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We present local, position-space chiral NN potentials through four orders of chiral effective field theory
ranging from leading order (LO) to next-to-next-to-next-to-leading order (N3LO, fourth order) of the �-less
version of the theory. The long-range parts of these potentials are fixed by the very accurate πN low-energy
constants (LECs) as determined in the Roy-Steiner equations analysis. At the highest order (N3LO), the NN data
below 190 MeV laboratory energy are reproduced with the respectable χ2/datum of 1.45. A comparison of the
N3LO potential with the phenomenological Argonne v18 (AV18) potential reveals substantial agreement between
the two potentials in the intermediate range ruled by chiral symmetry, thus providing a chiral underpinning for
the phenomenological AV18 potential. Our chiral NN potentials may serve as a solid basis for systematic ab
initio calculations of nuclear structure and reactions that allow for a comprehensive error analysis. In particular,
the order-by-order development of the potentials will make possible a reliable determination of the truncation
error at each order. Our new family of local position-space potentials differs from existing potentials of this kind
by a weaker tensor force as reflected in relatively low D-state probabilities of the deuteron (PD � 4.0% for our
N3LO potentials) and predictions for the triton binding energy above 8.00 MeV (from two-body forces alone).
As a consequence, our potentials may lead to different predictions when applied to light and intermediate-mass
nuclei in ab initio calculations and, potentially, help solve some of the outstanding problems in microscopic
nuclear structure.
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I. INTRODUCTION

A primary goal of theoretical nuclear physics is to explain
nuclear structure and reactions in terms of the forces between
nucleons; in present-day popular jargon this is dubbed the ab
initio approach. The current prevailing belief in the commu-
nity is that chiral effective field theory (EFT) is best suited to
provide those forces, because it can be related to low-energy
QCD in a straightforward way and produces abundant three-
nucleon forces (3NFs) needed for any quantitative nuclear
structure prediction [1–4].

Since chiral EFT is a low-momentum expansion, most
chiral NN potentials of the past have been developed in
momentum space and are nonlocal. However, this feature
makes them unsuitable for a large group of ab initio few-
and many-body algorithms, particularly the ones known as
quantum Monte Carlo (QMC) methods [5,6]. Variational
Monte Carlo (VMC) and Green’s function Monte Carlo
(GFMC) techniques provide reliable solutions of the many-
body Schrődinger equation for, presently, up to 12 nucleons.
Spectra, form factors, transitions, low-energy scattering, and
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response functions for light nuclei have been successfully
calculated using QMC methods [7]. A further extension,
the auxiliary field diffusion Monte Carlo (AFDMC) [5,6],
additionally samples the spin-isospin degrees of freedom,
thus making possible the study of neutron matter. In sum-
mary, QMC techniques have substantially contributed to the
progress in ab initio nuclear structure of the past 20+ years,
and will continue to do so. Thus, it is important that high-
quality nuclear interactions are available for application by
these promising many-body methods.

An important advantage of chiral EFT is that it allows
for a systematic quantification of the uncertainties of the
predictions. For this it is necessary to conduct calculations
at different orders of the chiral expansion. However, so far,
local chiral NN potentials have been developed only at next-
to-next-to-leading order (NNLO) [8] or in the hybrid format,
NNLO/N3LO [9,10], where two-pion exchange (2PE) con-
tributions are included up to NNLO and contact terms up
to next-to-next-to-next-to-leading order (N3LO). To make
proper uncertainty quantifications possible, local chiral NN
potentials at all orders from leading order (LO) to N3LO (and,
if necessary, even beyond) are needed. It is the purpose of this
work to construct such local NN potentials of high quality
and make them available for QMC calculations as well as any
other purposes where they can be of use.

We will develop these potentials within the �-less theory,
which has two degrees of freedom, namely pions (Goldstone
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bosons) and nucleons, and does not include a �(1232)-isobar
degree of freedom. If an explicit �-isobar is included in
chiral EFT (�-full theory [11–16]), then the two-nucleon
force (2NF) and 3NF contributions are enhanced at next-to-
leading order (NLO), resulting in a smoother convergence
when advancing from leading order (LO) to NNLO. How-
ever, summing up all contributions at NNLO brings about
very similar results for both versions of the theory [15]. The
predictions of both theories beyond NNLO are expected to be
very similar [16]. In contrast to recent claims [17], it has been
shown in Ref. [18] that there is no advantage to the �-full
theory.

This paper is organized as follows: In Sec. II, we present
the expansion of the NN potential through all orders from
LO to N3LO. The reproduction of the NN scattering data
and the deuteron properties are given in Sec. III. Uncertainty
quantification is considered in Sec. IV. Section V concludes
the paper.

II. THE CHIRAL NN POTENTIAL

A. Effective Lagrangians

In the �-less version of chiral EFT, which is the one we are
applying, the relevant degrees of freedom are pions and nucle-
ons. Consequently, the effective Lagrangian is subdivided into
the following pieces:

Leff = Lππ + LπN + LNN + · · · , (2.1)

where Lππ deals with the dynamics among pions, LπN de-
scribes the interaction between pions and a nucleon, and LNN

contains two-nucleon contact interactions which consist of
four nucleon fields (four nucleon legs) and no meson fields.
The ellipsis stands for terms that involve two nucleons plus
pions and three or more nucleons with or without pions, rel-
evant for nuclear many-body forces. Since the interactions of
Goldstone bosons must vanish at zero momentum transfer and
in the chiral limit (mπ → 0), the low-energy expansion of the
effective Lagrangian is arranged in powers of derivatives and
pion masses, implying the following organization:

Lππ = L(2)
ππ + L(4)

ππ + · · · , (2.2)

LπN = L(1)
πN + L(2)

πN + L(3)
πN + L(4)

πN + · · · , (2.3)

LNN = L(0)
NN + L(2)

NN + L(4)
NN + · · · , (2.4)

where the superscript refers to the number of derivatives or
pion mass insertions (chiral dimension) and the ellipses stand
for terms of higher dimensions. We use the heavy-baryon
formulation of the Lagrangians, the explicit expressions of
which can be found in Ref. [1].

B. Power counting

Based upon the above Lagrangians, an infinite number of
diagrams contributing to the interactions among nucleons can
be drawn. Nuclear potentials are defined by the irreducible
types of these graphs. By definition, an irreducible graph is
a diagram that cannot be separated into two by cutting only
nucleon lines. These graphs are then analyzed in terms of
powers of Q with Q = p/�b, where p is generic for a momen-

tum (nucleon three-momentum or pion four-momentum) or a
pion mass and �b ∼ mρ ∼ 0.7 GeV is the breakdown scale
[19]. Determining the power ν has become know as power
counting.

Following the Feynman rules of covariant perturbation the-
ory, a nucleon propagator is p−1, a pion propagator p−2, each
derivative in any interaction is p, and each four-momentum in-
tegration p4. This is also known as naive dimensional analysis
or Weinberg counting.

Since we use the heavy-baryon formalism, we encounter
terms which include factors of p/MN , where MN denotes the
nucleon mass. We count the order of such terms by the rule

p/MN ∼ (p/�b)2, (2.5)

for reasons explained in Ref. [20].
Applying some topological identities, one obtains for the

power of a connected irreducible diagram involving A nucle-
ons [1,20]

ν = −2 + 2A − 2C + 2L +
∑

i

�i, (2.6)

with

�i ≡ di + ni

2
− 2, (2.7)

where L denotes the number of loops in the diagram; di is
the number of derivatives or pion-mass insertions and ni the
number of nucleon fields (nucleon legs) involved in vertex i;
the sum runs over all vertexes i contained in the connected
diagram under consideration. Note that �i � 0 for all interac-
tions allowed by chiral symmetry.

An important observation from power counting is that the
powers are bounded from below and, specifically, ν � 0. This
fact is crucial for the convergence of the low-momentum
expansion.

For an irreducible NN diagram (A = 2, C = 1), the power
formula collapses to the very simple expression

ν = 2L +
∑

i

�i, (2.8)

which is most relevant for our current work.
In summary, the chief point of the chiral perturbation

theory (ChPT) expansion of the potential is that, at a given
order ν, there exist only a finite number of graphs. This is
what makes the theory calculable. The expression (p/�b)ν+1

provides an estimate of the relative size of the contributions
left out and, thus, of the relative uncertainty at order ν. The
ability to calculate observables (in principle) to any degree of
accuracy gives the theory its predictive power.

ChPT and power counting imply that nuclear forces evolve
as a hierarchy controlled by the power ν; see Fig. 1 for an
overview. In what follows, we will focus on the 2NF.

C. The long-range NN potential

The long-range part of the NN potential is built up from
pion exchanges, which are ruled by chiral symmetry. The
various pion-exchange contributions are best analyzed by the
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FIG. 1. Hierarchy of nuclear forces in ChPT. Solid lines repre-
sent nucleons and dashed lines pions. Small dots, large solid dots,
solid squares, and solid diamonds denote vertexes of index �i = 0,
1, 2, and 4, respectively. Q = p/�b with p a momentum or pion mass
and �b the breakdown scale. Further explanations are given in the
text.

number of pions being exchanged between the two nucleons:

Vπ = V1π + V2π + V3π + · · · , (2.9)

where the meaning of the subscripts is obvious and the ellipsis
represents 4π and higher pion exchanges. For each of the
above terms, we have a low-momentum expansion:

V1π = V (0)
1π + V (2)

1π + V (3)
1π + V (4)

1π + · · · , (2.10)

V2π = V (2)
2π + V (3)

2π + V (4)
2π + · · · , (2.11)

V3π = V (4)
3π + · · · , (2.12)

where the superscript denotes the order ν of the expansion.
Higher order corrections to the one-pion exchange (1PE)
are taken care of by mass and coupling constant renormal-
izations. Note also that, on shell, there are no relativistic
corrections. Thus, V1π = V (0)

1π through all orders. The leading
3π -exchange contribution that occurs at N3LO, V (4)

3π , has been
calculated in Refs. [21,22] and found to be negligible. We
therefore omit it.

Order by order, the long-range NN potential then builds up
as follows:

V LO
π = V (0)

1π , (2.13)

V NLO
π = V LO

π + V (2)
2π , (2.14)

V NNLO
π = V NLO

π + V (3)
2π , (2.15)

V N3LO
π = V NNLO

π + V (4)
2π . (2.16)

We note that we add to V N3LO
π the 1/MN corrections of the

NNLO 2PE proportional to ci (cf. Table I). This correction is
proportional to ci/MN (cf. Fig. 9 and Appendix A 5, below)
and appears nominally at fifth order, but we include it at

TABLE I. The πN low-energy constants (LECs) as determined
in the Roy-Steiner-equation analysis of πN scattering conducted in
Ref. [27]. The given orders of the chiral expansion refer to the NN
system. The ci and d̄i are the LECs of the second- and third-order πN
Lagrangian [1] and are in units of GeV−1 and GeV−2, respectively.
The uncertainties in the last digits are given in parentheses after the
values. We use the central values.

NNLO N3LO

c1 −0.74(2) −1.07(2)
c2 3.20(3)
c3 −3.61(5) −5.32(5)
c4 2.44(3) 3.56(3)
d̄1 + d̄2 1.04(6)
d̄3 −0.48(2)
d̄5 0.14(5)
d̄14 − d̄15 −1.90(6)

fourth order. As demonstrated in Ref. [23], the 2PE football
diagram proportional to c2

i that appears at N3LO [Fig. 8(a) and
Appendix A 4 a] is unrealistically attractive, while the ci/MN

correction is large and repulsive. Therefore, it makes sense
to group these diagrams together to arrive at a more realistic
intermediate-range attraction at N3LO. This is common prac-
tice and has been done so in Refs. [24–26].

The explicit mathematical expressions for the pion-
exchanges up to N3LO are very involved. We have, therefore,
moved them into Appendix A.

Chiral symmetry establishes a link between the dynam-
ics in the πN system and the NN system through common
low-energy constants (LECs). Therefore, consistency requires
that we use the LECs for subleading πN couplings as deter-
mined in the analysis of low-energy πN scattering. Currently,
the most reliable πN analysis is the one by Hoferichter and
Ruiz de Elvira et al. [27], in which the Roy-Steiner equa-
tions are applied. These LECs carry very small uncertainties
(cf. Table I); in fact, the uncertainties are so small that they
are negligible for our purposes. This makes the variation of
the πN LECs in NN potential construction obsolete and re-
duces the error budget in applications of these potentials. For
the potentials constructed in this paper, the central values of
Table I are applied. Other constants involved in our potential
construction are shown in Table II.

TABLE II. Basic constants used throughout this work [28].

Quantity Value

Axial-vector coupling constant gA 1.29
Pion-decay constant fπ 92.4 MeV
Charged-pion mass mπ± 139.5702 MeV
Neutral-pion mass mπ0 134.9766 MeV
Average pion mass m̄π 138.0390 MeV
Proton mass Mp 938.2720 MeV
Neutron mass Mn 939.5654 MeV
Average nucleon mass M̄N 938.9183 MeV
Conversion constant h̄c 197.32698 MeV fm
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FIG. 2. Left panel: 1P1 phase shifts for the order zero (i.e., LO) contact terms with nonlocal regulator (solid black line, “nonloc”) versus the
same terms multiplied with a local regulator (dashed black line, “locLO”). Right panel: 3F3 phase shifts for the central force contact terms at
orders LO, NLO, and N3LO with nonlocal regulator (solid red line, “nonloc”) versus the same terms multiplied with a local regulator (dashed
lines at orders as denoted). The central force contact LECs of the N3LO potential with cutoff combination (Rπ , Rct ) = (1.0, 0.70) fm are
applied (Table VII). The filled and open circles represent the results from the Nijmegen multienergy np phase-shift analysis [45] and the GWU
single-energy np analysis SP07 [48], respectively.

