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Properties of 208Pb predicted from the relativistic equation of state in the full Dirac space
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Relativistic Brueckner-Hartree-Fock (RBHF) theory in the full Dirac space allows one to determine uniquely
the momentum dependence of scalar and vector components of the single-particle potentials. In order to extend
this new method from nuclear matter to finite nuclei, as a first step, properties of 208Pb are explored by using the
microscopic equation of state for asymmetric nuclear matter and a liquid droplet model. The neutron and proton
density distributions, the binding energies, the neutron and proton radii, and the neutron skin thickness in 208Pb
are calculated. In order to further compare the charge densities predicted from the RBHF theory in the full Dirac
space with the experimental charge densities, the differential cross sections and the electric charge form factors
in the elastic electron-nucleus scattering are obtained by using the phase-shift analysis method. The results from
the RBHF theory are in good agreement with the experimental data. In addition, the uncertainty arising from
variations of the surface term parameter f0 in the liquid droplet model is also discussed.
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I. INTRODUCTION

Exploring the equation of state (EOS) of neutron rich
matter has attracted considerable attentions in the field of
nuclear physics and astrophysics, particularly the poorly de-
termined density dependence of the symmetry energy [1–4].
In terrestrial laboratories, the thickness of the neutron skin in
neutron-rich atomic nuclei, e.g., 208Pb, has been identified as
an ideal laboratory observable to constrain the EOS of neutron
rich matter during the last decades [5–8]. The neutron skin
thickness is defined as the difference between the neutron (rn)
and proton (rp) root-mean-square (rms) radii: �rnp = rn − rp.
Currently, precise data on rp are available. In contrast, as neu-
trons are uncharged, the determination on rn still suffer from
uncontrolled uncertainties due to hadron dynamics which re-
quires model assumptions to deal with the strong force [9].
A model-independent method to probe the neutron densities
was also proposed, i.e., parity-violating electron scattering
[10,11]. Recently, an improved value for the neutron skin
thickness of 208Pb has been reported by the updated Lead Ra-
dius EXperiment (PREX-II): �rnp = 0.283 ± 0.071 fm [12].
By using the strong correlation between �rnp and the slope
of the symmetry energy L calculated from several sets of
relativistic energy density functionals, a new value of L =
106 ± 37 MeV was reported and it is larger than those from
other theoretical and experimental estimations [8]. This re-
sult provides a challenge to our present understanding of the
nuclear matter EOS, particularly the density dependence of
symmetry energy.
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In theoretical studies, the predictions from the density
functionals span a fairly wide range of neutron skin thickness
for 208Pb, since the isovector channels are loosely constrained
in the fitting procedures [7]. For ab initio methods, calcu-
lating such a heavy nucleus directly is difficult due to the
huge computational cost. Recently, �rnp = 0.14–0.20 fm for
208Pb was predicted by the nonrelativistic ab initio calcula-
tions from the chiral effective field theory (EFT) with realistic
two- and three-nucleon forces [13]. In the relativistic frame-
work, relativistic Brueckner-Hartree-Fock (RBHF) theory is
one of the most successful ab initio theories based on realistic
two-nucleon forces only [14]. Comparing to the nonrelativis-
tic Brueckner-Hartree-Fock (BHF) theory with two-nucleon
forces only, the RBHF theory improves the description con-
siderably, both for the nuclear matter and finite nuclei [15,16].
Due to considerable numerical difficulties, the investigation
of 208Pb within a full solution in the relativistic framework is
not available. The present fully self-consistent RBHF theory
has been accomplished only for the neutron skin thickness in
the medium-mass nucleus 48Ca [17]. To extend the RBHF
theory from the nuclear matter to finite nuclei in previous
studies, most investigations were based on the local density
approximation (LDA) [18] and the liquid droplet model [19].
LDA aims to find an effective interaction which can reproduce
the nuclear matter properties from the RBHF theory, while the
key point of the liquid droplet model is to combine an energy
functional based on the semiempirical mass formula with the
EOS from RBHF theory [20–23].

