
PHYSICAL REVIEW C 107, 034001 (2023)

“Renormalization-group-invariant effective field theory” for few-nucleon
systems is cutoff dependent
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We consider nucleon-nucleon scattering using the formulation of chiral effective field theory which is claimed
to be renormalization group invariant. The cornerstone of this framework is the existence of a well-defined
infinite-cutoff limit for the scattering amplitude at each order of the expansion, which should not depend on
a particular regulator form. Focusing on the 3P0 partial wave as a representative example, we show that this
requirement can in general not be fulfilled beyond the leading order, in spite of the perturbative treatment of
subleading contributions to the amplitude. Several previous studies along these lines, including the next-to-
leading order calculation by B. Long and C. J. Yang [Phys. Rev. C 84, 057001 (2011)] and a toy model example
with singular long-range potentials by B. Long and U. van Kolck [Ann. Phys. 323, 1304 (2008)], are critically
reviewed and scrutinized in detail.
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I. INTRODUCTION

The methods of chiral effective field theory (EFT) were
first applied to few-nucleon systems in the pioneering work
by Weinberg [1,2]. In the past decades, chiral EFT has es-
tablished itself as a standard tool in nuclear physics; see
Refs. [3–8] for reviews. One of the key ingredients of the EFT
approach in the few-nucleon sector is the resummation of an
infinite series of the iterations of (at least) the leading-order
(LO) two-nucleon-irreducible terms to account for the non-
perturbative nature of the nucleon-nucleon (NN) interaction.
Such a nonperturbative resummation requires a regularization
of an infinite number of divergent diagrams, which is typically
realized by introducing an artificial ultraviolet regulator, a
cutoff �. This is particularly relevant for spin-triplet channels
of NN scattering, which probe the singular nature of the one-
pion-exchange potential. It is commonly agreed that physical
observables cannot depend on a particular choice of the cut-
off as long as all possible terms in the effective Lagrangian
are taken into account. However, the way to implement this
requirement in concrete schemes based on some kind of a
systematically improvable perturbative expansion is not yet
finally settled.

One pragmatic approach relies on using cutoffs of the order
of the expected breakdown scale �b of chiral EFT [9,10]. The
residual cutoff dependence of the scattering amplitude is ex-
pected to become weaker as one increases the EFT order of the
calculation. This feature has indeed been verified numerically
by explicit calculations; see, e.g., Ref. [11]. The finite-cutoff
scheme has been pushed to high orders in the EFT expansion,
leading to remarkably accurate results; see Refs. [12–16] for
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selected examples. Recently, first steps were made to formally
justify this framework by explicitly demonstrating its renor-
malizability in the EFT sense [17,18].

An alternative approach consists in enforcing cutoff in-
dependence of the scattering amplitude at each EFT order
separately by taking the limit � → ∞, i.e., by choosing the
cutoff much larger than the EFT breakdown scale �b. In other
words, one requires that the amplitude T (n), where n denotes
an EFT order, approaches a finite limit

T (n)
� −−−→

�→∞
T (n)

∞ , �
dT (n)

�

d�
−−−→
�→∞

0. (1)

The amplitude is then claimed to satisfy renormalization
group (RG) invariance (RGI). In practical applications of this
scheme, a finite cutoff value � � �b can be employed as long
as one can show that the asymptotic behavior of the amplitude
is already reached [8]. More details on this approach and its
applications to few-nucleon systems can be found in recent
review articles [8,19].

One of the motivations for such an approach is a quantum
mechanical treatment of singular potentials, i.e., potentials
that behave at the origin as r−α with α � 2; see [20] for a
review. Such quantum mechanical problems show similarity
to chiral EFT, because the unregulated one-pion-exchange
potential in spin-triplet channels behaves at short distances
as 1/r3. It is known that one can obtain a unique solution
for the scattering amplitude with such singular potentials
by constructing the so-called self-adjoined extension of the
Hamiltonian. The solution depends on one arbitrary parameter
in each attractive partial wave where the potential is singular,
which can be fixed, e.g., by using the experimental value of
the amplitude at some energy point. In the language of EFT,
this corresponds to introducing one contact interaction
(a counterterm) in each attractive spin-triplet partial
wave where the one-pion-exchange potential is treated
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nonperturbatively. Consequently, the number of counterterms
gets “reduced” compared to the perturbative analysis of
Feynman diagrams involving multiple iterations of the
leading-order potential, from which it follows that an
infinite number of counterterms would be necessary in every
spin-triplet partial wave.

This scheme has been criticized in Refs [21–24] based on
general arguments such as the absence of an explicit transition
between the perturbative and nonperturbative regimes, issues
with nonperturbative repulsive interactions, the appearance
of spurious bound states, etc. There are also technical com-
plications that may prevent an application of this scheme to
few-nucleon systems, since large cutoff values typically result
in high computational cost needed for reaching converged
results. For an extensive discussion of these and related issues
see Ref. [25].

Regardless of the above criticism, the infinite-cutoff
scheme seems so far yielding reasonable results for NN scat-
tering [19], which is our main focus here. In the context of
chiral EFT, the discussed approach was first applied to NN
scattering in Ref. [26], where the cutoff independence of the
LO partial wave amplitudes was demonstrated by a direct
numerical calculation.

It is also well established that a consistent inclu-
sion of next-to-leading-order (NLO) interactions within the
RG-invariant scheme is only possible perturbatively, i.e., us-
ing the distorted-wave Born approximation. This is because
of a singular behavior of the NLO potential at short distances,
which becomes particularly problematic when it is repulsive;
see Refs. [19,27–29]. A perturbative inclusion of the NLO
terms in spin-triplet channels within the infinite-cutoff scheme
was considered in Refs. [30,31] using a regularization scheme
in momentum space; see Refs. [32,33] for an analogous ap-
proach in coordinate space. A numerical test of the cutoff
independence was performed by varying the cutoff up to � �
5 GeV. The number of the NLO counterterms was determined
based on the short-range behavior of the LO wave function
and of the NLO potential. Another study in support of the
infinite-cutoff scheme was carried out in Ref. [34], where the
authors considered a toy model with the LO long-range po-
tential VLO ∼ 1/r2 and the NLO long-range potential VNLO ∼
1/r4. This choice of the long-range interactions allows one
to perform a part of the analysis analytically. An incomplete
proof of the cutoff independence of the NLO amplitude was
presented in Ref. [34].

In the present work, we reconsider the infinite-cutoff
scheme for NN scattering at NLO in the EFT expansion and
critically examine the findings of Refs. [30,31,34]. We demon-
strate that the oscillating nature of the LO wave function near
the origin caused by the singular (attractive) behavior of the
LO potential generally prevents one from achieving a cutoff-
independent result for the subleading scattering amplitude in
the � → ∞ limit. To keep our considerations simple we focus
here on the case of NN scattering in the 3P0 partial wave,
which may serve as a representative example.

Our paper is organized as follows. In Sec. II we illustrate
the above-mentioned issue of the infinite-cutoff scheme based
on general arguments and using a simplified version of the NN
two-pion-exchange potential. In Sec. III we examine in detail

the NLO analysis by Long and Yang [31] and critically revise
their conclusions. The implications and generalizations of our
results are discussed in Sec. IV. Next, in Sec. V, we consider
the toy model example of Ref. [34]. The complete renormal-
izability proofs of the LO and NLO scattering amplitudes for
this toy model are given in Appendices A and B, respectively.
The main results of our paper are summarized in Sec. VI.

II. GENERAL DISCUSSION

In this section we present a general discussion of the issues
emerging in the infinite-cutoff scheme at NLO on a rather
qualitative and not fully mathematically rigorous level. These
considerations are sufficient to illustrate the main idea of
our paper. The analytical considerations are supplemented
by numerical calculations using the NN two-pion-exchange
potential, modified to exhibit a more regular behavior at short
distances. This modification allows us to simplify the presen-
tation by reducing the number of subtractions in the NLO
amplitude. We focus on NN scattering in the 3P0 partial wave
and analyze in detail the cutoff dependence of the amplitude.
This partial wave provides a typical example of the attractive
spin-triplet channel, where the one-pion-exchange potential is
nonperturbative, and is particularly easy to analyze due to the
absence of coupled channels. The results can be generalized
to other partial waves in a straightforward way.

A. Formalism

We start with describing the formalism. We consider the
LO (NLO) potential V LO (V NLO) in chiral EFT, with V LO con-
sisting of the one-pion-exchange potential and the short-range
part:

V LO = V1π,� + V LO
short,�, (2)

where the subscript � signifies that the corresponding po-
tential is regulated. The short-range part V LO

short,� involves the
S-wave contact interactions and the counterterms necessary
for the renormalization of the LO amplitude, in particular,
the leading contact terms in the spin-triplet channels where
the one-pion-exchange potential is attractive and treated non-
perturbatively. Here and in what follows, we denote by �

the set of all values of cutoffs � = {�i} that a quantity X�

depends upon. The NLO potential is given by the leading
two-pion-exchange potential to be specified below and the
short-range part

V NLO = V2π,� + V NLO
short,�. (3)

The short-range potentials consist of contact interactions mul-
tiplied by the corresponding low-energy constants (LECs),

V LO
short,� = C0V

LO
ct,0,� + . . . ,

V NLO
short,� =

n∑
i=0

CNLO
2i V NLO

ct,2i,� + . . . , (4)

where we only specify explicitly terms contributing to the
3P0 partial wave and omit the channel indices. The second
subscript of V LO

ct,0,� and V NLO
ct,2i,� gives the power of momenta

counted relative to the LO contribution, i.e., V LO
ct,0,� ∼ �p 2 and
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V NLO
ct,2i,� ∼ �p 2i+2. The upper limit n in the sum over i is de-

termined by the number of counterterms necessary for the
renormalization of the NLO amplitude. The explicit form of
the short-range potentials will be given below.

Some statements on the regularization are in order here.
Since the EFT formulation considered here aims at a complete
elimination of regulator dependence [19], the infinite-cutoff
limit of the scattering amplitude should not depend on a
particular regularization prescription. As stated in Ref. [35],
“RGI requires not only independence of observables on the
numerical value of the cutoff � but also independence on
the form of the regulator function itself.” Since the potential
involves several different structures, one always has a freedom
to employ different types of the regulators and cutoff values
for each of them.

