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Spectral function of the η′ meson in nuclear medium based on phenomenological models
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The in-medium modification of the spectral function of the η′ meson with and without the spatial momentum
is studied with the T ρ approximation by employing two phenomenological models for the η′N scattering; one
is called coupled channels model and the other the N (1895)-dominance model. In the former model, the η′N
scattering amplitude is calculated in the unitarized coupled channel approach involving the η′N channel, while
in the latter model the η′N scattering process is dominated by the N (1895) resonance with the spin and parity
JP = 1/2−. In the coupled channels model, one single peak of the in-medium η′ mode appears in the spectral
function and the peak position shifts to higher energies along with the increase of the nuclear density reflecting
the repulsive η′N scattering length of the unitarized coupled channel amplitude. On the other hand, two branches
related to the η′ and N (1895)-hole modes appear in the N (1895)-dominance model. In both models, the shift
of the peak position and the width in the spectral function are a few tens of MeV at the normal nuclear density
for the η′ meson at rest in the nuclear medium. Once the spatial momentum is turned on, the peak positions
in the spectral function approach the energies without the nuclear medium effect. Particularly, in the N (1895)-
dominance model, the peak strength of the N (1895)-hole mode gets smaller with the finite momentum and the
spectral function comes to have one single peak.
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I. INTRODUCTION

The study of the η′ meson in the nuclear medium is one of
the most interesting topics in hadron physics, and it provides
clues to understand the properties of chiral symmetry and
axial U(1) symmetry in the nuclear medium. The mass of the
η′ meson is raised by the UA(1) anomaly, which explicitly
breaks the UA(1) symmetry and is tied to the nonperturbative
gluon dynamics such as instanton or topological structure of
the QCD vacuum (see, e.g., Refs. [1,2] for the review arti-
cles). Meanwhile, as pointed out in Refs. [3,4], the breaking
of chiral symmetry is indispensable for the UA(1) anomaly
to come into play in the meson mass spectrum when the
number of the flavor is equal to or larger than three. Many
calculations have been done with various models to study
the mass shift of the η′ meson in the nuclear medium, for
instance, in Refs. [4–14], and the possible formation of the
η′-nucleus bound state is discussed in Refs. [15–20]. It should
be noted that Refs. [4,12] have suggested that the η′ mass
be reduced in the nuclear medium, where chiral symmetry
is partially restored, as a consequence of the reduction of
the magnitude of the quark condensate irrelevantly to the
fate of the UA(1) anomaly in the nuclear medium. This η′
mass reduction in the nuclear matter should be observed in
finite nuclei as an attractive scalar potential for the η′ me-
son in nuclei. With this attractive potential one may expect
some nuclear bound states of the η′ meson. Motivated by the
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above-mentioned studies, some experiments to clarify the
in-medium η′ properties have been carried out [21–26]; par-
ticularly as reported in Refs. [23,24,26], no signal of the
η′-nucleus bound state was observed so far. We refer to the
review articles Refs. [27,28] on the physics of the η′ meson
and the η′-nucleus system.

One notable point is that systems in the nuclear medium
are not Lorentz invariant and the η′ meson dispersion relation
can be modified. Then, the peak position of the invariant mass
observed by the decay products does not correspond to the
in-medium mass of the particle directly when the spatial mo-
mentum of the decaying particle is finite. Therefore, this effect
needs to be taken into consideration in order to reach a better
understanding or interpretation of the experimental data. The
spectral function of the light mesons in the nuclear medium
with finite momentum is studied in Refs. [29–35]. Particularly,
the vector-meson properties including the finite-momentum
effect have been studied intensively in the theoretical side as
in the aforementioned works, and regarding the φ meson an
experiment at J-PARC is forthcoming for the systematic study
of the in-medium properties such as the spectral function
and dispersion relation with better statistics and resolution
compared with those achieved in the previous experiment
[36] (see, e.g., Refs. [37,38] for the details of the planned
experiment). One of the recent theoretical developments on
the spectral function of the vector mesons is to apply the
functional renormalization group such as in Ref. [39].

In this work, we investigate the in-medium spectral func-
tion of the η′ meson with finite spatial momentum. As the
nuclear medium is composed of nucleons, the investigation

2469-9985/2023/107(2)/025207(15) 025207-1 ©2023 American Physical Society

https://orcid.org/0000-0001-7769-4280
https://orcid.org/0000-0002-0355-5787
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.107.025207&domain=pdf&date_stamp=2023-02-17
https://doi.org/10.1103/PhysRevC.107.025207


SHUNTARO SAKAI AND DAISUKE JIDO PHYSICAL REVIEW C 107, 025207 (2023)

of the in-medium η′ properties based on the two-body scat-
tering of η′ and nucleon is a first promising way particularly
in low densities. Here, the driving force of the in-medium
η′ modification is the η′N scattering. We employ two mod-
els for possible scenarios of the η′N scattering amplitude;
one is the coupled channels model and the other is the
N (1895)-dominance model. In the coupled channels model,
the scattering amplitude is constructed on the basis of the
meson-baryon dynamics and the scattering process is driven
by the interaction kernel without explicit resonance degree
of freedom. Some theoretical works are made for the con-
struction and the application of the chiral effective model
containing η′ and nucleon [40–42], and the η′N interaction
is studied in Refs. [12,17,43–47]. On the other hand, in the
N (1895)-dominance model, the η′N scattering amplitude is
obtained by the process through the N (1895) resonance. The
existence of the N (1895) resonance with JP = 1/2− near the
η′N threshold has been suggested by the recent analyses of
the experimental data including the η and η′ photoproduction
process [48–52], and this resonance is now listed as a four-star
state in the recent version of the Review of Particle Physics
(RPP) [53]. The N (1895) resonance has also been studied
from theoretical view points in Refs. [54–56]. The presence of
the near-threshold resonance which couples to the s-wave η′N
pair can have a large impact on the in-medium η′ properties
through the N (1895)-hole excitation. The details of the model
will be explained in the following section. An experiment for
the study of the in-medium η′ spectral function is in progress
by the LEPS2 Collaboration at SPring-8, and we hope that
theoretical works related to the in-medium properties of the η′
meson give some clues and indication for the understanding
and interpretation of the data expected in the future.

The paper is organized as follows: In Sec. II we define the
in-medium quantities of the η′ meson and show the η′ spectral
function by using an η′N scattering amplitude of the effective
range expansion in the T ρ approximation in order to see how
the spectral function is modified in the nuclear medium. In
Sec. III, we explain the models which we use in this work. In
Sec. IV, we show our numerical results, and Sec. V is devoted
to summary and conclusion.

