
PHYSICAL REVIEW C 107, 025209 (2023)

Parametrization of the nuclear structure function
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In this paper, the parametrization of the nuclear structure function, which is directly constrained by the
dynamics of QCD in its high-energy limit, is considered. This simple parametrization of the nuclear structure
function is obtained from the proton experimental data by relying on a Froissart-bounded parametrization of
the proton structure function. This phenomenological model describes high-energy QCD in the presence of
saturation effects. Numerical calculations and comparison with available data from the NMC, EMC, and E665
Collaborations demonstrate that the suggested method by Armesto, Salgado, and Wiedemann (the ASW model)
provides a reliable ratio of the nuclear structure functions F A

2 /AF p
2 at low x for light and heavy nuclei. The

magnitude of nuclear shadowing is predicted for various kinematic regions and can be applied as well in the
analysis of ultrahigh-energy processes by future experiments at electron-ion colliders.

DOI: 10.1103/PhysRevC.107.025209

I. INTRODUCTION

The knowledge of QCD dynamics at high energies is es-
sential in the investigation of hadronic structure studied at
current accelerators (JLab, RHIC, and the LHC) and future ac-
celerators with the Electron-Ion Collider (EIC), Large Hadron
electron Collider (LHeC), and Future Circular Collider (FCC)
on the horizon. One of the main goals of high-energy nu-
clear physics is to comprehend the substructure of nucleons
in the framework of QCD, which is a successful theory in
describing the hadronic and nuclear phenomena as well as
the inner structure of nucleons and nuclei. In this regard, the
structure functions of nucleon and nuclei have played a crucial
role. Nuclear structure functions measured in deep-inelastic
scattering (DIS) experiments (which have been performed by
NMC, SLAC, NMC, FNAL, BCDMS, HERMES, and JLAB
groups) offer valuable information for understanding the dy-
namics of partons in the nuclear environment. The correct
characterization of nuclear effects in the parton distribution
functions (PDFs) is important due to their relevance in the
determination of the proton PDFs and this is a baseline for
new phenomena in heavy-ion collisions.

Nuclear parton distributions functions (nPDFs) are needed
in the computation of inclusive cross sections of hard, fac-
torizable, processes in high-energy nuclear collisions. The
nuclear effects are generally added as a modification of
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baseline PDFs, either by expanding the parametrization or
multiplying it by a factor, as reported in Refs. [1–12]. There
is, in both cases, a dependence on the atomic mass number
A. For this reason, there is a continual need for new data
sets to broaden global analyses. In this way, groups like
EPPS [13], NNPDF [14], or nCTEQ [15] have demonstrated
the nucleon and nuclear PDF (nPDF) analyses in recent years.
Nuclear effects on parton distributions and structure functions
are important for interpreting high-energy processes involving
nuclei such as heavy ions and electron-nucleus collisions at
EIC [16] and LHeC/FCC [17]. These colliders (i.e., EIC and
LHeC/FCC) are constructive in understanding the momentum
distribution of quarks and gluons in nuclei.

At small values of the Bjorken variable x, the nonlinear
QCD effects considered in these colliders are related to the
studies of partonic structure of protons and nuclei [18,19].
The proposed LHeC collider covers a wide kinematical range
down to x ≈ 10−6 in the perturbative range Q2 � 1 GeV2,
making it an ideal machine to study small-x physics. In ad-
dition to the Large Hadron-electron Collider, the construction
of an Electron-Ion Collider with a possibility to operate with
a wide variety of nuclei will allow one to explore the low-
x region in much greater detail. In this region a transition
between linear and nonlinear scale evolution of the parton
densities will be crucial [20]. The latter regime, known as
“saturation” [21,22], occurs at low x and low interaction scale
Q2 where the recombination of low-x gluons becomes increas-
ingly important.

