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β-decay half-lives of the r-process waiting-point isotones of N = 81 and 82 nuclei
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In this paper we perform systematic calculations of β-decay half-lives for the r-process waiting-point
isotones of N = 81 and 82, in the framework of nucleon-pair approximation. A phenomenological form of the
Hamiltonian, which includes single-particle energies, pairing plus quadrupole interactions, and Gamow-Teller
interactions is assumed, and the theoretical β-decay energies are taken based on the Bayesian machine learning.
A good agreement with experimental values of half-lives is achieved by using the nucleon-pair truncated model
space in which the S-pair condensation dominates. Our calculated half-lives are found to be very sensitive to
β-decay energies on the one hand, and are quite robust with respect to extension of the model space and variation
of interaction parameters on the other hand.
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I. INTRODUCTION

It has been well known that the rapid neutron-capture pro-
cess (r-process) accounts for the nuclear synthesis of about
half of elements heavier than iron [1–4]. Under very high tem-
peratures (T ≈ 109 K) and neutron densities (>1020 cm−3),
the r-process mainly proceeds along the isotopic chains
through successive neutron captures. The neutron capture
rates are very sensitive to the neutron separation energies
(Sn) [5,6]. A variation of 0.5 MeV in the separation energy
would result in a change of a factor of approximately 2 to 5 in
the neutron capture rates [5]. Sn shows obvious discontinuities
at the neutron magic numbers N = 50, 82, and 126, due to the
shell closure. Consequently, rapid neutron capture reaction is
greatly inhibited after arriving at these neutron magic numbers
and has to wait for competing β decays, bringing the nuclei
into heavier isotopic chains. Thus reliable knowledge of β-
decay half-lives at these waiting points are very important in
the simulation of r-process networks [7].

Despite their importance in the r process and great pro-
gresses in the experimental measurements [8–14], many
half-lives of waiting point nuclei are not yet experimen-
tally accessible, especially of those with N = 126. Those
half-lives have to be evaluated by various theoretical meth-
ods, such as empirical methods [15,16], the quasiparticle
random phase approximation (QRPA) [17–23], the nuclear
shell model (NSM) [24–26], and the projected shell model
(PSM) [27,28]. Among these approaches, the NSM is the
most convincing theoretical method, because it appropriately
takes two-body correlations among nucleons and thus push
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up the Gamow-Teller strength into relatively high excita-
tion energies, consistent with experimental measurements. In
Ref. [24], the half-lives and neutron-branching probabilities
of the N = 82 waiting-point nuclei have been computed by
the NSM considering the Gamow-Teller contribution. Those
of the N = 126 isotones have also been studied by Suzuki
in Ref. [25], and by Zhi in Ref. [26], in the framework of
the NSM, which took into account both the Gamow-Teller
(GT) and first-forbidden (FF) transitions. A systematic cal-
culation of the β-decay half-lives for 5409 nuclei has been
performed by Marketin and collaborators using the relativistic
quasiparticle random phase approximation plus the relativistic
Hartree-Bogoliubov model (RQRPA+RHB) in Ref. [23].

Although the NSM has been successfully applied into the
β-decay simulations for those waiting-point nuclei, it suffers
from the explosive dimension, which prohibits its application
into more neutron-rich regions. Efficient and reliable trun-
cation of the NSM is indispensable, and the nucleon-pair
approximation (NPA) is one of popular truncation schemes,
in which the configuration space is constructed by a few
collective and noncollective nucleon pairs [29,30]. Because
structure coefficients and spins of adopted nucleon pairs are
variable, the NPA is very flexible in the numerical studies
of nuclei in different mass regions and for different pur-
poses, such as nuclear low-lying excitations [31–39], quantum
phase transition [40,41], isoscalar pair correlation [42–44],
and particle-hole excitations [45]. For a comprehensive review
of the framework and recent applications of the NPA, one
refers to Ref. [46].

The NPA approach has also been used to calculate the
nuclear matrix elements of neutrinoless double-β decay [47].
Yet, there has been no efforts to apply this useful method
to the study of the conventional β decays hitherto. The
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purpose of this paper is to report our systematic calculations of
β-decay half-lives in the NPA framework. We focus on nuclei
around the N = 82 waiting points, where experimental data
are relatively rich to constrain our calculations and the FF
contribution to the half-lives in this region is not significant
in comparison with those in the N = 126 region. We are able
to evaluate the half-lives of those very neutron-rich isotones,
and discuss the robustness of our calculations with respect
to larger configuration spaces, changes of interaction strength
parameters, and β-decay energies. With simple assumption of
S-pair condensation in the parent ground states, we find a good
agreement of our calculated half-lives with experimentally
accessible data of N = 81 and 82 isotones. The calculated
half-lives are found to be very sensitive to the β-decay
energies.

This paper is organized as follows. In Sec. II, we will
briefly introduce the Fermi β-decay theory and the NPA for-
mulation, including the formulation of half-life evaluation,
Hamiltonian, and the NPA configuration space. The inputs
of our parameters and calculated results together with dis-
cussions of robustness of our calculations, are presented in
Sec. III. Finally our summary and perspectives are given in
Sec. IV.

II. FRAMEWORK OF OUR CALCULATIONS

Let us begin our discussion with a brief introduction to
Fermi theory of β decay [48]. For most β-decay processes,
the kinetic energies of electrons and neutrinos are in the order
of 1 MeV, corresponding to wave lengths λ ≈ 102 fm which
is much larger than the nuclear size, as a consequence, the
allowed transitions are the most important parts of the pro-
cesses. The GT decay rate from the jth state of the parent
nucleus to the ith state of the corresponding daughter nucleus
is given by

λGT
i j = CBGT

i j f (ZD, A, Qβ + Ej − Ei ) , (1)

where C = 0.11246 ms−1, and Ei, Ej are the excitation en-
ergy of corresponding states. The β-decay energy Qβ = mP −
mD − me, where mP, mD, and me are the inertia masses of
parent nucleus, daughter nucleus, and electron from either
experimental measurements or theoretical estimations; BGT

i j
is the GT transition strength from the jth state of the parent
nucleus to the ith state of the daughter nucleus,

