
PHYSICAL REVIEW C 107, 034304 (2023)

Stability of the manifold boundary approximation method for reductions
of nuclear structure models

M. Imbrišak and K. Nomura *

Department of Physics, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia

(Received 24 November 2022; accepted 15 February 2023; published 7 March 2023)

The framework of nuclear energy density functionals has been employed to describe nuclear structure
phenomena for a wide range of nuclei. Recently, statistical properties of a given nuclear model, such as
parameter confidence intervals and correlations, have received much attention, particularly when one tries to
fit complex models. We apply information-theoretic methods to investigate stability of model reductions by
the manifold boundary approximation method (MBAM). In an illustrative example of the density-dependent
point-coupling model of the relativistic energy density functional, utilizing Monte Carlo simulations, it is found
that main conclusions obtained from the MBAM procedure are stable under variation of the model parameters.
Furthermore, we find that the end of the geodesic occurs when the determinant of the Fisher information metric
vanishes, thus effectively separating the parameter space into two disconnected regions.
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I. INTRODUCTION

The nuclear energy density functional (EDF) framework is
a promising, unified theoretical approach for a global descrip-
tion of nuclear structure phenomena. One of the successful
EDFs has been the one that is based on the relativistic mean-
field Lagrangian in the finite-range meson-exchange model
[1], with the density-dependent meson-nucleon couplings pro-
viding an improved description of asymmetric nuclear matter
[2]. Moreover, it has been found that simpler, point-coupling
models [3,4] produce comparable results to the finite-range
ones, even if the point-coupling interactions are being ad-
justed to nuclear matter and ground-state properties of finite
nuclei [5]. These density-dependent point-coupling models,
however, have been shown to exhibit an exponential range of
sensitivity to parameter variations, prompting the application
of model reduction methods based on concepts of information
geometry [6,7].

The universal nuclear energy density functional project
was a large-scale collaborative effort primarily focused on
a wide range of pioneering developments in EDF, including
uncertainty quantification of nuclear theory [8,9]. In the last
decade, statistical error analysis, employing either classical or
Bayesian inference, has started to be recognized in EDF re-
search for its ability to quantify theoretical errors, distinguish
safe and risky extrapolations, provide sensitivity analysis, and
offer insight into model instabilities [10–20].

Information geometry is an interdisciplinary field that in-
troduces differential geometry concepts to statistical problems
[21,22] with its initial applications centered around machine
learning and neural networks [23,24]. Recently, the manifold
boundary approximation method (MBAM) [25–27] has been
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developed to study complex and sloppy problems occurring
in physics, chemistry, and biology [28–30] in order to either
classify or reduce complex models, such as the nuclear EDFs
[6,7,31].

The complexity of nucleon-nucleon interaction in the
nuclear medium, coupling between single-nucleon and col-
lective degrees of freedom, and finite-size effects present
obstacles to numerous attempts to establish a single theo-
retical framework to treat the nuclear many-body problem.
The nuclear EDFs, and structure models based on them,
have become a promising tool for the description of ground-
state properties and low-energy collective excitation spectra
of medium-heavy and heavy nuclei. A variety of structure
phenomena have been successfully described using the nu-
clear EDF framework with a high level of global precision
and accuracy over the entire chart of nuclides, and at a very
moderate computational cost.

The unknown exact nuclear EDF is approximated by
functionals of powers and gradients of ground-state nucleon
densities and currents, representing distributions of matter,
spin, isospin, momentum, and kinetic energy. A generic den-
sity functional is not necessarily microscopic; i.e., it is related
to the underlying internucleon interactions, but some of the
most successful functionals are entirely empirical. However,
one can also follow the middle way between fully microscopic
and entirely empirical EDFs, and consider semiempirical
functionals that start from a microscopically motivated ansatz
for the nucleonic density dependence of the energy of a system
of protons and neutrons. Most of the parameters of such a
functional are adjusted, in a local density approximation, to
reproduce a given microscopic equation of state (EoS) of infi-
nite symmetric and asymmetric nuclear matter, and eventually
neutron matter. The remaining, usually few, terms that do not
contribute to the energy density at the nuclear matter level are
then adjusted to selected ground-state data of an arbitrarily
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FIG. 1. Results of extrapolating the geodesic after the det g = 0 point. Shown are (a) the behavior of the evaluated model for different τ ’s
along the geodesic, (b) the model parameters, (c) the FIM eigenvalues as functions of τ , (d) the squares of the FIM eigenvector v0 components,
(e) the Ricci scalar, and (f) the FIM determinant along the geodesic. Solid, dashed, and dotted lines stand for, respectively, the initial odeint
solutions, the linear interpolation, and the values derived using odeint starting from the endpoint of the interpolated solutions.