The regularized potential in the plane-wave basis is ob-
tained from the unregularized one by multiplying it with the
corresponding form factor F�( �p ′, �p ). Throughout this work,
we will mostly use nonlocal regulators

F�( �p ′, �p ) = F�(p′)F�(p), (5)

where F�(p) is either the smooth power-like form factor,

F�(p) =
(

�2

�2 + p2

)n

, (6)

with n chosen sufficiently large to remove all divergences, or
the sharp cutoff,

F�( �p ′, �p ) = θ (� − p′)θ (� − p). (7)

The nonlocal regulators can be applied directly to the partial-
wave projected potentials. In Sec. II D, we will also discuss
the case of a locally regularized potential with

F�( �p ′, �p ) = ��(q2), (8)

where �q = �p ′ − �p and �(q2) is some smooth regulator, e.g.,

��(q2) =
(

�2

�2 + q2

)n

. (9)

It will become obvious from our analysis that other forms and
types of regulators used in the literature including Gaussian
regulators, spectral function regularization, or regularizations
in coordinate space, which are, to a large extent, equivalent to
q2-dependent regulators in momentum space, will lead to the
same qualitative results.

For simplicity, we will use the same type of the regulator
for all parts of the LO and NLO potentials. Moreover, the
long-range and short-range parts of the LO potential will be
regularized using the same cutoff �0. Similarly, the long-
range and the leading short-range parts of the NLO potential
will be regularized by the same cutoff �2. Other possible
contact terms of the NLO potential are allowed to have inde-
pendent regulators �2,i with i = 2, 4, . . . . The sharp cutoffs
will be used in Sec. III.

In general, the existence of an infinite-cutoff limit implies
that various cutoffs can be taken to infinity independently:

�0(τ ) −−−→
τ→∞ ∞, �2(τ ) −−−→

τ→∞ ∞, . . . , (10)

where �0(τ ),�2(τ ), . . . are (in general) different functions.

The potential in the 3P0 partial wave is obtained from the
potential in the plane wave basis

V =VC + Vσ �σ1 · �σ2 + Vσq(�σ1 · �q )(�σ2 · �q )

+ VSLi 1
2 (�σ1 + �σ2) · ( �p × �p ′), (11)

where we kept only the structures relevant for our calculation,
by the projection formula [36]

V (p′, p) = 2π

∫ 1

−1
dz{zVC ( �p ′, �p ) + zVσ ( �p ′, �p )

− [(p′2 + p2)z − 2p′ p]Vσq( �p ′, �p )

+ p′ p(z2 − 1)VSL( �p ′, �p )}. (12)

The angular integration in Eq. (12) is performed over z =
cos θ , with θ the angle between the initial and final center-
of-mass momenta of the nucleons �p and �p ′.

The nonvanishing structures of the one-pion- and two-
pion-exchange potentials (up to irrelevant polynomial terms)
read [37]

V1π,σq( �p ′, �p ) = −
(

gA

2Fπ

)2 1

q2 + M2
π

, (13)

and

V2π,C ( �p ′, �p ) = − L(q)

384π2F 4
π

[
4M2

π

(
5g4

A − 4g2
A − 1

)

+ q2
(
23g4

A − 10g2
A − 1

) + 48g4
AM4

π

4M2
π + q2

]
,

V2π,σq( �p ′, �p ) = − 1

q2
V2π,σ ( �p ′, �p ) = − 3g4

A

64π2F 4
π

L(q), (14)

where

L(q) = 1

q

√
4M2

π + q2 ln

√
4M2

π + q2 + q

2Mπ

. (15)

Further, Mπ , Fπ , and gA refer to the pion mass, decay constant,
and nucleon axial constant, respectively. For illustrative pur-
poses, we will also consider in Sec. II C a simplified version
of the two-pion-exchange potential Ṽ2π ( �p ′, �p ) by making it
less singular at short distances via

Ṽ2π ( �p ′, �p ) = V2π ( �p ′, �p )
(3Mπ )2

(3Mπ )2 + q2
, (16)

without modifying the longest-range part of the interaction.
The unregularized contact terms in the 3P0 partial wave

have the form

V LO
ct,0 = V NLO

ct,0 = pp′,

V NLO
ct,2 = pp′(p2 + p′2), . . . . (17)

When using local regulators, the unregularized 3P0 contact
terms can be chosen via

V LO
ct,0,C = V LO

ct,0,σ = − 1

32π
q2,

V LO
ct,0,σq = −1

2
V LO

ct,0,SL = 1

16π
, (18)

034001-3



A. M. GASPARYAN AND E. EPELBAUM PHYSICAL REVIEW C 107, 034001 (2023)

in order that projections onto other partial waves vanish; see
also Ref. [38]. Analogous expressions can be constructed for
higher-order contact interactions.

The LO amplitude T LO is obtained by solving the
Lippmann-Schwinger equation

T LO = V LO + V LOGT LO, (19)

or more explicitly,

T LO(p′, p; pon) =V LO(p′, p) +
∫

p′′2d p′′

(2π )3
V LO(p′, p′′)

× G(p′′; pon)T LO(p′′, p; pon),

G(p′′; pon) = mN

p2
on − p′′2 + iε

, (20)

where pon denotes the on-shell center-of-mass momentum and
mN is the nucleon mass. The NLO amplitude is given by the
distorted-wave Born approximation

T NLO = (1 + T LOG)V NLO(1 + GT LO). (21)

We can also define separately T2π and Tct,i,

T2π = (1 + T LOG)V2π,�(1 + GT LO),

Tct,i = (1 + T LOG)V NLO
ct,i,�(1 + GT LO), i = 0, 2, . . . , (22)

so that the full NLO amplitude is given by

T NLO = T2π +
n∑

i=0

CNLO
2i Tct,2i. (23)

Notice further that the amplitude T LO depends on the cutoff
�0 alone, while the amplitude T NLO is a function of all cutoffs
�, which we do not always indicate explicitly.

B. Dispersive approach

As already mentioned in Sec. I, the LO amplitude T LO is
required to have an infinite-cutoff limit in the RG-invariant
EFT scheme; see Eq. (1). Therefore, we assume that by choos-
ing an appropriate renormalization condition for the constant
C0 = C0(�0), one obtains a finite limit for the on-shell (p′ =
p = pon) LO amplitude:

T LO
� (pon) = T LO

∞ (pon){1 + O[(q̄/�0)α0 ]}, (24)

where q̄ = max(pon, Mπ ) and α0 is some positive number.
This follows from the general theory of singular potentials
[20] and is supported by the numerical calculations performed
in Ref. [26]. Analogously, the phase shift δLO(pon) approaches
its limiting value at �0 → ∞ for a given finite value of pon

when using the normalization δ(0) = 0 in order to avoid the
shifts generated by deeply bound states.

As the renormalization condition, we are free to fix, e.g.,
the scattering volume or the value of the phase shift at any
energy point p0, |p0| � �0, above or below threshold:

δLO(p0) = δLO
0 . (25)

It is common to choose δLO
0 equal to the empirical phase shift

extracted from experimental data:

δLO
0 = δexp(p0). (26)

In the considerations below we assume that we can regard
both V LO and V NLO as being local. Strictly speaking, this is only
the case if the regulators of the LO and NLO potentials are
local. If the regulators are nonlocal, one can still expect our
arguments to apply, because the nonlocalities appear at mo-
menta p ∼ � and should only induce corrections vanishing in
the � → ∞ limit, which are allowed in the resulting formulas
in any case. Since the potentials are assumed to be local, one
can use an N/D representation for the amplitude T LO [39],

T LO(pon) = p2
onÑLO(pon)

D̃(pon)
, (27)

where D̃(pon) is the Fredholm determinant (equal to the Jost
function) and contains all right-hand singularities and bound-
state poles of T LO. It can be represented by means of the
dispersion relation [39]

D̃(pon) =
(

n∏
j=1

p2
on + κ2

j

p2
on

)
exp

[
1

π

∫ ∞

0
d p2 δ̃LO(p)

p2
on − p2 + iε

]
,

(28)

where n denotes the number of bound states and pj = iκ j

are the positions of the bound-state poles. The factor p2
on in

front of ÑLO in Eq. (27) reflects the orbital angular momentum
l = 1. In Eq. (28), δ̃LO(p) is the LO phase shift normalized to
δ̃LO(∞) = 0. In our case, it is more suitable to use an alterna-
tive representation with a subtraction at pon = 0 in terms of
δLO(p):

D(pon) =
(

n∏
j=1

p2
on + κ2

j

κ2
j

)

× exp

[
1

π

∫ ∞

0
d p2 p2

on

p2

δLO(p)

p2
on − p2 + iε

]
, (29)

so that

T LO(pon) = p2
onNLO(pon)

D(pon)
, (30)

where NLO(pon) contains only left-hand singularities. Under
the reasonable assumption that the integral in Eq. (29) con-
verges at momenta p � �0, and provided the bound states lie
far away from the threshold,1 we can conclude that D(pon)
also approaches a finite limit as �0 → ∞:

D�0 (pon) = D∞(pon){1 + O[(q̄/�0)αD ]}, αD > 0. (31)

The N/D representation for the subleading amplitudes T2π

and Tct,i reads

T2π (pon) = p2
onN2π (pon)

D(pon)2
,

Tct,i(pon) = p2
onNct,i(pon)

D(pon)2
. (32)

1In fact, it was indicated in Ref. [26] that the positions of the bound
states approach fixed values for �0 → ∞.
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Again, the functions N2π (pon) and Nct,i(pon) possess only left-
hand singularities. If we further assume that both the LO and
the NLO potentials are of Yukawa type, which is true for the
regulators of the form given in Eq. (9), the location of the left-
hand singularities and their properties are well known [40],
and we can write down the corresponding dispersion relations

N2π (pon) =
∫ −M2

π

−∞

d p2

π

�N2π (p)

p2 − p2
on

,

Nct,i(pon) =
∫ −�2

2,i/4

−∞

d p2

π

�Nct,i(p)

p2 − p2
on

, �2,0 ≡ �2. (33)

The discontinuity �N2π (p) in the region −�2
min/4 < p2 <

−M2
π , where �min = min(�), is determined by the pertur-

bative contributions such as V NLO, V NLOGV LO, etc., and is
independent of �. Therefore, we can expect the following �

behavior of N2π and Nct,i:

N2π,�(pon) = N2π,∞(pon) + P2π,�

(
p2

on

) + O[(q̄/�)α2π ],

Nct,i,�(pon) = Pct,i,�
(
p2

on

) + O[(q̄/�)αct ], α2π , αct > 0,

(34)

where P2π,�(p2
on) and Pct,i,�(p2

on) are polynomials in p2
on,

which may contain positive powers of �, and q̄/� denotes
q̄/�min. Their degrees correspond to the number of subtrac-
tions necessary to suppress the momentum region p ∼ � in
dispersive integrals in Eq. (33).

Now, let us first assume that a single subtraction is suf-
ficient; i.e., both polynomials P2π,�(p2

on) and Pct,i,�(p2
on) are

simply �-dependent constants,

P2π,�

(
p2

on

) ≡ C2π (�), Pct,0,�

(
p2

on

) ≡ Cct(�), (35)

and

CNLO
i = 0, for i 
= 0. (36)

This situation describes the case when a more regular version
of the two-pion-exchange potential defined in Eq. (16) is used.
We will study such a simplified model numerically in the next
subsection.