Also, the small-x region of QCD can be described theoret-
ically in the effective-field theory known as the Color Glass
Condensate (CGC); see Ref. [23] for a review. In the CGC pic-
ture the nonlinear evolution equations describe the evolution
of the small-x gluon fields. Probing these nonlinearities at the
LHeC and EIC are crucial to test the saturation picture [18].
These nonlinearities are important in electron-nucleus scat-
tering in comparison with electron-proton interactions. The
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Hadron Electron Ring Accelerator (HERA) did not report
the nonlinear behavior of the distribution functions in deep-
inelastic scattering off nuclei at collider energies. Despite this,
future colliders (such as LHeC and EIC) will offer unique
capabilities to answer the nonlinearity in nuclei at high en-
ergies [20,24].

The proposed EIC would enable the first direct mea-
surements of nuclear gluons at intermediate and large x by
using heavy quark probes and could qualitatively advance our
understanding of the gluonic structure of nuclei [25]. This
collider (i.e., EIC) would have a strong impact, in particular
on understanding the small- and large-x regions of nuclear
shadowing and the EMC effect in comparison with fixed-
target kinematics, which DIS data considerably restricts in
range in x and Q2, and only with limited statistics for various
nuclei [26]. The experiment at EIC is DIS off a proton or a
nucleus with the variable center-of-mass energy within the
range 20 <

√
s < 140 GeV, where this is lower than at HERA

with
√

s = 318 GeV, but the luminosity is higher by a factor
of 1000. The EIC will combine the experience from HERA
to deliver polarized electron beams with the experience from
RHIC to be the first machine that provides the collision of
polarized electrons with polarized protons, and at a later stage,
polarized 2H and 3He [27]. At fixed-target facilities, such as
JLab, the majority of the momentum is carried by the electron,
while for electron-ion collider experiments, the majority of
the momentum is carried by the ion beam, so variables are
defined according to the electron beam and the ion beam
(against the electron beam), respectively. A detailed descrip-
tion of the fixed-target and the EIC four-momenta is given in
Ref. [28]. For collider experiments, the center-of-mass energy√

sEIC = √
4EeEh is often used as a frame of reference and for

fixed-target experiments the center-of-mass energy
√

sJLab =
(2mhEe + m2

h )1/2, where Eh = mh (target mass). The familiar
definitions of the Bjorken x are significantly different between
EIC and fixed-target experiments: for fixed-target experiments
xFixed = Q2/(2mhν) where ν is the energy transform ν =
Ee − E ′

e. At JLab, the Bjorken-x scaling is defined as xJLab =
NxFixed, where N is the number of nucleons in the target. In
collider experiments, x = xp/N where xp = Q2/[2Ep(ν + νz )]
and νz = Ee − E ′

e cos θe. Also, the collider definition of W 2

is W 2 = Q2(1 − x)/x where, in fixed-target experiments, it
is modified by W 2

JLab = m2
p + Q2(1 − xJLab)/xJLab. Therefore,

the kinematic (x, Q2) range of the fixed-target experiments
will be tested by EIC, as discussed in Ref. [28].

The simplest observable to study nuclear effects is to
measure the structure function ratios at small x (x � 0.01,
shadowing region). Indeed, the structure function F2 per
nucleon turns out to be smaller in nuclei than in a free
nucleon [24] and this is very important for the study of
nuclear structure and nuclear collisions. Nuclear shadowing
is a consequence of multiple scattering because this is well
understood in the gluon recombination. Indeed, in the frame
in which the nucleus is moving fast, the gluon clouds from
different nucleons overlap. Therefore the ratio of the struc-
ture functions (i.e., F A

2 /AF p
2 ), at small x, is smaller than

1. The shadowing effect is well understood by the charac-
teristic momentum scale which is known as the saturation
scale Q2

s . This scale (i.e., saturation scale) increases with

FIG. 1. The proton structure function F2(τ,Y ) plotted versus
scaling variable τp = Q2/Q2

sat,p for different values of rapidities Y =
ln 1

x from Ymin = 4.605 (solid curve) to Ymax = 13.816 (short-dash
curve) compared with the H1 Collaboration data as accompanied
with total errors [40], for x = 10−6, . . . , 10−2 (curves from up to
down, respectively).

decreasing x as Q2
s = Q2

0(x/x0)−λ. Geometrical scaling for
αs(Q2)xg(x, Q2)/Q2 holds at the boundary Q2 = Q2

s . For
Q2 < Q2

s the linear evolution is strongly perturbed by non-
linear effects and for Q2 > Q2

s the nonlinear screening effects
can be neglected [29].