D. The short-range NN potential

The short-range NN potential is described by contributions
of the contact type, which are constrained by parity, time
reversal, and the usual invariances, but not by chiral symme-
try. Because of parity and time reversal only even powers of
momentum are allowed. Thus, the expansion of the contact
potential is formally written as

Vct = V (0)
ct + V (2)

ct + V (4)
ct + · · · , (2.17)

where the superscript denotes the power or order.
In principle, the most general set of contact terms at each

order is provided by all combinations of spin, isospin, and mo-
mentum operators that are allowed by the usual symmetries
[29] at the given order. Two momenta are available, namely,
the final and initial nucleon momenta in the center-of-mass
system, �p ′ and �p. This can be reformulated in terms of two
alternative momenta, viz., the momentum transfer �q = �p ′ − �p
and the average momentum �k = ( �p ′ + �p)/2. Functions of
�q lead to local interactions, that is, to functions of the relative
distance �r between the two nucleons after Fourier transform.
On the other hand, functions of �k lead to nonlocal interactions.

Since ChPT is a low-momentum expansion, it requires cut-
ting off high momenta to avoid divergences. This is achieved
by multiplying the potential with a regulator function that
suppresses the large momenta (or, equivalently, the short dis-
tances). Depending on the type of momenta used, the regulator
can be local or nonlocal.

When chiral NN potentials are constructed in momentum-
space and regulated by nonlocal cutoff functions [1], then it is
possible to reduce the number of contact operators (by a factor
of 2) due to Fierz ambiguity [30,31], which is a consequence
of the fact that nucleons are Fermions and obey the Pauli
exclusion principle. However, for the reasons stated in the
Introduction, we wish to construct NN potentials which are
strictly local, implying that we have to use local regulators.

When a local (regulator) function is applied to the con-
tact terms, then the Fierz rearrangemnt freedom is violated
[31]. To provide a simple example of this, consider a con-
tact operator of order zero (∼Q0, LO). After a partial-wave
decomposition and when multiplied by either no regulator or
a nonlocal regulator, such an operator produces no contribu-
tions for states with orbital angular momentum L > 0, i.e., P
and higher partial waves. However, this property is violated
when the operator is multiplied with a local regulator function
[31]. We demonstrate this fact in Fig. 2, where, in the left
panel, we show phase shifts in the 1P1 state: The solid line
(“nonloc”) shows the phase shifts when the LO contact terms
are multiplied with a nonlocal cutoff function, which does
not violate Fierz ambiguity and, therefore, the phase shifts
are zero. However, when the LO contact terms are multiplied
by a local regulator, the dashed curve (“locLO”) is obtained,
which is obviously a severe violation. This violation by local
regulators continues through higher orders. As an example,
we show in the right panel of Fig. 2 the phase shifts in an
F wave, where polynomial terms up to fourth order should
not contribute, which, as demonstrated in the figure, is indeed
true when a nonlocal cutoff is multiplied to contact terms up to
fourth order (solid red curve, “nonloc”). However, when local
functions are applied, then at orders Q0, Q2, and Q4 the con-
tributions are no longer zero, as demonstrated by the dashed
curves denoted by “locLO,” “locNLO,” and “locN3LO,” re-
spectively, which again may be perceived as a severe violation
of the Fierz rearrangement freedom.

Attempts can be undertaken to restore Fierz reordering, as
tried in Ref. [31] by way of contributions of higher order.
However, the Fierz violations demonstrated in Fig. 2 for 3F3

cannot be compensated within the scope of this work, since
they would require contributions of sixth order.

Our consequent argument is simply that it does not make
sense to apply a symmetry that is invalid for the problem under
consideration. Therefore, we will not apply Fierz reordering
to the contact terms and, hence, we use for the contacts
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all combinations of spin, isospin, angular momentum, and
momentum �q that are allowed by the usual symmetries, for
each of the given orders. On a historical note, this is also the
approach that was taken for the very first chiral NN potentials
ever constructed [11,12].

According to standard power counting rules, only two
contacts are needed at LO while, in our approach and the
one of Refs. [11,12], there are four at LO. Consequently,
the approach uses an overcomplete basis, implying that some
parameters are redundant. Note, however, that there is noth-
ing fundamentally wrong with using redundant parameters. It
merely means that the approach may be perceived as being
inefficient (which is not the same as being wrong). Ironi-
cally, here, the inefficient approach is more efficient, since it
allows one to relate the contact parameters in a one-to-one
correspondence to states of well-defined total spin S and total
isospin T [Eqs. (B1) and (B2)] and thus makes possible fitting
phase shifts state by state. However, as discussed, due to the
local character of the regulator function, Eq. (2.19), that is
multiplied to the zero-order contacts, P and higher partial
waves will be affected by LO contact terms (cf. Fig. 2), hence
promoting higher order terms to LO and increasing the fit
freedom when four independent LO parameters are available.

At higher orders, the discussed redundancy applies to the
C8 term at NLO and the D10, D12, and D14 terms at N3LO (see
below for the detailed expressions). As a result, at N3LO we
have only 11 nonredundant contact parameters, even though
according to power counting rules there should be 15. The
four “missing” fourth-order contact terms are nonlocal (cf.
Ref. [9]) and, therefore, we have to leave them out, as prac-
ticed already in Ref. [10].

Our approach overlaps with the philosophy of the Ar-
gonne v18 potential (AV18) [32], which includes 14 charge-
independent operators. Not accidentally, we will also have 14
contact operators at N3LO (see below) which are all equiv-
alent to the 14 operators of the AV18 potential. This fact
provides another advantage to our approach, namely, there is
now a one-to-one correspondence between the terms of the
AV18 potential and the chiral potentials of this paper. This
allows for a detailed comparison between the two potentials
as conducted in Appendix C, which turns out to be most
revealing.

Next, we present the explicit expressions for the contact
operators, order by order.

1. Leading order

In momentum-space, the LO or zeroth-order charge-
independent contact terms are given by

V (0)
ct (q) = (Cc + Cτ τ1 · τ2 + Cσ �σ1 · �σ2

+Cστ �σ1 · �σ2 τ1 · τ2) fct (q) (2.18)

with regulator function

fct (q) = e−(q/�)2
(2.19)

and � a momentum cutoff. The operators �σ1,2 and τ1,2 denote
the spin and isospin operators for nucleons 1 and 2, respec-
tively, with τ i = (τix, τiy, τiz ), i = 1, 2. In the convention we

apply, the proton carries an eigenvalue of (+1) and the neutron
an eigenvalue of (−1) with regard to τz.

At LO, we also include charge-dependent contact terms
that are defined as follows:

CDV (0)
ct (q) = [

CCD
T12

T12 + CCD
σT12

�σ1 · �σ2 T12 + CCA
τz

(τ1z + τ2z )

+ CCA
στz

�σ1 · �σ2 (τ1z + τ2z )
]

fct (q), (2.20)

with

T12 = 3 τ1zτ2z − τ1 · τ2 (2.21)

an isotensor operator. Terms proportional to T12 are charge
dependent, while terms proportional to (τ1z + τ2z ) are charge
asymmetric.

In position space, this translates into

Ṽ (0)
ct (r) = (Cc + Cτ τ1 · τ2 + Cσ �σ1 · �σ2

+ Cστ �σ1 · �σ2 τ1 · τ2) ctṼ (0)
C (r) (2.22)

and

CDṼ (0)
ct (r) = [

CCD
T12

T12 + CCD
σT12

�σ1 · �σ2 T12 + CCA
τz

(τ1z + τ2z )

+CCA
στz

�σ1 · �σ2 (τ1z + τ2z )
]ct

Ṽ (0)
C (r) (2.23)

with

ctṼ (0)
C (r) = f̃ct (r) = 1

π3/2 R3
ct

e−(r/Rct )2
, (2.24)

the Fourier transform of fct (q), and Rct = 2/�. Note that we
use units such that h̄ = c = 1.

2. Next-to-leading order

In momentum-space, the NLO or second-order contact
contribution is

V (2)
ct ( �p ′, �p)

= {(C1 + C2 τ1 · τ2 + C3 �σ1 · �σ2 + C4 �σ1 · �σ2 τ1 · τ2) q2

+ (C5 + C6 τ1 · τ2 ) Ŝ12(�q)

+ (C7 + C8 τ1 · τ2 ) [−i�S · (�q × �k)]} fct (q), (2.25)

where �S = (�σ1 + �σ2)/2 denotes the total spin and

Ŝ12(�q) = 3 �σ1 · �q �σ2 · �q − q2 �σ1 · �σ2 (2.26)

is the spin-tensor operator in momentum space.
Fourier transform of the above creates the second-order

contact contribution in position space,

Ṽ (2)
ct (�r) = (C1 + C2 τ1 · τ2 + C3 �σ1 · �σ2

+C4 �σ1 · �σ2 τ1 · τ2) ctṼ (2)
C (r)

+(C5 + C6 τ1 · τ2 ) S12(r̂) ctṼ (2)
T (r)

+(C7 + C8 τ1 · τ2 ) (�L · �S) ctṼ (2)
LS (r), (2.27)

where

S12(r̂) = 3�σ1 · r̂ �σ2 · r̂ − �σ1 · �σ2 (2.28)

denotes the standard position-space spin-tensor operator with
r̂ = �r/r, and �L is the operator of total angular momentum.
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Furthermore,

ctṼ (2)
C (r) = − f̃ (2)

ct (r) − 2

r
f̃ (1)
ct (r), (2.29)

ctṼ (2)
T (r) = − f̃ (2)

ct (r) + 1

r
f̃ (1)
ct (r), (2.30)

ctṼ (2)
LS (r) = −1

r
f̃ (1)
ct (r), (2.31)

with

f̃ (n)
ct (r) = dn f̃ct (r)

drn
. (2.32)

3. Next-to-next-to-next-to-leading order

In momentum-space, the N3LO or fourth-order contact
contribution is assumed to be

V (4)
ct ( �p ′, �p) = {(D1 + D2 τ1 · τ2 + D3 �σ1 · �σ2

+ D4 �σ1 · �σ2 τ1 · τ2) q4

+(D5 + D6 τ1 · τ2 ) q2 Ŝ12(�q)

+(D7 + D8 τ1 · τ2 ) q2 [−i�S · (�q × �k)]

+(D9 + D10 τ1 · τ2 )[−i�S · (�q × �k)]2 (2.33)

+ (D11 + D12 τ1 · τ2 + D13 �σ1 · �σ2

+ D14 �σ1 · �σ2 τ1 · τ2)[−i(�q × �k)]2} fct (q)

(2.34)

In position-space, the N3LO or fourth-order contact contri-
bution then is

Ṽ (4)
ct (�r) = (D1 + D2 τ1 · τ2 + D3 �σ1 · �σ2

+ D4 �σ1 · �σ2 τ1 · τ2)ctṼ (4)
C (r)

+ (D5 + D6 τ1 · τ2 ) S12(r̂) ctṼ (4)
T (r)

+ (D7 + D8 τ1 · τ2 ) (�L · �S) ctṼ (4)
LS (r)

+ (D9 + D10 τ1 · τ2 ) (�L · �S)2 ctṼ (4)
LS2(r)

+ (D11 + D12 τ1 · τ2 + D13 �σ1 · �σ2

+ D14 �σ1 · �σ2 τ1 · τ2) �L2 ctṼ (4)
LL (r), (2.35)

with

ctṼ (4)
C (r) = f̃ (4)

ct (r) + 4

r
f̃ (3)
ct (r), (2.36)

ctṼ (4)
T (r) = f̃ (4)

ct (r) + 1

r
f̃ (3)
ct (r) − 6

r2
f̃ (2)
ct (r) + 6

r3
f̃ (1)
ct (r),

(2.37)

ctṼ (4)
LS (r) = 1

r
f̃ (3)
ct (r) + 2

r2
f̃ (2)
ct (r) − 2

r3
f̃ (1)
ct (r), (2.38)

ctṼ (4)
LS2(r) = 1

r2
f̃ (2)
ct (r) − 1

r3
f̃ (1)
ct (r), (2.39)

ctṼ (4)
LL (r) = 1

r2
f̃ (2)
ct (r) − 1

r3
f̃ (1)
ct (r), (2.40)

where from the Fourier transforms of Eqs. (2.33) and (2.34)
we retained only the local terms [9].

E. Charge dependence

In this subsection we summarize what charge dependence
we include. Through all orders, we take the charge depen-
dence of the 1PE due to pion-mass splitting into account,
Eqs. (A13)–(A20). Charge dependence is seen most promi-
nently in the 1S0 state at low energies, particularly in the
1S0 scattering lengths. Charge-dependent 1PE cannot explain
it all. The remainder is accounted for by the LO charge-
dependent contact potential, Eq. (2.23); see also Appendix B.
In all 2PE contributions, we apply the average pion mass
m̄π . Thus, 2PE does not generate charge dependence. For pp
scattering at any order, we include the relativistic Coulomb
potential [33,34]. We omit irreducible π -γ exchange [35],
which would affect the N3LO np potential. We take nucleon-
mass splitting into account in the kinetic energy by using Mp

in pp scattering, Mn in nn scattering, and M̄N in np scattering
(see Table II for their precise values).