Combining the estimates in Eqs. (31) and (34) we obtain
the following expression for the NLO amplitude:

T NLO
� (pon) = p2

on

D∞(pon)2

{
N2π,∞(pon) + C2π (�) + CNLO

0 (�)

× [Cct(�) + δNct,�(pon)] + δN2π,�(pon)
}
,

δN2π,�(pon) = O[(q̄/�)α],

δNct,�(pon) = O[(q̄/�)β], (37)

with α, β > 0. We can now fix the constant CNLO
0 (�) by choos-

ing some renormalization condition. If the LO amplitude is
fixed by the requirement to reproduce the experimental value
at pon = p0, the natural choice is to set

T NLO(p0) = 0. (38)

Then, if one can neglect δNct,� and δN2π,�, the solution to
Eq. (38) is

CNLO
0 (�) = −N2π,∞(p0) + C2π (�)

Cct(�)
, (39)

and the NLO amplitude indeed becomes �-independent as
� tends to infinity:

T NLO
� (pon) ≈ p2

on

D∞(pon)2
[N2π,∞(pon) − N2π,∞(p0)]. (40)

However, the term involving δNct,� cannot always be ne-
glected since it is multiplied by CNLO

0 (�) which, in general,
is unbounded as follows from Eq. (39). As follows from the
definition of Tct,0 in Eq. (22), the constant Cct(�) can be
viewed as being proportional to the square of the LO scatter-
ing wave function, smeared with some weight over the short
distance region r ∼ 1/�2, where it strongly oscillates as �0

increases.2 Therefore, for some values of �0 and �2, Cct(�)
can become very small, and Eq. (39) must be replaced with

CNLO
0 (�) = −N2π,∞(p0) + C2π (�)

Cct(�) + δNct,�(p0)
. (41)

As one can see, if for some “exceptional” value � = �̄,
one has

Cct(�̄) + δNct,�̄(p0) = 0, (42)

while

Cct(�̄) + δNct,�̄(pon) 
≡ 0; (43)

i.e., if the zero is not factorizable, then the cutoff indepen-
dence of T NLO in the vicinity of �̄ and therefore also in general
may become questionable. If the constant CNLO

0 (�) behaves
near the pole � = �̄ as

CNLO
0 (�) ≈ C̄NLO

0 (�̄)(� − �̄)−ᾱ, (44)

where typically ᾱ = 1 or ᾱ = 2, see the next sections, then,
as follows from Eq. (37), the width δ� of the “exceptional”
regions is roughly of order

δ� ∼ C̄NLO
0 (�̄)1/ᾱ

�̄β/ᾱ
, (45)

and generally decreases with � remaining, nevertheless,
finite. In the next two subsections we will see how this sit-
uation actually occurs in the case of nonlocally and locally
regulated potentials.

The above discussion was merely meant to identify the
exceptional values of the cutoffs that may destroy the cutoff
independence of the amplitude. In the case of a single subtrac-
tion, the relation in Eq. (41) is equivalent to

T NLO

ct,0,�̄
(p0) = 0, T NLO

ct,0,�̄
(pon) 
≡ 0. (46)

If more than one, say nsub, subtractions (NLO counterterms)
are necessary, we will need additional renormalization condi-
tions to fix the corresponding LECs. It is convenient to define

2This is a characteristic feature of solutions to singular
potentials [20].
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a function δNLO(pon),

T NLO(pon) = −δNLO(pon) e2iδLO(pon )ρ(pon), (47)

with the phase space factor

ρ(pon) = mN

(2π )3

π pon

2
. (48)

Analogously, we define the functions δ2π (pon) and δct,i(pon):

T2π (pon) = −δ2π (pon) e2iδLO(pon )ρ(pon),

Tct,i(pon) = −δct,i(pon) e2iδLO(pon )ρ(pon),

i = 0, 2, . . . , 2(nsub − 1). (49)

The functions δNLO(pon), δ2π (pon), and δct,i(pon) are real-
valued in the elastic physical region due to the unitarity of the
S matrix. They can be identified with the perturbative NLO
correction to the phase shift as done, e.g., in Ref. [30]. One
can impose the following renormalization conditions:

δNLO(pi ) = δNLO
i , i = 0, 2, . . . , 2(nsub − 1), (50)

where p0 can be chosen to be the same on-shell momentum
as used in the renormalization of the LO amplitude. Alterna-
tively, one can use derivatives of δNLO(pon) with respect to p2

on
at threshold or impose other conditions. In turn, one can use
the empirical phase shifts and set

δNLO
i = δexp(pi ) − δLO(pi ), (51)

which yields δNLO
0 = 0 if the condition (26) is used. By anal-

ogy with Eq. (46), we can easily identify the exceptional
cutoff values �̄ lying on the trajectories �(τ ) defined in
Eq. (10) that may destroy the cutoff independence of the NLO
amplitude via

det A�̄ = 0, det Ã�̄ 
= 0, (52)

with (� dependence being omitted)

Ai j = δct,i(p j ), Ãi j = δct,i( p̃ j ), i, j = 0, 2, . . . , 2(nsub − 1),

(53)

where at least for one j, p̃ j 
= p j . In what follows, we will
present numerical evidence that such exceptional cutoff values
cannot be avoided in general. The case of a single subtraction
will be considered in Sec. II C, while the case of two subtrac-
tions will be discussed in Sec. III.

In all calculations presented below, the following numeri-
cal values for the physical constants are employed: the pion
decay constant is set to Fπ = 92.1 MeV, the isospin average
nucleon and pion masses are mN = 938.9 MeV and Mπ =
138.04 MeV, respectively, and the effective axial coupling
constant of the nucleon is set to gA = 1.29 to account for the
Goldberger-Treiman discrepancy; see, e.g., Refs. [41,42]. The
calculations have been performed using MATHEMATICA [43].

C. Simplified model with a nonlocal regulator

In this subsection we consider the simplified model for
the 3P0 channel using a modified 2π exchange introduced in
Sec. II A with the nonlocal regulator at LO and NLO; see
Eq. (5). In this scheme only one subtraction at NLO is needed.

We fix the constants CLO
0 and CNLO

0 by the renormalization
conditions

δLO(p0) = δexp(p0), δNLO(p0) = 0, (54)

where the on-shell momentum p0 is chosen to correspond to
the laboratory energy of Tlab = 50 MeV.

The contact part of the on-shell NLO amplitude [Eq. (22)]
takes the particularly simple form

Tct(pon) = CNLO
0 Tct,0(pon) = CNLO

0 ψ�(pon)2, (55)

with the vertex function

ψ�(pon) = ponF�2 (pon)

+
∫

p2d p

(2π )3
p F�2 (p) G(p; pon) T LO

�0
(p, pon; pon).

(56)

Therefore, the � independence of the NLO amplitude can be
potentially destroyed if

ψ�(p0) = 0 (57)

for some values of �0 and �2.
We start with considering a special case with the LO and

NLO cutoffs being set to the same values, �2 = �0, and show
that under this condition, the zero of ψ�(pon) is factorizable.
One can demonstrate this using the two-potential formalism.
The off-shell LO amplitude is represented as

T LO
�0

(p′, p; pon) = T1π,�0 (p′, p; pon)

+ ψ1π,�0 (p′; pon) ψ1π,�0 (p; pon)

C−1
0 − ��0 (pon)

, (58)

where

ψ1π,�0 (p; pon) = pF�0 (p) +
∫

p′2d p′

(2π )3
p′ F�0 (p′)

× G(p′; pon) T1π,�0 (p′, p; pon),

��0 (pon) =
∫

p2d p

(2π )3
p F�0 (p)G(p; pon)ψ1π,�0 (p; pon).

(59)

The T matrix T1π is the solution of the LO Lippmann-
Schwinger equation without the contact term:

T1π = V1π + V1πGT1π . (60)

It is straightforward to see that

ψ�0 (pon) = ψ1π,�0 (pon)

1 − C0��0 (pon)
, (61)

where ψ1π,�0 (pon) := ψ1π,�0 (pon; pon).
Numerical checks show that the condition ψ1π,�0 (pon) = 0

is never fulfilled in the physical region. Therefore, ψ�0 (pon)
vanishes only when C0 = ∞. This happens for the exceptional
values of �0 = �̄i, i = 1, 2, . . . , due to the limit-cycle-like
behavior of C0(�0); see, e.g., Ref. [26]. In this case, ψ�0 (pon)
vanishes identically for all energies as

ψ�0 (pon) ∼ (�0 − �̄i )ξ�̄i
(pon). (62)
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FIG. 1. Nucleon-nucleon phase shifts for the 3P0 partial wave versus the laboratory energy calculated using the simplified model with
a modified two-pion-exchange potential from Eq. (16). Dashed and solid lines denote the LO and NLO results, respectively. Solid dots are
the empirical phase shifts from the Nijmegen partial wave analysis [44]. The left panel corresponds to a typical value of the cutoff, whereas
the other two panels show the phase shifts for the cutoff values near the exceptional ones as described in the text. Plots are created using
MATPLOTLIB [45].

Then, the constant CNLO
0 in the vicinity of �̄i behaves as

CNLO
0 ∼ (�0 − �̄i )

−2, (63)

canceling the overall prefactor (�0 − �̄i )2 in Tct, and no prob-
lems due to an enhancement of 1/�β terms [see the discussion
in the previous subsection and Eq. (37)] occur.

The phase shifts corresponding to this solution for a suffi-
ciently large cutoff are shown in the left panel of Fig. 1. In
the left panel of Fig. 2, the NLO result for the phase shift
δLO + δNLO, where δNLO is defined according to Eq. (47), is
shown as a function of the cutoff at the laboratory energy
Tlab = 130 MeV. One indeed observes the cutoff-independent
result as � → ∞. The situation changes, however, if one sets
�2 
= �0. Below, we consider two cases of a linear depen-
dence of �2 on �0, �2 = 2�0, and �2 = �0/2, which reflect
a typical situation for any other kind of such a dependence.

Figure 3 shows the locations of zeros of the magnitude of
the vertex function ψ̃�(pon), defined as

ψ�(pon) = ψ̃�(pon) eiδLO
. (64)

These zeros extend to � = ∞ and for �2 
= �0 correspond
to exceptional values of the cutoff.3 The middle and right
panels of Fig. 2 demonstrate that the NLO phase shifts re-
veal a behavior far from being constant in the vicinity of the
exceptional cutoffs. The cutoff dependence of the phase shift
is more complicated than just a double pole. In the case of
�2 = 2�0 (�2 = �0/2) slightly above (below) the pole, there
is a point with ψ�(pon) = 0 (where pon 
= p0 corresponds to
the considered Tlab = 130 MeV). At this point the NLO am-
plitude is given completely by the two-pion-exchange term,
which leads to another (finite) oscillation of the phase shift
in the positive direction. This is a characteristic feature of the
scheme with one subtraction.

