
PHYSICAL REVIEW C 107, 034308 (2023)

Predicting β-decay energy with machine learning
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Qβ represents one of the most important factors characterizing unstable nuclei, as it can lead to a better
understanding of nuclei behavior and the origin of heavy atoms. Recently, machine learning methods have
been shown to be a powerful tool to increase accuracy in the prediction of diverse atomic properties such as
energies, atomic charges, and volumes, among others. Nonetheless, these methods are often used as a black
box not allowing unraveling insights into the phenomena under analysis. Here, the state-of-the-art precision
of the β-decay energy on experimental data is outperformed by means of an ensemble of machine-learning
models. The explainability tools implemented to eliminate the black box concern allowed to identify proton and
neutron numbers as the most relevant characteristics to predict Qβ energies. Furthermore, a physics-informed
feature addition improved models’ robustness and raised vital characteristics of theoretical models of the nuclear
structure.
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I. INTRODUCTION

There are about 250 stable isotopes and over 3000 unstable
ones are known. One way that unstable atomic nuclei decay
into stable ones is β decay. As a result, the β-decay energy Qβ

that goes with it is a fundamental property of unstable atomic
nuclei. Qβ values can be determined via several methods, such
as β endpoint measurements, counting in coincidence with
annihilation radiation, electron capture EC/β+ ratio method,
γ absorption with x-ray coincidence [1]. This process is
complex to explore provided that its energy spectrum has
a continuous structure. The decay energy seems to simply
relate to the proton number and mass of the atomic nuclei.
Experimental Qβ energies of nuclei can be verified in the Z ∈
[4, 82], N ∈ [4, 126] regions, whereas unknown energies can
be calculated using α-β energy cycles by means of reliable α

spectroscopic data. Moreover, some β-decay energies can be
obtained with the help of energy cycles from α-decay energy
systematic [2].

A. Explainable machine learning

Machine learning (ML) has recently emerged as an im-
portant tool for understanding physical phenomena, focusing
on understanding how a model makes a particular decision,
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rather than just accepting the output as a black box [3,4]. In
the supervised approach, an algorithm is used as a functional
approximation F (x) for an unknown function F (x). Thus,
it is possible to obtain the desired output for the collected
physical data x ∈ Rn. Classical statistical algorithms such as
linear regression models or principal components regression
(PCR) allow for characterizing the relevant predicting features
of the model, thus providing an understanding of the physical
phenomena underlying the data. However, they impose spe-
cific restrictions on the studied manifold, and thus, they are
not well suited to most of the complex phenomena observed
in nature [5]. On the other hand, modern approaches such as
deep learning (DL) allow for a comprehensive representation
of physical observables, as they work as universal function
approximators [6,7]. The trade-off comes when it is necessary
to understand what the algorithms are considering. To address
this issue, explainable ML allows identifying of underlying
characteristics such as feature importance [8–10], model the
dynamics of complex systems [11,12], conservation law dis-
covery [13,14], and symbolic expression extraction [15–17].
Besides, simple ML models have previously been used in
the study of the β decay [18–22]; however, there is still
the need to obtain physical intuition out of these techniques.
Nuclear physics is not an exception, as determination of one
and two proton separation energies [23], developing nuclear
mass systematics [24], determination of ground state ener-
gies of the nuclei [19], identification of impact parameters
in heavy-ion collisions [25], estimation of fusion reaction
cross section [26], estimating nuclear rms charge radii [27],
decoding β-decay systematic [28], and determination of
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TABLE I. Numerical distribution of the AME2020 data for each one of the measured parameters.

N − Z N Z m excess δm Binding E Qβ δQβ p Atomic m δam

mean 27.783 86.782 58.999 −24262.379 115.570 7985.498 1546.938 149.663 145.043 713121.060 120.919114
std 16.501 42.272 27.627 59122.015 239.781 666.922 7441.595 231.639 69.683 388483.889 199.856141
min −3 1 0 −341875.725 0.000 0.000 −16673.000 0.000 1.000 99.560 0.000
25% 14 53 38 −67307.280 2.251 7731.891 −4103.108 5.004 91.000 171690.750 2.417
50% 26 85 59 −40851.305 10.614 8075.771 62.237 22.526 144.000 926617.954 11.394
75% 40 119 81 2679.998 179.083 8383.611 6087.989 206.267 199.000 954880.438 189.704
max 64 177 117 196397.000 8013.457 8794.555 32740.000 1082.000 294.000 999981.252 1078.000

fusion barrier heights [29] have already been studied via this
tooling.

