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In this work, we calculate the ground state energy of pure neutron matter using the renormalization group based
low-momentum effective interaction Vlow-k in Bogoliubov many-body perturbation theory, which is a perturbative
expansion around the Hartree-Fock-Bogoliubov (HFB) ground state. In order to capture the low-density behavior
of neutron matter, it turns out to be better to use a density dependent cutoff in the Vlow-k interaction. Perturbative
corrections to the HFB energy up to third order are included. We find that at low densities corresponding to
the inner crust of neutron stars, the HFB state that includes pairing is a better starting point for perturbation
expansion. It is observed that including the higher order perturbative corrections, the cutoff dependence of the
ground state energy is reduced.
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I. INTRODUCTION

Neutron stars consist of several layers called the outer
crust, inner crust, outer core, and inner core. The outer crust
is made of nuclei that get progressively neutron rich, and a
degenerate electron gas to ensure charge neutrality [1]. At
some point, the neutrons can no longer be bound, forming a
gas of neutrons interspersing a lattice of quasinuclei (clusters).
This defines the inner crust. The outer core consists of very
neutron rich uniform nuclear matter, while the composition
of the inner core remains an open question. While the crust
itself extends just over 2 km, understanding its structure is
crucial to explain certain observations. The unbound neutrons
in the inner crust are believed to be in a superfluid phase,
which is necessary to explain the observed pulsar glitches [2].
(However, for a detailed understanding of the pulsar glitches,
one has to take into account the effect of the entrainment
of the superfluid neutrons by the lattice of clusters [3–5] as
well as the pinning of superfluid vortices [6].) Furthermore,
neutron pairing plays an important role in the thermal evolu-
tion of the star [7]. While superfluidity in neutron-star crusts
was predicted as early as 1960 [8], a quantitatively reliable
theoretical description still eludes the community, largely due
to the uncertainties in the input two-body interaction and the
subsequent medium and higher-body corrections.

Pure neutron matter is a simple yet useful model for a
neutron star. In first approximation, it describes the gas of
unbound neutrons in the inner crust, neglecting the presence
of the clusters. Furthermore, the properties of the inner crust
including the clusters depend sensitively on the equation of
state of the neutron gas, because the inner crust can be re-
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garded as a phase coexistence of a liquid and a gas phase
[9]. At low densities, corresponding to the inner crust, the
neutron-neutron (nn) interaction is attractive in the 1S0 partial
wave, resulting in the formation of spin-singlet Cooper pairs.
At higher densities, i.e., in the outer layers of the core, pairing
occurs between neutrons in the spin-triplet (3P2-3F2) channel.
At the BCS level (i.e., free-space nn interaction and single-
particle spectrum), 1S0 pairing is completely constrained by
two-body scattering in free space. However, corrections be-
yond BCS are important, and the gap equation is very sensitive
to such corrections. For example, it was seen in [10] that
already the inclusion of the effective mass from different
effective interactions in the single-particle energies introduces
model dependence in the 1S0 gaps. On the other hand, at the
high densities as they are found in the outer core, the triplet
channel gaps are highly model dependent [11–15] and it is not
surprising that a proper description of triplet pairing requires
the inclusion of the three-nucleon force at the very least (see,
for example, [12–15]).

Because of the fact that the nn scattering length a ≈
−18 fm is much larger than the effective range re ≈ 2.7 fm
of the nn interaction, it was suggested by Bertsch that dilute
neutron matter could be in a first approximation modeled as a
unitary Fermi gas (defined by a → ∞ and re → 0) [16]. In the
meantime, the experimental realization of the unitary Fermi
gas and of the BCS-BEC crossover with ultracold trapped
atoms has boosted also a lot of theoretical activity in this field,
see [17] for a review. The present work extends our previous
study for ultracold Fermi gases [18] to pure neutron matter.
While ultracold atoms have tunable scattering length a (via
Feshbach resonance) and negligible effective range re, both
these quantities are fixed in pure neutron matter by the nn in-
teraction. Both these systems exhibit universal behavior only
as long as the effects of the effective range can be neglected.
In [18], we studied the equation of state of a gas of ultra-
cold fermions from the BCS regime (1/kFa → −∞, where
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kF is the Fermi momentum) to the unitary limit (1/kFa →
0), starting with the Hartree-Fock-Bogoliubov (HFB) en-
ergy, computed with a Vlow-k like interaction tailored for the
cold atomic systems, and then including corrections to the
HFB energy up to third order within the Bogoliubov many-
body perturbation theory (BMBPT). In addition, we used
the dependence of the results on the cutoff of the effective
low-momentum interaction to gain additional insights on the
convergence of this scheme.

The main focus of our current work is to adapt a strategy
that was successfully used in nuclear structure calculations
of finite nuclei [19], to the case of infinite neutron matter.
The aim is to obtain reliable results for the neutron-matter
equation of state starting from a realistic nn interaction, by
performing essentially three steps: (1) The initial interac-
tion is softened using renormalization-group (RG) techniques,
lowering the momentum cutoff � while keeping low-energy
two-body observables unchanged [20–23]. (2) The resulting
Vlow-k interaction is used in HFB approximation. (3) Correc-
tions beyond HFB are included using BMBPT. In contrast
to studies of finite nuclei, since we are considering uniform
matter, we can use a density dependent cutoff � = f kF, where
f is a scale factor. Such a scaling was used for the first time in
[24]. Previous studies [18,25] have demonstrated that a vari-
able cutoff is especially important to describe the low-density
limit. Since � is an unphysical parameter, any dependence
of the equation of state on � or on the scale factor f gives
an indication for the importance of missing three-body and
medium corrections.