One of the most essential ingredients in the RBHF cal-
culations for nuclear matter properties is to identify the
single-particle potentials of the nucleons. However, to avoid
the complexity of extracting self-consistently the scalar and
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vector components of the single-particle potentials from the G
matrix, the momentum-independence approximation method
and the projection method are usually introduced in the Dirac
space with positive-energy states (PESs) only [14,24,25].
These two frequently used approximations lead to contradic-
tory results for the isospin dependence of the Dirac mass [26].
Therefore, the mapping from nuclear matter to finite nuclei
is far from unique because of the uncertainties of the RBHF
theory in nuclear matter [26–32].

Recently, by considering the PESs and negative-energy
states (NESs) simultaneously, a self-consistent RBHF calcu-
lation is developed in the full Dirac space [33,34]. In this
case, the momentum dependence for the scalar and vector
components of the single-particle potentials are determined
uniquely, since the matrix elements of single-particle poten-
tial operator can be decomposed in the full Dirac space.
The RBHF theory in the full Dirac space has been success-
fully applied to study the symmetric nuclear matter (SNM)
[33,35], asymmetric nuclear matter (ANM) [34,36] and neu-
tron star properties [36,37]. Especially, this new method has
clarified the longstanding controversy about the isospin de-
pendence of the Dirac mass in the RBHF calculations of
ANM [34].

With the success of RBHF theory in the full Dirac space
in nuclear matter, it is interesting and timely to extend this
method to study finite nuclei. As a first step, the EOS from
the RBHF theory in the full Dirac space and a liquid droplet
model are used to study the properties of 208Pb. To further
compare the charge densities predicted from the RBHF theory
in the full Dirac space with the experimental charge densities,
the differential cross sections (DCS) and the electric charge
form factors in the elastic electron-nucleus scattering are dis-
cussed by using the phase-shift analysis method.

In Sec. II, the theoretical framework of the RBHF theory in
the full Dirac space, the liquid droplet model, and the phase-
shift analysis method are introduced. The calculated results
and discussions are presented in Sec. III. Finally, a summary
is given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Relativistic Brueckner-Hartree-Fock theory
in the full Dirac space

To describe the single-particle motion of a nucleon in nu-
clear matter from the RBHF theory, the essential point is to
use the Dirac equation,

{α · p + β[M + Uτ (p)]}uτ (p, s) = Ep,τ uτ (p, s), τ = n, p,

(1)

where α and β are the Dirac matrices, M is the nucleon mass,
p and Ep,τ are the momentum and single-particle energy, s and
τ are the spin and isospin. The single-particle potential Uτ in
the infinite, uniform nuclear matter can be decomposed in its
Lorentz form [38]

Uτ (p) = US,τ (p) + γ 0U0,τ (p) + γ · p̂UV,τ (p), (2)

where US,τ is the scalar potential, U0,τ and UV,τ are the time-
like and spacelike parts of the vector potential. p̂ = p/|p|

is the unit vector parallel to the momentum p. By intro-
ducing the following effective quantities, p∗

τ = p + p̂UV,τ (p),
M∗

p,τ = M + US,τ (p), and E∗
p,τ = Ep,τ − U0,τ (p), the solu-

tions of Eq. (1) in the full Dirac space are

uτ (p, s) =
√

E∗
p,τ + M∗

p,τ

2M∗
p,τ

⎡
⎣ 1

σ · p∗
τ

E∗
p,τ + M∗

p,τ

⎤
⎦χsχτ ,

vτ (p, s) = γ 5uτ (p, s), (3)

where uτ and vτ are in-medium baryon spinors with positive
and negative energies, χs and χτ are the spin and isospin
doublets.

The baryon spinor can be calculated exactly once the scalar
and vector components of the single-particle potentials are
determined. To this end, three matrix elements of the single-
particle potential Uτ in the full Dirac space are defined as
[39,40]

�++
τ (p) = ūτ (p, 1/2)Uτ (p)uτ (p, 1/2)

= US,τ (p) + E∗
p,τ

M∗
p,τ

U0,τ (p) + p∗
τ

M∗
p,τ

UV,τ (p), (4a)

�−+
τ (p) = v̄τ (p, 1/2)Uτ (p)uτ (p, 1/2)

= p∗
τ

M∗
p,τ

U0,τ (p) + E∗
p,τ

M∗
p,τ

UV,τ (p), (4b)

�−−
τ (p) = v̄τ (p, 1/2)Uτ (p)vτ (p, 1/2)

= −US,τ (p) + E∗
p,τ

M∗
p,τ

U0,τ (p) + p∗
τ

M∗
p,τ

UV,τ (p).