B. ML for β decay

To be precise, the β-decay energies [30] were estimated
by considering the neutron and proton numbers of atomic
nuclei as the only input parameters and the data values have
been obtained based on the Hartree-Fock- Bardeen Cooper
Schrieffer (BCS) method with the Skyrme force MSk7 [31].
By contrast, here, the recent AME2020 experimental data [32]
are considered and the input parameters are augmented by
considering a full range of physical properties of atoms (see
Table I below). By using the experimental Qβ values available
in the literature, the systematics of atomic nuclei related to this
energy was obtained here by performing ML, considerably
decreasing the root mean squared error (RMSE) of previous
approaches by a factor of 2.5. In addition, by calculating
the importance scores, the fundamental parameters of atomic
nuclei that have an impact on the Qβ energies are highlighted.

C. The atomic mass table

The dataset consists of the classical nuclear variables,
numerically described in Table I, where entries with any non-
computable data entrances were removed, leaving a total of
2813 unstable isotopes. The relevant dataset variables are the
number of neutrons in each isotope N , number of protons in
each isotope Z , mass number A, difference between measured
mass and the mass number Me and binding energy BE . Here,
notice that a majority of the features are highly skewed. Fur-
ther a description of the raw data is shown in the Appendix.

It is possible to identify high correlations between some
of the variables provided that some of the features are com-
putable from the others (such as the mass number from the
atomic and nuclear numbers). This needs to be addressed
since it is known that algorithms that are susceptible to multi-
collinear features generate unreliable predictions [33].

Therefore, an exploratory dimensionality reduction analy-
sis is implemented using principal component analysis (PCA)
with the normalized variables and evaluating the performance
of a naive predictor model. Here, both the explained variance
and a principal component regression (PCR) used a fivefold
cross-validation scheme [34]. As expected, more than two
principal components are necessary to give a complete sense
of Qβ by evaluating the RMSE of a linear regression model. In
addition, Fig. 1 depicts the asymptotic behavior that is reached

using more than three principal components. Nevertheless,
neither the second nor the third principal components are
negligible.

The PCA loadings, obtained as shown in Fig. 2, were
used to understand the importance of each of the parameters.
Interestingly enough, the second orthogonal component loads
more heavily the uncertainties, rather than the components
themselves, with a major role in the binding energy BE . This
suggests that there exists a significant contribution of the
features related to the experimental uncertainties reported in
the original dataset. However, the correlation analysis shown
in Fig. 3 accounts for part of this effect. Nonetheless, it is
expected that universal approximators can easily overcome
this issue.

II. MODELING Qβ: A REGRESSION APPROACH

To start the modeling of the phenomena in a systematic
and replicable way, training/testing/validation sets were gen-
erated with the dataset using a 70/20/10 split of the randomly
shuffled AME2020 dataset. A variety of tabular models were
fitted in an automatic manner, reporting the scores, and using
only the training and validation splits. In this approach, in each
one of the steps, the best-performing models are selected and
their hyperparameters are tuned via Bayesian optimization
techniques as designed by Ref. [35]. Based on a collection
of regression metrics (such as explained variance, RSME,
and their volatility among different splits of the training set),
the models obtaining high scores while keeping explainability
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FIG. 1. RMSE of the fit for a different number of components in
the PCA analysis.
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FIG. 2. Loadings of each one of the variables into the principal
orthogonal components. See text for more details.

were selected and further explored via hyperparameter tuning
and feature importance measurement techniques.