Our study is similar in spirit to the work by Coraggio et al.
[26], who compared results obtained with interactions hav-
ing different regulator functions, using the Hartree-Fock (HF)
instead of the HFB approximation as a starting point and third-
order many-body perturbation theory (MBPT). They showed
that the dependence on the choice of the regulator is to a large
extent compensated if in addition to the two-body also three-
body interactions are included. However, that work focused on
higher densities where pairing effects on the equation of state
are weak, and where the use of a density dependent cutoff is
not required. If one is interested in superfluidity, it is of course
mandatory to start from the HFB and not from the HF ground
state.

The paper is organized as follows. Section II discusses the
BMBPT formalism and obtains expressions for the second
and third order corrections to the HFB energy. The main re-
sults are discussed in Sec. III, while in Sec. IV, we summarize
the important aspects of our current work and look at possible
directions that could be explored in future studies.

II. FORMALISM

In this section, we outline the BMBPT, by first reviewing
the HFB approach to incorporate the superfluid nature of the
ground state.

A. Hartree-Fock-Bogoliubov theory

The pairing between two particles in the states k↑ and −k↓
in an interacting Fermi gas can be realized via the definition

of a new quasiparticle operator [27]

βk σ = uk ak σ − (−1)
1
2 −σ vk a†

−k −σ , (1)

where the coefficients uk and vk can be chosen to be real,
ak σ and a†

k σ are particle annihilation and creation operators,
and σ = ± 1

2 labels the spin projection. For the transformation
to be canonical, the quasiparticle operators have to satisfy
the usual anticommutation relations and as a result, the co-
efficients are constrained to obey the condition u2

k + v2
k = 1.

Since the particle number is not conserved in this approach,
one fixes the average particle number (or number density n)
by introducing the chemical potential μ and writing the grand
canonical Hamiltonian as

K̂ = Ĥ − μN̂ =
∑
kσ

(
ε0

k − μ
)

a†
k σ ak σ

+ 1

4

∑
kiσi

〈k1σ1 k2σ2|V̄ |k3σ3 k4σ4〉a†
k1σ1

a†
k2σ2

ak4σ4
ak3σ3

.

(2)

The second sum is over all momenta (with the constraint of
momentum conservation) and spins. Since we are consider-
ing infinite matter, the sums over momenta will actually be
integrals as in Ref. [18]. Further, ε0

k = k2/2m denotes the
energy of a free neutron with mass m, N̂ is the particle-number
operator, and V̄ is the antisymmetrized potential whose matrix
elements are given in terms of those in the partial wave basis
by

〈k1σ1 k2σ2|V̄ |k3σ3 k4σ4〉
= (4π )2

∑
smsm

′
s

∑
ll ′ml m

′
l

∑
jm j

Csms
1
2 σ1

1
2 σ2

Csm′
s

1
2 σ3

1
2 σ4

× C
jmj

lml sms
C

jmj

l ′m′
l sm′

s
Ylml

(q̂12)Y ∗
l ′m′

l
(q̂34)

× il−l ′ Vjll ′s(q12, q34) [1 + (−1)l+s], (3)

where qi j = (ki − k j )/2, C jm
j1m1 j2m2

are the Clebsch-Gordan
coefficients in the notation of Ref. [28], and Ylm the spherical
harmonics. Rewriting the expression for the Hamiltonian in
terms of the quasiparticle operators, Eq. (2) becomes

K̂ =
∑

k

[
2v2

k ξk − v2
k �HFB(k) − ukvk 	k

]

+
∑
k,σ

β
†
k σ βk σ

[(
u2

k − v2
k

)
ξk + 2ukvk	k

]

+ 1

2

∑
k,σ

(−1)
1
2 −σ [β−k −σ βk σ + β

†
k σ β

†
−k −σ ]

× [
2ukvk ξk − (

u2
k − v2

k

)
	k

] + N (V̂ ), (4)

where �HFB(k) and 	k are, respectively, the HFB self-energy
and the 1S0 gap function whose expressions will be given
below and ξk denotes the single-particle energy measured with
respect to the chemical potential,

ξk ≡ ε0
k + �HFB(k) − μ. (5)
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The symbol N in Eq. (4) denotes normal ordering with respect
to the quasiparticle operators (moving β† operators to the left
and β operators to the right), and N (V̂ ) is given by

N (V̂ ) = 1

4

∑
kiσi

〈k1σ1 k2σ2|V̄ |k3σ3 k4σ4〉

× N (
a†

k1σ1
a†

k2σ2
ak4σ4

ak3σ3

)
. (6)

As usual, one requires the third term in Eq. (4) to vanish,
which leads to

ukvk = 	k

2Ek

, u2
k = 1

2

(
1 + ξk

Ek

)
, v2

k = 1

2

(
1 − ξk

Ek

)
,

(7)
where

Ek ≡
√

	2
k + ξ 2

k (8)

is the quasiparticle energy. The 1S0 gap and HFB self-energy
are given by

	k = − 1

π

∫
dk′ k′2 	k′

Ek′
V1S0

(k, k′), (9)

�HFB(k) = 1

π

∫
dk′ k′ 2 v2

k′V̄avg(k, k′). (10)

In Eq. (10), V̄avg(k, k′) denotes the angle averaged interaction

V̄avg(k, k′) = 1

2

∫
d (cos θk′,k )

∑
sl j

(2 j + 1)

× Vsll j (q, q) [1 + (−1)l+s], (11)

where q = (k − k′)/2. In the limit of zero gap, the factor v2
k

becomes the Heaviside θ function and Eq. (10) reduces to the
familiar HF self-energy. For a given chemical potential, the
number density in the HFB approximation is given by

nHFB = 1

π2

∫
dk k2 v2

k , (12)

and the HFB ground state energy density is given by

EHFB = 1

2π2

∫
dk k2

[
v2

k (k2 + �HFB(k)) − 	2
k

Ek

]
. (13)

The energy per particle EHFB is EHFB/nHFB.