(4c)

When �++
τ , �−+

τ , and �−−
τ are determined, the single-

particle potentials in Eq. (2) can be obtained uniquely from

US,τ (p) = �++
τ (p) − �−−

τ (p)

2
, (5a)

U0,τ (p) = E∗
p,τ

M∗
p,τ

�++
τ (p) + �−−

τ (p)

2
− p∗

τ

M∗
p,τ

�−+
τ (p),

(5b)

UV,τ (p) = − p∗
τ

M∗
p,τ

�++
τ (p) + �−−

τ (p)

2
+ E∗

p,τ

M∗
p,τ

�−+
τ (p).

(5c)

Therefore, the matrix elements for the positive-energy solu-
tions, the elements coupling positive- with negative-energy
solutions given in Eq. (3) and those for the negative-energy
solutions, i.e., �++

τ , �−+
τ , and �−−

τ should be calculated
simultaneously. These three matrix elements can be evaluated
through the effective NN interactions G matrix in the full
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Dirac space

�++
τ (p) =

∑
s′τ ′

∫ kτ ′
F

0

d3 p′

(2π )3

M∗
p′,τ ′

E∗
p′,τ ′

〈ūτ (p, 1/2)ūτ ′ (p′, s′)|Ḡ++++(W )|uτ (p, 1/2)uτ ′ (p′, s′)〉, (6a)

�−+
τ (p) =

∑
s′τ ′

∫ kτ ′
F

0

d3 p′

(2π )3

M∗
p′,τ ′

E∗
p′,τ ′

〈v̄τ (p, 1/2)ūτ ′ (p′, s′)|Ḡ−+++(W )|uτ (p, 1/2)uτ ′ (p′, s′)〉, (6b)

�−−
τ (p) =

∑
s′τ ′

∫ kτ ′
F

0

d3 p′

(2π )3

M∗
p′,τ ′

E∗
p′,τ ′

〈v̄τ (p, 1/2)ūτ ′ (p′, s′)|Ḡ−+−+(W )|vτ (p, 1/2)uτ ′ (p′, s′)〉, (6c)

where kτ ′
F specifies the Fermi momentum for nucleon τ ′. Ḡ

is the antisymmetrized G matrix, where ± in the superscript
denotes PESs or NESs.

In the RBHF theory, the in-medium covariant Thompson
equation [14] is one of the most widely used equations to
derive the G matrix in nuclear matter,

Gττ ′ (q′, q|P,W ) =Vττ ′ (q′, q|P) +
∫

d3k

(2π )3
Vττ ′ (q′, k|P)

× M∗
P+k,τ M∗

P−k,τ ′

E∗
P+k,τ

E∗
P−k,τ ′

Qττ ′ (k, P)

W − EP+k,τ − EP−k,τ ′

× Gττ ′ (k, q|P,W ), (7)

where ττ ′ = nn, pp, or np, W is the starting energy, Vττ ′

denotes a realistic bare NN interaction and Bonn potentials
[41] are used here. P is the center-of-mass momentum and k
is the relative momentum of the two interacting nucleons. q, k,
and q′ are the initial, intermediate, and final relative momenta
of the two nucleons scattering in nuclear matter, respectively.
Qττ ′ (k, P) is the Pauli operator,

Qττ ′ (k, P) =
{

1 |P + k| > kτ
F and |P − k| > kτ ′

F ,

0 otherwise,

(8)

which prevents NN scattering into occupied states in the nu-
clear medium.