BGT
i j = 2IDi + 1

2IPj + 1
g2

A|〈Di||στ±||Pj〉|2 , (2)

where IDi and IPj are the angular momenta of the final state and
the initial state, respectively, gA is the effective axial coupling
constant, 〈Di||στ±||Pj〉 is the reduced GT matrix element,
σ is the Pauli spin operator, and τ± is the isospin ladder
operator. Technical details related to this reduced matrix el-
ement in the NPA framework is presented in the Appendix.
The f (ZD, A, Qβ + Ej − Ei ) in Eq. (1) is the energy integral
accounting for the contribution of lepton phases, and has a
dependence on the proton number of the daughter nucleus, ZD,
the mass number A, and the transition energy (Qβ + Ej − Ei ),

and is written as

f (Z, A, E ) =
∫ ω0

1
F (Z, A, ω)

√
ω2 − 1(ω0 − ω)2ωdω, (3)

where ω0 = E/mec2 is the maximum electron energy in units
of electron mass. The F (Z, A, ω) is the Fermi function, which
takes into account the distortion of electron wave function
from the nuclear Coulomb field [49], and we take the ana-
lytical form of F (Z, A, ω) from Ref. [50] in this paper. The
β-decay half-life of the jth parent state is directly related to
the decay rates by

T j
1/2 = ln 2∑

i λ
GT
i j

. (4)

Now we come to the shell model Hamiltonian H of this
paper. H here includes the single-particle term, pairing plus
quadrupole interaction, and the Gamow-Teller force,

H = H0 + HP + HQQ + HGT . (5)

H0 represents the conventional spherical single-particle en-
ergy term, for which the single-particle energies are fixed
either from the experimental spectrum of nuclei with only one
valence nucleon or from systematic studies. The second term
on the right hand side of Eq. (5),

HP =
∑

η

−GηP†
ηPη − G(2)

η P (2)†
η · P (2)

η , (6)

represents the residual two-body monopole plus quadrupole
pairing interaction between the valence protons (η = π ) or the
valence neutrons (η = ν). The third term,

HQQ = −
∑

η

κη : Qη · Qη : −κQπ · Qν , (7)

is the residual quadrupole-quadrupole interaction between
valence protons, valence neutrons, and valence protons
and valence neutrons. The symbol :: means the nor-
mal order product of nucleon operators involved in the
quadrupole-quadrupole interaction. The quadrupole pairing
and quadrupole-quadrupole interactions between like-valence
particles play opposite roles in the nuclear deformation, and
this provides a foundation of the phenomenological shell
model Hamiltonian in describing the low-lying structures
for both spherical and deformed even-even nuclei [51]. The
monopole pairing strength Gη, is adopted to be about 27/A
MeV, and the quadruple pairing strength, G(2)

η , is taken to be
about one order of magnitude smaller than Gη [31]. We also
take the empirical value of the proton-neutron quadrupole-
quadrupole interaction strength, summarized in Ref. [31], κ =
186/A5/3, and the strengths between like nucleons, κη, are
close to the half of κ . The last term in Eq. (5) is the so-called
Gamow-Teller force,

HGT = 2χGT

∑
μ

: β (1)
μ β (1)†

μ : −2κGT

∑
μ

�(1)
μ �(1)†

μ . (8)

It is a charge-dependent neutron-proton interaction with both
particle-hole (p-h) and particle-particle (p-p) channels. Such a
phenomenological interaction was used to study the nuclear
single- and double-β decay within the frameworks of the
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QRPA [52–55] and the PSM [27,28]. There have been two
sets of parameters for HGT; one optimized in Ref. [52], with
χGT = 23/A and κGT = 7.5/A, and another set, optimized in
Ref. [53], with χGT = 5.2/A0.7 and κGT = 0.58/A0.7. In this
paper we have taken the latter set of parameters for HGT.

The spherical tensor operators in Eqs. (6)–(8) are defined
as follows:

P†
η =

∑
jη

√
2 jη + 1

2

(
a†

jη
× a†

jη

)(0)
,

P (2)†
η =

∑
jη j′η

q2( jη j′η )
(
a†

jη
× a†

j′η

)(2)
,

Qη =
∑
jη j′η

q2( jη j′η )
(
a†

jη
× ã j′η

)(2)
,

β (1) =
∑
jπ jν

q1( jπ jν )
(
a†

jπ
× ã jν

)(1)
,

�(1) =
∑
jπ jν

q1( jπ jν )
(
a†

jπ
× a†

jν

)(1)
, (9)

where a†
jm is the single-particle creation operator and we taken

the convention ã jm = (−) j−maj−m for time-reversal annihila-
tion operators. The structure coefficient q1( jπ jν ) is taken as

q1( jπ jν ) = δnπ nν
δlπ lν

√
2(2 jπ + 1)(2 jν + 1)

× (−)lπ + jπ + 3
2

{
1
2

1
2 1

jν jπ lπ

}
, (10)

while q2( jη j′η ) has the form

q2( jη j′η ) = (−) jη+ 1
2√

20π

√
(2 jη + 1)(2 j′η + 1)

×C20
jη1/2, j′η−1/2〈nηlη|r2|n′

ηl ′
η〉 . (11)

Here, δ is the Kronecker delta symbol, nη (n′
η) and lη (l ′

η) are

the radial and orbital quantum numbers, and {· · ·
· · ·} denotes a

6 j symbol. C j3m3
j1m1, j2m2

is the Clebsch-Gordan coefficient, and
the matrix elements of r2 are given in Ref. [56]. We note
that β (1) is the second-quantized form of στ−, and Qη is
the second-quantized form of r2Y (2) between like nucleons
(η = π or ν).

The NPA adopts collective nucleon-pair basis states, in-
stead of single-particle Slater determinants, as building blocks
of the configuration space. A collective pair of like valence
nucleons with spin number r is defined as

A(r)†
η =

∑
jη j′η

y( jη j′ηr)
(
a†

jη
× a†

j′η

)(r)
, (12)

where y( jη j′ηr) is called the structure coefficient of the nu-
cleon pair. For an even-even (e-e) nucleus with 2Nπ valence
protons and 2Nν valence neutrons, the basis of the NPA con-
figuration space is given by stepwise coupling Nπ proton pairs
and Nν neutron pairs. For an odd-mass (o-e or e-o) or odd-odd
(o-o) nucleus, additional single-particle creation operator(s) is
(are) coupled to the basis states of the corresponding even-

even core. If one considers all possible nucleon pairs, the
nucleon-pair basis is equivalent to that of the NSM. In many
cases, the low-lying structures of medium and heavy mass
nuclei can be well described in the space constructed by
S (r = 0) and D (r = 2) pairs, as shown in previous studies,
e.g., [31–34,36].