large set of spherical and/or deformed nuclei. A number of
semiempirical functionals have been developed over the last
decade [8,32–41] and have beenvery successfully applied to
studies of a diversity of structure properties, from clustering in
relatively light nuclei to the stability of superheavy systems,

and from bulk and spectroscopic properties of stable nuclei to
the physics of exotic nuclei at the particle drip lines.

In the previous studies [6,7], concepts from information
geometry have been used to demonstrate that nuclear EDFs
are, in general, “sloppy” [25–28,42]. The term “sloppy” refers
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FIG. 2. Monte Carlo simulated sample parameters using the best-fitting covariance matrix (black symbols and contours) and its propagation
towards τ = 1.3 along the geodesic using the Jacobi equation (15) (red symbols and contours).

to the fact that the predictions of nuclear EDFs and related
models are really sensitive to only a few combinations of
parameters (stiff parameter combinations) and exhibit an ex-
ponential decrease of sensitivity to variations of the remaining
combinations of parameters (soft parameter combinations).
This means that the soft combinations of parameters are
only loosely constrained by the available data and that most
nuclear EDFs, in fact, contain models of lower effective di-
mensionality associated with the stiff combinations of model
parameters. In Ref. [6], the most effective functional form of
the density-dependent coupling parameters of a representative

model EDF have been deduced by employing the MBAM
[27]. The data used in this calculation included a set of points
on a microscopic EoS of symmetric nuclear matter and neu-
tron matter. This choice was motivated by the necessity to
calculate the derivatives of observables with respect to model
parameters which is, of course, more easily accomplished for
nuclear matter in comparison to finite nuclei. In Ref. [7],
this calculation has been extended, by employing a simple
numerical approximation, to calculate the derivatives of ob-
servables with respect to model parameters, thus allowing one
to apply the MBAM to realistic models constrained not only
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FIG. 3. Monte Carlo simulations of uncertainty propagation
using the Jacobi equation (15). Shown are the median and its
uncertainty derived using 1300 simulated samples starting from
the best-fitting point. The figure shows (a) the simulated FIM v0

eigenvector components squared, (b) FIM eigenvalues, (c) FIM de-
terminant, and (d) scalar curvature. The shaded areas correspond to
the 1σ percentile interval, while the dotted lines in panels (c) and
(d) additionally show the 5th and the 95th percentiles, respectively.
Solid orange lines in panels (c) and (d) stand for the respective
quantities computed along the path of the MBAM geodesic.

by the nuclear matter EoS but also by observables measured
in finite nuclei. During the analysis of parametrizations in
Ref. [7] it has been found that the numerical integration of
the geodesic equation could reach the manifold boundary in
a finite number of integration steps, indicating the divergence
of the metric tensor determinant in a particular region of the
parameter space. This surprising behavior has motivated us to
investigate the stability of model reductions obtained by the
MBAM, since the divergent region might be unintentionally
missed by using too large integration steps.

In this work, we study the stability of the MBAM with
respect to the variation of the model parameters. In Sec. II,
we give an introduction to information-geometric concepts. In
Sec. III we describe the numerical implementation for finding
the Dirac mass and binding energies, aided by algorithmic
differentiation. The results of our investigation are given in
Sec. IV, while further applications of information geometry
to nuclear EDFs are discussed in Sec. V.