B. Bogoliubov many-body perturbation theory

With Eq. (7), the operator K̂ of Eq. (4) can now be rewritten
as

K̂ = K00 + K̂11 + N (V̂ ), (14)

where K̂i j contains i quasiparticle creation operators and j
quasiparticle annihilation operators. For example, K00 and K̂11

are given by

K00 =
∑

k

(
v2

k [2ξk − �HFB(k)] − 	2
k

2Ek

)
, (15)

K̂11 =
∑
k,σ

β
†
k σ βk σ Ek, (16)

where K00 corresponds to the expectation value of the operator
K̂ in the HFB ground state which has zero quasiparticles,
and K̂11 describes the energy of noninteracting quasiparticles.
The interaction between quasiparticles is contained in N (V̂ ),
which can be written as

N (V̂ ) = K̂40 + K̂31 + K̂22 + K̂13 + K̂04. (17)

Since the eigenstates and eigenvalues of K̂0 = K00 + K̂11 are
known, one can build corrections to the HFB ground state
through perturbation theory, i.e., by writing

K̂ = K̂0 + λN (V̂ ) (18)

and expanding the ground state of K̂ in powers of the formal
parameter λ, the physical situation corresponding of course to
λ = 1. Following [18,19], there is no first-order correction and
the second-order (BMBPT2) correction to the ground-state
energy density1 is given by

E (2) = − 1

4!

∑
1234

|〈0|K̂04|1234〉|2
E1234

, (19)

where |0〉 is the HFB ground state, the indices 1, 2, 3, and 4
mean both momentum and spin, e.g., 1 = {k1, σ1}, such that
the summation over 1234 means summation over momenta
k1 . . . k4 (with zero total momentum k1 + k2 + k3 + k4 = 0)
and spins σ1 . . . σ4. The energy of the intermediate four-
quasiparticle state |1234〉 = β

†
1β

†
2β

†
3β

†
4 |0〉 is given by E1234 =

Ek1 + Ek2 + Ek3 + Ek4 . The factor 4! accounts for the number
of permutations of indices 1234 describing all the same state.
The explicit form of the operator K̂04 in Eq. (19) is

K̂04 = − 1

4

∑
1234

〈1 2|V̄ |3 4〉 (−1)σ1+σ2

× v1v2u4u3 β−1 β−2 β4 β3, (20)

where v1 = vk1 , etc. With a bit of algebra, it can be shown that
the second-order correction to the energy is given by

E (2) = −
∑

k1k2k3

A + B + C

E1234
, (21)

where

A =1

4
v2

1v
2
2u2

3u2
4

∑
σ1σ2σ3σ4

|〈−1 − 2|V̄ |3 4〉|2, (22)

B =1

4
u1v2 u2v2 u3v3 u4v4

∑
σ1σ2σ3σ4

|〈−1 − 2|V̄ |3 4〉|2, (23)

C = v2
1 u2v2 u3v3 u2

4

∑
σ1σ2σ3σ4

(−1)σ2+σ3

× Re[〈−1 − 2|V̄ |3 4〉∗〈−1 − 3|V̄ |2 4〉]. (24)

The terms B and C contribute only when there is a finite
gap. In the limit of no pairing, only term A contributes, and

1As mentioned in Ref. [18], for a given chemical potential μ,
the second- and third-order corrections to the grand potential � =
E − μn coincide with the second- and third-order corrections to the
energy density of the system with the density nHFB(μ).
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one retrieves the HF + MBPT2 as already noted in [18]. In
deriving Eqs. (22)–(24), the hermiticity

〈1 2|V̄ |3 4〉 = 〈3 4|V̄ |1 2〉∗, (25)

and the time-reversal symmetry

〈1 2|V̄ |3 4〉 = (−1)σ1+σ2+σ3+σ4〈−3 − 4|V̄ | − 1 − 2〉, (26)

have been used.
Similarly, the third-order (BMBPT3) correction to the

ground state energy density is given by

E (3) =
∑
1...8

〈0|K̂04|1234〉〈1234|K̂22|5678〉〈5678|K̂40|0〉
E1234E5678

,

(27)
where K̂40 = K̂†

04 and

K̂22 = 1

4

∑
1234

〈1 2|V̄ |3 4〉 [u1u2u4u3 β
†
1β

†
2β4β3

+ (−1)σ1+σ2+σ3+σ4v1v2v4v3 β
†
−4β

†
−3β−1β−2

− (−1)σ2+σ3 u1v2u4v3 β
†
1β

†
−3β−2β4

+ (−1)σ2+σ4 u1v2v4u3 β
†
1β

†
−4β−2β3

+ (−1)σ1+σ3v1u2u4v3 β
†
2β

†
−3β−1β4

− (−1)σ1+σ4v1u2v4u3 β
†
2β

†
−4β−1β3]. (28)

For ease of presentation, the lengthy explicit expressions at
third order (that were obtained with the help of a Mathematica
code) are relegated to the Appendix. Momentum conservation
finally reduces the number of momentum integrations to four.