In this work, we mainly focus on the β-decay of parent
ground states for isotones with N = 81 and 82. These nuclei
are close to spherical, and thus the S-pair condensation picture
of valence protons is expected to be reliable in ground states.
Our model spaces of parent nuclei under the nucleon-hole
representation are given by(

A(0)†
π

)Nπ |0〉 for e-e nuclei,

a†
jπ

(
A(0)†

π

)Nπ |0〉 for o-e nuclei,(
A(0)†

π

)Nπ a†
jν
|0〉 for e-o nuclei,(

a†
jπ

(
A(0)†

π

)Nπ × a†
jν

)IP |0〉 for o-o nuclei (13)

with jπ , jν , and IP running over all proton and neutron single-
particle levels, and all possible coupled angular momentum,
respectively. The dimension of our model space for parent
nuclei is extremely small: one in the e-e case, a very few in
the odd mass case, and a few dozens in the o-o case. Such
assumption would be reduced to the generalized seniority
scheme if the structure coefficients were so specifically cho-
sen that follow Eqs. (23.5) and (23.7) of Ref. [57]. In this
paper, our structure coefficients of nucleon pairs are optimized
by minimizing the ground state energy of the NPA calculation
for individual nucleus, resorting to the Levenberg-Marquardt
algorithm [58,59]. This algorithm interpolates between the
Gauss-Newton algorithm and the method of gradient descent,
and achieve much more robustness and efficiency in the non-
linear least squares problems.

As for daughter nuclei, states connected with parent con-
figurations by the GT operator could populate several MeV
above the ground states, where conventional SD-pair trun-
cation scheme is not good. On the other hand, fortunately,
the GT operator is a single-particle operator which breaks
at most one collective pair in the parent nucleus; therefore
one non-collective pair coupled to S pair condensate ground
state of the parent nucleus suffices the configuration space of
the GT transition calculations. Our model spaces of daughter
nuclei with the nucleon-hole representation are(

a†
j′π

(
A(0)†

π

)Nπ -1 × a†
j′ν

)ID |0〉 ,((
a†

jπ
× a†

j′π

)(Jπ )(
A(0)†

π

)Nπ -1 × a†
j′ν

)ID |0〉 ,(
a†

j′π

(
A(0)†

π

)Nπ -1 × (
a†

jν
× a†

j′ν

)(Jν ))ID |0〉 ,((
a†

jπ
× a†

j′π

)(Jπ )(
A(0)†

π

)Nπ -1 × (
a†

jν
× a†

j′ν

)(Jν ))ID |0〉 , (14)

for o-o, e-o, o-e, and e-e daughter nuclei, respectively. Here,
a†

jπ
, a†

j′π
, a†

jν
, and a†

j′ν
represent the single-particle creators,

and Jπ , Jν , ID denote the coupled angular momenta. In this
paper, we take all possible, noncollective, broken pairs into
consideration, although not all of them are necessary in the
calculation of β-decay half-lives.
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TABLE I. Parameters of the Hamiltonian (in MeV) in this work.
The single-particle energies are taken the experimental data of
Ref. [60] except that the energies of the 0h11/2, 1p1/2, and 1p3/2 orbits
are taken from Refs. [61–63]. The parameters of residual interactions
are optimized to fit experimental spectra of 130Cd, 130Sn, and 130In,
respectively.

jπ 1p1/2 1p3/2 0 f5/2 0g9/2

ε jπ 0.365 1.353 2.750 0.000

jν 2s1/2 1d3/2 1d5/2 0g7/2 0h11/2

ε jν 0.332 0.000 1.655 2.434 0.065

Gπ G(2)
π κπ

29/A 2.9/A 150/A5/3

Gν G(2)
ν κν

20/A 2.0/A 150/A5/3

χGT κGT κ

5.2/A0.7 0.58/A0.7 200/A5/3

III. RESULTS AND DISCUSSION

In this section we discuss our parametrizations, calculated
results as well as the robustness of our predictions.

A. Parameters

In this work we apply the NPA to the β-decay half-lives of
isotones with neutron number N = 81 and 82 and the proton
number 38 � Z � 49. A computer code has been developed
for this purpose under the basis states of Ref. [30]. The input
of our code includes the single-particle levels and correspond-
ing energies, the parameters of the Hamiltonian, the β-decay
energies, and the effective axial coupling constant.

We adopt the p f shell for valence protons and the sdg
shell for valence neutrons, namely, valence proton holes in
the 1p1/2, 1p3/2, 0 f5/2, and 0g9/2 levels, and valence neutron
holes in 2s1/2, 1d3/2, 1d5/2, 0g7/2, and 0h11/2 levels. Without

confusion, we use 1
2

−
, 3

2
−

, 5
2

−
, 9

2
+

, and 1
2

+
, 3

2
+

, 5
2

+
, 7

2
+

, 11
2

−
,

to denote those single-particle levels for short. In Table I,
we present the single-particle energies based on experimen-
tal spectra of Ref. [60], except that we take the results of
11
2

−
from Ref. [61], of 1

2
−

from Ref. [62], and of 3
2

−
from

Ref. [63], respectively.
There are in total nine parameters for two-body residual

interactions in the Hamiltonian of Eq. (5), Gπ , G(2)
π , κπ for

proton-proton part, Gν , G(2)
ν , κν for neutron-neutron part,

and χGT, κGT, κ for neutron-proton part. In this work, these
strength parameters are assumed to follow the mass number
dependence compiled in Appendix B of Ref. [31], and they are
readjusted to achieve the best fit of experimental spectra, by
using 130Cd for proton-proton part, by using 130Sn for neutron-
neutron part, and by using 130In for proton-neutron part. The
optimized parameters are shown in Table I. Here, we assume
a slightly larger value for the monopole pairing strength of
protons in comparison with that of neutrons, as in earlier
calculations [31–33]. The quadrupole pairing strengths are an
order of magnitude smaller than corresponding Gη. For the
quadrupole-quadrupole terms, the strengths for like nucleons

κη are slightly larger than half of the neutron-proton strength.
χGT and κGT follow the systematic formulas of Ref. [53].
The robustness of our calculation to these parameters will be
discussed in Sec. III C.