3The exact location of the zeros depends on the details of the LO
potential.

In Fig. 1, we show how the phase shifts deviate from the
solution for the typical cutoff, plotted in the left panel, for
the exceptional cutoff value �̄0 = 19 660.9 MeV using �2 =
�0/2: the middle (right) panel corresponds to the choice �0 =
�̄0 − 5 MeV (�0 = �̄0 + 5 MeV).

Note that the first exceptional cutoff values appear at �0 ∼
700–1300 MeV, i.e., for �0 of the order of or slightly above
the hard scale �b. This does not automatically imply that a
reasonable description of the data is impossible for such cutoff
values. For �0 ∼ �b, the numerical value of the amplitude
T2π is rather small in line with expectations based on naive
dimensional analysis. Therefore, one could replace the renor-
malization condition (54), which is the main source of the
problem, by the condition

δLO(p0) + δNLO(p0) = δexp(p0), CNLO
0 = 0. (65)

However, in doing so, one unavoidably violates one of the
basic principles of the infinite-cutoff scheme stating that the
cutoff independence must be achieved at each order individ-
ually. Obviously, the condition (65) cannot be adopted for
� � �b, because in that case the two-pion-exchange am-
plitude would violate the dimensional power counting if no
subtractions are performed. We do not claim though that no
alternative renormalization schemes can be defined, which
would employ renormalization conditions different from those
in Eq. (54), yet approaching them in the limit � → ∞ with
no exceptional cutoffs. However, in such a scheme, the renor-
malization condition for the LO amplitude would depend on a
choice of the regulator of both the LO and the NLO potentials,
which seems to make no sense from the physical point of view.

A comment is in order here regarding the choice �2 = �0

discussed above, which prevents the appearance of excep-
tional cutoff values for the considered interactions. One might
try to argue that this is a “natural” choice, since the LO contact
term and the p′ p NLO contact terms are parts of the same term
in the effective Lagrangian that is split between two orders.
However, insisting on such a choice contradicts the principle
of the infinite-cutoff scheme that the limit � → ∞ should not
depend on the functional form of the regulator. Note that in
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FIG. 2. The 3P0 phase shift at the fixed laboratory energy of Tlab = 130 MeV calculated in the simplified model at NLO as a function of
the cutoff for �2 = �0 (left panel), �2 = 2�0 (middle panel), and �2 = �0/2 (right panel).

the limit � → ∞, the two contact interactions indeed become
identical independently of the relationship between �0 and
�2. Moreover, this argument loses its justification completely
when additional contact interactions at NLO are included, as
there is no physical reason to relate the regulators of such
contact terms with the leading-order one. One can in this
case not even unambiguously define what the notion of the
same regulator actually means due to a different short-range
structure of the contact interactions. In particular, choosing
the same sharp cutoff in momentum space still leads to the
appearance of exceptional values, as we will see in Sec. III.
The only possibility to avoid the exceptional values as far as
we can see is to allow for energy-dependent contact terms of
the form pp′ p2i

on, i = 0, 1, . . . , only and to employ a unified
form factor in momentum space. But as already argued above,
there is no physical motivation for such a prescription.

Given the freedom to choose different regulators for dif-
ferent contact interactions, it is reasonable to expect that
performing more than one subtraction at NLO, i.e., adding
more contact terms, will not qualitatively change the situa-
tion. Since cutoffs for different contact terms are independent,

FIG. 3. The magnitude of the vertex function ψ̃�(pon) defined in
Eq. (64) for the simplified model at pon = p0. Dashed, dash-dotted,
and solid lines correspond to the choice �2 = �0, �2 = 2�0, and
�2 = �0/2, respectively.

there will (most probably) exist exceptional combinations
of them, which would prevent the existence of a � → ∞
limit for the amplitude. The analysis of Sec. III offers an
example of such a situation for the case of two NLO contact
terms.

D. The case of a local regulator

For the sake of completeness, we also briefly comment
on the case when all regulators are chosen to be local as
done, e.g., in Refs. [38,46–49] (of course, we could also use a
combination of local and nonlocal regulators which, however,
would not lead to any new conclusions). In this case, the
problem of regularization can be equivalently formulated in
coordinate space [32,33]. We adopt the same renormalization
conditions as in the previous subsection, which are specified
in Eq. (54), and consider again the situation when one sub-
traction is sufficient to regularize the NLO amplitude, i.e.,
the model with a modified 2π -exchange potential defined in
Sec. II A.

There is a subtlety appearing already at leading order. In
contrast to the previously analyzed case of the nonlocal regu-
lator, the solution for the LO constant C0(�0) determined by
the renormalization condition (54) becomes not unique and
depends on the number of spurious bound states, see, e.g.,
Refs. [50–52], leading to different branches of the function
C0(�0). Although the description of the 3P0 partial wave does
not depend on a choice of a particular branch, one cannot
choose C0(�0) too large because this would affect other par-
tial waves, in which the C0(�0) contributions are otherwise
suppressed by inverse powers of �0. To compensate for this
effect, one would have to introduce additional contact interac-
tions in the affected partial waves.

The NLO amplitude can be conveniently evaluated in
r space:

T NLO(pon) =
∫

r2drψLO
pon

(r)2V NLO(r)

= e2iδLO(pon )
∫

r2dr
∣∣ψLO

pon
(r)

∣∣2
V NLO(r), (66)
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where ψLO
pon

(r) is the LO scattering wave function. Analo-
gously, the contact part of the NLO amplitude is given by

Tct,0(pon) = e2iδLO(pon )
∫

r2dr
∣∣ψLO

pon
(r)

∣∣2
V NLO

ct,0,�2
(r). (67)

One can see that the appearance of exceptional cutoffs cor-
responding to the condition Tct,0(pon) = 0 can be avoided
independently of the behavior of the LO wave function if
the regulated contact NLO potential does not change its sign.
Obviously, this condition cannot be fulfilled in general. For
example, for the NLO contact interaction in the form of
Eq. (18) with the regulator ��2 (q2) employed universally for
all four structures, one can show that the coordinate-space
contact potential has the form (valid only for the 3P0 partial
wave)

V NLO
ct,0,�2

(r) = 1

8π

[
∂2

r ��2 (r) − 2

r
∂r��2 (r)

]
, (68)

with

��2 (r) =
∫

d3q

(2π )3
��2 (q2)ei �q·�r . (69)

For the power-like regulators of Eq. (9) with n = 2 and n = 3,
we obtain

V NLO
ct,0,�2

(r) = �4
2

64π2
(2 + �2r)

e−�2r

r
, n = 2,

V NLO
ct,0,�2

(r) = �5
2

256π2
(1 + �2r)e−�2r, n = 3. (70)

For the Gaussian regulator ��2 (q2) = e−q2/�2
2 , the corre-

sponding short-range interaction is given by

V NLO
ct,0,�2

(r) = �5
2

4π5/2

(
2 + �2

2r2)e−�2
2r2

. (71)

None of the above terms changes its sign. On the other
hand, for the regulator in r space in the form ��2 (r) =
�3

2/[π�(3/4)]e−�4
2r4

adopted in Ref. [38], we obtain

V NLO
ct,0,�2

(r) = �7
2

2π2�(3/4)
r2

(
4�4

2r4 − 1
)
e−�4

2r4
. (72)

The latter contact interaction changes its sign at short dis-
tances, so that one can tune the LO regulator �0 to make the
integral in Eq. (67) vanish. One will also obtain an oscillating
behavior of V NLO

ct,0,�2
(r) if one chooses different cutoff values

for different structures in Eq. (11) or if one takes a linear
combination of the above regulators.

We refrain from providing any numerical results here,
which would essentially duplicate the ones from the previous
subsection. Nevertheless, we have verified explicitly the ex-
istence of exceptional cutoffs for the following choice of the
regulator:

��2 (q2) = 2

(
�2

�2 + q2

)2

−
(

�2

�2 + q2

)3

. (73)

Note that similarly to our comment on the LO interac-
tion, the constant CNLO

0 (�), being infinite for the exceptional
cutoffs, affects also other partial waves even though such
contributions are suppressed by inverse powers of �.

If one includes more than one contact term at NLO, the
conclusion about the existence of exceptional cutoffs remains
the same since such terms are even more oscillating at short
distances, so that the condition in Eq. (52) is likely to be
satisfied for certain values of �.

There is a particular choice of �2 that ensures the absence
of exceptional cutoff values, namely �2 � �0. In this case,
the integral in Eq. (67) is dominated by the region r ∼ 1/�2,
where the LO wave function is not oscillating anymore and
approaches its short-range limit (for the P wave) [39]:

ψLO
pon

(r) ∼ ponr

f (pon)
. (74)

Here, f (pon) is the reduced Jost function, which is finite at
pon = 0. Since the P-wave contact interaction behaves effec-
tively as

V NLO
ct,0,�2→∞(r) ∼ ∂2

r δ(�r ) (75)

for �2 → ∞, the contact term in Eq. (67) becomes

Tct,0(pon)/p2
on ∼ 1

f (pon)2

= 0, (76)

and the condition for exceptional cutoffs is never fulfilled.
The condition �2 � �0 is quite different from the con-
straint �2 = �0 for the absence of exceptional cutoffs in
the case of nonlocal regulators; see Sec. II C. This indicates,
once again, that conditions of this kind have no physical
origin.

To summarize, we have argued in this section that the two
basic principles of the infinite-cutoff scheme or, equivalently,
the RG-invariant EFT framework stating that

(i) the amplitude has a well-defined � → ∞ limit at each
EFT order and

(ii) this limit does not depend on a particular way it is
approached, i.e., on the functional form of the regu-
lators and/or on the relationship among cutoff values
at various orders,

are in conflict with one another. In general, there is
an infinite number of unbounded exceptional values of
the cutoff, which makes it impossible to formulate
a strict infinite-cutoff limit. We have not proved this
rigorously, but we have found several exceptional cut-
offs numerically in each considered case (apart from some
very specific choices of regulators) for rather large cutoff
values.

III. THE APPROACH OF LONG AND YANG

We are now in the position to examine the results of
Ref. [30] for the 3P0 NN partial wave at NLO of chiral EFT
with respect to the issues discussed above. We do not con-
sider the part of Ref. [30] devoted to the N2LO amplitude,
which would lead to essentially the same conclusions. The
scheme of Ref. [30] is very similar to the simplified model
with a nonlocal regulator considered in Sec. II C. However,
the two-pion-exchange potential is taken in its full form given
in Eq. (14), which requires two subtractions at NLO. The NLO
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potential is then given by

V NLO(p′, p) =V2π,�(p′, p)

+ p′ p
[
CNLO

0 + CNLO
2 (p′2 + p2)

]
F�(p′)F�(p).

