i

2i + 1
〈n − 1, 0|Pi|n, 0〉.

The initial quantities are

〈1, 0|1, 0〉 =
∑

i

x2
i , 〈1, 0|0, 1〉 =

∑
i

xiyi, 〈0, 1|1, 0〉 =
∑

i

xiyi, 〈0, 1|0, 1〉 =
∑

i

y2
i .

2. Recurrence relations for the particle number operator Ni

〈n, 0|Ni|n, 0〉 = 2nxi〈n − 1, 0|Pi|n, 0〉, 〈n − 1, 1|Ni|n, 0〉 = 2nxi〈n − 1, 0|Pi|n − 1, 1〉,
〈n, 1|Ni|n, 1〉 = 2nxi〈n − 1, 1|Pi|n, 1〉 + 2yi〈n, 0|Pi|n, 1〉.

The initial quantities are

〈1, 0|Ni|1, 0〉 = 2x2
i , 〈1, 0|Ni|0, 1〉 = 2xiyi, 〈0, 1|Ni|1, 0〉 = 2xiyi, 〈0, 1|Ni|0, 1〉 = 2y2

i .

3. Recurrence relations for the pair operator Pi

〈n − 1, 0|Pi|n, 0〉 = nxi〈n − 1, 0|n − 1, 0〉 − 2n(n − 1)

2i + 1
x2

i 〈n − 2, 0|Pi|n − 1, 0〉,

〈n − 2, 1|Pi|n, 0〉 = nxi〈n − 2, 1|n − 1, 0〉 − 2n(n − 1)

2i + 1
x2

i 〈n − 2, 0|Pi|n − 2, 1〉,
〈n − 1, 1|Pi|n, 1〉 = nxi〈n − 1, 1|n − 1, 1〉 + yi〈n − 1, 1|n, 0〉

−2n(n − 1)

2i + 1
x2

i 〈n − 2, 1|Pi|n − 1, 1〉 − 4n

2i + 1
xiyi〈n − 1, 0|Pi|n − 1, 1〉.

The initial quantities are

〈−|Pi|1, 0〉 = xi, 〈−|Pi|0, 1〉 = yi.

4. Recurrence relations for the pairing interaction operator P†
i Pj

〈n, 0|P†
i Pj |n, 0〉

= n2xix j〈n − 1, 0|n − 1, 0〉 − 2n2(n − 1)

2 j + 1
xix

2
j 〈n − 2, 0|Pj |n − 1, 0〉

−2n2(n − 1)

2i + 1
x2

i x j〈n − 2, 0|Pi|n − 1, 0〉 + 2n(n − 1)

2i + 1

2n(n − 1)

2 j + 1
x2

i x2
j

[
〈n − 2, 0|P†

j Pi|n − 2, 0〉

+δi j

(
〈n − 2, 0|n − 2, 0〉 − 2

2i + 1
〈n − 2, 0|Ni|n − 2, 0〉

)]
,

〈n − 1, 1|P†
i Pj |n, 0〉

= n(n − 1)xix j〈n − 2, 1|n − 1, 0〉 − 2n(n − 1)2

2 j + 1
xix

2
j 〈n − 2, 0|Pj |n − 2, 1〉

+nx jyi〈n − 1, 0|n − 1, 0〉 − 2n(n − 1)

2 j + 1
x2

j yi〈n − 2, 0|Pj |n − 1, 0〉

−2n(n − 1)(n − 2)

2i + 1
x2

i x j〈n − 3, 1|Pi|n − 1, 0〉

+2(n − 1)(n − 2)

2i + 1

2n(n − 1)

2 j + 1
x2

i x2
j

[
〈n − 3, 1|P†

j Pi|n − 2, 0〉
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+δi j

(
〈n − 3, 1|n − 2, 0〉 − 2

2i + 1
〈n − 3, 1|Ni|n − 2, 0〉

)]
− 4n(n − 1)

2i + 1
xix jyi〈n − 2, 0|Pi|n − 1, 0〉

+4(n − 1)

2i + 1

2n(n − 1)

2 j + 1
xix

2
j yi

[
〈n − 2, 0|P†

j Pi|n − 2, 0〉

+δi j

(
〈n − 2, 0|n − 2, 0〉 − 2

2i + 1
〈n − 2, 0|Ni|n − 2, 0〉

)]
,

〈n, 1|P†
i Pj |n, 1〉

= n2xix j〈n − 1, 1|n − 1, 1〉 + nxiy j〈n − 1, 1|n, 0〉

−2n2(n − 1)

2 j + 1
xix

2
j 〈n − 2, 1|Pj |n − 1, 1〉 − 4n2

2 j + 1
xix jy j〈n − 1, 0|Pj |n − 1, 1〉

+nx jyi〈n, 0|n − 1, 1〉 + yiy j〈n, 0|n, 0〉 − 2n(n − 1)

2 j + 1
x2

j yi〈n − 2, 1|Pj |n, 0〉

− 4n

2 j + 1
x jyiy j〈n − 1, 0|Pj |n, 0〉 − 2n2(n − 1)

2i + 1
x2

i x j〈n − 2, 1|Pi|n − 1, 1〉

−2n(n − 1)

2i + 1
x2

i y j〈n − 2, 1|Pi|n, 0〉 + 4n2(n − 1)2

(2 j + 1)2
x2

i x2
j

[
〈n − 2, 1|P†

j Pi|n − 2, 1〉

+δi j

(
〈n − 2, 1|n − 2, 1〉 − 2

2i + 1
〈n − 2, 1|Ni|n − 2, 1〉

)]

+8n2(n − 1)

(2 j + 1)2
x2

i x jy j

[
〈n − 2, 1|P†

j Pi|n − 1, 0〉 + δi j

(
〈n − 2, 1|n − 1, 0〉 − 2

2i + 1
〈n − 2, 1|Ni|n − 1, 0〉

)]

− 4n2

2i + 1
xix jyi〈n − 1, 0|Pi|n − 1, 1〉 − 4n

2i + 1
xiyiy j〈n − 1, 0|Pi|n, 0〉 + 8n2(n − 1)

(2 j + 1)2
xix

2
j yi

×
[
〈n − 1, 0|P†

j Pi|n − 2, 1〉 + δi j

(
〈n − 1, 0|n − 2, 1〉 − 2

2i + 1
〈n − 1, 0|Ni|n − 2, 1〉

)]

+ 16n2

(2i + 1)2
xix jyiy j

[
〈n − 1, 0|P†

j Pi|n − 1, 0〉 + δi j

(
〈n − 1, 0|n − 1, 0〉 − 2

2i + 1
〈n − 1, 0|Ni|n − 1, 0〉

)]
.

The initial quantities are

〈1, 0|P†
i Pj |1, 0〉 = xix j, 〈1, 0|P†

i Pj |0, 1〉 = xiy j, 〈0, 1|P†
i Pj |1, 0〉 = x jyi, 〈0, 1|P†

i Pj |0, 1〉 = yiy j .
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