The momentum integrals are computed numerically us-
ing Monte Carlo integration with the importance-sampling
method explained in Ref. [18].

III. RESULTS AND DISCUSSION

A. HFB results

Before we present our results, let us say a few words
about the interaction used in our computations. We use the
free-space RG-based low-momentum interaction Vlow-k (with
a smooth exponential regulator with nexp = 5), which depends
on the renormalization cutoff � [22]. Lowering the cutoff
through the RG flow softens the interaction while preserving
two-body observables by construction. Furthermore, for cut-
offs below � � 2.1 fm−1, the Vlow-k matrix elements become
practically independent of the choice of the initial interaction
such as AV18 or chiral potentials [23]. Here we will show
results obtained with the Vlow-k derived from AV18 [29], but
when starting from the N3LO chiral interaction [30] we obtain
very similar results.

When such soft interactions are used in a many-body cal-
culation, one hopes that perturbative corrections show rapid
convergence. The two-body interaction eventually flows to
the two-body scattering length as � → 0. Therefore, small
cutoffs become very important for describing physics at low
densities (which otherwise would require ladder resumma-
tions), as was observed in [25]. There, a density dependent
cutoff � = f kF, with a scale factor f of the order of 2.5

FIG. 1. Convergence of the equation of state (energy density in
units of the energy density of the ideal Fermi gas as a function of
kF) in the HFB approximation with the inclusion of the higher partial
waves. Here, lmax indicates the highest partial wave that has been
included.

(sufficiently large to leave the BCS gap unchanged), was re-
quired to reproduce the Gor’kov-Melik-Bharkhudarov results
for the superfluid transition temperature when screening ef-
fects are included. In a subsequent study [18], a Vlow-k like
interaction was used to describe Fermi gases with contact
interactions, and at least for kF|a| � 1, convergence of the
HFB + BMBPT3 scheme was reached for cutoffs in the range
� � 2.5 kF.

Given Eq. (3), which is an expansion in partial waves, it is
important to investigate the number of such waves that need to
be included in the calculation of the equation of state. Figure 1
shows the HFB ground-state energy density [see Eq. (13)] in
units of the energy density of the noninteracting Fermi gas
(FG),

EFG = k5
F

10π2m
(29)

as a function of kF = (3π2n)1/3, as various partial waves are
included one by one, for a density dependent cutoff � = 2 kF.
We see that the S wave dominates until kF ∼ 0.4 fm−1, beyond
which the P and D waves become important. Because of
strong cancellations between the 3P0, 3P1, and 3P2 contribu-
tions, including the P wave without the D wave does not result
in a noticeable improvement at any density. Partial waves
beyond l = 2 have some effect for kF � 0.7 fm−1. We con-
clude that for the density range we are interested in, including
partial waves with l � 6 yields converged (with respect to
lmax) results.

Let us now come back to the discussion of constant vs.
density dependent cutoffs. In Fig. 2, we compare HF (thin
lines) and HFB (thick lines) results obtained with fixed (� =
2 fm−1, red dashes) and density dependent (� = 2kF, blue
solid lines) cutoffs. It is evident that results for the constant
and the density dependent cutoffs agree at kF = 1 fm−1. For
larger kF, the density dependent cutoff is bigger than the
fixed cutoff, reaching eventually a value of 2.8 fm−1 (since
the figure covers the range kF � 1.4 fm−1). We observe that at
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FIG. 2. HF (thin lines) and HFB (thick lines) results for the
ground-state energy obtained with a fixed cutoff � = 2 fm−1 (red
dashes) and with a density-dependent cutoff � = 2kF (blue solid
lines). The short black dashes show the asymptotic low-density
behavior of the HF result with fixed cutoff according to Eq. (30),
while the long black dashes show the fourth-order kFa expansion of
Ref. [31].

kF � 1.1 fm−1, the HFB results are practically identical to the
respective HF results because the pairing gap becomes very
small compared to the Fermi energy.

As the density tends towards zero, the ground state energy
of the interacting system approaches that of the noninteracting
system. In HF approximation, for a fixed cutoff, one can
obtain an expansion in kF,

EHF

EFG
= 1 + 10

9π
mkFV0, (30)

where V0 = V1S0
(0, 0) is the matrix element of the two-body

interaction for q = q′ = 0. This result, shown as black short-
dashed line in Fig. 2 is in perfect agreement with the HF result
(thin red dashes) up to kF ∼ 0.2 fm−1. The inclusion of pairing
in HFB does not change this asymptotic behavior since the
pairing gap vanishes as k2

Fe−π/|2kFa| [17], and this explains why
also the HFB results (thick red dashes) eventually approach
the curve given by Eq. (30) at very small kF.

Obviously, Eq. (30) is in disagreement with the well-
known leading term of the kFa expansion [27] which is given
by Eq. (30) with the replacement V0 → a/m. In the case of
neutron matter and � = 2 fm−1, the factor a/m is about ten
times larger in magnitude than V0. Hence, the slope of the HF
(and HFB) results at small kF with fixed � = 2 fm−1 is much
too small, as can be seen by comparing them with the results
of the kFa expansion of Ref. [31] [black dashes, including
orders up to (kFa)4]. Notice that the validity of this expan-
sion is limited to the small region kF � 1/|a| ∼ 0.05 fm−1.
Furthermore, it does not include effects of the finite range of
the nn interaction.