II. PRELIMINARIES

First of all, we define the in-medium quantities of the η′
meson by using its propagator with the self-energy. We con-
sider the spin and isospin symmetric uniform nuclear matter
here for the isospin-singlet pseudoscalar η′ meson. With a
given in-medium self-energy of the η′ meson, �η′ , the η′
propagator in the nuclear medium, Dη′ , is obtained by

Dη′ (ω, p; ρ) = 1

ω2 − p2 − m2
η′ − �η′ (ω, p; ρ) + iε

, (1)

where ρ is the nuclear density, mη′ is the η′ meson mass in
vacuum, and the four-momentum of the η′ meson is set as
pμ

η′ = (ω, p) in the nuclear medium rest frame. With the in-
medium propagator Dη′ , the η′ spectral function in the nuclear

medium is written as

Sη′ = − 1

π
Im(Dη′ ). (2)

The in-medium properties of the η′ meson can be read from
the in-medium propagator Dη′ at the pole. The pole position
of Dη′ for η′ at rest p = 0, ωP, is obtained by

D−1
η′ (ωP, 0; ρ) = ω2

P − m2
η′ − �η′ (ωP, 0; ρ) = 0, (3)

and ωP corresponds to the rest mass of the in-medium η′
meson. We parametrize ωP as

ω2
P = ω2

R − iωR	∗, (4)

with the in-medium mass ωR and width 	∗,1 and these quan-
tities are given by

ω2
R = m2

η′ + Re(�η′ (ωP, 0; ρ)),

	∗ = − 1

ωR
Im(�η′ (ωP, 0; ρ)). (5)

With the pole position ωP the in-medium propagator can be
written in the relativistic Breit-Wigner form as

Dη′ (ω, 0; ρ) = Z (ω)

ω2 − ω2
R + iωR	∗

, (6)

where Z (ω) in the numerator is the residue function and Z ≡
Z (ωP ) gives the wave function renormalization at the pole.
The in-medium width 	∗ represents the nuclear absorption of
the η′ meson.

For the η′ meson moving in the nuclear medium with
momentum p, the pole position of the propagator Dη′ depends
on the momentum and ωP(p) is evaluated by

D−1
η′ (ωP(p), p; ρ)

= ω2
P(p) − p2 − m2

η′ − �η′ (ωP(p), p; ρ) = 0. (7)

The pole position ωP(p) gives the dispersion relation of the
η′ meson in the nuclear medium. Owing to the breaking of
the Lorentz invariance by the presence of the nuclear medium,
the invariant-mass squared at the pole position, p2

η′ = ω2
P(p) −

p2, is not necessarily equal to the rest mass squared of the
in-medium η′ meson:

p2
η′ = ω2

P + [�η′ (ωP(p), p; ρ) − �η′ (ωP(0), 0; ρ)], (8)

where we have used Eqs. (7) and (3). If the self-energy is
Lorentz-invariant, the second term of the right-hand side of
Eq. (8) vanishes and the invariant mass of the η′ meson p2

η′
is also Lorentz invariant. But in the presence of the nuclear
medium the Lorentz invariance can be broken, the second
term does not vanish any more. In such a case, it is important
to note that the peak position of Sη′ as a function of the η′
invariant mass (p2

η′ )1/2 = (ω2 − p2)1/2 does not necessarily
correspond to the in-medium η′ mass.

1One may define the in-medium mass and width as the pole position
of the in-medium propagator in the complex-ω plane. In this case
the pole position is parametrized as ωP = ωR − i	∗/2. In the present
calculation, these two definitions provide just a slight difference.
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Expanding D−1
η′ around ω2 = ω2

P and p2 = 0, we identify
the wave-function renormalization Z and the velocity β as
Ref. [57] by

D−1
η′ (ω, p; ρ) = Z−1

[
ω2 − β2 p2 − ω2

P

] + · · · . (9)

Comparing Eq. (9) with Eq. (1), we find Z and β2 written with
the in-medium self-energy as

Z =
(

1 − ∂�η′

∂ω2

)−1
∣∣∣∣∣
ω2=ω2

P,p2=0

, (10)

β2 = Z

(
1 + ∂�η′

∂ p2

)∣∣∣∣
ω2=ω2

P,p2=0

. (11)

These quantities Z and β defined at the pole in the complex
energy plane ω2 = ω2

P can be complex numbers in general.
The velocity β describes the dispersion relation with a small
spatial momentum. Due to the breaking of the Lorentz invari-
ance, the velocity β can take a different value from unity. With
the deviation of the velocity from unity, the invariant-mass
squared at the pole for small spatial momenta is written as
p2

η′ = ω2
P + (β2 − 1)p2 and is to be spatial-momentum depen-

dent [29].
As seen in Eq. (1), the nuclear medium effect is contained

in the in-medium self-energy �η′ . The interaction of the η′
meson in the nuclear medium is not known yet. In this work,
we evaluate the in-medium η′ self-energy using relatively
better known η′N scattering. In this work, we focus on the
one-nucleon processes.2 The η′ meson is scattered by a nu-
cleon bound in the nuclear medium where the nucleons fill the
Fermi sphere up to the Fermi momentum k f = (3π2ρ/2)1/3.
We calculate the η′ self-energy by using the s wave η′N →
η′N scattering T matrix Tη′N as

�η′ = 4
∫

d3l

(2π )3 Tη′N (
√

s)θ (k f − l ), (12)

where the η′N invariant-mass squared s = (ω + EN )2 − |p +
l |2 is evaluated by the nucleon four-momentum pμ

N = (EN , l ),
and the factor 4 accounts for the spin and isospin degener-
acy, and the step function θ (k f − l ) represents the nucleon
occupation number in the Fermi gas approximation. One may
consider the on-shell T matrix in the integral. In such a case,
the invariant mass

√
s of the T matrix is fixed by the external

energy and Tη′N in the integrand does not depend on the
nucleon momentum l . Then, the η′N scattering T matrix Tη′N
can be factored out from the integral, and the integral over
l just gives the nuclear density ρ. In this way, Eq. (12) is
reduced to the following expression of the self-energy with
the T ρ approximation in the end:

�η′ (ω, p; ρ) = Tη′N (
√

s)ρ, (13)

where the η′N invariant mass
√

s is evaluated as s = (ω +
mN )2 − p2 where the nucleon is at rest pμ

N = (mN , 0). With
the η′N scattering amplitude, which will be evaluated with

2The two-body effects are found to be smaller than the one-body
effects in Ref. [11].

some certain models, we obtain the spectral function, mass,
width, velocity, and wave function renormalization of the η′
meson in nuclear medium. In this prescription, the nucleon
is at rest in the nuclear medium and its mass is identical to
the one at ρ = 0. The nucleon is actually bound in nuclear
matter, and the Pauli-blocking and nuclear binding effect can
enter the nucleon energy and the scattering process [58–62].
For example, in Refs. [58,62], the nucleon energy is reduced
by O(k2

f /m2
N ) ≈ 10% at the normal nuclear density due to the

nuclear binding effect. Here, we accept this 10% as a typical
order of the uncertainties originating from the treatment of the
nuclear medium effect and focus on the qualitative feature of
the spectral function and pole structure obtained with the T ρ

approximation.
Before moving to the details of the models, we demonstrate

how the spectral function of the η′ meson is modified with
the nuclear medium effects on the η′ meson by employing
simple models for the η′N scattering amplitude. First of all,
we consider the scattering-length approximation. In this ap-
proximation, the η′N scattering T matrix Tη′N (

√
s) in Eq. (13)

is treated as an energy-independent constant evaluated at the
threshold:

Tη′N (
√

s = mN + mη′ ) = −8π (mN + mη′ )

2mN
aη′N , (14)

where aη′N is the η′N scattering length. With the T matrix
(14), the inverse of the in-medium η′ propagator Dη′ is written
as

D−1
η′ = ω2 − p2 − m2

η′ −
(

−8π (mN + mη′ )

2mN

)
aη′Nρ, (15)

and the pole position is found as

ω2
P(p) = m2

η′ − 4π

(
1 + mη′

mN

)
aη′Nρ + p2. (16)

Thus, one can easily see that the positive (negative) aη′N ,
which corresponds to the attractive (repulsive) sign, leads to
the mass reduction (increase) in the nuclear medium. In spite
of the inclusion of the medium effect on the η′ meson, since
neither of energy nor momentum dependencies is considered
in this approximation, the pole position does not have a non-
trivial momentum dependence. Thus, the dispersion relation
ωP(p) has the same momentum dependence with the free-
space one.