II. INFORMATION GEOMETRY
AND MODEL REDUCTION

A selection of the model is usually made through the
maximum likelihood method, with the assumption that at the
ath measurement the data (xa, ya) can be described using

a normal distribution, denoted by N , by a model function
f (xa, p) ≡ f a(p) as ya ∼ N [ f a(p), (σ a)2]. Here, σ a is the
uncertainty of each measurement, and p is chosen from an
appropriate parameter space, denoted by M. Finding the
best-fitting model is equivalent to maximizing the following
log-likelihood function l (p) over p ∈ M,

l (p) =
∑

a

ln φ

(
ya − f a(p)

σ a

)
, (1)

with φ being a Gaussian probability density. To simplify the
notations, we use indices from the beginning of the Latin al-
phabet for measurements and the Greek letters for derivatives

∂
∂pμ , shortened to ∂μ. The log-likelihood can then be Taylor
expanded to the second order to find parameter uncertainties
by the Cramer-Rao bound [22] using the Hessian of the log-
likelihood,

gμν (p) =
∑

a

∂μ f a∂ν f a

(σ a)2 . (2)

The above quantity is referred to as the Fisher information
matrix (FIM).

A. Information geometry

The simple picture described above can be reinterpreted by
using information geometry. The function l (p) connects M
and N , now interpreted as manifolds. Furthermore, the differ-
ential form, i.e., dl = ∂μldpμ, forms a basis for the cotangent
bundle on N , labeled as T ∗N , while the FIM serves as a
metric on N . Here, we note that the appearance of the same
index (μ) more than once in the mathematical expression
indicates summation with respect to that index, and we follow
this convention from now on. The functional form of the
log-likelihood is then used to induce a metric on the parameter
space M. This is achieved by computing the expectation value
taken with respect to N : g ≡ E [dl ⊗ dl] [22]. The pullback
operation l∗ then induces a metric g(p) ∈ (T ∗M)2 on M,
as g(p) = gμνdpμ ⊗ dpν = E [∂μl∂ν l]dpμ ⊗ dpν = l∗g. This
procedure equips the model manifold M with a tangent bun-
dle spanned by the basis ∂μ ∈ TM and its cotangent bundle
spanned by the dual basis dpμ ∈ T ∗M. Since the normal fam-
ily is a subset of the exponential family, the model manifold
M is therefore a submanifold embedded in N and belongs to
the curved exponential family [21].

In differential geometry, tangent spaces of nearby points
in M are connected via the covariant derivative, usually ex-
pressed as ∇X with an arbitrary direction X . The action of the
covariant derivative on a tangent vector Y ∈ TM is simply
given by ∇X (Y ) = ∇X (Y μ∂μ) = X ν∂ν (Y μ)∂μ + �κ

μνX μY ν∂κ .
The quantity �κ

μν stands for the Christoffel symbol when the
metric-compatible connection with the condition ∇X (g) = 0
is chosen (for details see, e.g., Ref. [43]). For the FIM, the
Christoffel symbols are given by

�κ
μν (p) = gκρ

∑
a

∂ρ f a∂μν f a

(σ a)2 , (3)

where gκρ = (g−1)κρ denotes the inverse of the metric.
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Additionally, along the geodesic, we compute the Rie-
mann curvature tensor and the scalar curvature. We implement
the Riemann curvature tensor, defined for X,Y, Z ∈ TM, as
R(X,Y )Z = [∇X ,∇Y ]Z − ∇[X,Y ]Z . The components of the
Riemann tensor are expressed as

Rμνρκ =
∑

ab

Pab

(
∂μρ

f a

σ a
∂νκ

f b

σ b
− ∂μκ

f a

σ a
∂νρ

f b

σ b

)
, (4)

where Pab denotes the projection operator

Pab = δab − gμν∂μ

f a

σ a
∂ν

f b

σ b
. (5)

The Ricci scalar (or scalar curvature) is computed simply as

Rμνρκgμρgνκ . (6)

B. The manifold boundary approximation method

Complex models might have large parameter uncertain-
ties, i.e., a large covariance matrix. In the cases where the
covariance matrix, and therefore the corresponding FIM, has
a spectrum spanning many orders of magnitude [44], model
reduction procedures can improve parameter estimates. The
MBAM [27] allows for better constraining parameters of such
models across many physical disciplines [28]. The method
computes the geodesic by solving the geodesic equation
∇ṗṗ = 0 by starting from the best-fitting (bf) point in the
model manifold, pbf ≡ pμ

bf∂μ. Note that the dot on p represents
the differentiation with respect to the affine parametrization
of the geodesic. The geodesic equation, written in parameter
components as

p̈κ + �κ
μν ṗμṗν = 0, (7)

is solved with the ṗ initial conditions pointing in the direction
of the FIM eigenvector v0, corresponding to its smallest eigen-
value. This is the largest eigenvalue of the covariance matrix
and the biggest contributor to the uncertainty of the derived
model parameters. The behavior of v0 is followed along the
geodesic until the parameter, or combination of parameters,
contributing most to v0 can be easily determined. This param-
eter is then eliminated from the model, resulting in a simpler
model with smaller parameter uncertainties. This procedure
can be repeated as long as the reduced model describes the
data set sufficiently well.