To have a baseline, the previous work [30] was replicated
using a similar approach. Here, a vanilla fully connected
multilayer perceptron (MLP) was implemented, but with the
AME2020 dataset, which was trained only using the N and
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FIG. 3. Correlations between variables in the Atomic Mass Table.
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FIG. 4. Schematic representation of the NN used when fitting the
Qβ .

Z of each one of the entries. The architecture consists of
a single hidden layer with 100 neurons, hyperbolic-tangent
nonlinearities, and classic stochastic gradient descent (SGD).

A. ML and AI models

1. Ordinary linear regression

Besides its simplicity, this approach is well suited to sci-
entific tasks because of the transparency, a general regression
allows. Thus, it serves both as a benchmark and brings insights
into the process. The ordinary least squares (OLS) approach
uses a projection model to fit the input vector X containing the
selected features to obtain an estimator Qβ via

Qβ = XT k + ε. (1)

The optimal parameters for the vector of coefficients k and
the scalar ε, which minimizes the difference between the
observation Qβ and the outputs Qβ are obtained via the OLS
procedure.

Moreover, this technique allows for obtaining a statistical
measurement of the fitted coefficients and their uncertainties,
thus, getting insight into the relevant features and characteris-
tics of the model.

2. Modern MLP

Multilayer perceptrons (MLPs) are a type of artificial neu-
ral network (ANN) in which neurons are connected via a
directed acyclic graph. They have one or more inputs, more
than one hidden layer, and one output layer. The hidden
neurons simply propagate information forward to the next
layer, each layer is a linear transformation of the previous
one via nonlinearities, which are required to allow a general
approximation of a black box function such as the studied
Qβ = Qβ (A, Z, N, . . .). Such functions are referred to as the
layer activation function and the output layer corresponds to
a prediction of Qβ . The neural network (NN) architecture
schema is shown in Fig. 4.

The Gaussian error linear unit (GeLU) activation function
was included as a nonlinearity, given that it has been shown
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that helps reduce several problems associated with small
datasets [36]. In addition, an interlayer dropout is included,
which discards random connections between layers with a
probability of 0.1. This has been shown also to help in the
optimization procedure [37].

Several experiments modifying the hyperparameters via
optimization methods were performed to obtain a suitable
configuration of both the number of neurons per layer and the
batch size [38]. A proper learning rate was also obtained using
the method of cyclical learning rates as proposed in Ref. [39].
The training process used a decaying learning rate and was
implemented using the PyTorch Lightning library [40]. This
used minibatch gradient descent to optimize the mean squared
error loss (MSELoss) with the Adam optimizer [41]. Before
starting the actual training process, three warm-up rounds
were used.

3. Gradient boosting machines

Besides being increasingly known and used in different
areas of physics, ANN are far from being the only avail-
able option for an explainable and accessible model, a clear
example is an extreme gradient boosting (with XGBOOST)
algorithm [42], which uses the gradient boosted trees (BDT)
method for fitting several tree regressors (or weak linear
learners) using a regularized loss function. These are com-
pared and later assembled with the approach of ML boosting.
They perform especially well on tabular data and in most
cases outperforming deep-learning approaches, requiring only
fractions of the computational cost [43]. Here, the XGBoost
model with the optimization of hyperparameters with Optuna
[44] was implemented and several hyperparameters such as
the depth, learning rate, and the number of learners were in-
spected. Moreover, callbacks to avoid overfitting were added
to the loss minimization process.

4. Attention networks

The attention mechanism [45] is implemented here to
properly learning weights and relations within the input via
learning queries and keys. Besides, this approach was found
to be successful for unstructured data in several tasks such as
protein unfolding and natural language processing, it had not
been especially useful for tabular data until the the appearance
of the TabNet model [46]. In this approach, the TabNet model
was used with weighted Adam optimizer and early stopping
callbacks to avoid overfitting.

5. Ensemble model

Even though the fitting generated with the methods above
might fit accurately to the datasets, the models trained can
generally either underfit, overfit, or just be poorly configured.
The aim of the ensemble method is to facilitate the best
of several base models to train a strong prediction model.
This is achieved via a voting ensemble regression (VER), a
linear combination of the predictions is done by weighting
the individual models according to their performance on the
validation split. Specifically, the weighting of the BDTs, the
ANN, and the TabNet model is performed by evaluating both

TABLE II. Regression metrics for the different classifiers trained
on the original AME2020 training set.