In this paper a simple parametrization for the nuclear
structure function based on the parametrization of the proton
structure function is proposed. In Ref. [30] authors have sug-
gested parametrization of the proton structure function which
describes fairly well the available experimental data on the
reduced cross sections at small x where it is also pertinent
in investigations of lepton-hadron processes at ultrahigh en-
ergies (i.e., the scattering of cosmic neutrinos from hadrons).
The parametrization of the proton structure function describes
all data on DIS in the region of x � 0.01 in a wide inter-
val of photon virtualities [30]. Relying on saturation scaling
arguments, a simple model for the parametrization of the
nuclear structure function is suggested.

II. A MODEL FOR THE NUCLEAR
STRUCTURE FUNCTION

It is customary to write the proton structure function F2 into
the cross sections σT,L for the collision of the transversal (T )
or longitudinal (L) virtual photon of momentum q, q2 = −Q2,
on the proton as follows:

F p
2 (x, Q2) = Q2

4π2αem
[σγ ∗ p

T (x, Q2) + σ
γ ∗ p
L (x, Q2)]. (1)

The electron-proton (ep) deep-inelastic scattering (DIS) data
at small values of the Bjorken variable x can be described
within the framework of the dipole model [24,31–35]. In the
dipole frame, the incoming photon splits into a qq, which then
interacts with the proton. This process depends on the total
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FIG. 2. The nuclear structure function F A
2 (τ,Y ) (normalized to the number of nucleons) plotted versus scaling variable τp = Q2/Q2

sat,p for
different values of rapidities Y = ln 1

x , from Ymin = 4.605 (solid curve) to Ymax = 13.816 (short-dash curve) for carbon, calcium, xenon and
lead nuclei, for x = 10−6, . . . , 10−2 (curves from up to down, respectively).

dipole-proton cross section, which varies with x and the trans-
verse size r of the dipole. The total γ ∗ p cross section reads

σ
γ ∗ p
L,T (Q2,Y ) =

∫
d2r

∫ 1

0
dz|
L,T (r, z; Q2)|2σγ ∗ p

dip (r,Y ),

(2)

with Y = log(1/x) called the rapidity. 
L,T is the wave func-
tion for the splitting of the virtual photon into a qq pair
(dipole) and σ

γ ∗ p
dip (r,Y ) = 2πR2

pN (r,Y ) is the dipole-proton
cross section where N is the dipole-proton scattering ampli-
tude as entering the QCD evolution equations. Here z is a
fraction of longitudinal photon momentum carried by quark
and Rp is the radius of the proton. The wave function of the
virtual photon, |
|2 = |
T |2 + |
L|2, in the leading order is
given by

|
T (r, z; Q2)|2 = 3αem

2π2

∑
f

e2
f

{
[z2 + (1 − z)2]Q

2
f K2

1 (rQ f )

+ m2
f K2

0 (rQ f )
}
,

|
L(r, z; Q2)|2 = 3αem

2π2

∑
f

e2
f 4Q2z2(1 − z)2K0

1 (rQ f ), (3)

where K0 and K1 are the Bessel functions, sums
∑

f run over

all quark flavors with charge e f and mass m f , and Q
2
f = z(1 −

z)Q2 + m2
f .