In Fig. 1, we show the spectral functions calculated with
the in-medium propagator (15) for the η′ meson at rest, p = 0,
at the normal nuclear medium in the scattering length ap-
proximation. Here we consider three examples for the η′N
scattering length, aη′N = +0.87 fm, aη′N = (0 + i0.37) fm
and (−0.41 + i0.04) fm. The first case is a theoretical esti-
mation corresponding to the scattering length which provides
80 MeV mass reduction at the normal density ρ = ρ0. This
mass reduction is obtained by a linear σ model [12], and
similar mass reductions are also suggested by other model
calculations [9,10,14]. The second case is the central value
of aη′N = 0+0.43

−0.43 + i0.37+0.40
−0.16 fm which is experimentally
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FIG. 1. In-medium η′ spectral functions Sη′ calculated with the
in-medium η′ propagator (15) as functions of the η′ energy ω for the
η′N scattering length aη′N = 0.87 fm (black-solid), (0 + i0.37) fm
(red-dashed), and (−0.41 + i0.04) fm (blue-dotted). The vertical
dashed-dotted line denotes the in-vacuum η′ mass.

extracted from the low-energy pp → ppη′ data [63].3 The
third one is a phenomenological evaluation by a hadronic
scattering model [47]. This phenomenological model will be
explained in detail later as coupled channels model. As shown
in Fig. 1, the peak position of the spectral function Sη′ with
aη′N = 0.87 fm is located around ω = 0.88 GeV which is
80 MeV below the in-vacuum η′ mass mη′ = 0.958 GeV. The
peak in the spectral function with aη′N = (0 + i0.37) fm is
just broadened by the imaginary part of the scattering length
and no shift of the peak position from the in-vacuum η′ mass
is observed due to the absence of the real part in the scattering
length. The peak position of the spectral function with aη′N =
(−0.41 + i0.04) fm gets higher than the η′ mass at ρ = 0
reflecting the repulsive sign of the real part of the scattering
length. This peak is relatively narrow as the imaginary part
of the scattering length is small. Thus, qualitatively different
spectral functions Sη′ can be obtained with these scattering
lengths.

To exhibit the modification of the in-medium dispersion
relation of the η′ meson originating from the momentum de-
pendence of the η′N amplitude, we consider an η′N scattering
T matrix in a form of the effective range expansion given by

Tη′N (
√

s) = −8π
√

s

2mN

1

1/aη′N − ip′ , (17)

where the variable
√

s and p′ are the energy and the
magnitude of the η′ momentum in the η′N center-of-
mass (c.m.) frame, respectively, and p′ is calculated by
p′ = λ1/2(s, p2

η′ , m2
N )/(2

√
s) with λ(x, y, z) = x2 + y2 + z2 −

2(xy + yz + zx). The momentum p′ is generally complex in
the complex energy plane and purely imaginary for the real
energy below the η′N threshold. Here, we just consider the
linear p′ term in the denominator, which is required by the

3The scattering length given by the partial-wave analysis [50] is
consistent with Ref. [63].

elastic unitarity, for simplicity. It should be noted that this
prescription to include the momentum dependence in the η′N
scattering amplitude is minimal, and one may add a p′ 2 term
in the denominator for further momentum dependence in the
effective range expansion. In Fig. 2 we show the spectral
functions Sη′ calculated with the T matrix (17) for three fixed
η′ spatial momenta p ≡ |p| = 0, 0.4, 0.8 GeV. The spectral
functions are plotted as functions of the invariant mass of
the η′ meson, (p2

η′ )1/2 = (ω2 − p2)1/2. Here we consider four
values of the scattering length; aη′N = (0 + i0.37) fm, aη′N =
(±0.43 + i0.37) fm, and aη′N = +0.87 fm. The real parts
of aη′N = (±0.43 + i0.37) fm correspond to the upper and
lower bounds of the experimental uncertainties in Ref. [63].
For aη′N = (0 + i0.37) fm, the η′ self-energy is pure imagi-
nary, and the significant modification of the spectral function
appears only in the width of the peak structure. The peak of the
spectral function Sη′ gets sharper with larger p without shift
of the peak position. On the other hand, for aη′N = (±0.43 +
i0.37) fm, the peak position moves to higher (lower) invariant
masses with the increase of momentum p. The momentum in
the η′N c.m. frame p′ in Tη′N (

√
s) becomes larger with the in-

crease of the η′ momentum p in the nucleon rest frame. Then,
the real part of the in-medium η′ self-energy �η′ gets smaller
with larger p and the peak approaches the in-vacuum η′ mass.
This implies that the nuclear medium effect on the in-medium
mass shift gets less noticeable for larger spatial momentum
of the η′ meson. For aη′N = +0.87 fm, because the scattering
length has no imaginary part, the peak of the spectral function
has no width for p = 0. Nevertheless, the momentum depen-
dence of the scattering matrix introduces imaginary part to
the self-energy, and as a consequence the peaks of the spectral
functions for the finite spatial momenta have widths. In terms
of the velocity of the η′ meson in the nuclear medium, the
real part of the velocity gets Re(β ) > 1 for Re(aη′N ) > 0. In
this case the peak position of Sη′ shifts to larger (p2

η′ )1/2. The
opposite behavior takes place for Re(aη′N ) < 0.

We show in Fig. 3 the contour plots of the logarithm of
the spectral function, ln(Sη′ ), in the p-ω plane at ρ = ρ0

for the scattering lengths, aη′N = (0 + i0.37) fm and aη′N =
(±0.43 + i0.37) fm. In the figure, the solid lines de-
note the momentum dependence of the real part of the pole
position, ωR(p), which is obtained from ω2

P(p) = ω2
R(p) −

iωR(p)	∗(p) for the pole position ωP(p) being the solution
of Eq. (7), while the dotted lines stand for the in-vacuum
dispersion relation of the η′ meson, that is ω = (m2

η′ + p2)1/2.
One sees that the spectral functions have a peak along with
the line of ωR(p) and that the peak position ωR(p) approaches
the in-vacuum dispersion relation for larger p. This means
that the nuclear medium effect on the mass can be seen more
significantly with smaller p. Thus, in addition to the energy
or invariant mass, the spatial momentum of the η′ meson p
characterizes the in-medium spectral function as well.

III. MODELS

In this work, we evaluate the η′ self-energy in the nuclear
medium based on the T ρ approximation (13) from the η′N
scattering amplitude. We utilize two models for the T matrix
to demonstrate possible scenarios of the nuclear modification
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FIG. 2. Spectral functions at ρ = ρ0 with fixed values of the η′ momentum, p = 0, 0.4 and 0.8 GeV as functions of the η′ invariant
mass (p2

η′ )1/2 = (ω2 − p2)1/2. The scattering length in the T -matrix is fixed as aη′N = (+0.43 + i0.37) fm, aη′N = (0 + i0.37) fm, aη′N =
(−0.43 + i0.37) fm and aη′N = +0.87 fm from the left plot.

of the η′ properties; one is the coupled channels model and
the other is the N (1895)-dominance model. In the following
sections, we explain the details of two models for the η′N
scattering process.