III. ILLUSTRATIVE CALCULATION

The density-dependent point-coupling (DD-PC1) interac-
tion [5] is a semiempirical relativistic EDF that involves the
point coupling [33] and has been used in many contempo-
rary studies of nuclear structure and dynamics. The DD-PC1
functional explicitly includes nucleon degrees of freedom and
considers only second-order interaction terms. Its applicabil-
ity to a wide range of atomic nuclei has been demonstrated,
e.g., in Refs. [45,46].

We use the Dirac mass and energy density data shown in
Table I to constrain the density-dependent coupling constants
of the DD-PC1 functional, αs(ρ), αv (ρ), and αtv (ρ), modeled

TABLE I. Pseudodata for infinite symmetric nuclear matter used
to compute the best-fitting solution for the energy density functional.
The adopted error for the y points is 10% for energy and 2% for the
Dirac mass.

Index ρv (fm−3) ya σy

1 0.152 0.58 0.055
2 0.04 −6.48 0.648
3 0.08 −12.13 1.213
4 0.12 −15.04 1.504
5 0.16 −16 1.6
6 0.2 −15.09 1.509
7 0.24 −12.88 1.288
8 0.32 −5.03 0.503

aFirst row is in MD/m, otherwise in MeV units.

as [6,7]

αi = ai +
(

bi + ci
ρ

ρsat

)
e−di

ρ

ρsat , i ∈ {s, v, tv}, (8)

where the indices i = s, v, and tv correspond to the
isoscalar-scalar, isoscalar-vector, and isovector-vector chan-
nels, respectively, while ρsat is the saturation density. In this
paper, we take a closer look at the reduced version of the
model with αtv = 0 and cv = 0, which results in a seven-
parameter model involving as, bs, cs, ds, av , bv , and dv .

A. Numerical implementation

We solve the equation for the Dirac mass MD, which is
given by [6]

MD = m + αsρs, (9)

where m is the bare nucleon mass, and the scalar density ρs

ρs = 2

π2
MD

∫ pF

0

x2dx√
x2 + M2

D

, (10)

with pF being the Fermi momentum,

pF (ρv ) =
(

3

2
ρvπ

2

) 1
3

. (11)

Equation (9) is solved numerically by using the Newton-
Raphson algorithm. We also tested Halley’s method, but found
no improvement of the results in accuracy.

Upon finding MD, we compute the binding energy of sym-
metric nuclear matter:

Ea = 2

π2

∫ pF

0

x4dx√
x2 + M2

D

+ m(ρs − ρv ) + 1

2
αsρ

2
s + 1

2
αvρ

2
v .

(12)
The best-fitting DD-PC1 parameter set is then found by com-
puting the least-square solution to the set of measurements of
MD/m and Ea presented in Table I (see Ref. [7]). Differential
equations are solved with the aid of the SCIPY implementa-
tion of the ordinary differential equation integration (odeint)
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FIG. 4. Same as Fig. 2, but for Monte Carlo simulated sample (base 10) logarithms of the eigenvalues of the FIM.

library [47]. These values are then used to compute the FIM
and the Christoffel symbols using algorithmic differentiation
implemented via the AUTOGRADpackage. We thus eliminate
numerical errors due to the approximations arising from nu-
merical differentiations.