For a comprehensive discussion of all possible sources of
charge dependence of the NN interaction, see Ref. [1].

F. The full potential

The potential V is, in principal, an invariant ampli-
tude (with relativity taken into account perturbatively) and,
thus, satisfies a relativistic scattering equation, e.g., the
Blankenbeclar-Sugar (BbS) equation [36], which reads ex-
plicitly,

T ( �p ′, �p) = V ( �p ′, �p) +
∫

d3 p′′ V ( �p ′, �p ′′)

× M2
N

Ep′′

1

p2 − p′′2 + iε
T ( �p ′′, �p) (2.41)

with Ep′′ ≡
√

M2
N + p′′2 and MN the nucleon mass. The ad-

vantage of using a relativistic scattering equation is that it
automatically includes relativistic kinematical corrections to
all orders. Thus, in the scattering equation, no propagator
modifications are necessary when moving up to higher orders.

Defining

V̂ ( �p ′, �p) ≡
√

MN

Ep′
V ( �p ′, �p)

√
MN

Ep
(2.42)

and

T̂ ( �p ′, �p) ≡
√

MN

Ep′
T ( �p ′, �p)

√
MN

Ep
, (2.43)

the BbS equation collapses into the usual, nonrelativistic
Lippmann-Schwinger (LS) equation,

T̂ ( �p ′, �p) = V̂ ( �p ′, �p) +
∫

d3 p′′ V̂ ( �p ′, �p ′′)

× MN

p2 − p′′2 + iε
T̂ ( �p ′′, �p). (2.44)

Since V̂ satisfies Eq. (2.44), it may be regarded as a nonrel-
ativistic potential. By the same token, T̂ may be considered
as the nonrelativistic T matrix. The above momentum-space
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equation is equivalent to the nonrelativistic Schrödinger equa-
tion for the calculation of phase shifts and bound states,
the position-space techniques of which can be found in
Refs. [37,38].

Expanding the square-root factors in Eq. (2.42) up to sec-
ond order in p/MN , results in

V̂ ( �p ′, �p) ≈ V ( �p ′, �p)

(
1 − p2 + p′2

4 M2
N

)
, (2.45)

and similarly for T̂ ( �p ′, �p). Since we count p/MN corrections
the way indicated in Eq. (2.5), the correction displayed in
Eq. (2.45) is four orders up from a given potential contri-
bution, V , which is beyond the order of all ν � 3 potentials
constructed in this paper and, therefore, can be ignored in
those cases. Yet, the correction is relevant for the LO con-
tributions to the N3LO potentials. While the corrections to
the LO contacts can be absorbed by the fourth-order con-
tacts, this correction also applies to the LO (i.e., static) 1PE.
However, because this correction term is nonlocal and—for
reasons explained in the Introduction—because we wish to
construct strictly local potentials, we neglect this fourth-order
correction to the 1PE. The result then is that, throughout our
local potential constructions, we employ the approximations

V̂ ( �p ′, �p) ≈ V ( �p ′, �p), (2.46)

T̂ ( �p ′, �p) ≈ T ( �p ′, �p). (2.47)

The Fourier transforms of V are denoted by Ṽ (cf. Ap-
pendix A).

The full NN potential is the sum of the long- and the short-
range potentials. Order by order, this results in

Ṽ LO = Ṽ (0)
1π + Ṽ (0)

ct + CDṼ (0)
ct , (2.48)

Ṽ NLO = Ṽ LO + Ṽ (2)
2π + Ṽ (2)

ct , (2.49)

Ṽ NNLO = Ṽ NLO + Ṽ (3)
2π , (2.50)

Ṽ N3LO = Ṽ NNLO + Ṽ (4)
2π + Ṽ (4)

ct , (2.51)

where we note again that we add to Ṽ (4)
2π the 1/MN corrections

of Ṽ (3)
2π . This correction is proportional to ci/MN and appears

nominally at fifth order, but we include it at fourth order for
the reasons discussed. The explicit mathematical expressions
for Ṽ (0)

1π are given in Appendix A 1, for Ṽ (2)
2π in Appendix A 2,

for Ṽ (3)
2π in Appendix A 3, and for Ṽ (4)

2π in Appendices A 4 and
A 5.

G. Regularization

All pion-exchange potentials, Ṽπ (r), are singular at the
origin and, thus, need regularization. For this purpose, we
multiply the Ṽ (0)

1π (r) potential with the regulator function

f̃1π (r) = 1 − exp

[
−
(

r

Rπ

)2n
]

(2.52)

and all Ṽ (ν)
2π (r) (ν = 2, 3, 4) with [25,39]

f̃2π (r) =
[

1 − exp

(
− r2

R2
π

)]n

(2.53)
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FIG. 3. Various regulator functions used in the construction
of chiral position-space potentials. The solid, dashed, and dotted
curves represent the regulators f̃1π (r), f̃2π (r), and f̃Pia (r) given in
Eqs. (2.52), (2.53), and (2.54), respectively. Rπ = 1.0 fm is applied
in all cases.

using n = 5 in all cases. (Notice that n = 4 is the minimum
required for Ṽ (4)

2π .)
In the work of Piarulli et al. [9,10], the regulator function

f̃Pia(r) = 1 − 1(
r

Rπ

)6
exp

( 2(r−Rπ )
Rπ

)+ 1
(2.54)

is used for both 1PE and 2PE.
In Fig. 3 we show the shape of the different regulators

for Rπ = 1.0 fm. Our f̃1π (r) (solid line) is similar to f̃Pia(r)
(dotted), while our f̃2π (r) (dashed) continues to cut down in
the range between 1 and 2 fm where the other regulators have
ceased to be of impact.

The difference between the different regulators becomes
even more evident when they are applied to specific compo-
nents of the NN potential. Therefore, we show in Fig. 4(a) the
impact of f̃1π (r) (solid line) and f̃2π (r) (dashed) on the 1PE
tensor potential W̃T (r), Eq. (A10). Both regulators suppress
1PE below 1 fm, but differ substantially above. While the
regulator f̃1π (r) leaves the 1PE essentially unchanged above
1 fm, f̃2π (r) suppresses 1PE drastically in the range 1 to
2 fm. It is well established that the 1PE at intermediate and
long range gets the physics right (in particular the one of the
deuteron) [40,41] and, therefore, should not be suppressed in
that range. Consequently, the regulator f̃2π (r) (dashed line) is
inappropriate for 1PE, since it cuts out too much in the region
1 to 2 fm.

In Fig. 4(b) we show the corresponding situation for 2PE
by way of the central potential ṼC (r) produced by 2PE at
N3LO. The situation with the 2PE is very different from 1PE.

It is well known that, in conventional meson theory, the
2PE contribution to the NN interaction always comes out too
attractive at short and intermediate range. For a conventional
field-theoretic model [42,43], this is demonstrated in Fig. 10
of Ref. [1]. It is also true for the dispersion theoretic derivation
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FIG. 4. (a) The solid and dashed curves show the impact of the regulator functions f̃1π (r) and f̃2π (r), respectively, on the tensor potential
W̃T (r) of 1PE, Eq. (A7). The dotted curve is obtained without regulation. (b) Same as (a), but for the central potential ṼC (r) of 2PE at N3LO.
Rπ = 1.0 fm is applied for all regulators.

of the 2PE that was pursued by the Paris group (see, e.g., the
predictions for 1D2, 3D2, and 3D3 in Fig. 8 of Ref. [44] which
are all too attractive). In conventional meson theory [42,43],
this surplus attraction is compensated by heavy-meson ex-
changes (ρ, ω, and πρ exchanges) which, however, have no
place in chiral EFT. Instead, a drastic regulator has to be
invoked that is also effective in the intermediate range. This is
the case with the regulator f̃2π (r) [dashed curve in Fig. 4(b)]
which, therefore, is our choice for 2PE.

III. NN SCATTERING AND THE DEUTERON

Based upon the formalism presented in the previous sec-
tion, we have constructed NN potentials at four different
orders, namely, LO, NLO, NNLO, and N3LO; cf. Sec. II F. At
each order, we apply three different cutoff combinations; see
Secs. II G and II D, respectively, for their definitions. Specifi-
cally, we use the combinations (1.0, 0.70) fm, (1.1, 0.72) fm,
and (1.2, 0.75) fm. Since we take charge dependence into
account, each NN potential comes in three versions: pp, np,
and nn. In this section, we will present the predictions by these
potentials for NN scattering and the deuteron.

A. NN scattering

The free (fit) parameters of our theory are the coefficients
of the contact terms presented in Sec. II D. The other set of
parameters involved in NN potential construction are the πN
LECs. We apply the ones from the very accurate Roy-Steiner
analysis of Ref. [27] given in Table I. We use the central values
and, thus, the πN LECs are precisely fixed from the outset
without fit parameters.

Fitting proceeds in two steps. First we fit phase shifts,
where the adjustment is done to the Nijmegen multienergy
analysis [45], which we perceive as the most reliable one. In
the second step, the potential predictions are confronted with
the experimental NN data, calculating the χ2 as follows.

The experimental data are broken up into groups (sets)
of data, A, with NA data points and an experimental overall

normalization uncertainty �nexp
A . For datum i of set A, xexp

A,i

is the experimental value, �xexp
A,i the experimental uncertainty,

and xmod
A,i the model prediction. When fitting the data of group

A by a model (or a phase shift solution), the overall normal-
ization, nmod

A , is floated and finally chosen such as to minimize
the χ2 for this group. The χ2 is then calculated from [34]

χ2 =
∑

A

⎧⎨⎩
NA∑
i=1

[
nmod

A xmod
A,i − xexp

A,i

�xexp
A,i

]2

+
[

nmod
A − 1

�nexp
A

]2
⎫⎬⎭;

(3.1)

that is, the over-all normalization of a group is treated as an
additional parameter. For groups of data without normaliza-
tion uncertainty (�nexp

A = 0), nmod
A = 1 is used and the second

term on the right-hand side of Eq. (3.1) is dropped. The total
number of data is

Ndat = Nobs + Nne, (3.2)

where Nobs denotes the total number of measured data points
(observables), i.e., Nobs = ∑

A NA; and Nne is the number of
experimental normalization uncertainties. We state results in
terms of χ2/Ndat ≡ χ2/datum, where we use for the experi-
mental NN data the “2016 database” defined in Ref. [26].

Each of the two steps described above, is done in two
parts. In part one, we adjust the pp potential, which fixes
the T = 1 partial waves (where T denotes the total isospin of
the two-nucleon system). In part two, the charge-dependence
described in Sec. II E is applied to obtain the np T = 1 phase
shifts from the pp ones. The np T = 0 partial waves are
then pinned down by first fitting phase shifts and, after that,
minimizing the χ2 in regard to the np data. During this last
step, we allowed for minor changes of the T = 1 parameters
(which also modifies the pp potential) to obtain an even lower
overall χ2. We always minimize the χ2 for the energy range
0–190 MeV laboratory energy (Tlab). For more details on the
NN database and the fitting procedure, see Ref. [26].

The nn potential is obtained by starting from the pp ver-
sion, replacing the proton mass by the neutron mass in the
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TABLE III. χ 2/datum for several energy intervals as obtained
from the fit of the 2016 NN database [26] by NN potentials at various
orders of chiral EFT applying the cutoff combination (Rπ , Rct ) =
(1.0, 0.70) fm. Note that the χ 2 is always minimized for the interval
0–190 MeV.

Tlab bin (MeV) No. of data LO NLO NNLO N3LO

Proton-proton
0–100 795 433 1.85 2.64 1.32
0–190 1206 363 4.60 7.84 1.33
0–290 2132 341 16.2 18.1 1.69

Neutron-proton
0–100 1180 211 1.58 2.34 1.59
0–190 1697 157 15.0 10.2 1.53
0–290 2721 109 35.4 21.4 1.99

pp plus np
0–100 1975 300 1.68 2.45 1.48
0–190 2903 243 10.7 9.23 1.45
0–290 4853 203 26.9 20.0 1.86

kinetic energy, leaving out Coulomb, and adjusting the zeroth-
order contacts to reproduce the empirical nn 1S0 scattering
length of −18.95 fm [46,47].

The contact LECs that result from our best fits at N3LO are
tabulated in Appendix B. Plots of the various components of
the chiral potentials in comparison to more traditional poten-
tials are shown and discussed in Appendix C.

The χ2/datum for the reproduction of the NN data at var-
ious orders of chiral EFT are shown in Table III for different
energy intervals below Tlab = 290 MeV. The most relevant
energy interval is the one from 0 to 190 MeV, for which the
χ2/datum is 10.7 at NLO and 9.2 at NNLO for the pp plus np
data. Note that the number of NN contact terms is the same
for both orders, which may naively explain why there is es-
sentially no change. However, for nonlocal momentum-space
potentials [26] the χ2 at NNLO turns out to be substantially
lower than at NLO, because of a large 2PE contribution at
NNLO providing the proper intermediate-range attraction for
the nuclear force. The fact that this is not happening for the
present local potentials may have the following explanation:
First note that our χ2 at NLO is already unusually low as
compared to what nonlocal momentum-space potentials (cf.,
e.g., Ref. [26]) generate at that order, leaving not much room
for improvement at NNLO. The unusually good results at
NLO may be due to the fact that the iteration of a locally
regularized 1PE creates a larger 2PE contribution than the
iteration of a nonlocal one. After all, the reason why NLO is in
general not doing well is a lack of a sizable 2PE contribution.