A. Coupled channels model

Here let us explain the coupled channels model, which
provides a more realistic η′N scattering amplitude than the
amplitude used in Sec. II. In this model, we utilize the η′N
two-body scattering amplitude developed in Ref. [47] for
the η′N scattering T matrix appearing in the in-medium η′
self-energy (13). In Ref. [47], the scattering amplitude with
JP = 1/2−, I = 1/2, 3/2, and strangeness S = 0 is studied
from the view point of the meson-baryon dynamics. The
meson-baryon scattering contains the η′N channel together
with coupled channels, πN , ηN , K�, and K� with I = 1/2.
The coupled channel scattering amplitude of the s-wave
meson-baryon pair, f , is represented as a complex 5×5 matrix

and is calculated by the Lippmann-Schwinger equation

f = V + VG (0) f , (18)

where G (0) is the meson-baryon Green’s function with the free
Hamiltonian and V is the interaction kernel which governs the
meson-baryon interaction. The interaction kernel is assumed
to be a separable form given by

Vmn = gm(p2)vmn(s)gn(p′ 2), (19)

where the summation of the channel indices n and m is not
taken, and gn(p2) is the monopole form factor for channel
n, gn(p2) = 1/(1 + p2/α2

n ), with the parameters αn given
in Ref. [64]. We use the parameter set for the model A of
Ref. [47]. The variable s is the Mandelstam variable and
is given by the square of the two-body total energy in the
c.m. frame. The η′N scattering amplitude fη′N,η′N given by
Eq. (18) and the T matrix Tη′N (

√
s) which is necessary for the
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FIG. 3. Contour plots of the logarithm of the η′ spectral function, ln Sη′ , in the p-ω plane for ρ = ρ0. The scattering length in the T matrix
is fixed as aη′N = (+0.43 + i0.37) fm (left), aη′N = (0 + i0.37) fm (middle) and aη′N = (−0.43 + i0.37) fm (right). The solid lines are the
plots of ωR(p) as functions of p and the dotted lines are the η′ dispersions in vacuum. In the middle panel, the solid and dotted lines are
overlapping with each other.
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FIG. 4. (a) Scattering amplitude of η′N → η′N , fη′N,η′N , cal-
culated in the coupled channels model as a function of the
center-of-mass (c.m.) energy w of the η′N system. (b) Total cross
section of π− p → η′n calculated in the coupled channels model as
a function of the c.m. energy w of the η′N system. The points with
error bar are the experimental data taken from Ref. [71].

evaluation of the in-medium η′ self-energy (13) are related by

Tη′N (
√

s) = − 8π
√

s

EN + mN
fη′N,η′N (

√
s). (20)

In Eq. (18), a series of the processes involving the infinite
number of the meson-baryon scattering given by V is
taken into account like in the chiral unitary approach for
�(1405) [65–70]. The interaction kernel v is given by the
chiral U (3) Lagrangian with nine pseudoscalar mesons
and octet baryons [43] with the s-wave projection in the
isospin basis. See Ref. [47] for the details. Since the s-wave
projected interaction kernel depends only on s in the on-shell
approximation, the Lippmann-Schwinger equation (18) can
be solved in an algebraic way as

f = g(1 − vG(0) )−1vg, (21)

where the diagonal element of the two-body loop function
G(0) is given by

G(0)
n =

∫
d3l

(2π )3

−4πg2
n(l2)

k2
n − l2 + iε

= (αn + ikn)2

2αn
g2

n

(
k2

n

)
, (22)

with the c.m. momentum for the nth channel kn =
λ1/2(s, m2

n1, m2
n2)/(2

√
s) for the masses of the meson

and baryon, mn1 and mn2, respectively. The calculated

η η

N

R

N

(a) (b)

FIG. 5. Diagrams for the N (1895) contribution in the (a) s chan-
nel and the (b) u channel of the η′N scattering. The double line
represents the N (1895) resonance.

η′N scattering amplitude fη′N,η′N and the π− p → η′n
cross section are shown in Fig. 4. With this scattering
amplitude, the s-wave η′N scattering length aη′N is evaluated
to be aη′N = (−0.41 + i0.04) fm with the negative real
corresponding to the repulsive sign.

B. N(1895)-dominance model

In this section, we explain the N (1895)-dominance model
for the η′N scattering amplitude to evaluate the in-medium
η′ self-energy. The N (1895) resonance has JP = 1/2− and
couples to η′N in s wave. The Review of Particle Physics
[53] reports N (1895) to be almost at the η′N threshold, and
an isobar model analysis EtaMAID2018 [51] finds this res-
onance with the Breit-Wigner mass mN∗ = 1.8944 GeV and
width 	N∗ = 0.0707 GeV. Since N (1895) is located close
to the η′N threshold, this resonance may have an impact
on the in-medium η′ properties. Actually, the N (1880) and
N (1900) resonances also exist near the η′N threshold. These
resonances, however, have JP = 1/2+ and 3/2+ and couple
to the η′N channel with the p and f waves, respectively.
Thus, they may give less dominant contribution compared
with the s wave resonance near the η′N threshold. We do
not consider the N (1535) resonance, because the coupling of
N (1535) to the η′N channel is not found in the global analysis
of the ηN and η′N amplitudes performed by EtaMAID2018
[51], although some contributions from N (1535) to the η′N
amplitude may be expected as reported in Refs. [72,73]. The
study of the η′N process in the meson-baryon scattering model
developed in Ref. [47] obtains no N∗ resonance which can
be associated with N (1895). Nevertheless, Ref. [47] mentions
that the possibility to find N (1895) as a η′N dynamically
generated state is not ruled out.

Here, we investigate possible effect of the N (1895) res-
onance on the in-medium η′ properties with a simple model,
basing the s-wave η′N amplitude on the resonance dominance.
The N∗-dominance model for the in-medium η self-energy
was introduced in Ref. [74] and discussed in Refs. [75–79]
where the η self-energy is evaluated by the T ρ approximation
with the ηN scattering amplitude obtained by the N (1535) res-
onance dominance. In the N (1895)-dominance model the η′N
scattering amplitude is described by the N (1895) resonance
as depicted in Fig. 5. The diagram in Fig. 5(a) comes from
the contribution of the resonance in the s channel, while the
crossed diagram shown in Fig. 5(b) involves the resonance
in the u channel. In the vicinity of the η′N threshold, the T
matrix of the η′N scattering in free space is written in the η′N
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center-of-mass frame is

Tη′N (
√

s) = g2
η′N√

s − EN∗ + i	N∗/2

+ g2
η′N

−E ′
η′ + EN − EN∗ + i	N∗/2

, (23)

where the invariant mass is given by
√

s = E ′
η′ + EN with the

η′ and nucleon energies, E ′
η′ and EN , respectively, EN∗ and 	N∗

are the energy and width of the N (1895) resonance, and gη′N
is the coupling constant of N (1895) to the η′N channel. We
use the energy-independent width for simplicity. We obtain
the in-medium η′ self-energy �η′ by inserting the T matrix
(23) to Eq. (13). There we take the rest frame of the nuclear
medium with the η′ momentum pμ

η′ = (ω, p) and the kinemat-
ical variables in Eq. (23) are given as E ′

η′ = ω, EN = mN , and
EN∗ = (m2

N∗ + p2)1/2 with the N (1895) mass mN∗ . We use the
values of the parameters given by the isobar-model analysis
EtaMAID2018 [51]; mN∗ = 1.8944 GeV, 	N∗ = 0.0707 GeV,
and gη′N = 1.4. The normalization of the coupling constant
is adjusted so as to (EN (s) + mN )/EN∗ = 1 in the vicinity
of the η′N threshold. With these resonance parameters, the
η′N scattering length obtained from Eq. (23) is found to be
(−0.02 + i0.43) fm. This value is close to the one extracted
from the low-energy pp → ppη′ process [63] and its real part
is small. This does not necessarily mean, however, that the
in-medium modification of the η′ spectral function could be
insignificant, because the η′ self-energy has strong energy
dependence due to the resonance contribution to the η′N
amplitude. In the N (1895)-dominance model, we expect as
sufficient medium effects on the η′ meson as that on the η

meson with the N (1535)-dominance, because the value of
the coupling constant gη′N = 1.4 is comparable with that of
the N (1535) resonance to the ηN channel, which is found to
be about two from the resonance partial decay width to the
ηN channel [79]. In the present work, we do not consider
possible in-medium modifications of the N (1895) quantities
appearing in the amplitude, such as, the mass, width, and
coupling constant, for simplicity.