IV. INVESTIGATING STABILITY
OF THE MBAM METHOD

In some cases, the numerical integration of the geodesic
equation might slow down, or even fail. This behavior is due to
the divergence of the metric tensor determinant that implicitly

appears in the geodesic equation (7) through the metric inverse
necessary for computing the Christoffel symbols [see Eq. (3)].
However, this divergent behavior is confined to only a small
region in the parameter space and therefore it might be easily
missed by choosing too imprecise an integrator. Therefore,
in Sec. IV A, we investigate the impact of the size of the
integration step on the MBAM procedure by artificially ex-
trapolating the geodesic beyond the divergent region in the
parameter space. Moreover, as the parameter uncertainties
become larger, small perturbations to the starting point of the
geodesic might influence the end result of the MBAM. In
Sec. IV B, we describe the impact of parameter uncertainties
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FIG. 5. Same as Fig. 2, but for Monte Carlo simulated sample components of the FIM v0 eigenvector.

on the MBAM conclusions for the nuclear EDF DD-PC1
by numerical error propagation of the MBAM geodesics.
Finally, in Sec. IV C we investigate the impact of using a
common, physically motivated restrictive reparametrization
of the DD-PC coupling constants on the MBAM model
manifold.

A. Geodesic extrapolation

We extrapolate the geodesic by using the last point having
det g > 0 (labeled as τ2) and the point before it (τ1). We first
extrapolate τ (t ) = τ1(1 − t ) + τ2t for t > 0, i.e., a straight

line joining τ1 and τ2. We then compute pμ(t ) and ṗμ(t ) using
their corresponding values at τ1 and τ2 as

pμ(t ) = pμ(τ1)(1 − t ) + pμ(τ2)t, (13)

ṗμ(t ) = ṗμ(τ1)(1 − t ) + ṗμ(τ2)t . (14)

This procedure produces a linear extrapolation of the
geodesics in the region where the geodesic equation does not
hold because det g = 0. The variable t is just an interpolation
parameter, not connected to τ , so ṗ is not coupled as dp/dτ

in this region. We find that one can safely continue integrating
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FIG. 6. Same as Fig. 3, but for the reparametrized model de-
scribed in Sec. IV C.

the geodesic equation after t = 2, where there are no more
singularities along the path.

In Fig. 1, the resulting model parameters along the ex-
tended geodesic (a), the corresponding model evaluation (b),
the FIM eigenvalues (c), the v0 eigenvector (d), the Ricci
scalar (e), and the metric determinant (f) are shown. After the
t = 2 point along the extrapolated geodesic, the metric tensor
determinant starts to rise again. In the same figure, the linearly
extrapolated geodesic, corresponding to the small region τ ∈
[τ (t = 1), τ (t = 2)], is shown with dashed lines. The extrap-
olated geodesic computed using MBAM continuation starting
from the point τ (t = 2) is shown with dotted lines. The initial
odeint solutions (solid lines), which produce results for a few
points after τ = 1.3, differ significantly from the interpolated
solution, indicating numerical problems due to singularity.
Upon restarting the odeint procedure after the singular region,
we find that the MBAM solution yields different contributions
to the v0 eigenvector, indicating an equal contribution of ∂bs ,
∂cs , and ∂bv

directions, while before τ = 1.3, the MBAM
method finds that the most significant contribution is from
∂bs . The Ricci scalar diverges at τ ∼ 1.3, but starts to fall and
change signs at τ > 1.3. Since the Ricci scalar is related to the
volume element, its divergence to positive values would pro-
duce a compressed region of the parameter manifold, which
begins to expand after the singularity.

The conclusion drawn from the results given in Fig. 1 is
that one must be careful with the models where the metric
tensor determinant shows significant variations, as choosing
too big steps for the odeint integrator might result in “skip-
ping” to another portion of the parameter space and continuing
along it. This yields completely different contributions to the
FIM eigenvector corresponding to its smallest eigenvalue and
hence might lead to a completely different model reduction
than expected from the simple MBAM case.

B. Parameter uncertainties

Further extension of the basic model might be the propaga-
tion of its parameter uncertainties, and this can be facilitated
by looking into how the uncertainties of the best-fitting pa-
rameters propagate along the geodesics. For this purpose,
we perform Monte Carlo simulations. To analyze the error
propagation one would have to compute the geodesic equa-
tion many times, which is not cost-efficient. We, therefore,
adopt a simplified approach that makes use of the Jacobi
equation, which computes differences δp between neighbor-
ing geodesics along the already computed MBAM geodesic.