Through Eqs. (1), (5), (6), and (7), the G matrix is self-
consistently calculated with the single-particle potentials in
the standard RBHF iterative procedure. When the iteration has
converged, the binding energy per nucleon in nuclear matter
can be calculated by

E/A = 1

ρ

∑
s,τ

∫ kτ
F

0

d3 p

(2π )3

M∗
p,τ

E∗
p,τ

〈ūτ (p, s)|γ · p + M|uτ (p, s)〉

− M + 1

2ρ

∑
s,s′,τ,τ ′

∫ kτ
F

0

d3 p

(2π )3

∫ kτ ′
F

0

d3 p′

(2π )3

M∗
p,τ

E∗
p,τ

M∗
p′,τ ′

E∗
p′,τ ′

× 〈ūτ (p, s)ūτ ′ (p′, s′)|Ḡ++++(W )|uτ (p, s)uτ ′ (p′, s′)〉.
(9)

B. From nuclear matter to finite nuclei

To connect the nuclear matter EOS to properties of finite
nuclei, the energy of a nucleus is written in terms of a volume,

a surface, and a Coulomb term motivated by a liquid droplet
model [19,20],

e(Z, A) =
∫

d3rE/A(ρn(r), ρp(r))ρ(r) + f0

∫
d3r|∇ρ(r)|2

+ e2

4πε0
(4π )2

∫ ∞

0
dr′r′ρp(r′)

∫ r′

0
drr2ρp(r),

(10)

where the volume term is calculated directly from the EOS
in the RBHF theory with the density ρ(r) = ρn(r) + ρp(r).
The constant f0 is the surface energy parameter. The proton
and neutron density distributions are parametrized as standard
Thomas-Fermi distributions

ρi(r) = ai

1 + e(r−Ri )/di
(i = n, p), (11)

where the free parameters of radius Ri and diffuseness di are
extracted by minimization of the energy, while ai is obtained
by normalizing the proton (neutron) distribution to Z (N ),∫

d3rρi(r) =
{

A − Z, i = n,

Z, i = p.
(12)

The neutron skin thickness is defined as

�rnp = rn − rp, (13)

where rn and rp are the rms radii of the neutron and proton
density distributions.

C. Phase-shift analysis method

Phase-shift analysis method is used to calculate the DCS
and the electric charge form factors for elastic electron scatter-
ing from the charge densities obtained by the RBHF theory in
the full Dirac space. To obtain the DCS of the elastic electron
scattering, one needs to solve the Dirac equation

[α · p + βm + V (r)]ψ (r) = Eψ (r), (14)

where E and p are the energy and momentum of the incident
electrons, m is the rest mass of the electron, and V (r) is
the Coulomb potential between the electron and the nucleus.
Since V (r) is assumed to be spherical [42],

V (r) = − e2

4πε0

∫
d3r′ ρch(r′)

|r − r′| , (15)

with ρch(r) being the charge distribution. The wave function
ψ (r) can be expressed by a series of spherical spinors with
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TABLE I. Parameters of the density distributions for 208Pb calculated by the RBHF theory in the full Dirac space.

f0 an Rn dn ap Rp dp

Method Potential (MeV fm5) (fm−3) (fm) (fm) (fm−3) (fm) (fm)

60 0.096 6.62 0.60 0.065 6.55 0.56
Full Dirac Space Bonn A

70 0.095 6.62 0.65 0.064 6.54 0.61

definite angular momenta,

ψ (r) = 1

r

[
P(r)�κ,mj (θ, φ)

iQ(r)�−κ,mj (θ, φ)

]
, (16)

where � are the spherical spinors, κ = (l − j)(2 j + 1) is
defined as the relativistic quantum number, j and l are the total
and orbital angular momentum quantum numbers. The radial
wave functions P(r) and Q(r) satisfy the following coupled
differential equations:

dP

dr
= −κ

r
P(r) + [E − V (r) + 2m]Q(r), (17a)

dQ

dr
= −[E − V (r)]P(r) + κ

r
Q(r). (17b)

The spin-up δ+
l and spin-down δ−

l phase shifts for the partial
wave with orbital angular momentum l can be obtained by
solving the coupled radial equations (17) with the asymptotic
behavior. Then one can calculate the direct scattering ampli-
tude

f (θ ) = 1

2ik

∞∑
l=0

[(l + 1)(e2iδ+
l − 1) + l (e2iδ−

l − 1)]Pl (cos θ )