In Fig. 1, we present calculated spectra of those three
nuclei, 130Sn, 130Cd, and 130In, which are used to fix our
parameters of our Hamiltonian. One sees a good agreement
between the calculated results and experimental data excited
up to about 4 MeV [64], except that the 8+ state in 130Cd,
the 10+ state in 130Sn, and the 3+ and 5+ states in 130In are
a few hundreds of keV lower than experimental data. The
dominant components in these states have been well known,
namely, (a†

9/2+ × a†
9/2+ )(8) for the 8+

1 state of 130Cd, (a†
11/2− ×

a†
11/2− )(10) for the 10+

1 state of 130Sn, and (a†
9/2+ × a†

3/2+ )(3,5)

for the lowest 3+ and 5+ states of 130In, respectively. We note
that one is able to further improve the agreement between
calculated results and experimental data for these isotones by
considering higher order pairing interactions as in Ref. [37], or
by introducing monopole correction terms as in Refs. [65–69].
However, such additional interaction terms does not improve
calculated β-decay half-lives, and therefore we do not con-
sider those interaction terms, for simplicity. On the other hand,
the Gamow-Teller interaction is indispensable here, because
the calculated 1+ state energy in 130In, an important daughter
state of the GT transition from 130Cd, is very sensitive to this
interaction.

The β-decay energy is another parameter in our calcu-
lations. Unfortunately, for most isotones considered in this
paper, the β-decay energy is not accessible in the latest atomic
mass evaluation, the AME2020 database [70], except those
for 129Cd, 130Cd, 130In, and 131In. Therefore one has to resort
to theoretical mass evaluations, to extract β-decay energies,
defined by

Qβ (N, Z ) = M(N, Z ) − M(N − 1, Z + 1) , (15)

where M(N, Z ) is atomic mass of nucleus with N neutrons
and Z protons. Very recently, a nuclear-mass prediction within
accuracy required by r-process studies (abbreviated as “BML”
in this paper) [71] was proposed by using the Bayesian neu-
ral networks, and we adopt this set of predicted database
as one of our mass inputs. As comparison, we also extract
the Qβ from other theoretical mass models, such as the
finite-range droplet mass model (denoted by “FRDM”) [72],
the systematics of neutron-proton interactions (denoted by
“VNP”) [73], and the Weizsäcker-Skyrme mass model (de-
noted by “WS4”) [74]; the FRDM and WS4 models are global
macroscopic-microscopic mass models, and the VNP results
are based on local mass formulas involving of neighboring
nuclei. In experimental accessible region of A ≈ 130, the
accuracies of these four models are close to 0.1 (BML), 0.5
(FRDM), 0.2 (VNP) and 0.3 (WS4) MeV.

In Fig. 2 we plot the β-decay energies from these model for
N = 81 and 82 isotones, together with the experimental values
(EXP) and those predicted in the AME2020 database (PRE).
Qβ exhibit distinct odd-even staggering with magnitudes
2–4 MeV originating from the pairing correlation. From the
figure, One sees the BML results not only consist with ac-
cessible experimental data, but also includes a “safe” error
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FIG. 1. Energy levels of three nuclei, (a) 130Sn, (b) 130Cd, and (c) 130In, which are used to fix parameters in our calculations. Experimental
data (denoted by “EXP”) are taken from Ref. [64]. The results denote by “NSM” are the nuclear shell-model results calculated by using the
parameters in Table I.

bar which covers all other three sets of the theoretical values
(although the confidence intervals grow rapidly from 0.4 to
4.6 MeV for N = 82 isotones, and from 0.4 to 3.9 MeV for
N = 81 isotones). Therefore we adopt predicted results of the
BML model in our calculation.

Now let us look at the parametrization of the effective axial
strength gA. For the β decay of N = 82 isotones, we fix gA by
reproducing the half-life from the ground 9/2+ state of 131In
to the excited 7/2+ state of 131Sn. In our model space, the GT

FIG. 2. Qβ values for N = 81 and 82 isotones versus proton
number Z . Experimental data and those predicted in the AME2020
database [70] are plotted by using black balls in solid and hollow
black balls. The theoretical values extracted from the FRDM [72],
the systematics of proton-neutron interactions [73] and the WS4
model [74] are presented by using blue squares, red triangles, and
green diamonds, respectively. The regions in dark grey are plotted
by using the confidence intervals of Qβ predicted by the Bayesian
machine learning (BML) mass model [71].

operator is as follows:

σμτ− = q1(9/2+7/2+)(a†
9/2+ × ã7/2+ )(1)

μ

=
√

160

27
(a†

9/2+ × ã7/2+ )(1)
μ . (16)

Considering the fact that the configuration of 131In ground
state is a 9

2
+

proton hole and that of 131Sn excited state is a
7
2

+
neutron hole, we arrive at

log( f t ) = log(ln 2/CBGT) = 3.54 − 2 log(gA) , (17)

for which the experimental result is log( f t ) = 4.4 [64], and
our resultant gA = 0.40 for the N = 82 isotones. Similarly,
we obtain gA = 0.47 for N = 81 isotones by using the half-
life from the ground (a†

9/2+ × a†
11/2− )(1) state of 130In to the

(a†
11/2− × a†

7/2+ )(2) state of 130Sn, for which the experimental
value log( f t ) = 4.2 [64]. It is worthy to note that our effective
gA values (0.40 for the N = 82 isotones and 0.47 the N = 81
isotones) are relatively smaller than those adopted in the β

decay studies of nuclei with A ≈ 130 by using the shell model
calculations, in which the effective gA values are from 0.52
to 0.94 (see Table 1 of Ref. [75]), because the nucleon-pair
truncation further intensifies the quenching effect of gA.

B. Calculated results

In this subsection, we discuss our calculated results by
using parameters obtained above. In Fig. 3, we plot the energy
spectra for even-odd, odd-even and odd-odd parent nuclei, the
model space of which includes a number of excited states. In
the first two panels, the results of states with different spins
are presented in different colors, while in the last panel for
odd-odd nuclei, we plot the states of different configurations
(i.e., unpaired proton hole and unpaired neutron hole) by using
different colors. From this figure, one clearly sees how excited
state energies of isotones evolve as going to the more neutron-
rich regions (i.e., nuclei with less proton number).