We use the covariance matrix 
 to produce Monte
Carlo simulations of δp from the normal distribution, δp ∼
N (0, 
). For each simulated δp, we compute its propagation
by using the Jacobi equation

δp̈μ + Rμ
ανβ ṗαṗβδpν = 0. (15)

We find 1300 points to sample the DD-PC1 parameter space
reasonably well. Figure 2 shows the distributions of the pa-
rameters at the beginning (denoted by black symbols and
contours) and at τ = 1.3 (red symbols and contours). These
two distributions are almost identical since the simulated
parameters are more dispersed than the gradual changes in
parameter values along the geodesic.

Even though the parameter uncertainties in the full model
are large, we can estimate the error on the eigensolutions of
the FIM along the geodesic. We do this by computing the FIM
for every simulated point propagated along the best-fitting
geodesic to various values of τ using the Jacobi equation.
The results of this procedure are shown in Fig. 3. The top
panels show the median and the corresponding 1σ confidence
interval of the eigensolutions, computed using the 16th and
the 84th percentile. The simulated FIM v0 eigenvector compo-
nents squared are shown in Fig. 3(a) and the FIM eigenvalues
are shown in Fig. 3(b) for each τ . We see that, while the
results using the simulated sample are consistently ordered
when compared to the MBAM solution, there is a small offset
between the median and the MBAM solution. Figures 3(c) and
3(d) show the median and the 1σ confidence interval for the
FIM determinant and the scalar curvature, respectively. The
simulated scalar curvature and the metric determinant along
the geodesic show a larger variation in their values along
the geodesic. In these panels we additionally show the FIM
determinant and the scalar curvature along the best-fitting
geodesic by the solid orange lines. There is a large discrep-
ancy between the behavior of the median of the simulated
quantities and the behavior of the quantities along the best-
fitting geodesic. In Fig. 3(c) [Fig. 3(d)], we see that these
quantities along the best-fitting geodesic are comparable to
the 5th (95th) percentile of det g (scalar curvature), shown as
dotted lines. This behavior indicates that only the geodesics
starting at the vicinity of the best-fitting point encounter the
region corresponding to det g = 0.

Furthermore, in Figs. 4 and 5 we show, respectively, the
distributions of eigenvalues and components of v0 at the be-
ginning and at the end of the geodesic. These large differences
in eigenvalues and eigenvector components propagating along
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FIG. 7. Monte Carlo simulations of posterior distributions of the error estimates for the reparametrized model, based on the MCMC
algorithm. The figure shows the 1σ , 2σ , and 3σ covariance ellipses in red, as estimated from the FIM inverse, and the estimates of the
covariance ellipses based on the MCMC sample points in blue.

the geodesic are in stark contrast to the parameter values
in Fig. 2. The discrepancies presented in Figs. 3–5 can be
explained by the sensitivity of the FIM eigenproblem to small
changes in DD-PC1 parameters, since diagonalization results
are not expected to change linearly with inputs. We conclude
that the offset is due to the non-Gaussianity of the distribu-
tion of eigenvalues and v0 components, which arises even
though the parameters were sampled using the normal distri-
bution. Even though there is a change in the shape of these

distributions, the overall qualitative MBAM conclusions re-
main the same along the geodesic.

C. Model reparametrization

The authors of Ref. [6] have considered an expo-
nential reparametrization of the seven-parameter DD-PC1
coupling constants centered at their best-fitting values [5].
This reparametrization transformation can be schematically
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represented as a vector,

p(p̃) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

as
(
pas

)
bs

(
pbs

)
cs

(
pcs

)
ds

(
pds

)
av

(
pav

)
bv

(
pbv

)
dv

(
pdv

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

as,bf e−pas

bs,bf e−pbs

cs,bf e−pcs

ds,bf e−pds

av,bf e−pav

bv,bf e−pbv

dv,bf e−pdv

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

where p̃ indicates the multivariate distribution of parameters
pas , . . . , pdv

, and the quantities such as as,bf, bs,bf, etc., stand
for the best-fitting parameter values. The exponential form of
the coupling constants is chosen by the constraints (i) that the
new parameters in the geodesic equation are dimensionless
and (ii) that the exponential form prevents the coupling func-
tions as and av from changing sign along the geodesic path,
thus confining them in the region described by the inequalities
αs < 0 and αv > 0. Using these constraints the scalar mean-
field potential remains attractive and the vector mean-field
remains repulsive for all allowed parameter values [6].