(18)

and the spin-flip scattering amplitude

g(θ ) = 1

2ik

∞∑
l=0

[e2iδ−
l − e2iδ+

l ]P1
l (cos θ ), (19)

where k is the wave number of the projectile electron,
Pl (cos θ ) and P1

l (cos θ ) are Legendre polynomials and as-
sociated Legendre functions. The DCS for elastic electron
scattering off nucleus can be given by

dσ

d�
= | f (θ )|2 + |g(θ )|2. (20)

III. RESULTS AND DISCUSSION

The RBHF calculation is performed for the nuclear matter
EOS in the full Dirac space, where the bare nucleon-nucleon
(NN) interaction is adopted as relativistic potential Bonn A
[41]. With potential Bonn A, The empirical saturation proper-
ties of SNM are well reproduced from the RBHF calculations
in the full Dirac space [33]. From the EOS calculated by
the RBHF theory and the energy functional based on the
semiempirical mass formula [19,20], the two-parameter Fermi
functions for neutron and proton densities of 208Pb are ob-
tained. The parameters for ai, Ri, di are listed in Table I,
where i = n, p. It should be noted that the constant f0 in
Eq. (10) from the surface term is typically obtained by fitting
to β-stable nuclei and found to be about 60–70 MeV fm5

[43]. In order to study how this uncertainty impacts the corre-
sponding predictions for the properties of 208Pb, Table I shows
the results obtained with f0 = 60 MeV fm5 and those with
f0 = 70 MeV fm5. It can be seen that these two values of f0

lead to different parameters, especially for di.
In Fig. 1, the radial dependence of the neutron and proton

densities for 208Pb are calculated by the RBHF theory in
the full Dirac space with the potential Bonn A. The values
of central densities from f0 = 60 MeV fm5 are larger than
f0 = 70 MeV fm5 for both neutron and proton densities. In
contrast, the densities from f0 = 70 MeV fm5 are larger than
those from f0 = 60 MeV fm5 when the radius becomes larger
than 6.8 fm.

From the density distributions obtained by the RBHF the-
ory in the full Dirac space, the neutron radii rn, proton radii
rp, and neutron skins �rnp for 208Pb can be extracted. In
Table II, the results for rn, rp, and �rnp are 5.59, 5.48, and
0.11 fm from f0 = 60 MeV fm5, as compared to 5.67, 5.55,
and 0.12 fm from f0 = 70 MeV fm5. One can see that the pre-
dictions from the latter one are even larger. Recently, accurate
measurements of the neutron skin of 208Pb from PREX-II have
become available [12]. Combined with the previous measure-
ment [44,45], the extracted neutron skin is �rnp = 0.283 ±
0.071 fm. Furthermore, a value of the slope of the symmetry
energy L = (106 ± 37) MeV was reported through exploiting
the strong correlation between the neutron skin of 208Pb and
L from a specific class of relativistic energy density func-
tionals [8]. It should be noted that this result systematically
overestimates current limits from both theoretical approaches
and experimental measurements and suggests that the EOS at
the typical densities found in atomic nuclei is stiff. It can be

FIG. 1. Neutron and proton density distributions for 208Pb calcu-
lated by the RBHF theory in the full Dirac space with the potential
Bonn A. The solid lines and dashed lines are obtained by using
f0 = 60 MeV fm5 and f0 = 70 MeV fm5, respectively.
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TABLE II. Neutron radii, proton radii, and neutron skins calcu-
lated by the RBHF theory in the full Dirac space.

f0 rn rp �rnp

Method Potential (MeV fm5) (fm) (fm) (fm)

60 5.59 5.48 0.11
Full Dirac Space Bonn A

70 5.67 5.55 0.12

also found that the neutron skin from PREX-2 is larger than
those predicted by the RBHF theory in the full Dirac space.
This indicates that the EOS from the RBHF theory at the
typical densities is rather soft. In contrast, the neutron skin
from the RBHF theory are close to other empirical values,
such as �rnp = 0.15 ± 0.08 fm and �rnp = 0.14 ± 0.10 from
pionic probes [46], �rnp = 0.18 ± 0.05 fm [47] from the
pionic atom potentials with varying radial parameters of the
neutron distributions, and �rnp = 0.18 ± 0.05 fm [48] from
symmetry energy constraints. Therefore, the next generation
of terrestrial experiments and astronomical observations are
necessary to improve our understanding of the EOS.