Finally, moving on to N3LO, 14 more contacts are added
[Eq. (2.35)] that affect, in particular, the 1D2 and 3D2 waves,
which typically come out far too attractive at NLO and NNLO
(Fig. 5). This improves the χ2/datum to 1.45 at N3LO, a
respectable value.

All np phase shifts up to J = 4 and Tlab = 200 MeV are
displayed in Fig. 5, which reflects what just has been said
in the context of the χ2. At this point, it is instructive to
talk about the uncertainties of the phase shift predictions. As
discussed in Sec. IV below, the truncation error creates the

largest uncertainty, for which the simplest formula is given
by Eq. (4.1). Following this prescription, the error at a cer-
tain order is the difference between the given order and the
next higher one. For example, the uncertainties of our NNLO
phase shifts are given by the differences between the (green)
NNLO curves and the (red) N3LO curves in Fig. 5. For the
uncertainty at N3LO, Eq. (4.2) has to be invoked. The factor
Q in this formula is, of course, energy dependent but, as a
simple rule of thumb, one may assume Q ≈ 1/3.

The low-energy scattering parameters, order by order for
the cutoff combination (Rπ , Rct ) = (1.0, 0.70) fm, are shown
in Table IV. For nn and np, the effective range expansion
without any electromagnetic interaction is used. In the case of
pp scattering, the quantities aC

pp and rC
pp are obtained by using

the effective range expansion appropriate in the presence of
the Coulomb force (cf. Appendix A4 of Ref. [51]). Note that
the empirical values for aC

pp and rC
pp in Table IV were obtained

by subtracting from the corresponding electromagnetic values
the effects due to two-photon exchange and vacuum polariza-
tion. Thus, the comparison between theory and experiment
for these two quantities is conducted correctly. aN

nn and anp

are fitted, all other quantities are predictions. Note that the
3S1 effective range parameters at and rt are not fitted. But the
deuteron binding energy is fitted and that essentially fixes at

and rt .

B. Electromagnetic effects

The full scattering amplitude for NN scattering consists
of two parts: the strong-interactions (nuclear) amplitude plus
the electromagnetic (em) amplitude. Following the way the
Nijmegen partial-wave analysis was conducted [34,45,52],
the em amplitude includes relativistic Coulomb, two-photon
exchange, vacuum polarization, and magnetic moment (MM)
interactions. The nuclear amplitude is parametrized in terms
of the strong nuclear phase shifts which are to be calculated
in the presence of the em interaction, i.e., with respect to em
wave functions. In the case of pp scattering, it is in general a
good approximation to just use the phase shifts of the nuclear
plus relativistic Coulomb interaction with respect to Coulomb
wave functions. The exception are the 1S0 pp phase shifts
below 30 MeV, where electromagnetic phase shifts are to be
used, which are obtained by correcting the Coulomb phase
shifts for the distorting effects from two-photon exchange,
vacuum polarization, and MM interactions as calculated by
the Nijmegen group [34,53]. In the case of np and nn scatter-
ing, the phase shifts from the nuclear interaction with respect
to Riccati-Bessel functions are applied. More technical details
of our phase shift calculations can be found in Appendix A 3
of Ref. [51].

The NN potentials constructed in this paper represent the
strong nuclear interaction between two nucleons. Electromag-
netic interactions are not provided, because they are well
known and readily available elsewhere [32]. In applications of
the potentials in the nuclear many-body problem, one would
add at least the Coulomb interaction between protons. Other
more subtle em interactions between protons, such as two-
photon-exchange, vacuum polarization, and MM interactions,
can also be added to our nuclear pp potentials. However their

034002-9



SAHA, ENTEM, MACHLEIDT, AND NOSYK PHYSICAL REVIEW C 107, 034002 (2023)

0

20

40

60

80
P

h
as

e 
S

h
if

t 
(d

eg
)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO
NNLO

NLO 

LO  

1S0

-20

0

20

40

P
h

as
e 

S
h

if
t 

(d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO
NNLO

NLO 

LO  

3P0

-30

-20

-10

0

P
h

as
e 

S
h

if
t 

(d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO
NNLO

NLO 

LO  

1P1

-30

-20

-10

0

P
h

as
e 

S
h

if
t 

(d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO
NNLO

NLO 
LO  

3P1

0

50

100

150

200

P
h

as
e 

S
h

if
t 

(d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO
NNLO
NLO 

LO  

3S1

-30

-20

-10

0

P
h

as
e 

S
h

if
t 

(d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO

NNLO

NLO 

LO  

3D1

-4

-2

0

P
h

as
e 

S
h

if
t 

(d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO
NNLO
NLO 
LO  

1F3

-4

-3

-2

-1

0

1

P
h

as
e 

S
h

if
t 

(d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO
NNLO
NLO 
LO  

3F3

0

2

4

6

8

P
h

as
e 

S
h

if
t 

(d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO

NNLO
NLO 

LO  

3D3

-4

-3

-2

-1

0

1

P
h

as
e 

S
h

if
t 

(d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO
NNLO

NLO 
LO  

3G3

0

2

4

6

8

M
ix

in
g

 P
ar

am
et

er
 (

d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO
NNLO

NLO 
LO  

ε3

0

0.4

0.8

1.2

1.6

P
h

as
e 

S
h

if
t 

(d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO
NNLO

NLO 
LO  

1G4

-10

-5

0

5

10

15

M
ix

in
g

 P
ar

am
et

er
 (

d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO
NNLO
NLO 

LO  

ε1

0

4

8

12

16

P
h

as
e 

S
h

if
t 

(d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO

NNLO
NLO 

LO  

1D2

0

20

40

P
h

as
e 

S
h

if
t 

(d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO

NNLO
NLO 

LO  

3D2

0

4

8

12

16

20

P
h

as
e 

S
h

if
t 

(d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO
NNLO

NLO 

LO  

3P2

0

0.5

1

1.5

2

P
h

as
e 

S
h

if
t 

(d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO

NNLO
NLO 

LO  
3F2

-5

-2.5

0

M
ix

in
g

 P
ar

am
et

er
 (

d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO

NNLO
NLO 

LO  

ε2

0

2

4

6

8

P
h

as
e 

S
h

if
t 

(d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO
NNLO

NLO 
LO  

3G4

0

1

2

3

P
h

as
e 

S
h

if
t 

(d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO

NNLO
NLO 

LO  

3F4

-0.2

0

0.2

0.4

P
h

as
e 

S
h

if
t 

(d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO
NNLO

NLO 
LO  

3H4

-1.2

-0.8

-0.4

0

0.4

M
ix

in
g

 P
ar

am
et

er
 (

d
eg

)

0 50 100 150 200 250
Lab. Energy (MeV)

N3LO
NNLO

NLO 
LO  

ε4

FIG. 5. Chiral expansion of neutron-proton scattering as represented by the phase parameters for J � 4. Four orders ranging from LO to
N3LO are shown as denoted. The cutoff combination (Rπ , Rct ) = (1.0, 0.70) fm is applied in all cases. The filled and open circles represent
the results from the Nijmegen multienergy np phase-shift analysis [45] and the GWU single-energy np analysis SP07 [48], respectively.

effects are, in general, very small and, in fact, much smaller
than the effects from off-shell differences between different
strong nuclear potentials. Thus, in most applications, there is
no significance to their inclusion.

A special word is called for concerning our np potentials.
Following tradition [26,45,51,54–56], we fit the experimental
1S0 np scattering length, anp = −23.74 fm (cf. Table IV),
and the experimental deuteron binding energy, Bd = 2.224 58
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TABLE IV. Scattering lengths (a) and effective ranges (r) in units
of fm as predicted by NN potentials at various orders of chiral EFT
applying the cutoff combination (Rπ , Rct ) = (1.0, 0.70) fm. (aC

pp and
rC

pp refer to the pp parameters in the presence of the Coulomb force.
aN and rN denote parameters determined from the nuclear force only
and with all electromagnetic effects omitted.) aN

nn, and anp are fitted,
all other quantities are predictions.

LO NLO NNLO N3LO Empirical

1S0

aC
pp −7.8161 −7.8134 −7.8147 −7.8136 −7.8196(26) [34]

−7.8149(29) [49]
rC

pp 2.009 2.715 2.764 2.748 2.790(14) [34]
2.769(14) [49]

aN
pp −17.364 −17.466 −17.391

rN
pp 2.788 2.834 2.818

aN
nn −18.950 −18.950 −18.950 −18.950 −18.95(40) [46,47]

rN
nn 1.985 2.761 2.807 2.790 2.86(10) [50]

anp −23.738 −23.738 −23.738 −23.738 −23.740(20) [51]
rnp 1.888 2.653 2.695 2.679 [2.77(5)] [51]

3S1

at 5.299 5.414 5.413 5.420 5.419(7) [51]
rt 1.586 1.750 1.747 1.756 1.753(8) [51]

MeV. This implies that we tacitly include the np MM in-
teraction in our strong interaction np potentials. This is not
unreasonable, because, e.g., in 1S0 only a MM contact term
with the range of the ρ meson contributes, which is naturally
absorbed by the contacts of the EFT potentials. Therefore, no
em interactions must be added to our np potentials.

The bottom line is that, in typical nuclear many-body
calculations, all that needs to be added to our strong NN
potentials is the Coulomb force between protons (and nuclear
three-nucleon forces).

C. The deuteron and triton

The evolution of the deuteron properties from LO to N3LO
of chiral EFT are shown in Table V. In all cases, we fit
the deuteron binding energy (Bd ) to its empirical value of
2.224 58 MeV using the LO contact parameters. All other
deuteron properties are predictions. Note, however, that the
asymptotic S state, AS , and the 3S1 effective range parameter,
rt , are related [57–59] and, furthermore, the rt is strongly
correlated with Bd . Thus, the fact that, at NLO and up, AS falls
essentially within the empirical range is not an independent
prediction. In contrast, the asymptotic D/S state, η, is more
versatile. While at LO, NLO, and NNLO, the predictions
agree with experiment, the value at N3LO is low and outside
the N3LO truncation error. This phenomenon is most likely re-
lated to the local character of the present potentials, since such
underprediction is not happening with nonlocal potentials at
N3LO (and N4LO) [26]. It represents an interesting topic for
future investigations (see also the ε1 discussion, below).

At the bottom of Table V, we also show the predictions for
the triton binding as obtained in 34-channel charge-dependent
Faddeev calculations using only 2NFs. The result is around
8.1 MeV at N3LO. This contribution from the 2NF will

TABLE V. Two- and three-nucleon bound-state properties as pre-
dicted by NN potentials at various orders of chiral EFT applying the
cutoff combination (Rπ , Rct ) = (1.0, 0.70) fm. (Deuteron: binding
energy Bd , asymptotic S state AS , asymptotic D/S state η, quadrupole
moment Q, D-state probability PD; the prediction for Q is without
meson-exchange current contributions and relativistic corrections.
Triton: binding energy Bt .) Bd is fitted, all other quantities are
predictions.

LO NLO NNLO N3LO Empiricala

Deuteron
Bd (MeV) 2.22458 2.22458 2.22458 2.22458 2.224575(9)
AS (fm−1/2) 0.8613 0.8833 0.8836 0.8852 0.8846(9)
η 0.0254 0.0259 0.0252 0.0242 0.0256(4)
Q (fm2) 0.264 0.284 0.274 0.260 0.2859(3)
PD (%) 5.08 5.67 5.02 4.03
Triton
Bt (MeV) 11.88 7.87 7.98 8.09 8.48

aSee Table XVIII of Ref. [51] for references.

require only a moderate 3NF. The relatively low deuteron
D-state probabilities (≈4% at N3LO) and the concomitant
generous triton binding energy predictions are a reflection of
the fact that our NN potentials have a weaker tensor force
than commonly used local position-space potentials. This can
also be seen in the predictions for the ε1 mixing parameter
that is a measure for the strength of the mixing of the 3S1

and 3D1 states due to the tensor force. Our predictions for
ε1 at NNLO and N3LO are on the lower side for laboratory
energies above 100 MeV (Fig. 5). However, there is agreement
with the GWU analysis [48] at 100 MeV. Note that the aver-
age relative momentum in nuclear matter at normal density
is equivalent to Tlab ≈ 50 MeV. Thus, the properties of NN
potentials for Tlab � 100 MeV are the most important ones
for nuclear structure applications. Moreover, the discrepancies
between the Nijmegen [45] and the GWU [48] analyses for
ε1 may be seen as an indication that this parameter is not as
well determined as the uncertainties quoted in the analyses
suggest. The χ2/datum of our N3LO potential is 1.45, which
is a typical value achieved in the GWU phase shift analyses.
Furthermore, the χ2/datum (for the energy range from 0 to
≈ 200 MeV) for the well-established and highly appreciated
N3LO potentials of Refs. [10,26,55] are 1.40, 1.35, and 1.50,
respectively. The fact that our χ2/datum is the same as for the
referenced potentials, while our ε1 differs, implies that our ε1

prediction is as consistent with the data as the alternatives and
may simply be viewed as another valid phase shift analysis.

We finally note that the observation that a weak tensor
force (low PD) causes a low ε1 at intermediate energies is a
typical feature of local NN potentials. For nonlocal potentials
there is not necessarily such a trend, as the weak-tensor force
potentials of Ref. [26] demonstrate.