We repeat the Monte Carlo analysis described in Sec. IV B
for the reparametrized model. The resulting error estimates
are shown in Fig. 6 in the same manner as in Fig. 3.
By comparing the two figures panel-by-panel, we conclude
that both methods produce MBAM geodesics that are sta-
ble under perturbations, even though the two FIMs do not
behave in the same way along their respective geodesics. The
reparametrized FIM determinant and the Ricci scalar change
gradually, compared to the initial model.

One may ask whether this discrepancy is due to using a
too simplistic description of the reparametrized distributions.
We then employ the Bayesian statistics to check whether
the multivariate distribution p̃ has pronounced non-Gaussian
features. To this end, we use the Markov chain Monte Carlo
(MCMC) technique to sample the χ2 posterior distribution,
as implemented in the package EMCEE [48]. In Fig. 7 we
show the behavior of the chosen 200 Markov chains as two-
dimensional sections of the parameter space. The chains have
been run for a long enough time to avoid the initial “burn-in”
phase characteristic of the algorithm during which they follow
mostly the (uniform) prior distribution instead of sampling
the χ2 posterior distribution. From the fact that the classical
covariance ellipses (represented by red contours in Fig. 7)
are well aligned with the MCMC estimates, we conclude that
one can proceed with using the simple Monte Carlo Gaussian
mock sample for error propagation instead of the computa-
tionally more expensive Bayesian MCMC mock sample.

The theoretical argument for the discrepancy between the
two geodesics is based on the properties of the applied
transformation. Since the exponential transformations are not
bijections, the geodesics on the manifold spanned by p̃ need
not have the same behavior as the geodesics on the manifold
spanned by p. To better understand the connection between
these two geodesics, we derive the FIM determinant on the
p̃-manifold by using the transformation of Eq. (16),

det g(p̃) = a2
s

(
pas

)
b2

s

(
pbs

)
c2

s

(
pcs

)
d2

s

(
pds

)
a2

v

(
pav

)
b2

v

(
pbv

)
× d2

v

(
pdv

)
det g(p(p̃)). (17)

The determinant of the metric is not an invariant quantity
under reparametrizations, and hence the additional multiplica-
tive scaling is required. Equation (17) shows that, if the
value of det g approaches zero for particular values of p, both
geodesics terminate. However, additional singularities appear
if any of the coupling constants are allowed to change sign
along a particular geodesic. In contrast to the FIM determi-
nant, the Ricci scalar is not affected by reparametrizations.
The scalar curvature distributions for different points on the
geodesic in Fig. 6(d) do not have the same values as those
in Fig. 3(d). The effects of reparametrizations on the scalar
curvature can be clearly seen from the comparison between
these figures.

The general conclusion is, therefore, that the MBAM
method is sensitive to the way the reparametrization is made,
as has been shown above in the case of the reparametriza-
tion tied to domain restrictions. This is related to the fact
that different reparametrizations do not lead to the same, but
similar, models describing the common physical problem.
Since the EDF has an arbitrarily chosen functional form,
there is no a priori way of identifying which parametriza-
tion is optimal. This sensitivity only emphasizes the fact that
different reparametrizations may describe similar, but inher-
ently different, physical models. Choosing a particular EDF
parametrization is equivalent to choosing a particular range
model parameters can take.

V. CONCLUSION

Methods of information geometry have been applied to
investigate the stability of reducing the nuclear structure mod-
els. We have constrained the error estimates of the MBAM
solutions by means of the Monte Carlo simulations. In the
illustrative application to the DD-PC1 model of the nuclear
EDF, it has been found that the main conclusions obtained
by using the MBAM method are stable under the variation of
the parameters within the 1σ confidence interval of the best-
fitting model. Moreover, we have found that the end of the
geodesic occurs when the determinant of the FIM approaches
zero, thus effectively separating the parameter space into two
disconnected regions.