(77)

Following Ref. [30], we implement the sharp cutoff instead of
a smooth nonlocal regulator,

F�(p) = θ (� − p), (78)

with �0 = �2 = �, which makes no conceptual difference to
the choices considered before (even though one would hardly
use a sharp cutoff in realistic EFT calculations).

The contact parts of the on-shell NLO amplitude can be
represented as follows:

Tct(pon) = CNLO
0 Tct,0(pon) + CNLO

2 Tct,2(pon),

Tct,0(pon) = ψ�(pon)2,

Tct,2(pon) = 2ψ�(pon)ψ ′
�(pon), (79)

with

ψ�(pon) = pon +
∫ �

0

p2d p

(2π )3
pG(p; pon)T LO

� (p, pon; pon),

ψ ′
�(pon) = p3

on +
∫ �

0

p2d p

(2π )3
p3G(p; pon)T LO

� (p, pon; pon).

(80)

The authors of Ref. [30] adopted the following renormaliza-
tion conditions to fix the constants CLO

0 , CNLO
0 , and CNLO

2 :

δLO(p0) = δexp(p0),

δNLO(p0) = 0,

δNLO(p1) = δexp(p1) − δLO(p1), (81)

where the on-shell momentum p0 (p1) was chosen to cor-
respond to the laboratory energy of Tlab = 50 MeV (Tlab =
25 MeV). Using the unitarization prescription in Eqs. (47) and
(49) we obtain the system of linear equations

CNLO
0 δct,0(p0) + CNLO

2 δct,2(p0) = −δ2π (p0),

CNLO
0 δct,0(p1) + CNLO

2 δct,2(p1) = δexp(p1)−δLO(p1) − δ2π (p1).

(82)

We can express δct,0 and δct,2 in terms of the magnitudes of the
vertex functions ψ̃ and ψ̃ ′,

ψ�(pon) = ψ̃�(pon)eiδLO(pon ),

ψ ′
�(pon) = ψ̃ ′

�(pon)eiδLO(pon ), (83)

as follows:

δct,0(pon) = −ψ̃�(pon)2/ρ(pon),

δct,2(pon) = −2ψ̃�(pon)ψ̃ ′
�(pon)/ρ(pon). (84)

Then, the condition for an exceptional cutoff in Eq. (52)
becomes

det A�̄ = 2
ψ̃�̄(p0)ψ̃�̄(p1)

ρ(p0)ρ(p1)

∣∣∣∣ψ̃�̄(p0) ψ̃ ′̄
�

(p0)
ψ̃�̄(p1) ψ̃ ′̄

�
(p1)

∣∣∣∣ = 0. (85)

FIG. 4. � dependence of the magnitude of the vertex function
(dashed line) ψ̃�(p0) and of the quantity ζ�(p0, p1) (solid line) for
the interaction of Ref. [30] normalized to their maximal (in absolute
value) values.

As shown in Sec. II C, the zeros of ψ̃�(p0) are factor-
izable, so that ψ̃�(p0) = 0 implies ψ̃�(p1) = 0. To exclude
these zeros from the determinant in Eq. (85) we introduce the
following auxiliary quantity:

ζ�(p0, p1) = 1

ψ̃�(p0)

∣∣∣∣∣ψ̃�(p0) ψ̃ ′
�(p0)

ψ̃�(p1) ψ̃ ′
�(p1)

∣∣∣∣∣, (86)

whose zeros determine the genuine exceptional cutoffs �̄:

ζ�̄(p0, p1) = 0. (87)

The quantity ζ�(p0, p1) and the magnitude of the vertex func-
tion ψ̃�(p0) are shown in Fig. 4 as functions of the cutoff
�. They are normalized at the maximal points. The zeros of
ζ�(p0, p1) are not factorizable, i.e., their positions depend on
p0 and p1, and their locations (including the lowest ones) do
not coincide with the zeros of ψ̃�(p0). Therefore, these zeros
indeed correspond to the exceptional cutoff values. Notice
that the difference in the positions of zeros of ζ�(p0, p1) and
ψ̃�(p0) is an indication of the fact that the expected connec-
tion between exceptional cutoffs and spurious bound states is
not direct: the exceptional cutoffs appear at smaller values of
� than the spurious deeply bound states.

In the left panel of Fig. 5, we plot the 3P0 phase shift
calculated at NLO at Tlab = 130 MeV as a function of the
cutoff �. The curve looks very similar to the one shown in
Ref. [30]4 and seems to flatten out as � tends to infinity. The
only differences to the plots in Ref. [30] are the almost vertical
lines located at the exceptional values of the cutoff. The
middle and right panels of Fig. 5 demonstrate the behavior of
the phase shift around two exceptional points in more detail.
As one can see, the width of such exceptional regions is of
order 0.1 MeV, which is much smaller than in the case of the

4We found the resulting phase shifts to be rather sensitive to the
employed parameters of the long-range interaction and to isospin
breaking effects in the one-pion-exchange potential.
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FIG. 5. Cutoff dependence of 3P0 phase shift calculated at the fixed laboratory energy of Tlab = 130 MeV using the approach of Ref. [30]
at NLO. The middle and right panels show zoomed regions in the vicinity of two exceptional cutoffs.

simplified model with one subtraction considered in Sec. II C.
The reason for this is obviously the fact that two subtractions
performed at NLO lead to a higher power β of the residual cut-
off dependence in Eq. (37). In Ref. [30], an estimate β = 5/2
was given based on the short-range behavior of the LO wave
function. Another factor that makes the exceptional regions
narrower is that the zeros of ζ�̄(p0, p1) are first order; see
Eq. (45).

The difference between the behaviors of the phase shifts for
the typical and exceptional values of the cutoff is illustrated
in Fig. 6. The left panel shows the solution for a typical cutoff
(� = 12.5 GeV), whereas the middle and the right panels cor-
respond to cutoff values slightly below (� = 12249.69 MeV)
and above (� = 12249.73 MeV) an exceptional point. These
results demonstrate that the NLO phase shifts show essentially
arbitrary behavior for cutoffs in the vicinity of the exceptional
values, which signals the breakdown of the renormalization
program.

It is important to keep in mind that the appearance of
an infinite number of exceptional cutoffs does not depend
on the choice of renormalization conditions, which only de-
termine the particular locations of such cutoffs. Moreover,

adding further counterterms and fixing them using additional
renormalization conditions would not qualitatively change the
situation because Eq. (52) would still have solutions, albeit the
width of exceptional regions would further decrease.

To summarize, the results presented above confirm the
analysis based on the simplified model of Sec. II C. The re-
alistic calculation for the NN system indicates the absence
of a definite limit of the NLO amplitude for � → ∞. We have
also highlighted the danger of missing the exceptional cutoff
regions when numerically verifying the cutoff independence
of an amplitude, since their width may be very small.

IV. GENERALIZATIONS

We are now in the position to discuss various straight-
forward generalizations of the results obtained in Secs. II
and III. Since the existence of exceptional cutoffs originates
from the oscillating nature of the high-momentum part of the
T matrix for singular potentials, such cutoffs are expected to
generally appear in any infinite-cutoff scheme with the non-
perturbative LO attractive singular potential and perturbative
inclusion of the NLO corrections. This implies, in particular,

FIG. 6. The 3P0 phase shifts calculated using the approach of Ref. [30] at LO (dashed lines) and NLO (solid lines). The left panel shows
the solution for a typical cutoff (� = 12.5 GeV), whereas the middle and right panels correspond to the cutoff values slightly below (� =
12 249.69 MeV) and above (� = 12 249.73 MeV) the second exceptional point.
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that the renormalizability in the sense of the RG-invariant
EFT framework breaks down in all spin-triplet channels where
the one-pion-exchange potential is attractive and needs to be
treated nonperturbatively.5

Moreover, the obtained results do not qualitatively depend
on the long-range part of the LO potential. In particular, we
have verified that the exceptional cutoffs exist also in the case
when the one-pion-exchange potential is taken in the chiral
limit with Mπ = 0, as suggested in Ref. [53].

It is easy to check that exceptional cutoffs appear also
in systems where the LO interaction is less singular, e.g.,
where the LO potential at short distances behaves as 1/r2

and is sufficiently attractive (one exception being the model
of Long and van Kolck [34], which will be discussed in
Sec. V). The issues raised in our paper are therefore also
relevant for studies of three-body systems with zero-range
interactions, such as three-nucleon scattering in the doublet
S-wave channel treated within pionless EFT [54] or three-
boson systems with large scattering lengths [55]. In those
cases, the leading-order interaction with an infinite cutoff
leads to the Skorniakov–Ter-Martirosian equation [56], which
in the ultraviolet regime is essentially equivalent to the
Lippmann-Schwinger equation with a 1/r2 potential. The
inclusion of higher-order corrections in perturbation theory
as done, e.g., in Refs. [57–60] inevitably leads to the issues
discussed in the previous sections.

Finally, it is clear that the same issues will also be relevant
in applications beyond the NN scattering problem, especially
where the results are sensitive to the short-range part of the
NN wave function, e.g., for few- (many-) nucleon systems or
electroweak processes involving several nucleons.

V. THE TOY MODEL OF LONG AND VAN KOLCK

As already pointed out above, one notable exception of the
general situation with the appearance of exceptional cutoffs is
the toy model introduced by Long and van Kolck [34]. The
model is particularly interesting since many of the results can
be derived analytically in a closed form. Below, we analyze
the peculiar features of this model that result in the absence
of genuine exceptional cutoffs. We also argue that a slight
modification of the LO interaction in this model and/or the
employed regulator leads to the breakdown of the renormal-
ization program at NLO.

The model of Long and van Kolck has a lot of similarities
with the scheme considered in Sec. III. We consider S-wave
two-body scattering of particles with the mass mN based on
the LO and NLO potentials V LO and V NLO given by a sum of
the long-range and short-range terms,

V LO = V LO
L + V LO

S , V NLO = V NLO
L + V NLO

S . (88)

The long-range part of the LO potential has the form

V LO
L (p′, p) = −8π3λ

mN

1

p>

. (89)

5In fact, the existence of even a single problematic partial wave
would already put the RG-invariant EFT approach in question.

Here and below, the notation p> = max(p′, p) and p< =
min(p′, p) is used. The potential V LO

L is proportional to the
Fourier transform of the function 1/r2. The coupling constant
λ is chosen such that it corresponds to a singular LO potential
(λ = 2 in Ref. [34]).