D. Cutoff variations

As noted before, besides the cutoff combination
(Rπ , Rct ) = (1.0, 0.70) fm, we have also constructed
potentials with the combinations (1.1, 0.72) fm, and
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FIG. 6. Cutoff variations of the np phase shifts at NNLO (left side, green lines) and N3LO (right side, red lines). Solid, dashed, and dotted
lines represent the results obtained with the cutoff combinations (Rπ , Rct ) = (1.0, 0.70) fm, (1.1, 0.72) fm, and (1.2, 0.75) fm, respectively, as
also indicated by the curve labels which state the Rπ value. Filled and open circles as in Fig. 5.

(1.2, 0.75) fm, to allow for systematic studies of the
cutoff dependence. In Fig. 6, we display the variations
of the np phase shifts for different cutoffs at NNLO (left
half of figure, green curves) and at N3LO (right half of
figure, red curves). Figure 6 demonstrates nicely how cutoff

dependence diminishes with increasing order, which is a
reasonable trend. Another point that is evident from this
figure is that (1.2, 0.75) fm should be considered as an upper
limit for cutoffs, because obviously cutoff artifacts start
showing up.
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TABLE VI. χ 2/datum for the fit of the pp plus np data up to 100 MeV and two- and three-nucleon bound-state properties as produced by
NN potentials at NNLO and N3LO with the cutoff combinations (Rπ , Rct ) = (1.2, 0.75) fm, (1.1,0.72) fm, and (1.0,0.70) fm. In the column
headings, we use the Rπ value to identify the different cases. For some of the notation, see Table V, where also empirical information on the
deuteron and triton can be found.

NNLO N3LO

Rπ = 1.2 fm Rπ = 1.1 fm Rπ = 1.0 fm Rπ = 1.2 fm Rπ = 1.1 fm Rπ = 1.0 fm

χ 2/datum pp and np
0–100 MeV (1975 data) 2.75 2.39 2.45 1.75 1.56 1.48
Deuteron
Bd (MeV) 2.22458 2.22458 2.22458 2.22458 2.22458 2.22458
AS (fm−1/2) 0.8862 0.8835 0.8836 0.8842 0.8851 0.8852
η 0.0244 0.0246 0.0252 0.0234 0.0239 0.0242
Q (fm2) 0.263 0.265 0.274 0.248 0.255 0.260
PD (%) 3.98 4.27 5.02 3.22 3.65 4.03
Triton
Bt (MeV) 8.31 8.25 7.98 8.40 8.18 8.09

In Table VI, we show the cutoff dependence for three
selected aspects that are of great interest: the χ2 for the fit
of the NN data below 100 MeV, the deuteron properties,
and the triton binding energy. The χ2 does not change sub-
stantially as a function of cutoff. Thus, we can make the
interesting observation that the reproduction of NN observ-
ables is not much affected by the cutoff variations. However,
the D-state probability of the deuteron, PD, which is not
an observable, changes substantially as a function of cutoff.
As discussed, PD is intimately related to the strength of the
tensor force of a potential and so are the binding energies
of few-body systems. In particular, the cutoff combinations
(Rπ , Rct ) = (1.1, 0.72) fm and (1.2, 0.75) fm at NNLO as
well as N3LO generate the substantial triton binding energies
between 8.20 and 8.40 MeV and, therefore, differ significantly
from other local position-space potentials that are commonly
in use. On these grounds one can expect that results for light
and intermediate-mass nuclei may differ considerably when
applying our potentials in ab initio calculations. It will be
interesting to see if this may solve some of the problems that
some ab initio calculations with local potentials are currently
beset with.

IV. UNCERTAINTY QUANTIFICATIONS

In ab initio calculations applying chiral two- and many-
body forces, major sources of uncertainties are [60]

(1) Experimental errors of the input NN data that the
2NFs are based upon and the input few-nucleon data
to which the 3NFs are adjusted.

(2) Uncertainties in the Hamiltonian due to
(a) uncertainties in the determination of the NN and

3N contact LECs,
(b) uncertainties in the πN LECs,
(c) regulator dependence,
(d) EFT truncation error.

(3) Uncertainties associated with the few- and many-body
methods applied.

The experimental errors in the NN scattering and deuteron
data propagate into the NN potentials that are adjusted to
reproduce those data. To systematically investigate this error
propagation, the Granada group has constructed smooth local
potentials [61], the parameters of which carry the uncertainties
implied by the errors in the NN data. Applying 205 Monte
Carlo samples of these potentials, they find an uncertainty of
15 keV for the triton binding energy [62]. In a more recent
study [63], in which only 33 Monte Carlo samples were used,
the Granada group reproduced the uncertainty of 15 keV for
the triton binding energy and, in addition, determined the
uncertainty for the 4He binding energy to be 55 keV. The con-
clusion is that the statistical error propagation from the NN
input data to the binding energies of light nuclei is negligible
as compared to uncertainties from other sources (discussed
below). Thus, this source of error can be safely neglected at
this time. Furthermore, we need to consider the propagation of
experimental errors from the experimental few-nucleon data
that the 3NF contact terms are fitted to. Also this will be
negligible as long as the 3NFs are adjusted to data with very
small experimental errors; for example the empirical binding
energy of the triton is 8.481 795 ± 0.000 002 MeV, which will
definitely lead to negligible propagation.

Now turning to the Hamiltonian, we have to first account
for uncertainties in the NN and 3N LECs due to the way they
are fixed. Based upon our experiences from Ref. [64] and the
fact that chiral EFT is a low-energy expansion, we have fitted
the NN contact LECs to the NN data below 100 MeV at LO
and NLO and below 190 MeV at NNLO and N3LO. One could
think of choosing these fit intervals slightly differently, and a
systematic investigation of the impact of such variation on the
NN LECs is still outstanding. However, we do not anticipate
that large uncertainties would emerge from this source of
error.

The story is different for the 3NF contact LECs, since
several, very different procedures are in use to fix them. The
3NF at NNLO has two free parameters (known as the cD and
cE parameters). To fix them, two data are needed. In most
procedures, one of them is the triton binding energy. For the
second datum, the following choices have been made: the
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nd doublet scattering length 2and [65], the binding energy
of 4He [66], the point charge radius radius of 4He [67], and
the Gamow-Teller matrix element of tritium β decay [68–70].
Alternatively, the cD and cE parameters have also been pinned
down by just an optimal over-all fit of the properties of light
nuclei [71]. 3NF contact LECs determined by different proce-
dures will lead to different predictions for the observables that
were not involved in the fitting procedure. The differences in
those results establish the uncertainty. Specifically, it would
be of interest to investigate the differences that occur for
the properties of intermediate-mass nuclei and nuclear matter
when 3NF LECs fixed by different protocols are applied.

The uncertainty in the πN LECs used to be a large source
of uncertainty, in particular, for predictions for many-body
systems [72–74]. With the new, high-precision determination
of the πN LECs in the Roy-Steiner equations analysis [27]
(cf. Table I) this large uncertainty is essentially eliminated,
which is great progress, since it substantially reduces the error
budget. We have varied the πN LECs within the errors given
in Table I and find that the changes caused by these variations
can easily be compensated by small readjustments of the NN
LECs resulting in essentially identical phase shifts and χ2 for
the fit of the data. Thus, this source of error is essentially
negligible. The πN LECs also appear in the 3NFs, which
also include contacts that can be used for readjustment. Future
calculations of finite nuclei and nuclear matter should inves-
tigate what residual changes remain after such readjustment
(that would represent the uncertainty). We expect this to be
small.

The choice of the regulator function and its cutoff pa-
rameter create uncertainty. Originally, cutoff variations were
perceived as a demonstration of the uncertainty at a given
order (equivalent to the truncation error). However, in various
investigations [25,75] it has been demonstrated that this is not
correct and that cutoff variations, in general, underestimate
this uncertainty. Therefore, the truncation error is better deter-
mined by sticking literally to what “truncation error” means,
namely, the error due to omitting the contributions from orders
beyond the given order ν. The largest such contribution is
the one of order (ν + 1), which one may, therefore, consider
as representative for the magnitude of what is left out. This
suggests that the truncation error at order ν can reasonably be
defined as

�Xν (p) = |Xν (p) − Xν+1(p)|, (4.1)

where Xν (p) denotes the prediction for observable X at order
ν and momentum p. If Xν+1 is not available, then one may use

�Xν (p) = |Xν−1(p) − Xν (p)|Q, (4.2)

with the expansion parameter Q chosen as

Q = max

{
mπ

�b
,

p

�b

}
, (4.3)

where p is the characteristic center-of-mass (cms) momentum
scale and �b the breakdown scale.

Alternatively, one may also apply the more elaborate
scheme suggested in Ref. [25] where the truncation error at,

e.g., N3LO is calculated in the following way:

�XN3LO(p) = max{Q5 × |XLO(p)|, Q3×|XLO(p) − XNLO(p)|,
Q2 × |XNLO(p) − XNNLO(p)|, (4.4)

Q × |XNNLO(p) − XN3LO(p)|}, (4.5)

with XN3LO(p) denoting the N3LO prediction for observable
X (p), etc..

Note that one should not add up (in quadrature) the un-
certainties due to regulator dependence and the truncation
error, because they are not independent. In fact, it is appropri-
ate to leave out the uncertainty due to regulator dependence
entirely and just focus on the truncation error [25]. The lat-
ter should be estimated using the same cutoff in all orders
considered.

Finally, the last uncertainty to be taken into account is the
uncertainty in the few- and many-body methods applied in the
ab initio calculation. This source of error has nothing to do
with EFT. Few-body problems are nowadays exactly solvable
such that the error is negligible in those cases. For heavier
nuclei and nuclear matter, there are definitely uncertainties no
matter what method is used. These uncertainties need to be
estimated by the practitioners of those methods. But with the
improvements of algorithms and the increase of computing
power these errors are decreasing.

The conclusion is that the most substantial uncertainty
is represented by the truncation error. This is the dominant
source of (systematic) error that should be carefully estimated
for any calculation applying chiral 2NFs and 3NFs up to a
given order.

V. SUMMARY AND CONCLUSIONS

We have constructed local, position-space chiral NN po-
tentials through four orders of chiral EFT ranging from LO
to N3LO. The construction may be perceived as consistent,
because the same power counting scheme as well as the
same cutoff procedures are applied in all orders. Moreover,
the long-range parts of these potentials are fixed by the very
accurate πN LECs as determined in the Roy-Steiner equa-
tions analysis of Ref. [27]. In fact, the uncertainties of these
LECs are so small that a variation within the errors leads
to effects that are essentially negligible at the current level
of precision. Another aspect that has to do with precision
is that, at least at the highest order (N3LO), the NN data
below 190 MeV laboratory energy are reproduced with the
respectable χ2/datum of 1.45.

The NN potentials presented in this paper may serve as
a solid basis for systematic ab initio calculations of nuclear
structure and reactions that allow for a comprehensive error
analysis. In particular, the order-by-order development of the
potentials will make possible a reliable determination of the
truncation error at each order.

Our new family of local position-space potentials differs
from the already available potentials of this kind [8–10] by a
weaker tensor force as reflected in relatively low D-state prob-
abilities of the deuteron (PD � 4.0 % for our N3LO potentials)
and predictions for the triton binding energy above 8.00 MeV
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(from two-body forces alone). As a consequence, our poten-
tials will also lead to different predictions when applied to
light and intermediate-mass nuclei in ab initio calculations
[76]. It will be interesting to see if this will help solving
some of the outstanding problems in microscopic nuclear
structure.
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APPENDIX A: THE LONG-RANGE NN POTENTIAL

For each order, we will state, first, the momentum-space
functions and then the corresponding position-space poten-
tials as obtained by Fourier transform. Note that all long-range
potentials are local.

In momentum space, we use the following decomposition
of the long-range potential:

Vπ ( �p ′, �p) = VC (q) + τ1 · τ2 WC (q)

+ [VS (q) + τ1 · τ2 WS (q)] �σ1 · �σ2

+ [VT (q) + τ1 · τ2 WT (q)] �σ1 · �q �σ2 · �q
+ [VLS (q) + τ1 · τ2 WLS (q)](−i�S · (�q × �k)).

(A1)

For notation, see Sec. II D. The position-space potential is
represented as follows:

Ṽπ (�r) = ṼC (r) + τ1 · τ2 W̃C (r)

+ [ ṼS (r) + τ1 · τ2 W̃S (r)] �σ1 · �σ2

+ [ ṼT (r) + τ1 · τ2 W̃T (r)] S12(r̂)

+ [ ṼLS (r) + τ1 · τ2 W̃LS (r)]�L · �S, (A2)

where the operator for total orbital angular momentum is
denoted by �L.

The 2PE potentials in spectral representation are given in
momentum space by

VC,S (q) = −2q6

π

∫ ∞

2mπ

dμ
Im VC,S (iμ)

μ5(μ2 + q2)
,

VT,LS (q) = 2q4

π

∫ ∞

2mπ

dμ
Im VT,LS (iμ)

μ3(μ2 + q2)
, (A3)

LO

Q0

NLO

Q2

NNLO

Q3

FIG. 7. LO, NLO, and NNLO pion-exchange contributions to the
NN interaction. Notation as in Fig. 1.

and similarly for WC,S,T,LS . Their Fourier transforms are

ṼC (r) = 1

2π2r

∫ ∞

2mπ

dμμe−μr Im VC (iμ),

ṼS (r) = − 1

6π2r

∫ ∞

2mπ

dμμe−μr[μ2 Im VT (iμ)

− 3 Im VS (iμ)],

ṼT (r) = − 1

6π2r3

∫ ∞

2mπ

dμμe−μr (3 + 3μr + μ2r2)

× Im VT (iμ),

ṼLS (r) = 1

2π2r3

∫ ∞

2mπ

dμμe−μr (1 + μr) Im VLS (iμ),

(A4)

and similarly for W̃C,S,T,LS .