The mass parameter of N (1895) used in this model, mN∗ , is
given in Ref. [51], which is slightly below the η′N threshold.
The N (1895) mass can be above or below the η′N threshold,
if one takes the uncertainty of the N (1895) mass given in
Review of Particle Physics [53] seriously. We consider also
the case of the N (1895) mass above the η′N threshold by
changing the mass parameter mN∗ to be 1.906 GeV, which
is obtained in the analysis of Ref. [80], in order to see how
the in-medium η′ spectral function changes compared with the
one evaluated with mN∗ < mη′ + mN .

Before we move to the numerical results of the spec-
tral function of the in-medium η′ meson, we make a short
remark on the poles of the in-medium η′ propagator in
the N (1895)-dominance model. With the in-medium η′ self-
energy obtained with Eq. (23), the pole positions of the
in-medium η′ propagator are obtained by the equation,

(
ω2 − p2 − m2

η′
)(

ω + mN − EN∗ + i

2
	N∗

)
− g2

η′Nρ = 0,

(24)

where we have ignored the crossed-diagram contribution for
simplicity. With small ρ for the η′ meson at rest, two solutions
of Eq. (24) are found approximately as

ω
(1)
P ∼ mη′ + g2

η′Nρ/(2mη′ )

mη′ + mN − mN∗ + i
2	N∗

,

ω
(2)
P ∼ mN∗ − mN − i

2
	N∗

− g2
η′Nρ

m2
η′ − (

mN∗ − mN − i
2	N∗

)2 . (25)

The former pole corresponds to the η′ meson pole in vacuum,
while the latter pole stems from the N (1895) pole in the
η′N scattering amplitude. We call these poles, ω

(1)
P and ω

(2)
P ,

η′ mode and N (1895)-hole mode, respectively. In vacuum
the N (1895)-hole mode does not show up in the η′ spectral
function, while at finite densities it appears in the η′ spectral
function thanks to the coupling of the N (1895) resonance to
the η′N channel. We expect that these two poles provide two
peaks in the in-medium η′ spectral function. The emergence
of two modes due to the coupling of the meson to the nucleon
excited state in the nuclear medium has been discussed, for
example, in the study of the in-medium properties of the η

meson which couples to N (1535) in an s wave [78].

IV. RESULTS

In this section we show our result of the calculation for the
in-medium η′ spectral function and the in-medium properties
of the η′ meson. We consider two models for the T -matrix, the
coupled channels model and the N (1895)-dominance model,
as discussed in the previous section. In the coupled channels
model, the scattering amplitude is constructed based on a
meson-baryon coupled channels approach [47] and the model
parameters are determined phenomenologically. This model
produces the total cross section of the η′ production in π− p →
η′n. The N (1895) model is considered as a more theoretical
description of the η′N scattering amplitude. In this model,
the η′N scattering amplitude is described by the propagation
of the N (1895) nucleon resonance that is located just below
the η′N threshold and couples to the η′N channel in an s
wave. With this model, we investigate possible signals if the
nucleon resonance takes a significant role for the η′ meson
in the nuclear medium. These two models provide different
features of the spectral functions thanks to the different energy
dependence of the T matrix in these models. First we show our
results for the η′ meson at rest in the nuclear matter, and then
we consider the η′ meson with a finite spatial momentum in
each model.

A. Coupled channels model

Let us consider first the η′ meson at rest in the nuclear
medium. In Fig. 6(a), we show the spectral function Sη′ as a
function of the η′ energy ω with three fixed nuclear densities
ρ = 0.1ρ0, 0.5ρ0, 1.0ρ0, where ρ0 is the normal nuclear den-
sity. In this figure, we find that the peak position of the spectral
function shifts towards higher energy from the in-vacuum η′
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FIG. 6. In-medium properties of the η′ meson at rest in the nu-
clear medium calculated with the coupled channels model: (a) the
spectral functions Sη′ as functions of ω for nuclear densities ρ =
0.1ρ0, 0.5ρ0, 1.0ρ0. The inserted figure is the enlarged view of the
plots in the vicinity of ω = mη′ . (b) the in-medium mass modification
�ωR = ωR − mη′ and in-medium η′ width 	∗ in units of GeV as
a function of density ρ. (c) Real and imaginary parts of the wave
function renormalization Z as functions of density ρ.

mass mη′ = 0.958 GeV for higher densities. It is also found
that the width of the peaks gets wider for higher density and
it reaches a few tens of MeV at ρ = ρ0. The high-energy shift
of the peak position is the consequence of the negative real
part of the scattering length, aη′N = (−0.41 + i0.04) fm, as
discussed in Sec. II. We make a small comment on the thresh-
old structure of the in-medium η′ spectral function. As seen in
Fig. 6(a), a threshold behavior appears at ω = mη′ , that is the
in-vacuum threshold. This threshold behavior originates from
the intermediate η′N state in the coupled channels calculation
because we do not take into account of the medium effect on
the intermediate states there. In this work we do not consider

such medium effects on the η′ self-energy, which are be-
yond the T ρ approximation. Because there is no dynamically
generated states in the coupled channels, we expect that the
medium effects on the intermediate states are not significant
and the shape of the spectral function does not suffer from
the in-vacuum threshold behavior. If these medium effects are
important, one should perform a self-consistent calculation by
including the medium effects to the intermediate states.

To discuss the peak position of the spectral function more
quantitatively, we show the in-medium mass and width of the
η′ meson, ωR and 	∗, in Fig. 6(b). The in-medium mass and
width are obtained from the pole position ωP of the in-medium
η′ propagator as Eq. (5). In the figure we plot the mass modi-
fication defined by �ωR = ωR − mη′ . The mass and the width
of the η′ meson in the nuclear medium increase monotonically
as the density increase. The mass shift at the normal density is
evaluated to be 30 MeV in this model. The in-medium width
stems from the nuclear absorption and, thus, increases as the
density increases. The in-medium width at the normal density
is found to be 30 MeV. In the T ρ approximation, only the
one nucleon absorption is taken into account. In this coupled
channels model, the transition from η′N to the πN , ηN , K�,
and K� channels are responsible for the nuclear absorption
of the η′ meson in the medium. The η′N channel can also
contribute to the absorption channel when the η′ energy is
larger than the in-vacuum η′ mass, ω > mη′ , because the in-
vacuum hadron masses are used for the intermediate states.
We plot the in-medium wave function renormalization Z in
Fig. 6(c). This figure shows about 10% reduction of Z at the
saturation density. The size of the modification is moderate
compared with the pion. Reference [57] suggested that the
wave-function renormalization for pions is enhanced about
50% at the saturation density and that the large in-medium
modification of the wave-function renormalization can lead
to the change of the decay properties of the meson in the
nuclear medium. In this model for the η′ meson, we do not
expect significant change of the η′ decay properties due to
the modification of the meson normalization by the nuclear
medium.