Model R2 MSE[MeV2] RMSE[MeV] MAE[MeV]

Baseline 0.926 4.134 2.033 1.518
OLS 0.868 7.943 2.818 2.043
ANN 0.946 2.724 1.650 1.289
BDT 0.958 2.271 1.715 1.275
Ensemble 0.957 2.305 1.518 1.191

the RMSE and the standard deviation over a fivefold in the
validation set.

B. Data augmentation techniques

From the initial evaluation of the feature importance, ex-
perimental uncertainties arose as noteworthy in the regression
of Qβ . Here, they come from the combination of both epis-
temic and systematic errors. Also, a characteristic often makes
it difficult for the models to improve their performance is the
limited experimental data they are training on.

Therefore, a method for obtaining more diverse and accu-
rate data is useful. A Monte Carlo sampling on each one of the
parameters with registered uncertainty is proposed. Assuming
that each one of the variables has an error normally distributed
and centered on the reported data. This allows obtaining a
significant data set for further improving the ML models with
increased robustness. This is only done in the training entries
so that no isotopes are overlapped between the split, ensuring
no data leakage. Notice that this approach can be followed by
the same procedure as an augmentation at testing time, as it
has been shown to considerably improve robustness [47].

Following this procedure, the original training data was
overpopulated, from 1912 to a total of 573 600 samples, fol-
lowed by the removal of the columns related to uncertainties,
since this information has already been taken into account.
The models that were trained on the original data (which will
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inal AME2020 dataset.
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FIG. 6. Distribution of the errors in the predicted Qβ by the
models trained in the original AME2020 dataset within the N and
Z plane, the size of the points represented is also determined by the
deviation in Qβ .

continue to be referred to as AME2020) were also trained and
tuned on the augmented dataset.

C. Periodic feature augmentation

In the spirit of the augmentation technique presented
in Sec. II B, physics-inspired features were added to both
datasets (i.e., to the AME2020 and to the augmented dataset
from Sec. II B). The periodic group was added to the data as a
one-hot encoded feature. Moreover, the magic numbers such
that they are arranged into complete shells in the nucleus were
also taken for each one of the isotopes, both for N and Z . For
this, the dataset includes the difference to the closes magic
number (which we denote as mN and mZ , respectively). In
addition, the ratio mZ/(mN + 1) and Z/N were also included.

Given that this method heavily relies on the current atomic
model, we denote the generated data as feature augmented.

TABLE III. Results on the fitted coefficients for the OLS model.
ci is the coefficient and corresponds to the rate of change of Qβ

with respect to each variable, σ is the standard error, P > ‖t‖ is
the probability that the coefficient is measured, and C.I. @ 95%
is representing the range of the coefficients within 95% confidence
level.

Variable ci σ P > ‖t‖ C.I. @ 95%

N 533.02 10.91 0.00 [511.60, 554.43]
Z −925.62 16.08 0.00 [−957.19, −894.06]
ME −0.00 0.01 0.97 [−0.01, 0.01]
δME −196.84 578.31 0.73 [−1331.34, 937.66]
Eb 1.21 0.04 0.00 [1.13, 1.30]
δEb 263.86 20.87 0.00 [222.91, 304.80]
AM −0.001 0.00 −2.01 [-0.01, -0.00]
δAM 186.21 538.77 0.73 [-870.73, 1243.14]

TABLE IV. Regression metrics for both the original AME2020
and the augmented data.

Model R2 MSE[MeV2] RMSE [MeV] MAE[MeV]

Baseline 0.926 4.134 2.033 1.518
ANN 0.964 1.895 1.372 1.084
TabNet 0.958 0.995 1.149 0.987
BDT 0.986 0.749 0.865 0.371
Ensemble 0.987 0.686 0.828 0.460

III. RESULTS

For each one of the models described above, the coefficient
of determination (R2) of the fit, the mean squared error (MSE),
the RMSE, and the mean absolute error (MAE) were calcu-
lated. We use this collection of metrics to get an estimation
of how well distributed and big the deviations between Qβ

and Qβ is for the unseen testing dataset. Below, are the results
obtained using the approaches of different ML models with
several datasets.

