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Minimal entanglement and emergent symmetries in low-energy QCD
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We study low-energy scattering of spin- 1
2 baryons from the perspective of quantum information science,

focusing on the correlation between entanglement minimization and the appearance of accidental symmetries.
The baryon transforms as an octet under the SU(3) flavor symmetry and its interactions below the pion threshold
are described by contact operators in an effective field theory (EFT) of QCD. Despite there being 64 channels
in the 2-to-2 scattering, only six independent operators in the EFT are predicted by SU(3). We show that
successive entanglement minimization in SU(3)-symmetric channels are correlated with increasingly large
emergent symmetries in the EFT. In particular, we identify scattering channels whose entanglement suppression
are indicative of emergent SU(6), SO(8), SU(8), and SU(16) symmetries. We also observe the appearance of
non-relativistic conformal invariance in channels with unnaturally large scattering lengths. Improved precision
from lattice simulations could help determine the degree of entanglement suppression, and consequently the
amount of accidental symmetry, in low-energy QCD.
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I. INTRODUCTION

Symmetry is among the most fundamental concepts under-
lying all branches of physics. It is the most powerful guiding
principle in formulating laws of nature. Traditionally, there
are two views on how symmetry enters into a physical system:
those emergent from long-range fluctuations at long distances
and those taken as fundamental at very high energy or short
distances. The first viewpoint is exemplified in the appearance
of scale invariance during a second-order phase transition
while the second is embodied in the fact that all known
fundamental interactions in nature are dictated by symmetry
principles. However, for such a pillar of modern physics there
have been very few studies on where the symmetry comes
from. Can symmetry be derived from even more fundamental
principles?

In pondering the origin of symmetry, a promising line of
thought stems from applying tools in quantum information,
in particular the concept of entanglement, to study systems
with accidental, emergent symmetries in the infrared [1,2].
The system of interest is low-energy scattering of nucleons
(protons and neutrons) which exhibit accidental approxi-
mate symmetries not transparent in the fundamental QCD
Lagrangian. They include Wigner’s supermultiplet SU(4)sm

[3,4], where the two spin states of protons and neutrons
combine into a fundamental representation of SU(4)sm, as
well as the Schrödinger invariance which is the nonrelativistic
conformal group and the largest symmetry group preserving
the Schrödinger equation [5]. In addition, simulations from
lattice QCD suggest that, for spin- 1

2 baryons transforming as

the octet of SU(3) flavor symmetry,1 there could be an emer-
gent SU(16)sm symmetry analogous to Wigner’s SU(4)sm,
where the two spin states of the eight baryons furnish a
16-dimensional fundamental representation of SU(16)sm [6].2

Reference [1] made the fascinating observation that the re-
gions of parameter space where the accidental symmetries
emerge coincide with regions where the spin entanglement
in the 2-to-2 scattering of a proton and a neutron is sup-
pressed, while Ref. [2] studied the observation in a quantum
information-theoretic setting and showed that the S matrix
in the spin space, when viewed as a quantum logic gate,
corresponds to an identity gate in the case of SU(4)sm

and SU(16)sm and a SWAP gate in the case of Schrödinger
symmetry.3

These initial findings hint at a rich interplay between
entanglement and symmetry and suggest a potentially fruit-
ful probe for the emergence of accidental symmetries using
quantum information science. In this work we extend the

1The SU(3) flavor symmetry acts on the u, d , and s quarks, which
together transform as the fundamental representation of SU(3). It is
an exact symmetry of the QCD Lagrangian when the quark masses
are neglected, which is a good approximation for (u, d, s) quarks.
Spin- 1

2 octet baryons are three-quark bound states of (u, d, s).
2Although Wigner’s SU(4)sm can be seen as a consequence of large

Nc expansion [7], no similar explanation exists for SU(16)sm.
3An identity gate preserves the spin of qubits (nucleons) while a

SWAP gate interchanges the spin of the two qubits. Moreover, these
are the only two minimal entanglers for a two-qubit system [2].
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analyses of Refs. [1,2] on neutrons (n) and protons (p) to
the eight spin- 1

2 baryons transforming as an octet under the
SU(3) flavor symmetry: {n, p, �+, �0, �−, �−, �0,�}. As
we will see, because of the rich theoretical structure, the
octet baryon offers a fertile playground to further explore the
correlation between entanglement minimization and emergent
symmetries. Moreover, unlike the scattering of a neutron and
a proton, the scattering of two baryons in general can change
flavors and the outgoing particles do not have to be the same as
the incoming particles. For example, n and � have a nonzero
probability of scattering into p and �−. This feature together
with the Pauli exclusion principle, which forces the total wave
function of the two incoming/outgoing fermions to be totally
antisymmetric, create a subtle interplay between flavor and
spin quantum numbers that is not present in the np scattering.