The long-range part of the NLO potential is given by

V NLO
L (p′, p) =

3∑
i=0

giV
NLO

L,i (p′, p), (90)

with

V NLO
L,0 (p′, p) = 8π3M2

π

m3
N

1

p>

,

V NLO
L,1 (p′, p) = 8π3

m3
N

p>,

V NLO
L,2 (p′, p) = 8π3

m3
N

p2
<

p>

. (91)

In Ref. [34] the following choice for the coupling constants is
made: g0 = 0, g2 = g1/3. In such a case, V NLO

L is proportional
to the Fourier transform of the function 1/r4 up to a contact
interaction. We adopt a more general ansatz for V NLO

L as will
turn out to be useful in the subsequent analysis. The short-
range parts of the LO and NLO potentials are given by

V LO
S (p′, p) = C0(�),

V NLO
S (p′, p) = CNLO

0 (�) + CNLO
2 (�)(p′2 + p2). (92)

Finally, we follow Refs. [30,34] and employ the sharp reg-
ulator with the cutoff �. For the sake of convenience, we
reshuffle the regulator from the potential to the propagator by
introducing

G�(p; pon) = mN

p2
on − p2 + iε

θ (� − p). (93)

The LO amplitude T LO is obtained by solving the
Lippmann-Schwinger equation [see Eq. (20)]:

T LO = V LO + V LOG�T LO, (94)

whereas the NLO amplitude is given in terms of the distorted-
wave Born approximation:

T NLO = (1 + T LOG�)V NLO(1 + G�T LO). (95)

The on-shell NLO amplitude can be represented, by analogy
with Eq. (79), via

T NLO(pon) = T NLO
L (pon) + CNLO

0 (�)ψ�(pon)2

+ 2CNLO
2 (�)ψ�(pon)ψ ′

�(pon) (96)

with

T NLO
L = (1 + T LOG�)V NLO

L (1 + G�T LO), (97)

and

ψ�(p; pon) = 1 +
∫

p′2d p′

(2π )3
G�(p′; pon)T LO(p′, p; pon),

ψ�(pon) := ψ�(pon; pon),
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ψ ′
�(pon) = p2

on +
∫

p2d p

(2π )3
p2G�(p; pon)T LO(p, pon; pon).

(98)

Similarly to Ref. [30], the authors of Ref. [34] adopted the
following renormalization conditions to fix the constants CLO

0 ,
CNLO

0 , and CNLO
2 :6

δLO(p0) = δexp(p0),

δNLO(p0) = 0,

δNLO(p1) = δexp(p1) − δLO(p1), (99)

where p0 and p1 are some center-of-mass momenta and
p0, p1 � �. As follows from the analysis of Sec. III, if there
were exceptional values of the cutoff, they would correspond
to the zeros of the quantity

ζ�(p0, p1) = 1

ψ̃�(p0)

∣∣∣∣∣ψ̃�(p0) ψ̃ ′
�(p0)

ψ̃�(p1) ψ̃ ′
�(p1)

∣∣∣∣∣. (100)

To proceed further, we first derive the important relation-
ship between the functions ψ�(pon) and ψ ′

�(pon) that holds
for the considered model. For this, we rewrite ψ ′

�(pon) as

ψ ′
�(pon) = p2

onψ�(pon) − mN

∫ �

0

p2d p

(2π )3
T LO(p, pon; pon)

= p2
onψ�(pon) +

[
λ

2
�2 − C0(�)

24π3
mN�3

]
ψ�(pon)

− λ

6
ψ ′

�(pon), (101)

where the last equality is obtained by performing a single
iteration of the Lippmann-Schwinger equation for T LO and
calculating explicitly the integral∫ �

0

p′2d p′

(2π )3
V LO(p′, p)

= C0(�)
∫ �

0

p′2d p′

(2π )3
− 8π3λ

mN

∫ �

0

p′2d p′

(2π )3

1

max(p′, p)

= C0(�)

24π3
�3 − λ

2mN
�2 + λ

6mN
p2. (102)

Solving Eq. (101) with respect to ψ ′
� we obtain the desired

relationship in the form

ψ ′
�(pon) = [

γ1(�)�2 + γ2 p2
on

]
ψ�(pon), (103)

where the quantities γ1(�) and γ2 are given by

γ1(�) = 6

6 + λ

[
λ

2
− C0(�)

24π3
mN�

]
,

γ2 = 6

6 + λ
. (104)

Notice that Eq. (103) holds true exactly and not just approx-
imately up to terms of some order O[(q̄/�)αct ]; cf. Eq. (34).

6Strictly speaking, these conditions are formulated in terms of
the K matrix in Ref. [34].

Such corrections were responsible for the appearance of ex-
ceptional cutoff values discussed in the previous sections.

It is now easy to see from Eq. (103) that the quantity
ζ�(p0, p1), defined in Eq. (100), can be written as

ζ�(p0, p1) = γ2
(
p2

1 − p2
0

)
ψ̃�(p1). (105)

Therefore, the zeros of ζ�(p0, p1) coincide with the zeros
of ψ�(p1) [and of ψ�(p0)]. Moreover, they factorize ac-
cording to Eq. (62) and correspond to cutoffs �̄ for which
C0(�̄) = ∞.

It is, however, important to emphasize that even a slight
modification of the underlying model by adding, e.g., a
logarithmic factor similar to the one appearing in the
Skorniakov–Ter-Martirosian equation to the LO long-range
potential, changing the sharp regulator to a smooth one, or
using different values of the LO and NLO cutoffs leads to a
violation of Eq. (103) and, therefore, results in the appearance
of exceptional cutoffs that destroy the renormalizability of the
NLO amplitude.

Finally, while the factorization of the zeros of ζ�(p0, p1)
prevents the existence of exceptional cutoffs for the consid-
ered toy model, this feature alone does not necessarily prove
the cutoff independence of the NLO amplitude in a strict
mathematical sense. The simplicity of the considered model
and the absence of scales in the long-range parts of the inter-
action make it possible to carry out such a proof analytically.
An attempt to provide the proof was already made in Ref. [34].
However, some important steps were missing there, and some
conclusions were not justified. Moreover, the solution for
the cutoff dependence of the NLO LECs was not provided.
In Appendices A and B, we fill these gaps by proving the
cutoff independence of the LO and NLO amplitudes in the
� → ∞ limit and deriving the explicit solutions for CNLO

0 (�)
and CNLO

2 (�).

VI. SUMMARY AND CONCLUSIONS

We have studied two-nucleon scattering using the chiral
EFT framework formulated in Refs. [8,19,30,31,34], which
permits the usage of arbitrarily large cutoffs and is claimed
to be RG-invariant in the � → ∞ limit. In this scheme, the
one-pion-exchange potential is iterated to all orders in low
partial waves together with the necessary counterterms, while
subleading corrections to the amplitude are taken into account
using the distorted-wave Born approximation. Renormaliz-
ability within this method depends upon the fulfillment of two
requirements: (i) the scattering amplitude should possess a
well-defined limit when the cutoff � tends to infinity at each
EFT order individually and (ii) this limit should not depend
on a particular form of regulator. The existing calculations
within this scheme are summarized in a recent review article
by van Kolck [19], who then concludes that “the longstanding
problem of renormalization of chiral nuclear forces has been
solved at the 2N and 3N levels.” Even leaving aside the criti-
cism of the RG-invariant scheme raised in Refs. [21–24], the
results of our study show that this conclusion is too optimistic.
Specifically, we have demonstrated that the above-mentioned
renormalizability requirements of the RG-invariant approach
can, in general, not be fulfilled simultaneously beyond LO.
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The problem is related to the existence of exceptional cut-
off values, in the vicinity of which the renormalization of
the NLO amplitude breaks down. The exceptional � values
extend to infinity and originate from the oscillatory short-
distance behavior of the LO wave function caused by the
singular nature of the one-pion-exchange potential. While we
have specifically focused in this paper on the 3P0 channel of
NN scattering and limited ourselves to NLO, our conclusions
apply to all attractive spin-triplet channels (in which the one-
pion-exchange potential is iterated to all orders) and remain
valid beyond NLO. The main results of our study can be
summarized as follows:

(i) We have given general qualitative arguments illustrat-
ing the issues with the exceptional cutoff values based
on the dispersive representation of the scattering am-
plitude. To substantiate these findings we studied the
effects of the exceptional cutoff values in a simplified
model, where the two-pion-exchange potential was
modified to require only one subtraction (i.e., a single
contact term) at NLO, using a nonlocal regulator. Our
numerical results reveal a clear (unbounded) deviation
of the 3P0 phase shifts for cutoff values in the vicinity
of the exceptional ones as compared to the typical
� values as depicted in Fig. 1. We also argued that
including additional contact interactions would lead
to essentially the same conclusions, and it would not
restore the renormalizability. The case of locally reg-
ulated interactions has also been discussed in order
to demonstrate the general nature of the considered
arguments and the independence of results on a par-
ticular regulator choice.

(ii) As the next application, we have examined the cal-
culation of the 3P0 scattering amplitude by Long and
Yang [30] up to NLO in chiral EFT. We used the same
renormalization conditions as done in Ref. [30] to fix
one counterterm at LO and two additional countert-
erms at NLO. We observed that exceptional cutoff
values occur in this case as well, and they prevent
the existence of the � → ∞ limit of the scattering
amplitude and phase shifts; see Figs. 5 and 6. The
corresponding problematic cutoff regions appear to
be rather narrow and can be easily overlooked when
performing numerical checks.

(iii) We have argued that our findings are relevant for a
broad class of problems studied using similar EFT
frameworks. These include, but are not limited to,
the proposal of calculating NN scattering using an
expansion of nuclear forces about the chiral limit
[53] and applications of pionless EFT to study the
3-body problem near the unitary limit using the
Skorniakov–Ter-Martirosian equation [57–60]. Gen-
erally, artifacts similar to the ones considered in the
present paper are expected to appear in applications
beyond the two-nucleon system, whenever the short-
range part of the LO amplitude plays a significant
role.

(iv) Finally, we have analyzed in detail the renormaliza-
tion of the scattering amplitude for the toy model of

Long and van Kolck [34], for which many results
can be derived analytically. We delivered a rigorous
and complete proof of the cutoff independence of
the LO and NLO amplitudes and provided explicit
solutions for the � dependence of the NLO LECs.
The absence of genuine exceptional cutoff values is
a peculiar feature of this model, which is found to
depend crucially on the form of the LO interaction
(a pure 1/r2 potential) and on the particular regu-
larization scheme (the same sharp regulator for the
LO and NLO terms). Even a slight modification of
these features of the model is expected to result in
the emergence of the exceptional cutoff values, which
would destroy its renormalizability beyond LO.

We emphasize that the issue of exceptional cutoff values is
relevant for a perturbative treatment of subleading corrections
to the amplitude and is an indication of the failure of perturba-
tion theory in the vicinity of such cutoffs within the considered
framework. However, as was mentioned in the introduction,
the nonperturbative inclusion of the subleading interactions
leads to inconsistencies if their short-range parts are repulsive.
Therefore, the final solution within such a scheme, if exists, is
still missing.