It is well known that with decreasing cutoff, V0 grows in
magnitude until it finally approaches a/m (see, e.g., Fig. 15
in Ref. [23]). The HF(B) energies obtained with the density
dependent cutoff (solid blue lines in Fig. 2) are therefore much
lower (at low densities) than those obtained with the fixed
cutoff, and they are in much better agreement with the kFa

FIG. 3. (a) HFB 1S0 pairing gap and (b) effective mass as a func-
tion of kF for three different values of the cutoff parameter f = �/kF.

expansion. We conclude that, in order to reproduce the correct
low-density behavior, the HFB approximation with a density
dependent cutoff is a better starting point than with a fixed
cutoff.

The HFB 1S0 gap 	kF as function of kF, computed using
Eqs. (5) and (8)–(12) for different values of the cutoff param-
eter f = �/kF, is seen in Fig. 3(a), while Fig. 3(b) shows the
corresponding effective mass, defined by

1

m∗ = 1

m
+ 1

kF

d�HFB(k)

dk

∣∣∣∣
k=kF

. (31)

The unusual fact that m∗ > m at very low density, especially
for � = 1.5 kF, can be understood from the shape of the ma-
trix elements of Vlow-k in the case of very small cutoffs, see,
e.g., Fig. 11 of Ref. [25]. Since the effective mass determines
the density of states at the Fermi level, the gap usually reacts
very sensitively to its change, a reduction of m∗ leading to
a reduction of the gap. But in Fig. 3 we note that, while the
effective mass decreases with increasing cutoff parameter, the
dependence of the gap on this parameter shows the opposite
trend. The explanation is that if the cutoff gets very small
(� = 1.5 kF), the matrix elements of the potential and hence
the gap function 	k and the vk factors are cut off closely above
kF so that the gap must be reduced, even though the effective
mass is enhanced. For �/kF between 2 and 2.5, these two
effects compensate each other (the almost exact cancellation
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FIG. 4. Ground state energy in units of the energy of the free
Fermi gas, as a function of kF, at different levels of approximation:
HFB (green dashes), BMBPT2 (short blue dashes), BMBPT3 (red
solid lines), for (a) fixed cutoff � = 2 fm−1 and (b) density depen-
dent cutoff � = 2 kF. HF and MBPT results are shown using thin
lines.

being accidental), and the gap remains practically unchanged
in spite of the further reduced effective mass.

B. HFB + BMBPT results

So far, we have only discussed HFB results and their
dependence on the unphysical cutoff parameter. Let us now
discuss how the situation improves when we include the
BMBPT corrections. In Fig. 4, we present our calculation
of the equation of state within HFB + BMBPT up to third
order for both fixed cutoff [� = 2 fm−1, Fig. 4(a)] and density
dependent cutoff [� = 2kF, Fig. 4(b)] as a function of kF. In
addition, we also include the HF + MBPT results obtained by
setting 	 = 0.

The BMBPT3 results obtained with fixed and density de-
pendent cutoffs differ noticeably from each other in the region
kF � 0.4 fm−1. In particular, the energies obtained with a
fixed cutoff [Fig. 4(a)] are much higher than those of the
kFa expansion. Furthermore, the BMBPT3 correction, e.g., at
kF = 0.1 fm−1, is about 60 % of the BMBPT2 correction [see
inset in Fig. 4(a)], so one cannot claim that the expansion has
converged, and it is not clear whether perturbation theory will

FIG. 5. BMBPT3 equation of state for fixed cutoff � = 2 fm−1

(red dashes) and density dependent cutoff � = 2 kF (blue solid lines).
For comparison, we also show the low-density behavior according
to the fourth-order kFa expansion of Ref. [31] (black long dashes),
MBPT3 results of Ref. [26] (green small dashes), and various QMC
results of Refs. [33] (green squares), [34] (purple triangles), and [35]
(black circles).

ever be able to bring the results down to the kFa expansion.
On the contrary, with the density dependent cutoff [Fig. 4(b)]
the agreement between BMBPT3 and kFa expansion is very
good, and the BMBPT3 brings only a tiny correction to the
BMBPT2 result, so that one may speak of convergence of the
BMBPT expansion.

Let us explain these findings. At very low density, the re-
sults should agree with the kFa expansion because the particles
scatter at very low energies and Pauli-blocking effects are
negligible. As already pointed out in the preceding subsection,
in order to obtain the scattering length, one either has to resum
ladders to all orders or take the limit � → 0 in which case
the value of V0 = V1S0

(0, 0) approaches the scattering length.
Hence the HFB energy with a fixed cutoff is far too high,
as already seen in Fig. 2, and the third-order perturbation
theory is not enough to correct for that,2 whereas for density
dependent cutoff, at very low kF (and hence very low �), the
perturbative corrections bring the results into agreement with
the kFa expansion.