1. AME2020

After fitting several regressors on the original split, modern
architecture clearly outperforms the previous state-of-the-art
RMSE. Notably, results obtained by the OLS are not con-
siderably bigger compared to the baseline ANN, as shown
in Table II. Moreover, experiments suggest that the number
of parameters that have to be trained on the TabNet requires
considerably more than one entry per isotope, thus the metrics
are not taken into account.

Besides the distribution of errors seems to be uniformly
distributed for different Qβ within the dataset as shown in
Fig. 5, it is remarkable that the distribution of outliers is not
with a clear higher deviation on low number of nucleons,
as illustrated in Fig. 6 and more notably, on the intersection
points for the atomic magic numbers.
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FIG. 7. Real Qβ versus predicted Qβ for the ensemble model
trained on the augmented dataset.
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Furthermore, the coefficients extracted by the OLS re-
gression reflect the fact of not only interference but also of
irrelevance for some fitted parameters, evidenced in Table III.

2. Augmented dataset

Since the amount of data used in this approach is con-
siderably big, the OLS was not implemented, for all other
algorithms the results are presented in Table IV.

All the models were trained on the same test split that
was established from the beginning of the process. And
the good performance with no manifestations of overfitting
shows that the models are capable of extrapolating to un-
seen atomic feature configurations. Remarkably, the ensemble
model achieves remarkable accuracy with fewer error outliers
than all of the other models, taking advantage of the uncertain-
ties with the original AME2020 dataset and the augmentation
process. Moreover, the voting based on splits approach al-
lows to effectively target robustness, as the ensemble method
achieved a 12% lower maximum deviation in Qβ over the
test isotopes. This allows for state-of-the-art metrics and a
remarkably low MSE, as shown in Fig. 7 for the case of the
ensemble model.

TABLE V. Regression metrics for both the original AME2020
and the augmented data after performing feature augmentation.

Model R2 MSE[MeV2] RMSE[MeV] MAE[MeV]

AME2020
Baseline 0.926 4.134 2.033 1.518
ANN 0.950 2.583 1.607 1.252
BDT 0.981 0.756 0.869 0.613
Augmented
ANN 0.970 1.640 1.281 1.031
TabNet 0.982 0.993 0.997 0.774
BDT 0.989 0.576 0.759 0.534
Ensemble 0.991 0.511 0.714 0.510
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FIG. 9. Real Qβ versus predicted Qβ by the ensemble model
after adding periodic features.

Furthermore, besides the error corresponding to isotopes
near magic numbers still having higher errors, the deviations
were reduced uniformly for test isotopes, as illustrated in
Fig. 8.

3. Feature augmented dataset

Within the same nature, the models trained on the dataset
containing the periodic group, and information related to the
magic numbers, as presented in Sec. II C. The first experi-
ments showed that the encoded periodic group is detrimental
to the performance, and thus those features were dropped.
This approach was implemented both on the augmented and in
the original AME2020 datasets, both of which are presented
in Table V.

This approach demonstrates the importance of generating
features based on theoretical models, as higher-level atomic
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FIG. 10. Distribution of deviations in Qβ as predicted by the
ensemble of all models on the testing isotopes with the augmented
periodic features.
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features, clearly allow models to fit the function better. This is
noticeable in the distribution of deviations, as shown in Fig. 9.

As expected, this approach allows a considerable reduction
in errors, especially for the critical isotopes in not feature
augmented approaches, and with the highest error at a low
number of isotopes, as illustrated in Fig. 10. Notably, the
two isotopes with an error above the percentile 90 correspond
to helium (isotope with A = 6) and nitrogen (isotope with
A = 24).