The spectral function can be decomposed into the contribu-
tion from each intermediate state in the following way [79,81]:
Using the free η′ propagator D(0)

η′ (p) = (p2 − m2
η′ + iε)−1, the

in-medium propagator is written as Dη′ = D(0) + D(0)�η′Dη′ .
It is known that the imaginary part of the Green’s function is
decomposed to the two parts [82],

Im(Dη′ ) = (1 + D∗
η�

∗
η′ )Im

(
D(0)

η′
)
(1 + �η′Dη′ )

+ D∗
η′ Im(�η′ )Dη′ . (26)

The first and second terms on the right-hand side are called
escape part and conversion part, respectively. The escape
part has the imaginary part of the free Green’s function
and it provides the δ function for the in-vacuum dispersion
relation. Because the in-medium η′ meson does not satisfy
the in-vacuum dispersion relation, the escape part does not
contribute to the spectral function for the infinite nuclear
matter. For the conversion part, the imaginary part of the
self-energy �η′ is written in terms of the imaginary part of
the η′N scattering amplitude in the T ρ approximation (13).
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FIG. 7. Decomposition of the spectral function and the in-
medium width to each intermediate channel for the η′ meson at rest in
the nuclear medium. (a) Partial spectral functions defined in Eq. (29)
for ρ = ρ0 as functions of the η′ energy. (b) Partial widths defined in
Eq. (30) as functions of ρ/ρ0.

Because the η′N T matrix is given by the coupled channels
scattering, the conversion part can be decomposed into the
contributions from each intermediate scattering state by using
the optical theorem for the η′N scattering amplitude:

Im(Tη′N ) =
∑

j

Tη′N, jσ jT
∗
j,η′N , (27)

where j is the channel index for the intermediate state, Tη′N, j is
the T matrix for the transition of η′N to the j channel, and σ j

is the phase-space factor. The phase-space factor is given by

σ j = Im

(
−Ej + mj

8π
√

s
G̃(0)

j

)
, (28)

with G̃(0)
j ≡ g−1

j G(0)
j g−1

j , where G(0)
j and g j are the free loop

function (22) and the form factor for channel j, respectively.4

With these decompositions, we define the partial spectral
function and partial in-medium width for channel j as

S( j)
η′ =− 1

π
D∗

η′ Im(Tη′N, jσ jT
∗
j,η′N )ρDη′ , (29)

	( j)
∗ = − 1

ωR
Im(Tη′N, jσ jT

∗
j,η′N )|ω=ωPρ, (30)

4The reason that we need the inverse of the form factor here is
that the Lippmann-Schwinger equation for f is given by Eq. (18)
and reads f = gvg + gvgG̃(0) f . This implies that G̃(0) guarantees the
unitarity of the scattering matrix.

respectively, where summation is not taken for the repeated
index. We show the decompositions of the spectral function
in Fig. 7(a) and the in-medium decay width in Fig. 7(b).
The spectral function is evaluated at the normal nuclear
density ρ = ρ0, while the partial decay widths are shown as
functions of ρ/ρ0. In the figure, we find that the contribution
of the η′N channel dominates the spectral function and the
in-medium width. In the coupled channels model, thanks to
the repulsive nature of the scattering length the real part of
the in-medium η′ mass is larger than the in-vacuum mass.
Therefore, the η′N channel is open at the pole position of the
in-medium η′ propagator. Channels other than η′N give minor
contributions. Among them the πN , K� and ηN channels
contribute, while the K� channel is negligibly small. The
fraction of the channel contributions is a consequence of
the nature of the scattering amplitudes in the model applied
here. The partial widths can be observed if one identifies the
absorption channels of the η′ meson.

In the coupled channels model, the modification of the
η′ spectral function is relatively simple; the nuclear medium
effect emerges from the scattering of the η′ meson with the
nucleons in the medium, and it causes the shift and the broad-
ening of the peak in the in-medium η′ spectral function. The
wave-function renormalization does not differ from unity so
much.

Finally, let us discuss the η′ momentum dependencies of
the spectral function for the η′ meson with pμ

η′ = (ω, p). In
Fig. 8 we show the spectral function as a function of the η′
invariant mass (p2

η′ )1/2 = (ω2 − p2)1/2 at ρ = ρ0 with fixed
spatial momenta p = 0, 0.4, 0.8 GeV and a contour plot of
the logarithm of the η′ spectral function ln(Sη′ ) at ρ = ρ0 in
the p-ω plane. As seen in Fig. 8(a), the peak of the spectral
function moves to lower energy for larger η′ momentum p.
This is the same tendency as seen in Fig. 2 for the effective-
range approximation with the scattering length Re(aη′N ) < 0.
There we have found that the peak position in the spectral
function approaches the η′ mass in vacuum for finite η′ mo-
menta. This is seen in the contour plot shown in Fig. 8(b) as
the two lines approach each other for larger p. For the finite η′
momenta, although the in-medium modification of the η′ mass
gets less evident in the coupled channels model, the shift of the
peak position for p = 0.8 GeV is still about 10 MeV. This is
not so small compared with the shift of the peak position for
the η′ meson at rest.

B. N(1895)-dominance model

Now, we move to the results of the N (1895)-dominance
model explained in Sec. III B. In Fig. 9, we present the spectral
function, the in-medium mass and width, and the wave-
function renormalization for the η′ meson at rest in the nuclear
medium. In Fig. 9(a), we find that a single peak is located
at the in-vacuum η′ mass for lower density ρ = 0.1ρ0 and it
splits into two peaks when the density increases. At the normal
nuclear density ρ = ρ0, the spectral function possesses two
peaks located at ±30 MeV away from the in-vacuum η′ mass
with the width of a few tens MeV. The positions of these
peaks look almost symmetric against ω = mη′ . Solving Eq. (3)
for the N (1895)-dominance model to look for the poles of
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FIG. 8. Momentum dependence of the spectral function at ρ =
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the in-medium η′ propagator, we obtain two solutions which
correspond to two peaks of the spectral function. We name
the pole having a larger (smaller) real part pole 1 (pole 2). In
Fig. 9(b) we show the density dependence of the pole posi-
tions by plotting the in-medium mass modifications �ω

(i)
R =

ω
(i)
R − mη′ and the in-medium widths 	

(i)
∗ for two poles i =

1, 2. We find that their behavior changes around ρ = 0.2ρ0;
below ρ = 0.2ρ0, the mass modifications �ω

(i)
R are almost

constant as they are in vacuum, while the in-medium widths
	

(i)
∗ rapidly change their magnitude in a few tens of MeV.

For ρ > 0.2ρ0, �ω
(1)
R and �ω

(2)
R split into higher and lower

energies and their values in magnitude get increasing as the
density increases, while the widths get almost constant with
about 30 MeV.