In the color-dipole formalism, the nuclear structure func-
tion (i.e., F A

2 ) is proportional to the dipole nucleus cross
section (i.e., σ

γ ∗A
dip ). σ

γ ∗A
dip describes the interaction of the qq

dipole with the nucleus target. In the eikonal approximation,
the total cross section for a dipole to scatter off the target
nucleus at an impact parameter b is given by [1–4,19–35]

σ
γ ∗A
dip (r,Y ) = 2

∫
d2bNA(r,Y ; b). (4)

The nuclear scattering amplitude NA(r,Y ; b) depends on the
impact parameter b, rapidity, and dipole size r.

The one dimensionless variable τ = Q2/Q2
s is the geomet-

ric scaling where the physics remains unchanged when one
moves parallel to the saturation line. Indeed the saturation
scale is a border between dense and dilute gluonic systems
and the geometric scaling can be understood as a property of
the small-x evolution equations in the large-rapidity regime.
In Ref. [36], an analytic interpolation of lepton-proton data
as function of the scaling variable τ = Q2/Q2

s was proposed.
The ASW form of the single universal curve on σγ ∗ p is given
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FIG. 3. A dependence of nuclear structure function (normal-
ized to the number of nucleons) for A = 12, 40, 131, and 208 at
Y = 9.210 (x = 10−4) plotted versus scaling variable τp .

by [35]

σγ ∗ p(x, Q2) ≡ �(τ ) = σ 0[γE + �(0, ξ ) + ln ξ ], (5)

where γE and �(0, ξ ) are the Euler constant and the in-
complete � function, respectively. The authors of Ref. [35]
extracted the ξ function from a fit to lepton-proton data
as ξ = a/τ b with a = 1.868 and b = 0.746. The nor-
malization is fixed by σ 0 = 40.56 µb and the saturation
scale Q2

s is parametrized as Q2
s = (1 GeV2)(x/x0)−λ, where

x0 = 3.04×10−4, λ = 0.288 and x = x(Q2 + 4m2
f )/Q2 with

m f = 0.14 GeV. The nuclear structure function is defined

by F A
2 (x, Q2) = Q2σγ ∗A/(4π2α) where σγ ∗A = πR2

A
πR2

p
σγ ∗ p(τA)

and RA is the nuclear radius.
In Ref. [33], the authors have introduced the saturation

scale Q2
s (Y ) ∝ exp(υcY ), where it is based on an analytic

interpolation asymptotic behavior of the amplitude for the
unintegrated gluon function. The dipole-proton (nucleus) scat-
tering amplitude is as a result of the Balitsky-Kovchegov (BK)
evolution equation [37,38] at high-energy evolution. Q2

s (Y ) is
obtained from the knowledge of the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) kernel [39] in the form [33]

Q2
s (Y ) = k2

0 exp (αυcY ), (6)

where the parameters of model have been determined
according to the HERA data [40] as υc = 0.807, k2

0 =
3.917×10−3 GeV2 and α = 3αs/π . The condition for geo-
metric scaling in the case of γ ∗ − A interactions is defined
by the following form [33,35]:

σ
γ ∗A
tot

(
Q2

Q2
s,A

)
=

(
πR2

A

πR2
p

)
σ

γ ∗ p
tot

(
Q2

Q2
s,A

)
, (7)

where

Q2
s,A(Y ) = Q2

s,p(Y )

(
AπR2

p

πR2
A

)1/δ

, (8)

and Qs,p(Y ) [≡Qs(Y )] is the saturation scale for a proton
target. In the dipole model, the nuclear data are reproduced for
δ = 0.79 ± 0.02 and πR2

p = 1.55 ± 0.02 fm2 at low values of
x where the nuclear radius is given by the usual parametriza-
tion RA = (1.12A1/3 − 0.86A−1/3) fm [33,35,41,42]. In the
region of small x, the effect of nuclear shadowing manifests it-
self as an inequality F A

2 /AF p
2 , where σγ ∗A/Aσγ ∗ p ≈ F A

2 /AF p
2 .