With our pairing plus quadrupole interaction between va-
lence proton-holes, for the N = 82 isotones with odd proton
numbers, the energies of the 1

2
−

, 3
2

−
, and 5

2
−

states gradually

decreases with respect to the 9
2

+
state, while the gap between

034316-5



C. MA, Y. LU, Y. LEI, AND Y. M. ZHAO PHYSICAL REVIEW C 107, 034316 (2023)

FIG. 3. Calculated energy spectra of parent nuclei. (a) corre-
sponds to N = 82 isotones with odd numbers of protons; (b) cor-
responds to N = 81 isotones with even numbers of protons, and
(c) corresponds to N = 81 isotones with odd numbers of protons.
In (c) we use different colors for configurations of different orbits in
which the unpaired nucleons fill. See text for detailed description.

3
2

−
and 5

2
−

states remains almost unchanged. The 1
2

−
state

is nearly degenerate with the 9
2

+
state for 125Tc and crosses

over for 123Nb. As for the N = 81 isotones with even proton
numbers, the states involved in this paper are essentially given
by the single-particle excitations of the unpaired neutron hole,
the valence proton holes are S-pair condensation and serve
as a “spectator”. As a consequence, the monopole pairing,
quadrupole pairing and quadrupole-quadrupole interactions
between valence like-nucleon holes does not change in the
small configuration space adopted here for given nucleus, and
the neutron-proton quadrupole interaction vanishes because
〈SNπ ||Qπ ||SNπ 〉 = 0. The only active term in the Hamiltonian
is the GT interaction, which has attractive property due to the
monopole contribution [76], namely,

HGT( jπ , jν ) =
∑

J (2J + 1)〈 jπ jν |HGT| jπ jν〉J∑
J (2J + 1)

< 0 ,

FIG. 4. Occupation probability of the proton orbits in the ground
states of N = 82 isotones by our optimized S-pair truncation. Results
of the generalized seniority scheme are plotted for comparison.

where jπ represents the proton-hole g+
9/2 orbit, and jν repre-

sents the neutron-hole g+
7/2 orbit. The attractive HGT( jπ , jν )

leads to a decrease of the neutron g+
7
2

orbit with the pair num-

ber of proton holes (i.e., nuclei with less protons), as shown in
Fig. 3(b). For odd-odd nuclei involved in this paper, as usual,
the low-lying energy spectra are much more complicated, be-
cause in this case all terms in the Hamiltonian, the pairing plus
quadrupole interaction, the GT interaction and the monopole
correction play essential roles. Yet one sees similar patterns
exhibited in panel (a)—the states with 1

2
−

, 3
2

−
unpaired proton

gradually decreases with pair number of proton holes, and
cross over states involving of the 9

2
+

configuration for 122Nb.
As we have mentioned in last section, the structure co-

efficients of the proton S pairs are obtained by minimizing
the ground state energies of parent nuclei. Here, a natural
question is whether or not there is sizable difference between
calculated results by using such optimized nucleon pairs and
those within the framework of the simple and well-known
generalized seniority scheme. To answer this question, we
have also performed a generalized seniority calculation, with
the S-pair structure coefficients of valence proton holes fixed
by using the optimized result of 130Cd. In Fig. 4, we present
the probability of proton holes occupying different proton
orbits for these two sets of the ground states of the N = 82
isotones. One sees that both calculations present about 80%
of the proton holes in the 9

2
+

level, while those in the 1
2

−
, 3

2
−

,

and 5
2

−
levels are around 10%. Both sets of the probabilities

gradually evolve with pair number of proton holes in a similar
manner. On the other hand, one also sees that the two states
are very close to each other for 130Cd, 128Pd, and 126Ru,
while sizable differences arise for proton-rich nuclei with odd
protons. As a consequence, those isotones with odd protons
decay faster for our optimized-S approximation than for the
generalized seniority scheme.

Our calculated half lives for the ground states of N = 81
and 82 isotones with proton numbers Z = 39-49 are shown in
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FIG. 5. β-decay half-lives for N = 82 and 81 isotones versus
proton number Z . (a) corresponds to N = 82, and (b) corresponds
to N = 81. Experimental data, and theoretical results from the
NSM [26], the QRPA + HFB21 [21], and the RQRPA + RHB [23]
methods, are also presented in black, blue, red, and orange, respec-
tively. The range in dark grey represents our predicted half-lives with
uncertainties originated from the nuclear masses.

Fig. 5, and are compared to the accessible experimental data.
We also plot in the figure the results of some other models
as comparisons: the NSM [26], the QRPA + HFB21 [21],
and the RQRPA + RHB [23] for the N = 82 isotones, and
the RQRPA + RHB [23] for the N = 81 isotones. In Table II
we list calculated half-lives and corresponding theoretical un-
certainties originated from the mass errors predicted in the

BML mass model. Compared to other theoretical results, our
calculations well reproduce the half-lives of 131In, 130Cd,
129Ag, and 128Pd, and especially the sudden decreases from
130Cd to 129Ag, which was underestimated in the three sets
of previous calculations. For more neutron-rich isotones, one
sees that the β-decay half-lives of the N = 82 isotones pre-
dicted in this work are well consistent with the previous
results in Refs. [21,23,26]. For the N = 81 isotones, the
RQRPA+RHB method predicts the β-decay half-lives a little
bit longer than the experimental data. Our results agree better
with the experimental data, except for a slightly longer half-
life for 129Cd.

Figure 6 shows the partial decay rates λGT
i j which corre-

spond to the dominant GT contribution to β-decay half-lives,
as a function of excitation energy of final state of the daughter
nucleus. From the figure, one sees that the decay rates from
most odd-even, even-odd, and odd-odd nuclei are densely
fragmented by many excited states, while those from the
even-even nuclei [Fig. 6(b), 6(d), 6(f), 6(h), 6(j), 6(l)] are
contributed by only one excited state. This is because only
one 1+ state can be constructed in the model space of daughter
odd-odd nuclei, namely,

(
a†

9
2

+
(
A0†

π

)Nπ × a†
7
2

+
)(1)|0〉 .