The density dependence of the wave-function renormaliza-
tions Z (i) for i = 1, 2 are shown in Fig. 9(c). First of all, one
finds that the wave-function renormalization for pole 2, Z (2),
is almost zero for ρ < 0.2ρ0. This implies that pole 2 little
contribute to the spectral function. At the end of Sec. III B,
we have discussed the appearance of two poles in the in-
medium η′ propagator and their origins; one comes from the
η′ mode and the other from the N (1895)-hole mode. Because
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FIG. 9. In-medium properties of the η′ meson at rest in the nu-
clear medium calculated with the N (1895) resonance model: (a) the
spectral functions Sη′ as functions of ω for nuclear densities ρ =
0.1ρ0, 0.5ρ0, 1.0ρ0. (b) the in-medium mass modifications �ωR =
ωR − mη′ and in-medium η′ widths 	∗ in units of GeV as functions
of density ρ. (c) Real and imaginary parts of the wave function
renormalization Z as functions of density ρ.

pole 1 starts from the in-vacuum η′ mass and pole 2 begins
at mN∗ − mN , pole 1 and pole 2 contain dominantly the η′
mode and the N (1895)-hole mode, respectively, at low den-
sity. Thus, the clear peak in the spectral function at ρ = 0.1ρ0

in Fig. 9(a) is mainly attributed to the η′ mode. One sees that
the behavior of the pole positions for lower density shown in
Fig. 9(b) agrees with what we expect from the approximate
pole positions (25); the real part of ω

(1)
P moves to larger

energies, while the real part of ω
(2)
P decreases as the density

increases. The imaginary part of ω
(2)
P comes from the N (1895)

width. Second one notices the characteristic peak structure
around ρ = 0.2ρ0. The wave-function renormalizations of
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FIG. 10. Pole trajectories (ωR, −	∗/2) of the in-medium η′ prop-
agator in the N (1895)-dominance model as the nuclear density ρ

varies. The open circle and square are the points given by ω =
(mη′ , 0) and ω = (mN∗ − mN , −	N∗/2) which pole 1 and 2 approach
in the limit of ρ → 0, respectively, and the dots are plotted at every
0.1ρ0.

both poles exhibit the peak structure at ρ = 0.2ρ0 and their
real parts approaches 0.5 when the density is increased. This
implies that strong cooperation of two modes to the spectral
function takes place around ρ = 0.2ρ0. Third, for ρ > 0.4ρ0,
Re[Z (1)] and Re[Z (2)] approach 0.5. This indicates that the η′
and N (1895)-hole modes are largely mixed in these densities.
The heights of two peaks in the spectral function at ρ = ρ0 in
Fig. 9(a) are close to each other since the size of Z (1) and Z (2)

are similar at this density. Although the density dependence
of Z (i) looks not so simple, the sum of two residues is almost
unity independently of the nuclear density, Z (1) + Z (2) ≈ 1.
See, e.g., Refs. [78,83] for the detailed discussion on the
density dependence of the pole motion and its residue.

In this way, the in-medium η′ spectral function obtained
with the N (1895)-dominance model shows different behavior
from the one obtained with the coupled channels model. In the
N (1895)-dominance model one finds two peaks coming from
the η′ and N (1895)-hole modes for higher-density ρ. The shift
of the pole positions and the widths of the peaks are a very
similar size to those obtained with the coupled channels model
at ρ = ρ0, which is a few tens of MeV.

Here, we make a comment on the peculiar density depen-
dence of the wave function renormalization seen in Fig. 9(c).
As pointed out in Ref. [83], the characteristic behavior of
the residua of the poles appears when two poles approach
each other. In Fig. 10 we show the trajectory of the pole
positions associated with the η′ and N (1895)-hole modes in
the complex energy plane.5 Two poles get close to each other
when ρ = 0.2ρ0 to 0.3ρ0. In this density the wave-function
renormalizations, Z (1) and Z (2), have the peculiar behavior as
shown in Fig. 9(c). The density where two poles get close to
each other can be estimated by the exceptional point discussed
in Refs. [84,85]. The exceptional point is a complex solution
where these two solutions coincide. In the present case, the
parameter governing the mixing of two modes, which is λ of

5The trajectory of (ωR, −	∗/2) is plotted in the figure with varying
the nuclear density ρ.

0.0 0.2 0.4 0.6 0.8 1.0

ρ/ρ0

0.5

1.0

1.5

R
e[
Z

(1
) ]

mN = 1.894 GeV

mN = 1.879 GeV

mN = 1.854 GeV

FIG. 11. Real parts of the wave-function renormalizations
Re[Z (1)] calculated by the N (1895)-dominance model with the reso-
nance mass mN∗ = 1.894, 1.879, and 1.854 GeV.

the linear-λ model in Ref. [85], is the nuclear density ρ. The
pole positions are determined by Eq. (24) with p = 0, where
the minor cross term is ignored for simplicity. The condition
for Eq. (24) to have an equal root ρEX for the complex density
is found in the linear approximation as

g2
η′NρEX

2mη′
= −1

4

(
mη′ + mN − mN∗ + i

2
	N∗

)2

. (31)

With the mass and coupling constant for N (1895) given in
Sec. III B, one finds ρEX = (0.22 − i0.03)ρ0. Equation (31)
tells us that the position of the peak in Re[Z (i)] is dependent
on the resonance mass parameter mN∗ and suggests that the
real part of ρEX becomes smaller when the resonance posi-
tion is away from the η′N threshold. Thus, the characteristic
behavior of Z (i) seen in Fig. 9(c) may get less significant for
Re[ρEX] < 0. To examine this situation, in Fig. 11 we show
the real parts of Z (1) as functions of ρ/ρ0 for mN∗ = 1.879
and 1.854 GeV together with the original mN∗ = 1.894 GeV.
From Eq. (31), the exceptional points for mN∗ = 1.879 GeV
and mN∗ = 1.854 GeV are found to ρEX = (0.17 − i0.22)ρ0

and (−0.10 − i0.53)ρ0, respectively. For mN∗ = 1.879 GeV, a
small bump appears in Re[Z (1)] around the density of the real
part of ρEX, while the exceptional point for mN∗ = 1.854 GeV
has a negative real part and there is no significant structure
in the real part of the wave-function renormalization Re[Z (1)].
In Ref. [85], the position of the exceptional point is discussed
in the context of the nature transition. Here, we note that the
nature transition does not occur in this N (1895)-dominance
model since no level crossing takes place for the η′ and
N (1895)-hole modes in the nuclear medium.

As mentioned in Sec. II, the mass of N (1895) can be above
the η′N threshold within the uncertainties reported by the Re-
view of Particle Physics [53]. In Fig. 12, we show the spectral
function, the mass modification, the in-medium width, and
the wave-function renormalization calculated in the N (1895)-
dominance model with the resonance mass mN∗ = 1.906 GeV
as suggested by Ref. [80], which is located above the η′N
threshold. The other parameters are not changed. As in the
case with the resonance mass lower than the η′N threshold,
two peaks associated with the η′ and N (1895)-hole modes
appear in the spectral function. Because Fig. 12(b) shows that

025207-11



SHUNTARO SAKAI AND DAISUKE JIDO PHYSICAL REVIEW C 107, 025207 (2023)

0.80 0.85 0.90 0.95 1.00 1.05
ω (GeV)

0

10

20

30

40

50
S η

′
(G

eV
−2

) (a)ρ/ρ0 = 0.1

ρ/ρ0 = 0.5

ρ/ρ0 = 1

0.0 0.2 0.4 0.6 0.8 1.0
−0.04

0.00

0.04

0.08

(b)

Δω
(1)
R (GeV)