This leads to the following result for the nuclear structure
function:

F A
2 (τA,Y ) =

(
πR2

A

πR2
p

)
F p

2 (τA,Y ), (9)

where the geometric scaling is considered by the following
form

τA = τp

(
πR2

A

AπR2
p

)1/δ

, (10)

and τp≡τ = Q2/Q2
s (Y ). The explicit expression for the

parametrization of the nuclear structure function F A
2 , is the

same of the parametrization of the proton structure function
with the change Q2 → Q2

A, where

Q2
A = τ

(
AπR2

p

πR2
A

)1/δ

Q2
s = τQ2

s,A. (11)

In Ref. [30] an analytical expression for the proton structure
function, which describes fairly well the available experimen-
tal data on the reduced cross section in full accordance with
the Froissart predictions, is defined by the following form:

F2(x, Q2) = D(Q2)(1 − x)n
2∑

m=0

Am(Q2)Lm. (12)

Therefore the parametrization of the nuclear structure func-
tion [according to Eqs. (9)–(12)] reads

F A
2 (τ,Y ) =

(
πR2

A

πR2
p

)
D

(
τQ2

s,A

)
(1 − e−Y )n

×
2∑

m=0

Am
(
τQ2

s,A

)
Lm

(
τQ2

s,A,Y
)
, (13)

where

D
(
Q2

j

) = Q2
j

(
Q2

j + λM2
)

(
Q2

j + M2
)2 , A0

(
Q2

j

) = a00 + a01L2
(
Q2

j

)
,

Ai
(
Q2

j

) =
2∑

k=0

aikL2
(
Q2

j

)k
, i = (1, 2),

L
(
Q2

j ,Y
) = Y + ln

Q2
j

Q2
j + μ2

, L2
(
Q2

j

) = ln
Q2

j + μ2

μ2
,

j = p, A. (14)

The effective parameters are defined in Table I.
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FIG. 4. The nuclear ratio F A
2 /AF p

2 with respect to the ASW model, as a function of Q2 for several nuclear targets for x = 10−1, . . . , 10−3

(curves from up to down, respectively), compared with the experimental data [44] (i.e., E665, EMC, and NMC Collaborations) as accompanied
with total errors.

In the ASW model [35], the nucleon structure function is
defined by the following form:

F p
2 (τ ) = Q2

s,pτp

4π2α
[γE + �

(
0, ξp

) + lnξp]. (15)

The explicit expression for the ratio in this model reads

F A
2 (τA)

AF p
2 (τ )

=
(

πR2
A

πR2
p

Q2
s,AτA

AQ2
s,pτp

)
γE + �(0, ξA) + lnξA

γE + �(0, ξ ) + lnξ
, (16)

where ξA = a/τ b
A . Notice that Eq. (15) is written in the ge-

ometrical scaling whereas the Eq. (12) is in (x-Q2) space.

TABLE I. The effective parameters at low x are defined
by the Block-Halzen fit to the HERA data as M2 = 0.753 ±
0.068 GeV2, μ2 = 2.82 ± 0.290 GeV2, n = 11.49 ± 0.99, and λ =
2.430 ± 0.153 [30].

Parameter Value

a10 8.205×10−4 ± 4.62×10−4

a11 −5.148×10−2 ± 8.19×10−3

a12 −4.725×10−3 ± 1.01×10−3

a20 2.217×10−3 ± 1.42×10−4

a21 1.244×10−2 ± 8.56×10−4

a22 5.958×10−4 ± 2.32×10−4

a00 2.550×10−1 ± 1.600×10−2

a01 1.475×10−1 ± 3.025×10−2

Since the cross section in Eq. (7) only depends on Q2/Q2
s ,

the replacement Q2
s,p → Q2

s,A corresponds to the rescaling

Q2 → Q2/λ2
A in Eq. (12), where λA = ( πR2

A
AπR2

p
)1/2δ [43].