At very low and high densities, the gaps become very
small and HFB + BMBPT reduces in practice to the simpler
HF + MBPT, plotted with thin lines. For kF � 1 fm−1, where
the gap is large enough to make a noticeable contribution to
the equation of state, we see that the perturbative corrections
within BMBPT to HFB are much lesser than those of MBPT
to HF. Hence the HFB + BMBPT converges better than the
HF + MBPT as expected. However, it is interesting that in
the region kF ∼ 0.6–1 fm−1, both MBPT3 and BMBPT3 give

2This can also be understood by looking at the so-called Weinberg
eigenvalues as shown in Fig. 1 of Ref. [32]: although � = 2 fm−1 is
enough to make the interaction soft, in the sense that all repulsive
eigenvalues are small, the attractive eigenvalue becomes large at low
density and hence very high orders in perturbation theory would be
needed to describe the full (in-medium) T matrix.
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FIG. 6. HFB (dashed lines) and BMBPT3 (solid lines) equa-
tions of state for three different scale factors f = �/kF = 1.5
(black), 2 (red), and 2.5 (light blue).

practically the same results, i.e., the MBPT is able to ac-
count for the pairing correlations which are missing in the HF
ground state. For kF � 0.6 fm−1, the MBPT cannot reproduce
the BMBPT results, at least not yet at third order.

In Fig. 5, we compare our final results (BMBPT3) with
results from the literature such as MBPT [26] and Quantum
Monte Carlo (QMC) [33–35]. At low densities, our results
for � = 2kF are in excellent agreement with the QMC re-
sults [33,34] [except the last two points of Ref. [33] (green
squares) at kF ∼ 0.4–0.5 fm−1]. Furthermore, our results are
also very similar to the MBPT results of Ref. [26] (green
small dashes), although another interaction (chiral N3LO with
� = 500 MeV, no three-body force) was used there.

Looking at the region kF > 1 fm−1, we have seen in Fig. 2
that the HFB results (which are close to the HF results in that
region) obtained with � = 2 fm−1 differ from those obtained
with � = 2kF. But now we see in Fig. 5 that this difference
is to a large extent absorbed by the BMBPT corrections, as it
should be since physical results should be cutoff independent.
But we also observe that our results lie clearly below the QMC
points of Ref. [35] (black circles). This difference could be
due to the missing three-body force in our calculation.

In Fig. 6, we study more systematically the cutoff depen-
dence of the HFB (dashed lines) and BMBPT3 (solid lines)
results by using different scale parameters f = �/kF (as in
Fig. 3). Again, we note that, compared to the HFB results, the
cutoff dependence is significantly reduced by including per-
turbative corrections up to third order. But the equation state
including the third-order corrections still does have residual
cutoff dependence. This could be due to missing higher-order
perturbative contributions, or missing contributions of three-
body forces, as discussed in the following section.

IV. SUMMARY AND OUTLOOK

In this work, we focus on calculating the equation of state
for pure neutron matter with renormalization-group softened

Vlow-k interactions within BMBPT that builds perturbative cor-
rections around the HFB state and hence takes into account
the superfluid nature of the ground state. While pairing almost
does not affect the equation of state at high densities, includ-
ing it certainly gives a better starting point for the perturbation
theory in the range of densities where the gap is large and
where the HFB energy is considerably lower than the HF one.
Furthermore, at very low densities, the HFB provides a better
starting point of the perturbative expansion if one uses in the
Vlow-k interaction a density dependent cutoff � that scales with
kF instead of a fixed cutoff.

Since the cutoff � is an unphysical quantity, observables
such as the ground-state energy should not depend on it.
While the BMBPT corrections absorb the cutoff dependence
of the HFB results to a large extent, we note that there is
still residual cutoff dependence after including third order.
For a cutoff of � = 2 fm−1, the three-body forces contribute
at leading order only for kF > 0.8 fm−1 [36]. However, for
a density dependent cutoff that scales with kF, three- (and
maybe even higher-) body forces could also play a significant
role at smaller densities because then the cutoff becomes very
small and the three- (and higher-)body terms may grow as
the two-body term is evolved via the RG flow [23,37]. At
the very least, it would be necessary to include the induced
three-body effects. An interesting approach to include the
induced forces is the in-medium similarity renormalization
group (IMSRG) technique that has been very successful in
finite nuclei (see for example [38]). However, this is beyond
the scope of our current work and will be postponed to a future
study.

Furthermore, there is also a lot of interest in the superfluid
properties of neutron matter, independently of the equation of
state. Like the HFB ground-state energy, also the pairing
gap shows dependence on the unphysical cutoff parameter
� of the Vlow-k interaction. One may hope that, by com-
puting higher-order perturbative corrections to the normal
and anomalous self-energies (i.e., diagonal and nondiago-
nal in Nambu-Gor’kov indices [39]), one can obtain more
cutoff independent results for the quasiparticle dispersion
relation (mean field, effective mass) and for the gap. Higher-
order contributions to the anomalous self-energy include, e.g.,
screening corrections to the gap, which are known to reduce
the gap. Work in this direction is in progress.
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APPENDIX: EXPLICIT EXPRESSIONS FOR THE
THIRD-ORDER BMBPT CORRECTION

For completeness, we give here the expressions necessary
to compute E (3), Eq. (27), generalizing the expressions given
in the Appendix of Ref. [18] to the case of nonseparable
interactions with partial waves beyond the 1S0.
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Momentum conservation in K̂04 and K̂40 requires k1 + k2 + k3 + k4 = 0 and k5 + k6 + k7 + k8 = 0. Furthermore, K̂22 leaves
two momenta and two spins unchanged. So, there are only four independent momenta to integrate and six spins to sum over.
After relabeling the particles such that the four integration variables are called k1 . . . k4, we can write