Γ
(1)
∗ (GeV)

Δω
(2)
R (GeV)

Γ
(2)
∗ (GeV)

0.0 0.2 0.4 0.6 0.8 1.0
ρ/ρ0

−0.5

0.0

0.5

1.0

1.5

2.0

(c)

Re[Z(1)]

Im[Z(1)]

Re[Z(2)]

Im[Z(2)]

FIG. 12. Same as Fig. 6 but for mN∗ = 1.906 GeV in the
N (1895)-dominance model.

the lower pole ω
(1)
P is connected to ω = mη′ at ρ = 0, we

identify this pole to be the η′ mode and the higher one ω
(2)
P

the N (1895)-hole mode. This order is opposite to the case
with mN∗ smaller than the η′N threshold discussed above.
Nevertheless, the density dependencies of the pole position
and wave-function renormalization are similar; the spectral
function has one peak in lower densities, and in higher density
two peaks appear and the real parts of the wave-function
renormalization Z (i) approach 0.5. The characteristic peak
structure in the wave-function renormalization is also found in
Fig. 12(c). The exceptional point (31) with mN∗ = 1.906 GeV
is ρEX/ρ0 = 0.21 + i0.12, whose real part is close to the
density of the peak position in Re[Z (i)]. Thus, we find that
the characteristic features of the in-medium η′ spectral func-
tion in the N (1895)-dominance model, i.e., the emergence
of the two poles and the peculiar density dependence of the
wave-function renormalizations, are not changed even if the
mass parameter of the resonance mN∗ is larger than the η′N
threshold energy, although the order of the modes are flipped
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FIG. 13. Same as Fig. 8 but for the N (1895)-dominance model.
(b) The solid and dotted lines are the in-medium dispersion relation
ω

(1)
R (p) for pole 1 and the in-vacuum η′ dispersion ω = (m2

η′ + p2)1/2,
while the dashed and the dash-dotted lines denote the in-medium dis-
persion relation ω

(2)
R (p) for pole 2 and the in-vacuum N∗ dispersion

relation ω = (m2
N∗ + p2)1/2 − mN .

compared with the case of the resonance mass mN∗ < mη′ +
mN as long as the resonance is located close to the threshold.

In Fig. 13, we show the momentum dependence of
the spectral function for ρ = ρ0 calculated with mN∗ =
1.8944 GeV. As discussed above, the spectral function in the
N (1895)-dominance model has two peaks at ρ = ρ0 for the η′
meson at rest. Figure 13(a) shows that the height of one of the
two peaks gets smaller when we turn on the η′ momentum and
that for p = 0.8 GeV the spectral function comes to have only
one single peak. In Fig. 13(b), we show the contour plot of the
logarithm of the η′ spectral function ln(Sη′ ) for ρ = ρ0. In the
plot, ωR(p) of the η′ and N (1895)-hole modes are shown by
the solid and dashed lines, respectively, and we find that the
η′ mode gets close to the in-vacuum η′ energy (dotted line),
ω = (m2

η′ + p2)1/2, while the N (1895)-hole mode approaches
the dash-dotted line, ω = (m2

N∗ + p2)1/2 − mN , which is a so-
lution of Eq. (24) with finite p obtained by ignoring the mixing
term proportional to the nuclear density ρ. Thus, the peak
positions of the in-medium spectral function in larger p region
are mostly determined by the dispersion relation at ρ = 0.
The reason that the spectral function has only one peak for
higher p is that the N (1895)-hole mode becomes irrelevant to
the in-medium η′ propagation. We show the p dependencies
of the wave-function renormalizations at ρ = ρ0 in Fig. 14.
This figure shows that the wave-function renormalization of
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FIG. 14. Plot of the real and imaginary part of Z (1) and Z (2)

at ρ = ρ0 in the N (1895)-dominance model as functions of the η′

spatial momentum p.

pole 2 reaches almost zero for higher momentum p, and the
wave-function renormalization of pole 1 approaches unity.
Thus, the momentum dependence of the η′ spectral function
can be particularly important if the N (1895) resonance plays
a relevant role in the in-medium η′ dynamics.

V. SUMMARY

In this work, we have investigated the spectral properties
of the in-medium η′ mesons with zero and finite spatial mo-
menta. The in-medium η′ self-energy is given by the η′N
scattering amplitude based on the T ρ approximation. For
comparison, we employ two possible models to describe the
scattering amplitude; one is the coupled channels model de-
veloped by Ref. [47], in which the η′N scattering amplitude is
constructed based on the chiral U (3) effective Lagrangian by
fixing the model parameters with the hadronic scattering data.
The other is the N (1895)-dominance model, in which the η′N
scattering amplitude is described by the N (1895) resonance
in the intermediate state. This resonance is expected to have a
sizable coupling strength to the η′N channel from the analyses
of the η and η′ photoproduction data [51]. With a given η′N
scattering amplitude, we investigate the in-medium η′ spectral
function evaluated with the T ρ approximation to focus on
the qualitative feature. In the coupled channels model, the
spectral function is modified by the moderate strength of the
η′N interaction. On the other hand, in the N (1895)-dominance
model, the N (1895) resonance introduces energy dependence
in the η′ self-energy and it causes the modification of the η′
properties in the nuclear medium.

In the coupled channels model, the spectral function has
a peak and its position moves to higher energies when the
density increases. The magnitude of the shift at ρ = ρ0 is

about 30 MeV, which is comparable with the size of the
peak width. The width of the peak in the spectral function
corresponds to the nuclear absorption of the η′ meson. The
direction of the peak position shift reflects the repulsive nature
of the η′N interaction as expected from the negative real part
of the scattering length. The wave-function renormalization,
which is the residue of the pole of the in-medium propagator,
is tied to the height of the peak in the in-medium η′ spectral
function. In the coupled channels model the wave-function
renormalization is not modified so strongly by the nuclear
medium effect. The effect of the finite spatial momentum
of the η′ meson is investigated as well. With the η′ spatial
momentum p = 0.8 GeV, the peak position is shifted about
10 MeV lower at ρ = ρ0 compared with that with p = 0.
Although the modification is moderate, the effect can be sig-
nificant.

In the N (1895)-dominance model, the spectral function
possesses two peaks in higher densities. These peaks originate
from the η′ and N (1895)-hole modes. These two modes repel
each other in the nuclear medium. Thus, if the N (1895)-hole
mode is located below the η′ mode in vacuum, the N (1895)-
hole mode goes down and the η′ mode goes up energetically as
the density increases. Furthermore, we have found a peculiar
density dependence of the wave-function renormalization in
the N (1895)-dominance model, which happens in association
with the pole movement in the complex plane as the density
changes. With finite spatial momentum, the spectral func-
tion is drastically changed; the N (1895)-hole mode decouples
from the η′ mode when the η′ momentum is turned on, and
the spectral function approaches the one at ρ = 0 for larger η′
momentum.

Although the difference of the spectral functions given by
two models is evident, the shift of the real part of the pole
position and the width of the peak are expected to be a few
tens of MeV at the normal nuclear density in both models. The
spectral function also approaches the one in free space with
the increase of the spatial η′ momentum in both models. From
the calculations done in this work, it is found that the energy
and spatial-momentum dependence of the spectral function
can be largely different depending on the details of the η′N
scattering process. Thus, the clarification of the interaction
mechanism of η′ and nucleon is an important piece to under-
stand the in-medium properties of the η′ meson and the results
of experiments of the η′-nucleus system.
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