In Fig. 1, the densities of point protons and neutrons are
obtained without considering that protons and neutrons are
composite particles with extended size. In order to compare
with the experimental signature of the density in 208Pb by
elastic electron scattering, the charge density is calculated by
convolution of the proton density with a Gaussian form factor
[18]

ρch(r) = 1

a
√

π

∫
dr′r′ρp(r)[e−(r−r′ )2/a2

/r − e−(r+r′ )2/a2
/r],

(21)

where a = √
2/3〈r2〉1/2

p is the proton size for spherically
symmetric density distributions [50]. Furthermore, the charge
radii rc can be calculated from the charge density ρch(r).

Figure 2 shows the energy per nucleon E/A for 208Pb
and the charge radius rc calculated by the RBHF theory in
the full Dirac space, in comparison with the BHF theory
[49], the RBHF theory within the momentum-independence
approximation [20], and the EFT [22]. The solid black star
indicates the experimental data. As for the RBHF theory in
the full Dirac space, the prediction from f0 = 60 MeV fm5

is much closer to the experimental data than those from
f0 = 70 MeV fm5, since the magnitude of surface term in
Eq. (10) is proportional to f0 and the latter one introduces
more repulsion in the present model. Similar results also ap-
ply to chiral EFT. To specify the importance of the RBHF
calculations in the full Dirac space, the prediction from the
RBHF theory within the momentum-independence approx-
imation with f0 = 70 MeV fm5 is also shown [20]. It can
be seen that the full Dirac space gives a larger radius than
the momentum-independence approximation, while the mag-
nitude of the energy is smaller. In order to further improve
the accuracy of the results from the RBHF theory in the full
Dirac space, the mapping from nuclear matter to finite nuclei
in a more microscopic way will be treated carefully in the
near future, such as LDA [18]. One can note that the energy
per nucleon E/A from chiral EFT agree well with the exper-
imental data [22], since the EOS for the symmetric nuclear

FIG. 2. Energy per nucleon E/A for 208Pb and the charge ra-
dius rc calculated by the RBHF theory in the full Dirac space,
in comparison with the results obtained by the BHF theory [49]
with the Argonne V18 or Bonn B two-nucleon potentials plus their
corresponding microscopic three-nucleon forces, the RBHF theory
within the momentum-independence approximation [20], and the
EFT including only two-neutron forces at N 4LO [22]. The solid
black star represents the experimental data.

matter was obtained from empirically determined values of
characteristic constants in homogeneous matter at saturation
and subsaturation [51]. In addition, the predictions from the
RBHF theory in the full Dirac space with only two-nucleon
potential are compatible with those from the BHF theory with
the Argonne V18 (AV18) [52] and Bonn B [41] two-nucleon
potentials plus their corresponding microscopic three-nucleon
forces [53,54]. However, the parameter f0 in the BHF theory is
optimized by fitting the binding energies of 16O, 40Ca, 48Ca,
90Zr, 114Sn, and 208Pb and the values f0 = 35(50) MeV fm5

for the AV18 (Bonn B) potential are substantially smaller than
60–70 MeV fm5 [43]. It is obvious that the energy will be far
away from the experimental data if f0 = 60–70 MeV fm5 [43]
were used in the BHF theory.

The comparison between the charge densities from the
RBHF theory in the full Dirac space and the experimental
charge densities shall be connected with the discussion of
the DCS and the electric charge form factors in the elastic
electron-nucleus scattering, which are the quantities measured
in real experiments. Several theoretical methods have been
used to study the DCS and the electric charge form factors,
such as the plane-wave Born approximation, the eikonal ap-
proximation, and the phase-shift analysis method [56,57]. In
this work, the DCS are calculated by the phase-shift analysis
method which has been widely used in elastic electron-
nucleus scattering off both stable and unstable nuclei [58–61].
This method takes into account the Coulomb distortion effect
and agrees well with the experimental scattering data in a
broad scattering energy range for both light and heavy nu-
clei [62].