E (3) =
∑

k1...k4

(
u1v1 u2v2 u3v3 u4v4 A1 + u1v1 u2v2 u3v3 v2

4 A2 + u1v1 u2v2 u3v3 u2
4 A3 + u1v1 u2v2 v2

3 v2
4 A4

+ u1v1 u2v2 v2
3 u2

4 A5 + v2
1 v2

2 v2
3 u2

4 A6 + v2
1 v2

2 u2
3 u2

4 A7
)
. (A1)

The remaining momenta are then given by different linear combinations of k1 . . . k4 which we denote by

k5 = −k1 − k2 − k3, k6 = −k1 − k2 − k4, k7 = −k1 − k3 − k4,

k8 = −k2 − k3 − k4, k9 = k1 + k2 − k3, k10 = k1 + k3 − k2,

k11 = k1 + k2 − k4, k12 = k1 + k4 − k2, k13 = k2 + k3 − k4. (A2)

Using notations

〈k1σ1 k2σ2|V̄ |k3σ3 k4σ4〉 = V̄σ1σ2σ3σ4 (q1,2, q3,4), qi, j = ki − k j

2
, q+

i, j = ki + k j

2
, σ̄i = −σi,

the expressions for the integrands A1 . . . A7 in Eq. (A1) read

A1 =
∑

σ1...σ6

[
(−1)σ3+σ6 u2

5 u2
6

Re
[
V̄σ2σ4σ̄6σ̄1 (q2,4, q1,6) V̄σ̄3σ̄1σ2σ5 (q1,3, q2,5) V̄σ3σ5σ4σ6 (q3,5, q4,6)

]
E1,2,3,5 E1,2,4,6

+ (−1)σ3+σ6 v2
5 v2

6

Re
[
V̄σ1σ4σ̄6σ̄2 (q1,4, q2,6) V̄σ̄3σ̄2σ1σ5 (q2,3, q1,5) V̄σ3σ5σ4σ6 (q3,5, q4,6)

]
E1,2,3,5 E1,2,4,6

− (−1)σ2+σ3+σ5+σ6
(
u2

5 u2
13 + v2

5 v2
13

) Re
[
V̄σ1σ4σ̄5σ̄6 (q1,4, q13,5) V̄σ2σ3σ6σ4 (q2,3, q13,4) V̄σ̄3σ̄2σ1σ5 (q2,3, q1,5)

]
E1,4,5,13 E1,2,3,5

− (−1)σ3+σ5 u5v5 u6v6

Re
[
V̄σ2σ4σ̄6σ̄1 (q2,4, q1,6) V̄σ̄3σ̄1σ2σ5 (q1,3, q2,5) V̄σ3σ̄6σ4σ̄5 (q+

3,6, q+
4,5)

]
E1,2,3,5 E1,2,4,6

+ 2 (−1)σ1+σ6
(
u2

8 v2
7 + u2

7 v2
8

) Re
[
V̄σ1σ4σ̄5σ̄3 (q1,4, q3,7) V̄σ̄3σ2σ4σ̄6 (q2,3, q4,8) V̄σ̄5σ̄1σ6σ2 (q1,7, q2,8)

]
E1,2,7,8 E1,3,4,7

+ (−1)σ1+σ2+σ3+σ4 u2
6 v2

5

Re
[
V̄σ1σ2σ̄6σ̄4 (q1,2, q4,6) V̄σ̄2σ̄1σ3σ5 (q1,2, q3,5) V̄σ5σ̄6σ4σ̄3 (q+

5,6, q+
3,4)

]
E1,2,3,5 E1,2,4,6

]
, (A3)

A2 =
∑

σ1...σ6

[
u2

6 u9v9
Re

[
V̄σ2σ̄5σ3σ̄1 (q+

2,9, q+
1,3) V̄σ3σ6σ̄5σ̄4 (q3,6, q4,9) V̄σ̄4σ̄1σ2σ6 (q1,4, q2,6)

]
E1,2,4,6 E3,4,6,9

− 2 (−1)σ1+σ2+σ4+σ6 u2
6 u5v5

Re
[
V̄σ2σ3σ̄5σ̄1 (q2,3, q1,5) V̄σ̄4σ̄2σ1σ6 (q2,4, q1,6) V̄σ4σ̄5σ3σ̄6 (q+

4,5, q+
3,6)

]
E1,2,3,5 E1,2,4,6

+ 1

8
(−1)σ1+σ2+σ3+σ5 u9v9 v2

6

Re
[
V̄σ1σ2σ3σ5 (q1,2, q3,9) V̄σ̄2σ̄1σ4σ6 (q1,2, q4,6) V̄σ4σ6σ̄5σ̄3 (q4,6, q3,9)

]
E1,2,4,6 E3,4,6,9

+ 1

4
(−1)σ1+σ2+σ4+σ6 u5v5 v2

6

Re
[
V̄σ1σ2σ̄5σ̄3 (q1,2, q3,5) V̄σ̄2σ̄1σ4σ6 (q1,2, q4,6) V̄σ̄5σ̄3σ̄6σ̄4 (q3,5, q4,6)

]
E1,2,3,5 E1,2,4,6

]
, (A4)

A3 =
∑

σ1...σ6

[
1

4
(−1)σ1+σ2+σ4+σ6 u2

6 u5v5
Re

[
V̄σ1σ2σ̄6σ̄4 (q1,2, q4,6) V̄σ̄2σ̄1σ3σ5 (q1,2, q3,5) V̄σ3σ5σ4σ6 (q3,5, q4,6)

]
E1,2,3,5 E1,2,4,6

+ 1

8
(−1)σ1+σ2+σ3+σ5 u2

6 u9v9
Re

[
V̄σ1σ2σ3σ5 (q1,2, q3,9) V̄σ̄2σ̄1σ4σ6 (q1,2, q4,6) V̄σ4σ6σ̄5σ̄3 (q4,6, q3,9)