IV. EXPLAINING THE BLACK BOX

Up to this point, ML techniques have been shown to pro-
vide a highly accurate regression of the β-decay energies.
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FIG. 13. MSE Loss of the BDT model after hyper-tuning trained
on the augmented dataset with feature augmentation.
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However, it is possible further to inspect the impact of each
one of the features on the output of the model. This can be
done via the evaluation of the shapley additive explanations
(SHAP), a model-agnostic explainability method inherited
from game theory, where the feature importance of the feature
is calculated via a global analysis of the marginals per each
input feature [48]. For this end, the KernelSHAP technique
implemented in Ref. [49] is applied. The results are presented
in Fig. 11 for the case of BDT, which was fully trained and
hyperoptimized on the AME2020 training data.

In accordance with our explorations with the PCA ap-
proach, the uncertainties play a significant role in explaining

the model output and that in general, the mass excess is
considered charged. The feature importance after training on
the augmented the dataset was also studied. It was found that
the importance scores for the physical features (N , Z , mass
excess, BE , atomic mass, and A) kept their assigned impor-
tance as expected from an orthogonal permutational scoring.
Moreover, the feature weights inside the trees for the BDT
and the feature permutation importance for the ANN, which
matches the overall order was also investigated.

The models thus fit the coefficients with a major impor-
tance of Z and N , which could in fact explain the good
results obtained in Ref. [35] with such a simple architecture.
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Furthermore, the relation found by the black boxes, in general,
is inversely proportional for Z and direct for N .

More importantly, the fact that the groups were detrimental
to the performance of the regressors was validated by the per-
mutational scoring. By considering the augmented periodic
features, the high importance of the ratios N/Z , and the magic
numbers give insights into why the critical isotopes near the
magic numbers were predicted with lower errors, as shown in
Fig. 12.

Remarkably, the feature importance averaged over five
runs for the models are shown to have a relative low F score,
experiments show that augmenting the features with periodic
variables allows the BDT model to achieve the same metrics
as the augmented dataset, and to increase metrics on the aug-
mented dataset with virtually no overfitting, as illustrated in
Fig. 13.

Further inspection of the augmented features also shows
interesting behavior arising from physical phenomena. For
instance, both for mZ (absolute difference between Z and the
closest magic number) and mN (difference between N and
the closest magic number) have alternating feature importance
with parity as shown in Fig. 14. The oddness in the number
of nucleons in relation to the magic numbers, in general,
results in lower BE , which is in excellent agreement with the
nuclear shell model [50] as well as theoretical approximations
of nuclear structure such as the Weizsäcker formula [51].

This alternation in the SHAP importance value is also
larger near the magic numbers, which might explain the im-
provement in deviations near magic numbers with the feature
augmentation, and is clear evidence that the model is already
capable of getting insights into the nuclear structure.

V. CONCLUSIONS AND OUTLOOKS

In this work, an ML model was developed to predict
the β-decay energies of isotopes using the experimental
dataset AME2020 [32]. Using modern techniques and data

augmentation strategies, it was shown that our models can
considerably decrease the error in estimating Qβ compared
with previous ML approaches while maintaining interpretabil-
ity. The importance of considering experimental uncertainties
was illustrated as the models incorporating sampling tech-
niques become considerably more robust to noise. Further-
more, it was demonstrated that by incorporating physical
features such as magic numbers, models can be highly im-
proved. Using explainability tools it is shown that the models
have learned fundamental features of the atomic structure.

We look forward to generating clearer physical intuition
from the explainability extracted from several ML techniques.
Clearly, the intersection between ML and physics is only
starting to showcase its potential.
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APPENDIX: DATA DISTRIBUTION

The tabular data used in this work compiles the atomic
features published in [32]. It contains the features:

(i) Neutron number N : Number of neutrons in each iso-
tope.

(ii) Proton number Z: Number of protons in each isotope.
(iii) Mass number A: Atomic mass (N + Z).
(iv) Mass excess Me: Difference between measured mass

and the mass number (A).

Binding energy BE : Measured per nucleon, refers to the
ionization potential.

The distribution of the features is shown in Fig. 15,
where no clear relationship between Qβ is evident, but well-
distributed samples for the atomic features are evident, both
in scattered and in the histograms.
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