1. Leading order

At leading order, only 1PE contributes to the long range;
cf. Fig. 7. The charge-independent 1PE is given in momentum
space by

WT (q) = − g2
A

4 f 2
π

1

q2 + m2
π

, (A5)

where gA, fπ , and mπ denote the axial-vector coupling con-
stant, pion-decay constant, and the pion mass, respectively.
See Table II for their values. Fourier transform yields

W̃S (r) = g2
Am2

π

48π f 2
π

e−x

r
, (A6)

W̃T (r) = g2
A

48π f 2
π

e−x

r3
(3 + 3x + x2), (A7)

with x = mπ r.
For the NN potentials constructed in this paper, we take the

charge-dependence of the 1PE due to pion-mass splitting into
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account. For this, we define

ṼS (mπ ) = g2
Am2

π

48π f 2
π

e−x

r
, (A8)

ṼT (mπ ) = g2
A

48π f 2
π

e−x

r3
(3 + 3x + x2). (A9)

The proton-proton (pp) and neutron-neutron (nn) potentials
are then given by

Ṽ (pp)
S (r) = Ṽ (nn)

S (r) = ṼS (mπ0 ), (A10)

Ṽ (pp)
T (r) = Ṽ (nn)

T (r) = ṼT (mπ0 ), (A11)

and the neutron-proton (np) potentials are

Ṽ (np)
S (r) = −ṼS (mπ0 ) + (−1)T +1 2 ṼS (mπ± ), (A12)

Ṽ (np)
T (r) = −ṼT (mπ0 ) + (−1)T +1 2 ṼT (mπ± ), (A13)

where T = 0, 1 denotes the total isospin of the two-nucleon
system. See Table II for the precise values of the pion masses.
Formally speaking, the chargedependence of the 1PE ex-
change is of order NLO [1], but we include it also at leading
order to make the comparison with the (charge-dependent)
phase-shift analyses meaningful.

Alternatively, the charge-dependent 1PE can also be stated
in terms of a “charge-independent” 1PE,

W̃ CI
S (r) = 1

3 [ṼS (mπ0 ) + 2 ṼS (mπ± )], (A14)

W̃ CI
T (r) = 1

3 [ṼT (mπ0 ) + 2 ṼT (mπ± )], (A15)

plus charge-dependent contributions given by

Ṽ CD(r) = 1
3 [ṼS (mπ0 ) − ṼS (mπ± )]�σ1 · �σ2 T12, (A16)

+ 1
3 [ṼT (mπ0 ) − ṼT (mπ± )]S12 T12, (A17)

with the isotensor operator T12 defined in Eq. (2.21).

2. Next-to-leading order

The 2PE NN diagrams that occur at NLO (cf. Fig. 7)
contribute—in momentum space—in the following way [77]:

WC (q) = L(q)

384π2 f 4
π

[
4m2

π

(
1 + 4g2

A − 5g4
A

)
+ q2(1 + 10g2

A − 23g4
A

)− 48g4
Am4

π

w2

]
, (A18)

VT (q) = − 1

q2
VS (q) = − 3g4

A

64π2 f 4
π

L(q), (A19)

with the logarithmic loop function

L(q) = w

q
ln

w + q

2mπ

(A20)

(a)

(b)

(c)

= + + +

+ + + +

+ + + + . . .

FIG. 8. Two-pion exchange contributions at N3LO with (a) the
N3LO football diagram, (b) the leading 2PE two-loop contributions,
and (c) the leading relativistic corrections. Basic notation as in Fig. 1.
The shaded disk stands for all one-loop πN graphs as illustrated.
Open circles are relativistic 1/MN corrections.
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FIG. 9. Relativistic corrections of NNLO diagrams. Notation as
in Fig. 1. Open circles are relativistic 1/MN corrections.

and w = √
4m2

π + q2. Note that we apply dimensional renor-
malization for all loop diagrams. Moreover, in all 2PE
contributions, we use the average pion-mass, i.e., mπ = m̄π

(cf. Table II).
These expressions imply the spectral functions

ImWC (iμ) = − 1

768π f 4
π

√
μ2 − 4m2

π

μ

×
[

4m2
π

(
1 + 4g2

A − 5g4
A

)− μ2(1 + 10g2
A − 23g4

A

)
− 48g4

Am4
π

4m2
π − μ2

]
, (A21)

Im VT (iμ) = 1

μ2
Im VS (iμ) = 3g4

A

128π f 4
π

√
μ2 − 4m2

π

μ
.

(A22)

Via Fourier transform, Eq. (A4), the equivalent position-space
potentials are

W̃C (r) = mπ

128π3 f 4
π

1

r4

{[
1 + 2g2

A(5 + 2x2)

− g4
A(23 + 12x2)

]
K1(2x)

+ x
[
1 + 10g2

A − g4
A(23 + 4x2)

]
K0(2x)

}
, (A23)

ṼS (r) = g4
Amπ

32π3 f 4
π

1

r4
[3xK0(2x) + (3 + 2x2)K1(2x)],

(A24)

ṼT (r) = − g4
Amπ

128π3 f 4
π

1

r4
[12xK0(2x) + (15 + 4x2)K1(2x)],

(A25)

where K0 and K1 denote the modified Bessel functions.

3. Next-to-next-to-leading order

The 2PE NNLO contribution (cf. Fig. 7) is given by [77]:

VC = 3g2
A

16π f 4
π

[
2m2

π (c3 − 2c1) + c3q2
](

2m2
π + q2

)
A(q),

(A26)

WT = − 1

q2
WS = − g2

A

32π f 4
π

c4w
2A(q), (A27)

with the loop function

A(q) = 1

2q
arctan

q

2mπ

. (A28)

The associated spectral functions are

Im VC (iμ) = 3g2
A

64μ f 4
π

[
2m2

π (c3 − 2c1) − c3μ
2
](

2m2
π − μ2

)
,

(A29)

Im WT (iμ) = 1

μ2
Im WS (iμ) = − g2

A

128μ f 4
π

c4
(
4m2

π − μ2) ;

(A30)

which, by way of Eq. (A4), yield the position-space expres-
sions

ṼC (r) = 3g2
A

32π2 f 4
π

e−2x

r6
[2c1x2(1 + x)2

+ c3(6 + 12x + 10x2 + 4x3 + x4)], (A31)

W̃S (r) = g2
A

48π2 f 4
π

e−2x

r6
c4(1 + x)(3 + 3x + 2x2), (A32)

W̃T (r) = − g2
A

48π2 f 4
π

e−2x

r6
c4(1 + x)(3 + 3x + x2). (A33)

4. Next-to-next-to-next-to-leading order

a. Football diagram at N3LO

The N3LO football diagram, Fig. 8(a), generates [78]
Momentum-space potentials:

VC (q) = 3 L(q)

16π2 f 4
π

[(
c2

6
w2 + c3

(
2m2

π + q2
)− 4c1m2

π

)2

+ c2
2

45
w4

]
,

(A34)

WT (q) = − 1

q2
WS (q) = c2

4 w2 L(q)

96 π2 f 4
π

. (A35)

Spectral functions:

Im VC (iμ) = − 3

32π f 4
π

√
μ2 − 4m2

π

μ

[(
c2

6

(
4m2

π − μ2
)

+ c3
(
2m2

π − μ2)− 4c1m2
π

)2

+ c2
2

45

(
4m2

π − μ2
)2
]
, (A36)

Im WT (iμ) = 1

μ2
Im WS (iμ) = c2

4

192π f 4
π

(
μ2 − 4m2

π

)3/2

μ
.

(A37)
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Position-space potentials:

ṼC (r) = − 3m7
π

32π3 f 4
π

1

x5

[[
3c2

2 + 20c2c3 + 60c2
3 + 4(2c1 + c3)2x2

]
xK1(2x)

+ 2
[
3c2

2 + 20c2c3 + 60c2
3 + 2(2c1 + c3)(c2 + 6c3)x2

]
K2(2x)

]
, (A38)

W̃S (r) = c2
4m7

π

24π3 f 4
π

1

x4
[2xK2(2x) + 5K3(2x)], (A39)

W̃T (r) = − c2
4m7

π

96π3 f 4
π

1

x5
[(3 + 4x2)K2(2x) + 16xK3(2x)], (A40)

where K2(z) = K0(z) + 2
z K1(z) and K3(z) = K1(z) + 4

z K2(z) = 4
z K0(z) + ( 8

z2 + 1)K1(z).

b. Leading 2PE two-loop diagrams

The leading-order 2π -exchange two-loop diagrams are shown in Fig. 8(b). The various contributions are [78].
Isoscalar central potential:

Spectral functions:

Im V (a)
C (iμ) = −3g4

A

(
μ2 − 2m2

π

)
πμ(4 fπ )6

{(
m2

π − 2μ2
)
2mπ + 4g2

Amπ

(
2m2

π − μ2
)}

, (A41)

Im V (b)
C (iμ) = −3g4

A

(
μ2 − 2m2

π

)
πμ(4 fπ )6

(
m2

π − 2μ2
)2m2

π − μ2

2μ
ln

μ + 2mπ

μ − 2mπ

. (A42)

Position-space potentials:

Ṽ (a)
C (r) = 3m7

πg4
A

2048π3 f 6
π

e−2x

x6

{
24 + 48x + 43x2 + 22x3 + 7x4 + 4g2

A(6 + 12x + 10x2 + 4x3 + x4)
}
, (A43)

Ṽ (b)
C (r) = − 3m7

π g4
A

8192π3 f 6
π

e−2x

x7
{(120 + 240x + 213x2 + 106x3 + 32x4 + 8x5)(ln(4x) + γE )

− (120 − 240x + 213x2 − 106x3 + 32x4 − 8x5)e4x Ei(−4x) − 4x(96 + 72x + 38x2 + 7x3)}
+ 3m7

πg4
A

4096π3 f 6
π

Ī−1(2x)

x
, (A44)

where Ei(−z) denotes the exponential integral function defined by

Ei(−z) = −
∫ ∞

z
dt

e−t

t
, (A45)

and

Ī−1(z) =
∫ ∞

1
dt

e−zt

t
ln

(
t + 1

t − 1

)
. (A46)

The double precision value for Euler’s constant is γE = 0.577 215 664 901 532 9.
Isovector central potential:

Spectral functions:

Im W (a)
C (iμ) = − 2κ

3μ
(
8π f 2

π

)3

∫ 1

0
dz
[
g2

A

(
2m2

π − μ2)+ 2
(
g2

A − 1
)
κ2z2]{[4m2

π

(
1 + 2g2

A

)− μ2(1 + 5g2
A

)] κ
μ

ln
μ + 2κ

2mπ

+ μ2

12

(
5 + 13g2

A

)− 2m2
π

(
1 + 2g2

A

)+ 96π2 f 2
π

[(
2m2

π − μ2
)
(d̄1 + d̄2) − 2κ2z2d̄3 + 4m2

π d̄5
]}

= − 2κ

3μ
(
8π f 2

π

)3

[
g2

A

(
2m2

π − μ2
)+ 2

3

(
g2

A − 1
)
κ2

]{[
4m2

π

(
1 + 2g2

A

)− μ2
(
1 + 5g2

A

)] κ
μ

ln
μ + 2κ

2mπ

+ μ2

12

(
5 + 13g2

A

)
− 2m2

π

(
1 + 2g2

A

)+ 96π2 f 2
π

[(
2m2

π − μ2
)
(d̄1 + d̄2) + 4m2

π d̄5
]}

− κ3

μ4π f 4
π

[
1

3
g2

A

(
2m2

π − μ2)+ 2

5

(
g2

A − 1
)
κ2

]
d̄3, (A47)
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Im W (b)
C (iμ) = − 2κ

3μ
(
8π f 2

π

)3

∫ 1

0
dz
[
g2

A

(
2m2

π − μ2
)+ 2

(
g2

A − 1
)
κ2z2

]{− 3κ2z2 + 6κz
√

m2
π + κ2z2 ln

κz +√
m2

π + κ2z2

mπ

+ g4
A

(
μ2 − 2κ2z2 − 2m2

π

)[5

6
+ m2

π

κ2z2
−
(

1 + m2
π

κ2z2

)3/2

ln
κz +√

m2
π + κ2z2

mπ

]}
, (A48)

with κ = √
μ2/4 − m2

π .
In Ref. [23] it was found that the contribution from W (b)

C is negligible. Therefore, we include only W (a)
C , which we divide it

into three parts:

Im W (a1 )
C (iμ) = − 2κ

3μ
(
8π f 2

π

)3

[
g2

A

(
2m2

π − μ2
)+ 2

3

(
g2

A − 1
)
κ2

][
4m2

π

(
1 + 2g2

A

)− μ2
(
1 + 5g2

A

)] κ
μ

ln
μ + 2κ

2mπ

, (A49)

Im W (a2 )
C (iμ) = − 2κ

3μ
(
8π f 2

π

)3

[
g2

A

(
2m2

π − μ2
)+ 2

3

(
g2

A − 1
)
κ2

]{
μ2

12

(
5 + 13g2

A

)
− 2m2

π

(
1 + 2g2

A

)+ 96π2 f 2
π

[(
2m2

π − μ2
)
(d̄1 + d̄2) + 4m2

π d̄5
]}

, (A50)