In Fig. 6(i) and 6(k), one sees that the fragmentation
for 123

41 Nb82 and 121
39 Y82 decays is sparse. This is easy to

understand—both ground state spins of these two parent nu-
clei are 1

2
−

, thus there are only two spins, 1
2

−
and 3

2
−

, of
daughter nuclei, connected to the ground state spins of parent
nuclei by the GT operator, and furthermore, there are only
two cases of noncollective proton-hole pair (a†

1/2−a†
9/2+ )(J ),

i.e., J = 4 or 5, in the daughter nucleus.
One also sees from Fig. 6 that the excited energy of daugh-

ter nuclei for GT-transition peaks increases with pair number
of valence proton holes, gradually from 2 to 8 MeV. For 128Pd,
126Ru, and 124Mo, the energies of the GT transition peaks are
about 2.5–3.0 MeV above the daughter ground states, which
are slightly higher than the results calculated by the NSM
(see Fig. 11 in Ref. [26]). One also sees that the energies for
peaks of odd-Z parent nuclei are higher than those of their

TABLE II. Calculated β-decay half-lives and their uncertainties (in ms) (related to the uncertainties of theoretical mass predicted in the
BML model [71]) for the N = 82 and 81 isotones. Experimental data and theoretical results of the NSM [26], the QRPA+HFB21 [21], and
the RQRPA+RHB method [23] are also tabulated for comparison.

Nucl. 131In 130Cd 129Ag 128Pd 127Rh 126Ru 125Tc 124Mo 123Nb 122Zr 121Y 120Sr
Exp. 280 ± 30 162 ± 7 46+5

−7 35 ± 3 20+20
−7

NSM 248 164 69.8 47.3 28.0 20.3 9.52 6.21

QRPA 151 124 51.8 37.4 28.4 16.0 12.3 8.82

RQRPA 346 131 65.8 38.8 24.4 16.2 11.2 7.78 5.79 4.27 3.12 2.34

NPA 255+39
−33 194+30

−25 50.1+15.0
−11.1 43.8+15.3

−10.8 19.6+10.6
−6.5 17.0+11.1

−6.2 9.53+7.30
−3.81 7.40+6.57

−3.18 5.16+5.20
−2.36 3.66+3.92

−1.72 2.35+2.86
−1.16 1.66+2.32

−0.87

Nucl. 130In 129Cd 128Ag 127Pd 126Rh 125Ru 124Tc 123Mo 122Nb 121Zr 120Y 119Sr

Exp. 290 ± 20 154 ± 2 58 ± 5 38 ± 2 19 ± 3

RQRPA 519 183 90.8 51.4 31.6 20.6 14.0 9.73 6.91 5.05 3.65 2.67

NPA 340+53
−45 289+48

−40 59.0+12.7
−10.1 50.8+17.7

−12.5 23.7+9.4
−6.4 20.1+13.1

−7.4 10.5+6.5
−3.7 7.99+7.38

−3.50 4.76+4.10
−2.02 3.25+3.40

−1.51 2.44+2.57
−1.14 1.44+1.66

−0.70
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FIG. 6. Gamow-Teller decay rates of the parent ground state (λGT
i j with j = 0) versus excitation energy of populated states for daughter

nuclei. (a)–(l) correspond to N = 82 isotones, and (m)–(x) correspond to N = 81 isotones. Proton number 38 � Z � 49.

even-Z neighbors by about 2 MeV. This regularity cancels out
with the odd-even staggering of Qβ , and as a consequence,
largely quenches the odd-even staggering of half-lives along
the isotonic chains, as we have shown in Fig. 5.

From Fig. 3, we have seen that there are quasidegeneracies
around the ground states of some N = 82 and 81 isotones with
odd protons. Such quasidegeneracies might be of interest,
because in the stellar environment excited states and ground
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states of atomic nuclei follows the Boltzmann distribution,
and thus the low-lying isomers (the lowest 1/2− state of 125Tc,
the lowest 9/2+ state of 123Nb, and the lowest 11/2− states
of N = 81 odd mass isotones, see Fig. 3) also contribute to
the nucleosynthesis process [77]. For this reason, in this paper
we have calculated the half-lives of these low-lying states.
Our results are as follows: 10.6 ms for the 1

2
−

state of 125Tc,

5.00 ms for the 9
2

+
state of 123Nb, and 296, 51.5, 20.3, 8.03,

3.26, 1.44 ms for the 11
2

−
states of 129Cd, 127Pd, 125Ru, 123Mo,

121Zr, 119Sr, respectively. According to our calculation, the
difference between resultant half-lives with such quasidegen-
eracies and those without the degeneracies are below 12%,
and this difference is much smaller than uncertainties orig-
inated from nuclear masses. Namely, our calculations show
that, for the N = 81 and 82 isotones, the quasidegeneracy
of the two lowest states would not yield significant impacts
on the r-process simulation. The results for odd-odd parent
nuclei are similar. In Fig. 3 one sees that there are many
states which are very close to the ground states of odd-odd
parent nuclei. For the set of states with noncollective pairs
constructed by the same unpaired proton hole and neutron
hole, calculated half-lives are close to each other, while for
those with noncollective pairs constructed by different un-
paired proton hole and neutron hole, calculated half-lives are
slightly different. However, changes of β-decay half-lives by
considering those excited states are within within 10%. There-
fore the quasidegeneracy close to the ground states for the
odd-odd nuclei does not change the pattern of the r-process
rates, as for the above case of odd-mass isotones with N = 81
and 82.

In this paper, we present our calculated results of the
electromagnetic moments for ground states of odd mass nu-
clei. For the spin g factors, we use the values gsπ = 5.586 ×
0.7 μN and gsν = −3.826 × 0.7 μN (0.7 is the usual quench-
ing factor in the shell model calculations). The orbital g factors
are fixed as glπ = 1 and glν = 0. As for the effective charges
of valence nucleons, we follow the relation |eν | = δe, |eπ | =
(1 + δ)e in Ref. [78] and fix them as eν = −0.5, eπ = −1.5, a
priori. The calculated electrical quadrupole moments (Q) and
magnetic moments (μ) are shown in Tables III and IV. From
the table one sees that most of electric quadrupole moments
Q are in the magnitude of 10−1 eb and those of magnetic
moments are about several μN .