Figure 3 shows the DCS for elastic electron scattering in
208Pb as a function of the scattering angle θ at the electron
beam energies 502 MeV. For f0 = 60 MeV fm5, the results
from the RBHF theory give a good description of the ex-
perimental data [55] at all scattering angles. However, in
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FIG. 3. Elastic DCS for electron-nucleus scattering in 208Pb as a
function of the scattering angle θ at the electron beam energies 502
MeV. The results from the RBHF theory in the full Dirac space are
compared with the measured DCS (Exp) [55].

the case of 70 MeV fm5, the experimental data can only be
similarly reproduced at small scattering angles, up to the sec-
ond diffraction minimum. The DCS curve obtained from the
RBHF theory using f0 = 70 MeV fm5 has the same shape as
that from f0 = 60 MeV fm5. The positions of the diffraction
minima and maxima calculated from these two curves are
almost the same, but the DCS curve from f0 = 70 MeV fm5

is shifted downward as a whole, especially at large scattering
angles. The deviations for the DCS predicted by the RBHF
theory between the two values of f0, and the discrepancies
with respect to experimental data, become more prominent
with the increasing of the scattering angles.

The electric charge form factor F (q) is a very important
quantity to characterize the elastic electron-nucleus scattering
which can be used to analyze the effect of the finite size of
the nucleus. At a given beam energy, the squared charge form
factor |F (q)|2 is obtained as

|F (q)|2 = dσ/d�

dσM/d�
, (22)

where the momentum transfer q is related to the scattering
angle θ in the laboratory frame by q = 2E sin(θ/2), dσ/d�

is the DCS calculated from the RBHF theory in the full Dirac
space and dσM/d� is the Mott DCS.

In Fig. 4, the squared charge form factor |F (q)|2 for the nu-
clei 208Pb at the electron beam energies 502 MeV are depicted
as functions of the momentum transfer q calculated by the
RBHF theory in the full Dirac space. The experimental data of
|F (q)|2 can be well reproduced in the low-momentum transfer
regions by the RBHF theory for both f0 = 60 MeV fm5 and
f0 = 70 MeV fm5, while the discrepancies appear between
the theoretical predictions from the RBHF theory and the
experimental data at large-momentum transfer regions, as is
expected from the previous analysis of the DCS at small

FIG. 4. Squared charge form factor for 208Pb as a function of the
momentum transfer q at the electron beam energies 502 MeV.

scattering angles in Fig. 3. This indicates that the RBHF
theory describe differently the central region of the experi-
mental charge density. Comparing to |F (q)|2 obtained from
the RBHF theory by using f0 = 70 MeV fm5, the positions
of the diffraction minima and maxima calculated from f0 =
60 MeV fm5 are almost the same, but the results from f0 =
60 MeV fm5 shifted upward as a whole and became much
closer to the experimental data, especially at large-momentum
transfer regions.

IV. SUMMARY

The computation of a heavy nucleus, e.g., 208Pb, has
been out of reach for relativistic ab initio theory. Rela-
tivistic Brueckner-Hartree-Fock (RBHF) theory provides a
promising approach to achieve this goal. Comparing with the
momentum-independence approximation method and the pro-
jection method in the RBHF theory, one of the most significant
advantage for the RBHF theory in the full Dirac space is that
the momentum dependence of scalar and vector components
of the single-particle potentials can be determine uniquely. In
order to apply this new method to study finite nuclei, as a first
step, properties of 208Pb are explored by using the microscopic
equation of state for asymmetric nuclear matter and a liquid
droplet model. The neutron and proton density distributions,
the binding energy and the charge radius are calculated by
minimization of the energy. As for f0 = 60 (70) MeV fm5 in
the surface term of the liquid droplet model, the neutron radii,
the proton radii and the neutron skin thickness are 5.59 (5.67)
fm, 5.48 (5.55) fm, and 0.11 (0.12) fm, respectively. To further
compare the charge densities predicted from the RBHF theory
in the full Dirac space with the experimental charge densities,
the differential cross sections and the electric charge form
factors in the elastic electron-nucleus scattering are obtained
by using the phase-shift analysis method. The results from the
RBHF theory are in good agreement with the experimental
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data. This work will further motivate us to study finite nuclei
in a more microscopic way based on the RBHF theory in the
full Dirac space in the near future, such as the local density
approximation (LDA).
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