Im W (a3 )
C (iμ) = κ3

μ4π f 4
π

[
1

3
g2

A

(
2m2

π − μ2)+ 2

5

(
g2

A − 1
)
κ2

]
d̄3, (A51)

Position-space potentials:

W̃ (a1 )
C (r) = − m7

π

9216π5 f 6
π

1

x7

{[
30 + 89x2 − 8x4 + g2

A(300 + 926x2 − 32x4) + g4
A(750 + 2405x2 + 76x4)

]
K0(2x)

+
[

137 + 8x2 + 8x4 + 2g2
A(685 + 106x2 + 16x4) + g4

A(3425 + 860x2 + 32x4)

]
xK1(2x)

}
+ m7

π

576π5 f 6
π

(
1 + 2g2

A

)2 Ĩ−1(2x)

x
, (A52)

W̃ (a2 )
C (r) = − m7

π

8π3 f 4
π

{
− 2g2

AxK1(2x) + (
1 + 5g2

A

)
K2(2x)

x3
2d̄5

+
[
5 + g2

A(25 + 2x2)
]
xK1(2x) + [

10 + x2 + g2
A(50 + 11x2)

]
K2(2x)

x5
(d̄1 + d̄2)

}
+ m7

π

9216π5 f 6
π

1

x5

{[
25 + g2

A(190 − 4x2) + g4
A(325 + 4x2)

]
xK1(2x)

+ 2
[
25 − x2 + g2

A(190 + 11x2) + g4
A(325 + 44x2)

]
K2(2x)

}
, (A53)

W̃ (a3 )
C (r) = − m7

π

16π3 f 4
π

2g2
AxK2(2x) + (

3 + 7g2
A

)
K3(2x)

x4
d̄3, (A54)

with

Ĩ−1(z) =
∫ ∞

1
dt

e−zt

t
ln(t +

√
t2 − 1) (A55)

Isoscalar spin-spin and tensor potentials:
Spectral functions:

Im V (a)
S (iμ) = μ2 Im V (a)

T (iμ) = −g2
Aκ3μ

8π f 4
π

(d̄14 − d̄15), (A56)

Im V (b)
S (iμ) = μ2 Im V (b)

T (iμ)

= − 2g6
Aκ3μ(

8π f 2
π

)3

∫ 1

0
dz(1 − z2)

[
− 1

6
+ m2

π

κ2z2
−
(

1 + m2
π

κ2z2

)3/2

ln
κz +√

m2
π + κ2z2

mπ

]
. (A57)
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In Ref. [23] it was found that the contribution from V (b)
S and V (b)

T are negligible. Therefore, we include only V (a)
S and V (a)

T , which
yield the position-space potentials

Ṽ (a)
S (r) = − g2

Am7
π

8π3 f 4
π x4

(d̄14 − d̄15)[2xK2(2x) + 5K3(2x)], (A58)

Ṽ (a)
T (r) = g2

Am7
π

32π3 f 4
π x5

(d̄14 − d̄15)[(3 + 4x2)K2(2x) + 16xK3(2x)]. (A59)

Isovector spin-spin and tensor potentials:
Spectral functions:

Im WS (iμ) = −g4
A

(
μ2 − 4m2

π

)
π (4 fπ )6

{[
m2

π − μ2

4

]
ln

(
μ + 2mπ

μ − 2mπ

)
+ (

1 + 2g2
A

)
μmπ

}
, (A60)

Im W (a)
T (iμ) = − 1

μ2

g4
A

(
μ2 − 4m2

π

)
π (4 fπ )6

(
1 + 2g2

A

)
μmπ , (A61)

Im W (b)
T (iμ) = − 1

μ2

g4
A

(
μ2 − 4m2

π

)
π (4 fπ )6

[
m2

π − μ2

4

]
ln

(
μ + 2mπ

μ − 2mπ

)
. (A62)

Position-space potentials:

W̃S (r) = g4
Am7

π

6144π3 f 6
π

e−2x

x7
{(15 + 30x + 24x2 + 8x3)[ln(4x) + γE ] + (−15 + 30x − 24x2 + 8x3)e4x Ei(−4x)

− 4x(15 + 15x + 8x2 + 2x3) − 8g2
Ax(3 + 6x + 5x2 + 2x3)}, (A63)

W̃ (a)
T (r) = g4

A

(
1 + 2g2

A

)
m7

π

1536π3 f 6
π

e−2x

x6
(3 + 6x + 4x2 + x3), (A64)

W̃ (b)
T (r) = − g4

Am7
π

49152π3 f 6
π

e−2x

x7
{−324x − 228x2 − 48x3 + 5(21 + 42x + 30x2 + 4x3)[ln(4x) + γE ]

+ 5(−21 + 42x − 30x2 + 4x3)e4x Ei(−4x)} − g4
Am7

π

2048π3 f 6
π

1

x3
Ī−1(2x). (A65)

c. Leading relativistic corrections

The leading relativistic corrections, which are shown in Fig. 8(c), count as N3LO and are given by [79]
Momentum-space potentials:

VC (q) = 3g4
A

128π f 4
π MN

[
m5

π

2w2
+ (

2m2
π + q2

)(
q2 − m2

π

)
A(q)

]
, (A66)

WC (q) = g2
A

64π f 4
π MN

{
3g2

Am5
π

2w2
+ [(

g2
A(3m2

π + 2q2
)− q2 − 2m2

π

](
2m2

π + q2
)
A(q)

}
, (A67)

VT (q) = − 1

q2
VS (q) = 3g4

A

256π f 4
π MN

(
5m2

π + 2q2
)
A(q), (A68)

WT (q) = − 1

q2
WS (q) = g2

A

128π f 4
π MN

[
g2

A

(
3m2

π + q2
)− w2

]
A(q), (A69)

VLS (q) = 3g4
A

32π f 4
π MN

(
2m2

π + q2
)
A(q), (A70)

WLS (q) = g2
A

(
1 − g2

A

)
32π f 4

π MN
w2A(q). (A71)
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Spectral functions:

Im VC (iμ) = 3g4
A

512 f 4
π MN

[
2m5

πδ
(
μ2 − 4m2

π

)−
(
2m2

π − μ2
)(

m2
π + μ2

)
μ

]
, (A72)

Im WC (iμ) = g2
A

256 f 4
π MN

{
6g2

Am5
πδ
(
μ2 − 4m2

π

)+
(
2m2

π − μ2
)[

μ2 − 2m2
π + g2

A

(
3m2

π − 2μ2
)]

μ

}
, (A73)

Im VS (iμ) = μ2 Im VT (iμ) = 3g4
Aμ

1024 f 4
π MN

(
5m2

π − 2μ2), (A74)

Im WS (iμ) = μ2 Im WT (iμ) = g2
Aμ

512 f 4
π MN

[
g2

A

(
3m2

π − μ2
)+ μ2 − 4m2

π

]
, (A75)

Im VLS (iμ) = 3g4
A

128μ f 4
π MN

(
2m2

π − μ2), (A76)

Im WLS (iμ) = g2
A

(
1 − g2

A

)
128μ f 4

π MN

(
4m2

π − μ2
)
. (A77)

Position-space potentials:

ṼC (r) = 3g4
Am6

π

1024π2 f 4
π MN

e−2x

x6
(24 + 48x + 46x2 + 28x3 + 10x4 + x5), (A78)

W̃C (r) = g2
Am6

π

512π2 f 4
π MN

e−2x

x6

[
24
(
2g2

A − 1
)
(1 + 2x) + (

82g2
A − 40

)
x2 + (

36g2
A − 16

)
x3 + (

10g2
A − 4

)
x4 + 3g2

Ax5
]
, (A79)

ṼS (r) = − g4
Am6

π

512π2 f 4
π MN

e−2x

x6
(24 + 48x + 43x2 + 22x3 + 6x4), (A80)

ṼT (r) = g4
Am6

π

1024π2 f 4
π MN

e−2x

x6
(48 + 96x + 76x2 + 31x3 + 6x4), (A81)

W̃S (r) = − g2
Am6

π

1536π2 f 4
π MN

e−2x

x6

[
24
(
g2

A − 1
)
(1 + 2x) + 2

(
21g2

A − 20
)
x2 + 4

(
5g2

A − 4
)
x3 + 4g2

Ax4
]
, (A82)

W̃T (r) = g2
Am6

π

3072π2 f 4
π MN

e−2x

x6

[
48
(
g2

A − 1
)
(1 + 2x) + 8

(
9g2

A − 8
)
x2 + 2

(
13g2

A − 8
)
x3 + 4g2

Ax4
]
, (A83)

ṼLS (r) = − 3g4
Am6

π

64π2 f 4
π MN

e−2x

x6
(1 + x)(2 + 2x + x2), (A84)

W̃LS (r) = g2
A

(
g2

A − 1
)
m6

π

32π2 f 4
π MN

e−2x

x6
(1 + x)2. (A85)

In all 1/MN corrections, we use the average nucleon mass, i.e. MN = M̄N (cf. Table II), to avoid randomly generated charge
dependence.

5. Relativistic ci/MN corrections

At N3LO, we add the 1/MN correction of the NNLO 2PE proportional to ci. This correction is proportional to ci/MN

(Fig. 9) and appears nominally at fifth order. As discussed, the 2PE bubble diagram proportional to c2
i that appears at N3LO

is unrealistically attractive, while the ci/MN correction is large and repulsive. Therefore, it makes sense to group these diagrams
together to arrive at a more realistic intermediate attraction at N3LO. The contribution is given by [78]
Momentum-space potentials:

VC (q) = − g2
AL(q)

32π2MN f 4
π

[
(c2 − 6c3)q4 + 4(6c1 + c2 − 3c3)q2m2

π + 6(c2 − 2c3)m4
π + 24(2c1 + c3)m6

πw−2

]
, (A86)

WC (q) = − c4q2L(q)

192π2MN f 4
π

[
g2

A

(
8m2

π + 5q2)+ w2], (A87)
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WT (q) = − 1

q2
WS (q) = − c4L(q)

192π2MN f 4
π

[
g2

A

(
16m2

π + 7q2
)− w2

]
, (A88)

VLS (q) = c2g2
A

8π2MN f 4
π

w2L(q), (A89)

WLS (q) = − c4L(q)

48π2MN f 4
π

[
g2

A

(
8m2

π + 5q2
)+ w2

]
. (A90)

Spectral functions:

Im VC (iμ) = g2
A

64πMN f 4
π

√
μ2 − 4m2

π

μ

[
(c2 − 6c3)μ4 − 4(6c1 + c2 − 3c3)μ2m2

π + 6(c2 − 2c3)m4
π − 24(2c1 + c3)

m6
π

μ2 − 4m2
π

]
,

(A91)

Im WC (iμ) = − c4

384πMN f 4
π

μ

√
μ2 − 4m2

π

[
g2

A

(
8m2

π − 5μ2
)− μ2 + 4m2

π

]
, (A92)

Im WT (iμ) = 1

μ2
Im WS (iμ) = c4

384πMN f 4
π

√
μ2 − 4m2

π

μ

[
μ2 − 4m2

π + g2
A

(
16m2

π − 7μ2
)]

, (A93)

Im VLS (iμ) = c2g2
A

16πMN f 4
π

(
μ2 − 4m2

π

)3/2

μ
, (A94)

Im WLS (iμ) = c4

96πMN f 4
π

√
μ2 − 4m2

π

μ

[
g2

A

(
8m2

π − 5μ2
)+ 4m2

π − μ2
]
. (A95)

Position-space potentials:

ṼC (r) = 3g2
Am7

π

32π3MN f 4
π

1

x6
[(20(c2 − 6c3) − 4(6c1 − c2 + 9c3)x2 − 2(2c1 + c3)x4)xK0(2x) + (20(c2 − 6c3) − 2(12c1 − 7c2

+ 48c3)x2 − (16c1 − c2 + 10c3)x4)K1(2x)], (A96)

W̃C (r) = c4m7
π

32π3MN f 4
π

1

x5

[(
5 + 25g2

A + 4g2
Ax2
)
xK1(2x) + 2

(
5 + 25g2

A + (
1 + 8g2

A

)
x2
)
K2(2x)

]
, (A97)

W̃S (r) = c4m7
π

48π3MN f 4
π

1

x5

[(
5 − 35g2

A − 4g2
Ax2
)
xK1(2x) + 2

(
5
(
1 − 7g2

A

)+ (
1 − 10g2

A

)
x2
)
K2(2x)

]
, (A98)

W̃T (r) = c4m7
π

192π3MN f 4
π

1

x5

[
2
(− 8 + 59g2

A + 4g2
Ax2
)
xK1(2x) − (

35
(
1 − 7g2

A

)+ 4
(
1 − 13g2

A

)
x2
)
K2(2x)

]
, (A99)

ṼLS (r) = 3c2g2
Am7

π

8π3MN f 4
π

1

x5
[K2(2x) + 2xK3(2x)], (A100)

W̃LS (r) = − c4m7
π

16π3MN f 4
π

1

x5

[(
1 + 6g2

A

)
2xK1(2x) + (

5 + 25g2
A + 4g2

Ax2
)
K2(2x)

]
. (A101)

APPENDIX B: THE LECs OF THE CONTACT TERMS

In this Appendix, we show in Table VII the LECs of the
contact terms defined in Sec. II D for our N3LO potentials.
The shown LECs are the coefficients of the various contact
operators displayed in Sec. II D.