As an alternative to the RG-invariant approach, few-
nucleon systems are being successfully analyzed within the
finite-cutoff formulation of chiral EFT using � ∼ �b; see,
e.g., [7] for a review article. In this scheme, the amplitude
calculated at any finite EFT order is only approximately
cutoff independent, while the exact cutoff independence is
only achievable upon taking into account the contributions
of an infinite number of counterterms from the effective
Lagrangian. Recently, a rigorous renormalizability proof of
this scheme to NLO, valid to all orders in the iterations of the
LO potential, was accomplished by explicitly demonstrating
that all power-counting breaking terms are absorbable into a
redefinition of the available LECs [17]. At the same time, the
method proposed in that paper allows one to systematically
eliminate regulator artifacts from the calculated observables.
A generalization of the renormalizability proof of Ref. [17] to
purely nonperturbative channels is in progress.
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APPENDIX A: RENORMALIZABILITY PROOF FOR THE
MODEL OF LONG AND VAN KOLCK: LO ANALYSIS

We start with proving the renormalizability for the LO
amplitude. To show the cutoff independence of T LO in the
� → ∞ limit, we follow Ref. [34] and differentiate the
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Lippmann-Schwinger equation (94) with respect to �:

d

d�
T LO(p′, p; pon) = M(�)

(2π )3

�2mN

p2
on − �2

T LO(�, p; pon)

+ dC0(�)

d�
ψ�(p; pon)

+
∫

p′′2d p′′

(2π )3
V LO(p′, p′′)G�(p′′; pon)

× d

d�
T LO(p′′, p; pon), (A1)

where we have used that

d

d�
V LO(p′, p) = dC0(�)

d�
, (A2)

and

V LO(�, p) = V LO(p′,�) = − (2π )3λ

mN�
+ C0(�) =: M(�).

(A3)

The amplitude T LO(�, p; pon) can be written as

T LO(�, p; pon) = M(�)ψ�(p; pon), (A4)

so that Eq. (A1) becomes

d

d�
T LO(p′, p; pon) =

[
dC0

d�
− M(�)2mN

(2π )3

]
ψ�(p; pon)

− p2
on

�2 − p2
on

M(�)2mN

(2π )3
ψ�(p; pon)

+
∫

p′′2d p′′

(2π )3
V LO(p′, p′′)G�(p′′; pon)

× d

d�
T LO(p′′, p; pon). (A5)

Since we are looking for a cutoff-independent solution in the
limit � → ∞, we neglect in Eq. (A5) all terms involving

d
d�

T LO and terms of order ∼p2
on/�

2 to obtain the equation for
C0(�)

dC0(�)

d�
− M(�)2mN

(2π )3
= 0, (A6)

which can be solved explicitly yielding

C0(�) = − (2π )3λ

�mN

1 − 2ν tan[ν ln(�/�∗)]

1 + 2ν tan[ν ln(�/�∗)]
, λ = 1

4
+ ν2,

(A7)

where �∗ is determined by the renormalization condition (99)
at � → ∞.

In this derivation, we assumed that neglecting certain terms
in Eq. (A5) as described above is justified. However, this is
not obvious for the neglected terms on the right-hand side of
Eq. (A5) when the cutoff takes values close to exceptional
ones, � ∼ �̄ with C0(�̄) = ∞, since the neglected terms
involve the prefactors C0(�) and C0(�)2. To clarify this issue
we substitute the solution (A7) for C0(�) into Eq. (A5):[

(1 − V LOG�)
dT LO

d�

]
(p′, p; pon)

= − p2
on

�2 − p2
on

M(�)2mN

(2π )3
ψ�(p; pon). (A8)

The solution to this equation with respect to d
d�

T LO reads

d

d�
T LO(p′, p; pon) = − p2

on

�2 − p2
on

M(�)2mN

(2π )3

× ψ�(p′; pon)ψ�(p; pon). (A9)

As was discussed in Sec. II C, the vertex function ψ� can be
expressed in terms of ψL,� obtained from the LO potential
without a contact term via

ψ�(p; pon) = ψL,�(p; pon)

1 − C0(�)�L,�(pon)
, (A10)

where

�L,�(pon) =
∫

p2d p

(2π )3
G�(p; pon)ψL,�(p; pon). (A11)

It is straightforward to verify numerically that both ψL,� and
�L,� are natural (i.e., neither zero nor infinitely large) at � =
�̄. Therefore,

ψ�(p; pon) ∼ 1

C0(�)
, for � ∼ �̄, (A12)

so that d
d�

T LO is finite at � → �̄. Thus, for � ∼ �̄, one has

d

d�
T LO(p′, p; pon) ∼ ψL,�(p′; pon)ψL,�(p; pon)

�L,�(pon)

p2
on

�2
. (A13)

As one can see, neglecting the relevant terms in Eq. (A5)
altogether is indeed justified,7 albeit this is not the case for
neglecting each of them separately.

APPENDIX B: RENORMALIZABILITY PROOF FOR THE
MODEL OF LONG AND VAN KOLCK: NLO ANALYSIS

We now turn to proving the cutoff independence of the
NLO amplitude. The authors of Ref. [34] begin their analysis
by taking the derivative d

d�
T NLO and neglecting the terms

2(1 + T LOG�)V NLOG�

dT LO

d�
. (B1)

This procedure is, however, not justified because the integrals
involved in the NLO amplitude generate positive powers of �,
which compensate the negative powers of � stemming from
dT LO

d�
. Therefore, we start with separating out the short-range

contributions proportional to � and �2 and some other re-
dundant short-range terms and with expressing the long-range
parts of the NLO amplitude in terms of T LO, for which the
� dependence is already known.

We first notice that the short-range part of the NLO ampli-
tude can be rewritten in a simple form using Eq. (103) as

T NLO
S (pon) = CNLO

0 (�)ψ�(pon)2 + 2CNLO
2 (�)ψ�(pon)ψ ′

�(pon)

= [
C̃NLO

0 (�) + C̃NLO
2 (�)p2

on

]
ψ�(pon)2, (B2)

7One still needs to check that the right-hand side of Eq. (A13) tends
to zero as � → ∞, which can be easily done numerically.
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where we have introduced the LECs

C̃NLO
0 (�) = CNLO

0 (�) + 2γ1(�)�2CNLO
2 (�),

C̃NLO
2 (�) = 2γ2C

NLO
2 (�). (B3)

The long-range parts of the NLO amplitude corresponding
to various terms V NLO

L,i are defined as follows:

T NLO
L,i = (1 + T LOG�)V NLO

L,i (1 + G�T LO), i = 0, 1, 2. (B4)

Using the relation

V NLO
L,0 = − M2

π

m2
Nλ

V LO
L , (B5)

along with the identity

(1 + T LOG�)V LO(1 + G�T LO) = T LO + T LOG�T LO, (B6)

one can easily derive the following representation for T NLO
L,0 :

T NLO
L,0 (pon) = M2

π

m2
Nλ

C0(�)ψ�(pon)2 − M2
π

m2
Nλ

T LO(pon)

− M2
π

m2
Nλ

[T LOG�T LO](pon). (B7)

To calculate the amplitude T NLO
L,1 , it is convenient to split the

potential V NLO
L,1 into three parts via

V NLO
L,1 = V̂ NLO

L,1 + V NLO
L,1,> + V NLO

L,1,<,

V̂ NLO
L,1 (p′, p; pon) = 8π3

m3
N

p2
on

p>

,

V NLO
L,1,>(p′, p; pon) = 8π3

m3
N

θ (p′ − p)
p′2 − p2

on

p′ ,

V NLO
L,1,<(p′, p; pon) = 8π3

m3
N

θ (p − p′)
p2 − p2

on

p
. (B8)

The quantities T̂ NLO
L,1 , T NLO

L,1,>, and T NLO
L,1,< are defined analogously

to Eq. (B4). The amplitude T̂ NLO
L,1 can be calculated similarly

to T NLO
L,0 :

T̂ NLO
L,1 (pon) = p2

on

m2
Nλ

C0(�)ψ�(pon)2 − p2
on

m2
Nλ

T LO(pon)

− p2
on

m2
Nλ

[T LOG�T LO](pon). (B9)

To calculate T NLO
L,1,< on shell, we perform a single iteration of

the LO Lippmann-Schwinger equation:

(1 + T LOG�)V NLO
L,1,<(1 + G�T LO)

= (1 + T LOG�)V NLO
L,1,<G�V LO(1 + G�T LO). (B10)

The explicit evaluation of V NLO
L,1,<G�V LO yields

[
V NLO

L,1,<G�V LO
]
(p′, p; pon) =

∫
p′′2d p′′

(2π )3

8π3

m3
N

θ (p′′ − p′)
p′′2 − p2

on

p′′ G�(p′′; pon)V LO(p′′, p)

= − 1

m2
N

∫ �

p′
p′′d p′′

[
C0(�) − 8π3λ

mN p′′ θ (p′′ − p) − 8π3λ

mN p
θ (p − p′′)

]

= C0(�)

2m2
N

(p′2 − �2) + 8π3λ

m3
N

� − 8π3λ

2m3
N p

θ (p − p′)(p2 + p′2) − 8π3λ

m3
N

θ (p′ − p)p′. (B11)

Symmetrically, to calculate T NLO
L,1,> on shell, we iterate the LO Lippmann-Schwinger equation on the left,

(1 + T LOG�)V NLO
L,1,<(1 + G�T LO) = (1 + T LOG�)V LOG�V NLO

L,1,<(1 + G�T LO), (B12)

and obtain

[
V LOG�V NLO

L,1,>

]
(p′, p; pon) = C0(�)

2m2
N

(p2 − �2) + 8π3λ

m3
N

� − 8π3λ

2m3
N p′ θ (p′ − p)(p2 + p′2) − 8π3λ

m3
N

θ (p − p′)p. (B13)

Combining the two pieces yields

[
V NLO

L,1,<G�V LO + V LOG�V NLO
L,1,>

]
(p′, p; pon) = −M̃(�)

m2
N

�2 + C0(�)

2m2
N

(p2 + p′2) − 8π3λ

2m3
N p>

(3p2
> + p2

<), (B14)

with

M̃(�) = −2
(2π )3λ

mN�
+ C0(�), (B15)

and we finally obtain, for the T NLO
L,1 amplitude,

T NLO
L,1 (pon) = T̂ NLO

L,1 (pon) − M̃(�)

m2
N

�2ψ�(pon)2 + C0(�)

m2
N

ψ�(pon)ψ ′
�(pon) − 3λ

2
T NLO

L,1 (pon) − λ

2
T NLO

L,2 (pon). (B16)
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We treat V NLO
L,2 analogously to V NLO