C. Robustness of calculated results

In this subsection we investigate the robustness of our
calculated results. Our discussion of robustness focuses on the
configuration space, two-body interactions, and the effective
gA value.

In this paper we assume S-pair condensation for states of
parent nuclei, which is expected to be a very good truncation
scheme for the ground states of semimagic nuclei or isotones
(isotopes) close to the magic number. To investigate whether
or not other nucleon pairs play an essential role in this work,
in addition to optimized S pairs, we further consider collective

TABLE III. Calculated electrical quadrupole moments Q (in
eb) and magnetic moments μ (in μN ) of low-lying states of
odd mass isotones with N = 82 and 80. g factors glπ = 1 μN ,
glν = 0, gsπ = 5.586 × 0.7 μN , gsν = −3.826 × 0.7 μN . Effective
charges eπ = −1.5 e, eν = −0.5 e.

Level Qth μth Qth μth Qth μth Qth μth

131In 129In 129Ag 127Ag
9
2

+
1

0.308 5.96 0.345 5.93 0.180 5.96 0.207 5.95
1
2

−
1

– 0.02 – <0.01 – 0.02 – <0.01
127Rh 125Rh 125Tc 123Tc

9
2

+
1

0.060 5.96 0.076 5.95 −0.050 5.96 −0.046 5.95
1
2

−
1

– 0.02 – <0.01 – 0.02 – 0.01
123Nb 121Nb 121Y 119Y

9
2

+
1

−0.152 5.96 −0.156 5.95 −0.238 5.96 −0.248 5.94
1
2

−
1

– 0.02 – 0.01 – 0.02 – 0.02

D pairs,

D(2)†
η =

∑
jη j′η

y( jη j′η2)
(
a†

jη
× a†

j′η

)(2)
(18)

with the structure coefficients y( jη j′η2) obtained by using
the broken-pair approximation (BPA). We perform calcula-
tions in the SD-pair configuration space for the ground state
wave functions of the even-even parent nuclei 130Cd, 128Pd,
126Ru, and 124Mo. All overlaps between the wave functions
obtained in the SD-pair space and the S-pair condensation are
larger than 0.997. This demonstrates that S-pair condensation
adopted in this paper for parent nuclei are very good approxi-
mation, as expected.

A more relevant question is on the configuration space of
excited states which are involved in given β-decay process, for
daughter nuclei. For this purpose, we recalculate the half-lives
with collective SD configuration spaces for both parent and
daughter nuclei. In Fig. 7 the partial decay rates of 128Pd,

TABLE IV. Same as Table III, but for isotones with N = 81. The
experimental quadrupole moments compiled in the NNDC database
are 0.02, −0.04 eb for the 11

2

−
1

and 3
2

+
1

states of 131Sn, and 0.57, 0.132

eb for the 11
2

−
1

and 3
2

+
1

states of 129Cd. The experimental magnetic

moments are −1.28, 0.75 μN for the 11
2

−
1

and 3
2

+
1

states of 131Sn,

and −0.71, 0.85 μN for the 11
2

−
1

and 3
2

+
1

states of 129Cd, which are
reasonably consistent with our calculations.

Level Qth μth Qth μth Qth μth Qth μth

131Sn 129Cd 127Pd 125Ru
11
2

−
1

0.128 −1.34 0.210 −1.33 0.251 −1.32 0.269 −1.32
1
2

+
1

– −1.34 – −1.31 – −1.29 – −1.28
3
2

+
1

0.057 0.80 0.087 0.83 0.107 0.84 0.119 0.85
123Mo 121Zr 119Sr

11
2

−
1

0.270 −1.32 0.260 −1.32 0.124 −1.34
1
2

+
1

– −1.27 – −1.28 – −1.34
3
2

+
1

0.124 0.85 0.121 0.84 0.055 0.80

034316-9



C. MA, Y. LU, Y. LEI, AND Y. M. ZHAO PHYSICAL REVIEW C 107, 034316 (2023)

FIG. 7. Gamow-Teller decay rates from the ground state of 128Pd, 126Ru, and 124Mo in the SD-pair (triangles in blue) and S-pair (solid
squares in black) truncated spaces, versus excitation energies of daughter nuclei, populated by the GT transitions.

126Ru and 124Mo in the extended configuration spaces are
plotted by using solid triangles in blue. The result obtained by
assuming S-pair condensation is also plotted by using solid
square in black, for comparison [same as in Fig. 6(d), 6(f),
6(h)]. One sees that there are a number of fragmentations in
the SD-pair approximation, yet the integral of transition rates
remain to be almost unchanged. For the three nuclei in Fig. 7,
128Pd, 126Ru, and 124Mo, the calculated half-lives are 43.8 ms,
17.0 ms, and 7.40 ms in the S-pair truncation, and are 43.9 ms,
17.2 ms, and 7.70 ms in the SD-pair truncation, respectively.
The situation is similar for other nuclei studied in this paper.

Next we investigate the robustness of our calculated β

decay strengths with variation of the residual two-body in-
teractions. Towards this goal, we introduce a few adjustable
factors in our Hamiltonian defined in Eq. (5):

H = H0 + xPHP + xQHQQ + xGTHGT , (19)

where xP, xQ, and xGT are multipliers on corresponding pa-
rameters in Table I. Let us take the β decay 126Ru → 126Rh +
e− + ν̄e as an example. We calculate its half-life correspond-
ing to individual changes of multipliers xP, xQ, and xGT, within
a range of 0–2. The results are plotted in Fig. 8. From this
figure, one sees that the half-life increases with xP and xGT

slowly, and is not sensitive to xQ. We note that although xP and
xGT have similar effects on calculated half-life, their mech-
anisms are different—the increase of xP strengths enhances
the level mixing in the ground state, and the increase of xGT

yields larger excitation energy of the 1+ state. For the sake
of comparison, we also calculate the half-life as a function
of Qβ , and plot the result in Fig. 8, the scale above are the
evaluated uncertainty of Qβ in the BML mass model. Clearly,
the increase of Qβ enhances the phase contribution of the
leptons, and consequently reduces the half-life. As is well
known, the calculated half-life is very sensitive to Qβ (shown
by the red dash-dot-dot line), i.e., the uncertainty of about
2 MeV in Qβ of the 126Ru leads to a change in the calculated
β-decay half-life by a factor of 2.