]
E1,2,4,6 E3,4,6,9

]
, (A5)

A4 =
∑

σ1...σ6

[
− 2 (−1)σ3+σ5 u2

13 u2
5

Re
[
V̄σ1σ4σ̄5σ̄6 (q1,4, q13,5) V̄σ̄3σ̄2σ1σ5 (q2,3, q1,5) V̄σ3σ̄6σ4σ̄2 (q+

13,3, q+
2,4)

]
E1,4,5,13 E1,2,3,5
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− (−1)σ3+σ5 u2
5 u2

6

Re
[
V̄σ2σ4σ̄6σ̄1 (q2,4, q1,6) V̄σ̄3σ̄1σ2σ5 (q1,3, q2,5) V̄σ3σ̄6σ4σ̄5 (q+

3,6, q+
4,5)

]
E1,2,3,5 E1,2,4,6

− (−1)σ2+σ3+σ4+σ6 u2
7 v2

8

Re
[
V̄σ1σ5σ̄2σ̄6 (q+

1,8, q+
2,7) V̄σ3σ4σ5σ2 (q3,4, q2,8) V̄σ̄4σ̄3σ1σ6 (q3,4, q1,7)

]
E1,2,7,8 E1,3,4,7

+ 2 (−1)σ1+σ2+σ3+σ4+σ5+σ6 u2
11 u2

5

Re
[
V̄σ2σ3σ̄5σ̄1 (q2,3, q1,5) V̄σ̄4σ̄3σ6σ5 (q3,4, q11,5) V̄σ4σ̄2σ1σ̄6 (q+

2,4, q+
1,11)

]
E1,2,3,5 E3,4,5,11

− 1

2
(−1)σ1+σ3+σ4+σ6 u2

7 u2
8

Re
[
V̄σ3σ4σ̄6σ̄2 (q3,4, q2,8) V̄σ̄4σ̄3σ1σ5 (q3,4, q1,7) V̄σ5σ̄2σ6σ̄1 (q+

2,7, q+
1,8)

]
E1,3,4,7 E2,3,4,8

+ (−1)σ1+σ3+σ5+σ6 u2
7 v2

12

Re
[
V̄σ̄2σ̄5σ̄4σ̄1 (q12,2, q1,4) V̄σ̄4σ̄3σ1σ6 (q3,4, q1,7) V̄σ5σ3σ̄6σ̄2 (q12,3, q2,7)

]
E1,3,4,7 E2,3,7,12

− 2 (−1)σ2+σ3+σ4+σ6 u2
5 u2

7

Re
[
V̄σ̄3σ̄1σ2σ5 (q1,3, q2,5) V̄σ3σ4σ̄6σ̄1 (q3,4, q1,7) V̄σ5σ̄4σ6σ̄2 (q+

4,5, q+
2,7)

]
E1,2,3,5 E1,3,4,7

]
, (A6)

A5 =
∑

σ1...σ6

[
(−1)σ1+σ3+σ4+σ6 u2

7 u2
8

Re
[
V̄σ1σ5σ2σ6 (q1,7, q2,8) V̄σ2σ3σ̄6σ̄4 (q2,3, q4,8) V̄σ̄3σ̄1σ4σ5 (q1,3, q4,7)

]
E1,3,4,7 E2,3,4,8

+ 1

2
(−1)σ1+σ4+σ5+σ6 u2

7 v2
10

Re
[
V̄σ1σ̄5σ2σ̄3 (q+

1,10, q+
2,3) V̄σ̄3σ̄1σ4σ6 (q1,3, q4,7) V̄σ5σ2σ̄6σ̄4 (q10,2, q4,7)

]
E1,3,4,7 E2,4,7,10

− (−1)σ2+σ3+σ4+σ5 u2
5 u2

7

Re
[
V̄σ2σ3σ̄6σ̄1 (q2,3, q1,5) V̄σ̄3σ̄1σ4σ5 (q1,3, q4,7) V̄σ̄6σ̄2σ̄5σ̄4 (q2,5, q4,7)

]
E1,2,3,5 E1,3,4,7

]
, (A7)

A6 =
∑

σ1...σ6

[
− (−1)σ1+σ2+σ4+σ5 u2

6 u2
7

Re
[
V̄σ1σ3σ̄6σ̄4 (q1,3, q4,7) V̄σ̄2σ̄1σ4σ5 (q1,2, q4,6) V̄σ2σ̄6σ3σ̄5 (q+

2,7, q+
3,6)

]
E1,2,4,6 E1,3,4,7

+ 1

8
(−1)σ1+σ2+σ3+σ5 u2

6 v2
9

Re
[
V̄σ1σ2σ3σ5 (q12, q39) V̄σ̄2σ̄1σ4σ6 (q1,2, q4,6) V̄σ4σ6σ̄5σ̄3 (q4,6, q3,9)

]
E1,2,4,6 E3,4,6,9

]
(A8)

A7 =
∑

σ1...σ6

1

8
(−1)σ1+σ2+σ4+σ6 u2

5 u2
6

Re
[
V̄σ1σ2σ̄6σ̄4 (q1,2, q4,6) V̄σ̄2σ̄1σ3σ5 (q1,2, q3,5) V̄σ3σ5σ4σ6 (q3,5, q4,6)

]
E1,2,3,5 E1,2,4,6

. (A9)
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