Further applications of information geometry to nuclear
EDFs could be analyzing possible phase transitions in mod-
els of finite nuclei using scalar curvature and their impact
on nuclear properties. The analysis could even be expanded
to include an extended temperature-dependent model or to
look for model instabilities. It would be worth investigating
whether information-theoretic optimizations could accelerate
computer codes to solve nuclear many-body problems. Such
second-order optimization algorithms, as the natural-gradient
descent, find optimal solutions by taking optimization steps in
the parameter space informed by the behavior of the FIM.
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[38] T. Nikšić, D. Vretenar, and P. Ring, Prog. Part. Nucl. Phys. 66,

519 (2011).
[39] M. Kortelainen, J. McDonnell, W. Nazarewicz, P.-G. Reinhard,

J. Sarich, N. Schunck, M. V. Stoitsov, and S. M. Wild, Phys.
Rev. C 85, 024304 (2012).

[40] M. Kortelainen, J. McDonnell, W. Nazarewicz, E. Olsen, P.-G.
Reinhard, J. Sarich, N. Schunck, S. M. Wild, D. Davesne, J.
Erler, and A. Pastore, Phys. Rev. C 89, 054314 (2014).

[41] A. Bulgac, M. McNeil Forbes, and S. Jin, arXiv:1506.09195.
[42] R. N. Gutenkunst, J. J. Waterfall, F. P. Casey, K. S. Brown,

C. R. Myers, and J. P. Sethna, PLoS Comput. Biol. 3, e189
(2007).

[43] J. M. Lee, Introduction to Riemannian Manifolds, Graduate
Texts in Mathematics (Springer International, Cham, 2018).

[44] B. B. Machta, R. Chachra, M. K. Transtrum, and J. P. Sethna,
Science 342, 604 (2013).

[45] S. E. Agbemava, A. V. Afanasjev, D. Ray, and P. Ring, Phys.
Rev. C 89, 054320 (2014).

[46] S. E. Agbemava, A. V. Afanasjev, T. Nakatsukasa, and P. Ring,
Phys. Rev. C 92, 054310 (2015).

[47] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T.
Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser,
J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,
N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J.
Carey et al., Nat. Methods 17, 261 (2020).

[48] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman,
Publ. Astron. Soc. Pac. 125, 306 (2013).

034304-11

https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1016/j.physrep.2004.10.001
https://doi.org/10.1103/PhysRevC.46.1757
https://doi.org/10.1103/PhysRevC.65.044308
https://doi.org/10.1103/PhysRevC.77.034302
https://doi.org/10.1103/PhysRevC.94.024333
https://doi.org/10.1103/PhysRevC.95.054304
https://doi.org/10.1103/PhysRevC.82.024313
https://doi.org/10.1016/j.cpc.2013.05.020
https://doi.org/10.1088/0031-8949/91/2/023002
https://doi.org/10.1088/0954-3899/41/7/074001
https://doi.org/10.1088/0954-3899/42/3/034024
https://doi.org/10.1140/epja/i2015-15169-9
https://doi.org/10.1088/0954-3899/42/3/034018
https://doi.org/10.1088/0954-3899/42/3/034033
https://doi.org/10.1103/PhysRevC.99.014318
https://doi.org/10.1088/1402-4896/aab085
https://doi.org/10.1103/PhysRevC.99.054310
https://doi.org/10.1088/1361-6471/ab907c
https://doi.org/10.1016/j.physletb.2019.135065
https://doi.org/10.1214/aos/1176345779
https://doi.org/10.1162/089976698300017746
https://doi.org/10.1016/S0893-6080(96)00049-4
https://doi.org/10.1103/PhysRevLett.104.060201
https://doi.org/10.1103/PhysRevE.83.036701
https://doi.org/10.1103/PhysRevLett.113.098701
https://doi.org/10.1063/1.4923066
http://arxiv.org/abs/arXiv:1605.08705
https://doi.org/10.1051/0004-6361/201937114
https://doi.org/10.1103/PhysRevE.100.012206
https://doi.org/10.1016/S0375-9474(99)00310-3
https://doi.org/10.1016/j.nuclphysa.2004.02.001
https://doi.org/10.1016/j.nuclphysa.2006.02.007
https://doi.org/10.1016/j.physletb.2008.04.013
https://doi.org/10.1103/PhysRevC.87.064305
https://doi.org/10.1103/PhysRevC.78.034318
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1103/PhysRevC.85.024304
https://doi.org/10.1103/PhysRevC.89.054314
http://arxiv.org/abs/arXiv:1506.09195
https://doi.org/10.1371/journal.pcbi.0030189
https://doi.org/10.1126/science.1238723
https://doi.org/10.1103/PhysRevC.89.054320
https://doi.org/10.1103/PhysRevC.92.054310
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1086/670067