For the fitting of the phase shifts of the different states, it is
more convenient to fit to states with well-defined total spin S
and total isospin T , the (charge-independent) LO coefficients
of which we denote by CST . From these CST , one obtains the

LECs for the operators used in Eq. (2.22) via⎛⎜⎜⎝
Cc

Cτ

Cσ

Cστ

⎞⎟⎟⎠ = 1

16

⎛⎜⎜⎝
1 3 3 9

−1 1 −3 3
−1 −3 1 3

1 −1 −1 1

⎞⎟⎟⎠
⎛⎜⎜⎝

C00

C01

C10

C11

⎞⎟⎟⎠. (B1)

Similar relations apply to the central force LECs of
higher order, like the C1 to C4 of Eq. (2.27) and the
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TABLE VII. Values for the contact LECs of the N3LO potentials with cutoff combination (Rπ , Rct ) = (1.2, 0.75) fm, (1.1,0.72) fm, and
(1.0,0.70) fm. In the column headings, we use the Rπ value to identify the different cases. The notation (±n) stands for ×10±n.

LECs Rπ = 1.2 fm Rπ = 1.1 fm Rπ = 1.0 fm

Cc (fm2) 0.28808881 (+1) 0.39582494 (+1) 0.68583069 (+1)
Cτ (fm2) 0.26865444 0.37170364 0.84621879
Cσ (fm2) 0.37304419 (−1) 0.13087859 0.45593912
Cστ (fm2) 0.99745306 0.86768636 0.9008921
C1 (fm4) 0.20339187 (−1) −0.69958000 (−1) −0.19849806
C2 (fm4) −0.26911188 (−1) −0.73932500 (−2) 0.27128125 (−2)
C3 (fm4) −0.78260937 (−1) −0.57466500 (−1) −0.26448938 (−1)
C4 (fm4) −0.35220625 (−2) −0.13702250 (−1) −0.89698125 (−2)
C5 (fm4) −0.10596750 (−1) −0.80355000 (−2) −0.54697500 (−2)
C6 (fm4) 0.31287500 (−2) 0.39985000 (−2) 0.48457500 (−2)
C7 (fm4) −0.84559075 −0.83002375 −0.82673000
C8 (fm4) −0.11612925 −0.10974825 −0.10887000
D1 (fm6) 0.27843312 (−1) 0.31251437 (−1) 0.35406750 (y1)
D2 (fm6) −0.11181250 (−3) 0.30660625 (−2) 0.64797500 (−2)
D3 (fm6) 0.17309375 (−2) 0.39478125 (−2) 0.28025000 (−2)
D4 (fm6) −0.25564375 (−2) −0.11373125 (−2) −0.84200000 (−3)
D5 (fm6) −0.22787500 (−2) −0.17605000 (−2) 0.13175000 (−3)
D6 (fm6) −0.76425000 (−3) −0.58650000 (−3) 0.44250000 (−4)
D7 (fm6) 0.40027500 (−2) 0.11374250 (−1) 0.70485000 (−2)
D8 (fm6) −0.26426750 (−1) −0.22689250 (−1) −0.29755500 (−1)
D9 (fm6) −0.42584000 (−1) −0.50699750 (−1) −0.57539750 (−1)
D10 (fm6) −0.14453000 (−1) −0.16889250 (−1) −0.19163250 (−1)
D11 (fm6) −0.18565375 (−1) −0.27816625 (−1) −0.63730625 (−2)
D12 (fm6) 0.16119625 (−1) 0.11181125 (−1) 0.20284813 (−1)
D13 (fm6) 0.54308750 (−2) 0.25901250 (−2) 0.77255625 (−2)
D14 (fm6) 0.92428750 (−2) 0.76783750 (−2) 0.10042688 (−1)
CCD

T12
(fm2) 0.30527375 (−2) 0.3081975 (−2) 0.2791292 (−2)

CCD
σT12

(fm2) −0.30527375 (−2) −0.3081975 (−2) −0.2791292 (−2)
CCA

τz
(fm2) 0.17322500 (−2) 0.20032500 (−2) 0.1817375 (−2)

CCA
στz

(fm2) −0.17322500 (−2) −0.20032500 (−2) −0.1817375 (−2)

D1 to D4 of Eq. (2.35); they apply as well to the coefficients
of the four �L2 terms, D11 to D14 [Eq. (2.35)].

Vice versa, the spin-isospin coefficients can be obtained
from the operator LECs via⎛⎜⎜⎝

C00

C01

C10

C11

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 −3 −3 9
1 1 −3 −3
1 −3 1 −3
1 1 1 1

⎞⎟⎟⎠
⎛⎜⎜⎝

Cc

Cτ

Cσ

Cστ

⎞⎟⎟⎠. (B2)

Tensor, spin-orbit, and quadratic spin-orbit terms exist only
in S = 1 states, such that one needs to distinguish only be-
tween T = 0 and T = 1 channels. For example, in the case of
the NLO tensor force, the relations are

C5 ≡ CS12 = 1
4

(
C(S12 )

10 + 3C(S12 )
11

)
,

C6 ≡ CS12τ = 1
4

(−C(S12 )
10 + C(S12 )

11

)
(B3)

and vice versa,

C(S12 )
10 = CS12 − 3CS12τ = C5 − 3C6,

C(S12 )
11 = CS12 + CS12τ = C5 + C6, (B4)

and similarly for the other cases that appear only at S = 1.

To reproduce the three charge dependent 1S0 scattering
lengtht, the LO contact LEC with (S, T ) = (0, 1) is fit in a
charge-dependent way. Thus, this LEC comes in three ver-
sions: Cpp

01 , Cnp
01 , and Cnn

01 . Similarly to Eqs. (2.22) and (2.23),
the charge-dependent LEC can be represented by

CNN
01 = C01 + CCD

01 T12 + CCA
01 (τ1z + τ2z ) (B5)

with T12 defined in Eq. (2.21). C01 denotes the charge-
independent value, which is fixed by

C01 = 1
3

(
Cpp

01 + Cnp
01 + Cnn

01

)
, (B6)

while the charge-dependent ones are

CCD
01 = 1

6

[
1
2

(
Cpp

01 + Cnn
01

)− Cnp
01

]
and (B7)

CCA
01 = 1

4

(
Cpp

01 − Cnn
01

)
. (B8)

By analogy to Eqs. (B3), the operator LECs used in Eq. (2.23)
can be obtained from the channel LECs through

CCD
T12

= 1
4

(
CCD

01 + 3CCD
11

)
,

CCD
σT12

= 1
4

(−CCD
01 + CCD

11

)
. (B9)

We do not assume any charge dependence for the contacts
in S = 1, T = 1 states (triplet P waves); therefore, we have
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FIG. 10. Left side: The four central potentials in the range 0 to 2 fm. Right side: The same in the range 1 to 2 fm. To mark the various
potential components, the notation of Eq. (A2) is used (with the tilde omitted). Predictions are shown for the AV18 potential [32] (black dotted
line), an OBEP [80] (blue dash-dotted line), the chiral NNLO potential of this work (green dashed line), and the chiral N3LO potential of this
work (red solid line). For the chiral potentials, the cutoff combination (Rπ , Rct ) = (1.0, 0.70) fm is used.

CCD
11 = 0. Thus,

CCD
T12

= 1
4

(
CCD

01

)
,

CCD
σT12

= 1
4

(−CCD
01

)
. (B10)

Similar relations apply to charge asymmetry:

CCA
τz

= 1
4

(
CCA

01 + 3CCA
11

)
,

CCA
στz

= 1
4

(−CCA
01 + CCA

11

)
. (B11)

Also here, we do not assume any charge asymmetry for the
contacts in S = 1, T = 1 states; thus, CCA

11 = 0; hence

CCA
τz

= 1
4

(
CCA

01

)
,

CCA
στz

= 1
4

(−CCA
01

)
. (B12)

A final aspect to discuss is the question to what extend the
LECs are natural. LECs may be perceived as natural if they
are of the following magnitudes:

|Cc,τ,σ,στ | ∼ 1

f 2
π

≈ 5 fm2, (B13)

|Ci| ∼ 1

f 2
π �2

b

≈ 0.4 fm4, (B14)

|Di| ∼ 1

f 2
π �4

b

≈ 0.03 fm6, (B15)

with �b ≈ mρ ≈ 0.7 GeV the breakdown scale [19].
Comparing these estimates with the values shown in

Table VII reveals that our contact LECs are, in general, natu-
ral. At zeroth order, Cc is certainly of the right order, and the

Cτ,σ,στ are around 1, which is close enough to the estimate. At
second order, C1 and the LS force parameters, C7 and C8 are
of the right size, while the other LECs are on the smaller side.
Finally at fourth order, D1, the LS parameter D8, the (LS)2

parameters D9 and D10, and the L2 LECs D12 and D14 come
out natural, whereas the other Di emerge smaller.

APPENDIX C: POTENTIAL PLOTS

In this Appendix, we show figures for the various compo-
nents of the chiral NN potentials and contrast them with some
well known traditional phenomenology.

In Fig. 10, we compare the four central-potential com-
ponents [notation as in Eq. (A2), but without the tilde] as
predicted by the chiral potentials at NNLO and N3LO (green
dashed and red solid lines, respectively) with two phenomeno-
logical potentials, namely, the AV18 potential [32] and a
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FIG. 11. The tensor potentials. Notation as in Fig. 10.
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FIG. 12. The eight �L-dependent potentials. Notation as in Fig. 10. Moreover, LS2 stands for (�L · �S)2, L2 for �L2, and L2S for �L2 �σ1 · �σ2. Note
that the OBEP and the chiral potential at NNLO do not include (�L · �S)2 and �L2 components.

one-boson-exchange potential (OBEP) [80] (black dotted and
blue dash-dotted lines, respectively). The chiral potentials ap-
ply the cutoff combination (Rπ , Rct ) = (1.0, 0.70) fm. While
at short range (r < 1 fm) there are large differences between
the models, there is qualitative agreement between most mod-
els in the (more important) intermediate range (1 < r < 2 fm)
as revealed in the right side of Fig. 10. In particular, there
is good agreement between the N3LO potential and AV18,
providing support from chiral EFT for the AV18 potential.

From the left VC panel of Fig. 10, it may appear that OBEP
(blue dash-dotted curve) does not create a hard core (repulsive
short range force). This is misleading, because a hard core is
needed for the S-wave states. For the 1S0 state, the VS and the
WS potentials are multiplied by a factor of (−3), which creates
strong short-range repulsion (cf. Fig. 13 below). For 3S1, WC

and WS are multiplied by (−3), producing the hard core.

Tensor potentials as shown in Fig. 11. It is clearly seen that
the chiral tensor potentials are much weaker than, particularly,
AV18. Note that, in the case of OBEP (blue dash-dotted lines),
the negative short-range potential of VT is essentially due to
the ω meson and a similar curve in WT is due to the ρ meson.
Both these heavy vector mesons have no place in chiral EFT,
which is why the chiral EFT predictions are essentially flat in
the short-range region (unless there were large tensor contact
contributions, which our chiral potentials do not carry). The
WT tensor force in the intermediate- and long-range region
is generated from 1PE for all models, which is why there is
agreement between all models above r > 1 fm.

The eight potential components that depend on the orbital
angular momentum operator �L are displayed in Fig. 12. For
VLS and WLS there is qualitative agreement between all models.
Triplet P waves cannot be described quantitatively without a
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FIG. 13. The 1S0 potential in the range 0 to 2 fm and 0.5 to 2 fm, as well as the 3S1 - 3D1 potential in the range 0 to 2 fm. Notation as in
Fig. 10.
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FIG. 14. Cutoff dependence of the 1S0 and 3S1 - 3D1 chiral potentials at N3LO. The cutoff combinations (Rπ , Rct ) = (1.0, 0.70) fm,
(1.1,0.72) fm, and (1.2,0.75) fm are shown by the solid, dashed, and dotted curves.

proper strong spin-orbit force, which is presumably the reason
for this agreement. Note that the chiral potentials at NNLO
and OBEP do not have (�L · �S)2 and �L2 components. For the
(�L · �S)2 potentials, there is rough agreement between N3LO
and AV18 for r > 0.5 fm. On the other hand, the four �L2

potentials appear erratic. Obviously, these components of the
nuclear force are not well pinned down. They are also small,
which may be why they are not so relevant and hard to pin
down.

Some important partial-wave potentials are shown in
Fig. 13. In the 1S0 state, all models exhibit a strong short-range
repulsion, the size of which, however, differs dramatically.
Nevertheless, there is agreement between the models in
the (more relevant) range above 0.5 fm as demonstrated
in the second 1S0 frame of the figure. The differences
of the tensor forces of different models is best demonstrated

by way of the 3S1 - 3D1 transition potential, which we show in
the third panel of Fig. 13. The AV18 potential has the strongest
tensor force, OBEP is second, and NNLO and N3LO have
the weakest. As discussed, for r > 1 fm, 1PE is the dominant
tensor force in all models, which is why all models agree in
that region.

Finally, we also wish to provide some idea for the cutoff de-
pendence of the chiral potentials. For that purpose we show, in
Fig. 14, the 1S0 and 3S1 - 3D1 potentials at N3LO for the cutoff
combinations (Rπ , Rct ) = (1.0, 0.70) fm, (1.1,0.72) fm, and
(1.2,0.75) fm (solid, dashed, and dotted curves, respectively).
The short-range parts of the 1S0 potentials exemplify the effect
of the short-range cutoff on the central forces, Eqs. (2.24),
(2.29), and (2.36) (ruled by Rct), while the 3S1 - 3D1 potentials
demonstrate the impact of the long-range regulator function,
Eq. (2.52), (governed by Rπ ).
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