Finally we come to the uncertainty related to the
parametrization of gA. In this paper we fix the value of gA by

using experimental results of β-decay half-lives for specific
states of 131In and 130In, as explained at the end of Sec. III A.
It is interesting to investigate the uncertainty of our calculated
results involving of our gA values, and this could be done by
optimizing gA with another set of experimental data. Towards
this goal, we perform χ2 fitting of the logarithmic half-lives
for all accessible experimental data, individually for N = 81
and 82 isotones. The resultant g2

A is 0.416 for N = 82, and
0.535 for N = 81 isotones, which would yield systematically
our calculated β-decay rates larger than those presented in this
paper, by 8% for N = 82 and 30% for N = 81, respectively.
We note that this uncertainty is smaller by far than those
originated from the uncertainty of the nuclear mass prediction,
as discussed above and shown in Fig. 8.

FIG. 8. Half-life of 126Ru versus multipliers on the interaction
parameters and the β-decay energy. xP, xQQ, and xGT are multipliers
of the HP, HQQ, and HGT terms, respectively, in Eq. (4). The range
of Qβ is adopted to be the theoretical uncertainty in the BML mass
model.
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IV. SUMMARY AND PROSPECTIVE

In this article we have applied the nucleon-pair approxima-
tion (NPA) in the calculation of β-decay half-lives of N = 81
and 82 isotones with proton number Z ranging from 39 to 49.
The Hamiltonian we used is a phenomenological pairing plus
quadrupole interaction extended by the Gamow-Teller force.
The parameters in the Hamiltonian are fixed by reproducing
experimental energy spectra of 130Sn, 130In, and 130Cd.

A main feature of our calculations is that we assume S
pair condensation in the ground state of parent nuclei. The
validity of this truncation is exemplified by further consider-
ing collective D nucleon pairs. Our calculated half-lives are
well consistent with accessible experimental data and some
other theoretical evaluations in Refs. [21,23,26]. We have
demonstrated that the calculated β-decay half-life is very sen-
sitive to the β-decay energy. As an example, an uncertainty
of about 2 MeV in the β-decay energy of 126Ru would lead
to difference of a factor of 2 in the calculated half-life, which
is much more significant than the uncertainty originated from
the parametrization in the NPA calculations. Therefore accu-
rate measurements and reliable predictions on nuclear masses
are crucial not only for the calculation of neutron capture
rates [6], but also for the simulation of weak decay process.

Although this work is restricted in the region of
A ≈ 130, the fundamental idea of the NPA is applicable to the
waiting-point N = 126 isotones, for which the contribution of
first-forbidden (FF) transitions plays an significant role in the
estimation of half-lives [26]. Therefore one of the next steps is
to develop the calculation of the FF transition matrix elements
in the NPA framework.
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APPENDIX: TECHNICAL DETAILS OF CALCULATION
OF REDUCED GT MATRIX ELEMENT

In this Appendix, we present our calculation formulas of
the reduced GT matrix element. The GT operators of β+ and
β− decays are written as

στ+ =
∑
jν jπ

q1( jν jπ )
(
a†

jν
× ã jπ

)(1)
,

σ τ− =
∑
jπ jν

q1( jπ jν )
(
a†

jπ
× ã jν

)(1)
, (A1)

where jπ and jν represent the proton and neutron levels,
respectively. The structure coefficients, q1 in Eq. (10), follow
that

q1( jπ jν ) = (−) jπ + jν+1q1( jν jπ ). (A2)

In the NPA framework the model space is constructed sim-
ply by coupling neutron basis states and proton basis states,

|ανJναπJπ ; J〉 = (
AJν†

αν
× AJπ †

απ

)(J )|0〉 , (A3)

where Jν and Jπ represent the angular momenta of the neutron
and proton bases, and αν , απ are the additional quantum
numbers. The reduced GT matrix element is as follows:

〈α′
νJ ′

να
′
πJ ′

π , J ′||στ−||ανJναπJπ , J〉

= (−)nν

∑
jν jπ

q1( jν jπ )

⎡
⎣Jν Jπ J

jν jπ 1
J ′
ν J ′

π J ′

⎤
⎦

×〈α′
νJ ′

ν‖a†
jν
‖ανJν〉〈α′

π J ′
π‖ã jπ ‖απJπ 〉 . (A4)

Note that the reduced matrix element of an annihilation oper-
ator is directly related to its creation operator,

〈α′J ′||ã j ||αJ〉 = (−)J+ j−J ′
√

2J + 1

2J ′ + 1
〈αJ||a†

j ||α′J ′〉 .

(A5)

The basis of like nucleons is constructed by successively
coupling nucleon pairs,

|αJN MN 〉 = | jr1r2 . . . rN , J1J2 . . . JN MN 〉
= {· · · [(Aj† × Ar1†)(J1 ) × Ar2†](J2 )

× · · · × ArN †}(JN )
MN

|0〉 (A6)

with Aj† = a†
j for an odd-nucleon system and Aj† = 1 for an

even-nucleon system. A reduced matrix element of the single-
particle creation operator between such bases is calculated by

〈 j′r′
1 . . . r′

N , J ′
1 . . . J ′

N ||a†
j′′ || jr1 . . . rN , J1 . . . JN 〉

= −
∑

L1...LN+1

QN ( j′′)QN−1( j′′) . . . Q1( j′′)

×〈 j′r′
1 . . . r′

N , J ′
1 . . . J ′

N |L1r1 . . . rN , L2 . . . LN+1〉 ,

(A7)

where L1 represents the angular momentum of a noncollective
pair (a†

j × a†
j′′ )

L1 , and Li(i 	= 1) run over all possible coupling
angular momenta among the nucleon pairs. Qi( j′′) is the prop-
agator to cross a†

j′′ over the ith pair,

Qi( j′′) = (−)Ji−1+Li+1−Ji−LiU (riLi+1Ji−1 j′′; LiJi ) .

Here, U (riLi+1Ji−1 j′′; LiJi ) is the Racha coefficient. The over-
lap matrix element on the right-hand side of Eq. (A7) was
given in Ref. [30].
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