III. RESULTS AND CONCLUSIONS

In this section, the numerical calculation of the nuclear
structure function and the nuclear ratio using Eqs. (13)
and (16) is investigated. With respect to these equations the
nucleon and nuclear structure functions and the correspond-
ing ratios for values x � 0.01 can be computed. Calculations
have been performed at a fixed value of the running cou-
pling. For the LO BFKL kernel, one finds υc = 0.807 and
υc = 4.88α [33], therefore, the coupling constant is fixed by
αs = 0.17. The overlap between the models indicates that the
Bjorken variable x varies in the interval 10−2 � x � 10−6

and Q2 varies in the interval 0.15 GeV2 � Q2 � 150 GeV2.
In Fig. 1 the proton structure functions are presented as a
function of scaling variable τ for different values of rapidi-
ties and compared with the H1 Collaboration data [40]. The
proton structure functions obtained into the scaling variable
τ are comparable with data of the H1 Collaboration. At in-
termediate and high scaling variable τ , the extracted proton
structure functions are in a good agreement with experimental
data. The parametrization of the proton structure function
is translated to the nuclear structure function as quantified
by Eq. (13). To investigate the parametrization model for
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the nuclear structure function we consider results obtained
using the scaling variable τ for light and heavy nuclei. In
Fig. 2 we show the nuclear structure function as a function
of scaling variable τ for different values of rapidities and
different nuclei. These theoretical curves are the result of
the parametrization of the nuclear structure function, meaning
that we are using the geometrical scaling in the parametriza-
tion method. Furthermore, we check the A dependence of the
nuclear structure function at Y = 9.210 in Fig. 3. In Fig. 3,
the nuclear structure function decreases as the atomic mass
number A increases. It is clear that the A dependence of the
nuclear structure function in electron-nucleus collisions at
midrapidity involve additional nuclear effects which are at
least as significant as nuclear shadowing. The parametrization
method reported by authors in Ref. [35] can be covered all
data on photon-nucleon and photon-nuclei, so we compared
the nuclear ratio F A

2 /AF p
2 with the experimental data [44] in

Fig. 4. Figure 4 compares our calculations of the shadowing
due to the ASW model [Eq. (16)] with available data from the
E665, EMC and EMC Collaborations [44]. The shadowing
in nuclei is studied in this figure (i.e., Fig. 4) through the
ratios of cross sections per nucleon for different nuclei at
the Bjorken scaling values x = 10−1, . . . , 10−3 respectively.
We have selected data where x < 0.03 and accompanied with
total errors. We observe that, for fixed x and large Q2, the
ratio become closer to one, i.e., shadowing decreases with
increasing Q2 and also a larger nuclear shadowing is visible
for lead target at low Q2. These results are comparable with
others in Refs. [9,42]. In Refs. [9] and [42], nuclear shadowing
in the Regge limit within the Glauber-Gribov model and in the
color dipole formalism based on the rigorous Green’s function
techniques at small x have been considered, respectively. The
behavior and magnitudes of shadowing using the both color

dipole formalism from the higher |qq〉 Fock component in
Ref. [42] and the parametrization method are comparable. The
predictions for expected scaling kinematics in experiments
at EICs are presented in Fig. 4 for the C, Ca, Xe, and Pb
targets. Also, the ASW model is in good agreement with the
dipole model calculation of Ref. [45], where rescatterings of
the full qq + Ng fluctuation is taken into account where the
higher Fock states of the dipole correspond to the summation
of triple-pomeron diagrams in that approach. Therefore, these
predictions within the parametrization of the nuclear ratios,
due to the ASW model, are comparable with other dipole
models (such as GBW [46,47], KST [48], BGBK [49], IP-
sat [50]).

In conclusion, we studied the shadowing in deep-inelastic
scattering off nuclei in the kinematic regions accessible by the
future electron-ion colliders with respect to the parametriza-
tion method and the ASW model, respectively. We presented
a further development of the parametrization of the DIS
structure function with respect to the saturation scaling. We
calculated the shadowing of the nuclear structure function in
the ASW model in the region of x � 0.1 in a wide interval
of photon virtualities. Then we compared the magnitudes of
shadowing using the ASW model for the light and heavy
nuclei and showed that these predictions are in a good agree-
ment with available data from the E665, EMC, and NMC
Collaborations.
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