L,1 in Eq. (B8) and split it as follows:

V NLO
L,2 = V̂ NLO

L,2 + V NLO
L,2,> + V NLO

L,2,<,

V̂ NLO
L,2 (p′, p; pon) = 8π3

m3
N

p2
on

p>

,

V NLO
L,2,>(p′, p; pon) = 8π3

m3
N

θ (p′ − p)
p2 − p2

on

p′ ,

V NLO
L,2,<(p′, p; pon) = 8π3

m3
N

θ (p − p′)
p′2 − p2

on

p
. (B17)

Performing the same manipulations with the amplitude T NLO
L,2 as above, we obtain

T̂ NLO
L,2 (pon) = T̂ NLO

L,1 (pon), T NLO
L,2 (pon) = T̂ NLO

L,1 (pon) − 2C0(�)

3m2
N

ψ�(pon)ψ ′
�(pon) + λ

2
T NLO

L,1 (pon) + λ

6
T NLO

L,2 (pon). (B18)

To derive the latter equation, we used the result of the integral

[
V NLO

L,2,>G�V LO
]
(p′, p; pon) =

∫
p′′2d p′′

(2π )3

8π3

m3
N

θ (p′ − p′′)
p′′2 − p2

on

p′ G�(p′′; pon)V LO(p′′, p)

= − 1

m2
N p′

∫ p′

0
p′′2d p′′

[
C0(�) − 8π3λ

mN p′′ θ (p′′ − p) − 8π3λ

mN p
θ (p − p′′)

]

= −C0(�)

3m2
N

p′2 + 8π3λ

2m3
N p′ θ (p′ − p)

(
p′2 − p2

3

)
+ 8π3λ

3m3
N p

θ (p − p′)p′2, (B19)

and the expression for the symmetric combination

[
V NLO

L,2,>G�V LO + V LOG�V NLO
L,2,<

]
(p′, p; pon) = −C0(�)

3m2
N

(p2 + p′2) + 8π3λ

2m3
N p>

(
p2

> + p2
<

3

)
. (B20)

Finally, solving the system of equations (B16) and (B18), we obtain

T NLO
L,1 (pon) = 1

2(3 + 4λ)

[
(6 − 4λ)T̂ NLO

L,1 (pon) + (λ − 6)
M̃(�)

m2
N

�2ψ�(pon)2 + (6 + λ)
C0(�)

m2
N

ψ�(pon)ψ ′
�(pon)

]
, (B21)

T NLO
L,2 (pon) = 1

2(3 + 4λ)

[
(6 + 12λ)T̂ NLO

L,1 (pon) − 3λ
M̃(�)

m2
N

�2ψ�(pon)2 − (4 + 3λ)
C0(�)

m2
N

ψ�(pon)ψ ′
�(pon)

]
. (B22)

We now combine everything together. Using the expressions for the amplitudes T NLO
S (pon), T NLO

L,0 (pon), T NLO
L,1 (pon), and T NLO

L,2 (pon)
given in Eqs. (B2), (B7), (B21), and (B22), respectively, and taking into account Eqs. (B9) and (103), the full NLO amplitude
can be represented as the sum

T NLO(pon) = T NLO
0 (pon) + T NLO

2 (pon), (B23)

with

T NLO
0 (pon) = −g0

M2
π

m2
Nλ

{T LO(pon) + [T LOG�T LO](pon)} + C̄NLO
0 (�)ψ�(pon)2, (B24)

T NLO
2 (pon) = −ḡ

p2
on

m2
Nλ

{T LO(pon) + [T LOG�T LO](pon)} + C̄NLO
2 (�)ψ�(pon)2 p2

on, (B25)

where we have introduced the constant

ḡ = (3 − 2λ)g1 + (3 + 6λ)g2

3 + 4λ
. (B26)

The new LECs C̄NLO
0 (�) and C̄NLO

2 (�) absorb the redundant short-range contributions and are given by

C̄NLO
0 (�) = C̃NLO

0 (�) + g0

λ

C0(�)

m2
N

M2
π + γ1(�)

(6 + λ)g1 − (4 + 3λ)g2

2(3 + 4λ)

C0(�)

m2
N

�2 + (λ − 6)g1 − 3λg2

2(3 + 4λ)

M̃(�)

m2
N

�2,

C̄NLO
2 (�) = C̃NLO

2 (�) +
[

ḡ

λ
+ γ2

(6 + λ)g1 − (4 + 3λ)g2

2(3 + 4λ)

]
C0(�)

m2
N

. (B27)
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Now that all positive powers of the cutoff are absorbed by the above redefinition of the NLO LECs, we are indeed in the position
to derive the equations that the constants C̄NLO

0 (�) and C̄NLO
2 (�) have to fulfill to make the NLO amplitude cutoff independent.

Obviously, both T NLO
0 and T NLO

2 can be made cutoff independent individually, and the equations for C̄NLO
0 (�) and C̄NLO

2 (�) decouple.
We start with the amplitude dT NLO

0 (pon)/d�:

d

d�
T NLO

0 (pon) = − g0
M2

π

m2
Nλ

{
d

d�
T LO(pon) +

[
T LO

dG�

d�
T LO

]
(pon) + 2

[
T LOG�

d

d�
T LO

]
(pon)

}

+ ψ�(pon)2 d

d�
C̄NLO

0 (�) + 2C̄NLO
0 (�)ψ�(pon)

d

d�
ψ�(pon). (B28)

Using Eqs. (A4) and (A9), along with the definition (98), we obtain, for the derivative d
d�

ψ�(pon),

d

d�
ψ�(pon) = −M(�)mN

(2π )3
ψ�(pon)

{
1 + p2

on

�2 − p2
on

[1 + M(�)��(pon)]

}
, (B29)

where

��(pon) =
∫

p2d p

(2π )3
G�(p; pon)ψ�(p; pon) = �L,�(pon)

1 − C0(�)�L,�(pon)
. (B30)

Performing the same manipulations with the other terms in Eq. (B28), we find

d

d�
T NLO

0 (pon) =
[

d

d�
C̄NLO

0 (�) − 2C̄NLO
0 (�)

M(�)mN

(2π )3
+ g0

M2
π

mNλ

M(�)2

(2π )3

]
ψ�(pon)2

+ p2
on

�2 − p2
on

{
2g0

M2
π

mNλ

M(�)2

(2π )3
ψ�(pon)[�̃�(pon) + ψ�(pon)]

− 2C̄NLO
0 (�)

M(�)mN

(2π )3
[1 + M(�)��(pon)]ψ�(pon)2

}
, (B31)

where

�̃�(pon) =
∫

p2d p

(2π )3
T NLO

0 (pon, p; pon)G�(p; pon)ψ�(p; pon). (B32)

Next, we assume that the order O(1/�2) terms can be neglected (to be justified afterward) and obtain the following equation for
C̄NLO

0 (�):

d

d�
C̄NLO

0 (�) − 2C̄NLO
0 (�)

M(�)mN

(2π )3
+ g0

M2
π

mNλ

M(�)2

(2π )3
= 0. (B33)

We look for a solution H (�) of the corresponding homogeneous differential equation by explicitly factorizing out the singularity
close to � = �̄. This can be conveniently done by defining

H (�) =: [M(�)2 + �(�)]H̃ (�), (B34)

with

�(�) = (2π )6λ

m2
N�2

. (B35)

Then, using Eq. (A6), we obtain the equation for H̃ (�),

d

d�
H̃ (�) = 2

(2π )6λ

m2
N�3

[M(�)2 + �(�)]−1H̃ (�), (B36)

which has a solution

H̃ (�) = exp

{
2

(2π )6λ

m2
N

∫ �

�∗

d�

�3[M(�)2 + �(�)]

}
, (B37)

where we have used for the normalization the same quantity �∗ as in C0(�). The solution of the inhomogeneous equation (B33)
is readily obtained:

C̄NLO
0 (�) = H (�)

[
C̄NLO

0 (�∗)

H (�∗)
− g0M2

π

(2π )3mNλ

∫ �

�∗

d�M(�)2

H (�)

]
. (B38)

034001-18



“RENORMALIZATION-GROUP-INVARIANT EFFECTIVE … PHYSICAL REVIEW C 107, 034001 (2023)

Analogously to the case of C̄NLO
0 (�), we derive an equation and

a solution for C̄NLO
2 (�):

d

d�
C̄NLO

2 (�) − 2C̄NLO
2 (�)

M(�)mN

(2π )3
+ ḡ

1

mNλ

M(�)2

(2π )3
= 0,

(B39)

C̄NLO
2 (�) = H (�)

[
C̄NLO

2 (�∗)

H (�∗)
− ḡ

(2π )3mNλ

∫ �

�∗

d�M(�)2

H (�)

]
.

(B40)

Notice that H (�) ∼ M(�)2 ∼ C0(�)2 for cutoff values � ∼
�̄. Therefore, as expected, the positions of the singularities
of C̄NLO

0 (�) and C̄NLO
2 (�) coincide with the ones of C0(�),

i.e., � = �̄, and the behavior of C̄NLO
0 (�) and C̄NLO

2 (�) in the
vicinity of �̄ is given by

C̄NLO
0 (�) ∼ C̄NLO

2 (�) ∼ (� − �̄)2. (B41)

The last step in proving the cutoff independence of the
NLO amplitude is to show that the neglected terms of or-
der ∼p2

on/�
2 are suppressed also in the vicinity of � =

�̄.8 Inspecting Eq. (B31) we see that the terms proportional
to M(�)2)ψ�(pon)2 and M(�)2ψ�(pon)�̃(�) are regular
at � = �̄ as follows from Eq. (A10) and the definition
of �̃ in Eq. (B32). The remaining term proportional to
C̄NLO

0 (�)M(�)[1 + M(�)��(pon)]ψ�(pon)2 can be rewrit-
ten as [see Eqs. (B30) and (A10)]

C̄NLO
0 (�)M(�)

mN

(2π )3
[1 + M(�)��(pon)]ψ�(pon)2

=
[

mN

(2π )3
− λ

�L,�(pon)

�

]
C̄NLO

0 (�)M(�)ψL,�(pon)2

[1 − C0(�)�L,�(pon)]3
,

(B42)

and is, therefore, also regular at � = �̄ given the behavior of
C̄NLO

0 (�) in Eq. (B41).
The original constants CNLO

0 (�) and CNLO
2 (�) can be recon-

structed from the solutions for C̄NLO
0 (�) and C̄NLO

2 (�) using
Eqs. (B3) and (B27). We have verified numerically that the
analytical solutions for CNLO

0 (�) and CNLO
2 (�) indeed lead to

the cutoff-independent NLO amplitude in the limit � → ∞.

8For regular cutoffs, this feature can be straightforwardly verified
numerically.
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