We will focus on the very-low-energy scattering of spin- 1
2

baryons, below the energy threshold for pion production. In
this case the process is described by an EFT of QCD using
only contact interactions and the leading order Lagrangian
contains only six independent operators [8]. The number six
is predicted by SU(3) group theory because the product of
two octets contains six irreducible representations (irrep): 8 ×
8 = 27 ⊕ 10 ⊕ 10 ⊕ 8S ⊕ 8A ⊕ 1. Moreover, since the elec-
tric charge and the strangeness quantum number are both
conserved in strong interactions, we classify the initial states
according to the total electric charge Q and the strangeness
S, which must remain the same throughout the scattering
process. Our analysis uncovers an intriguing pattern that, as
successive entanglement minimization in SU(3)-symmetric
and Q/S-preserving channels is achieved, an increasingly
larger symmetry group appears in the low-energy EFT. We
will identify the scattering channels whose spin-entanglement
need to be minimized in order to obtain SU(6) spin-flavor
symmetries, SO(8) and SU(8) flavor symmetries, as well as
SU(16)em spin-flavor symmetry. In addition, in the case of
unnatural scattering length, entanglement suppression leads
to nonrelativistic conformal symmetry in some scattering
channels, similar to the np scattering.4 Our findings call for
improved precision in lattice QCD simulations of baryon-
baryon interactions in the case of natural scattering length,
in order to determine the amount of emergent symmetry in
low-energy QCD.

This paper is organized as follows. In Sec. II we review
measures of entanglement and the definition of entanglement
power of operators. We will be applying this measure to find
the minimally entangling baryon S matrices. In Sec. III we
discuss the momentum expansion of the S matrix for the cases
of natural and unnatural scattering length. Succinctly, when
the scattering length is natural, i.e., of order the range of
the forces, the S matrix is expanded in a power series in the
momentum. When the scattering length is unnaturally large
the momentum expansion is modified so that powers of the
momentum times scattering length are summed to all orders.

4There are other intriguing works on entanglement suppression in
scattering of diverse objects, ranging from black holes [9,10] to pions
[11].

Effective field theories of baryons for dealing with these two
scenarios are described in Sec. IV. In Sec. V, the structure
of the baryon-baryon S matrix is presented. Then minimally
entangling S matrices and their constraints on phase shifts
are considered. In Sec. VI the symmetries of the Lagrangian
at each entanglement minimum are considered, followed by
a comparison with the numerical simulation in lattice QCD
in Sec. VII. Our conclusions are given in Sec. VIII. This
paper has two appendices. Appendix A gives a review of the
pionless EFT for nucleon scattering and Appendix B gives the
composition of baryon states for each irrep of SU(3).

II. ENTANGLEMENT AND ENTANGLEMENT POWER

In this section, we briefly review and summarize some of
the key concepts in quantum information which are needed
in our analysis. We will start with entanglement, which is
a property associated with quantum states, and proceed to
introduce the entanglement power of an operator.

A quantum state of a system is entangled if it cannot be
written as a tensor-product state of its subsystems. In this
case a measurement on a subsystem can modify the state of
the rest of the system. Specifically let us consider a bipartite
system H12, such as the two-particle system in scattering,
whose Hilbert space can be written as a tensor-product space:
H12 = H1 ⊗ H2. A state vector |ψ〉 ∈ H12 is entangled if it is
not separable, i.e., there do not exist |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2

such that |ψ〉 = |ψ1〉 ⊗ |ψ2〉.
An entanglement measure is a way to quantify the degree

of entanglement of any given state. There are multiple en-
tanglement measures. For a bipartite system, the commonly
employed von Neumann entropy is defined as

E (ρ) = −Tr(ρ1 ln ρ1) = −Tr(ρ2 ln ρ2), (1)

where ρ = |ψ〉〈ψ | is the density matrix and ρ1(2) = Tr2(1)(ρ)
is the reduced density matrix obtained after tracing over sub-
system 2(1). In computations it is often more convenient to
calculate the linear entropy

E (ρ) = −Tr[ρ1(ρ1 − 1)] = 1 − Trρ2
1 , (2)

which has the advantage of being a polynomial of ρ1. The
entanglement measures have the property that they reach zero
on a product state |ψA〉 ⊗ |ψB〉 and attain a maximum on a
maximally entangled state.

For a system with two spin- 1
2 particles, one often defines

the “computational basis” as {|↑ ↑〉, |↑ ↓〉, |↓ ↑〉, |↓ ↓〉},
where |i j〉 = |i〉1 ⊗ | j〉2 and an up (down) arrow represents
the eigenstate of σz with eigenvalues +1 (−1). Then for a
general normalized spin state

|ψ〉 = α|↑ ↑〉 + β|↑ ↓〉 + γ |↓ ↑〉 + δ|↓ ↓〉,
|α|2 + |β|2 + |γ |2 + |δ|2 = 1, (3)

its entanglement can be calculated using the linear entropy in
Eq. (2). The reduced density matrix ρ1 for the first spin is

ρ1 = Tr2|ψ〉〈ψ | =
(|α|2 + |β|2 αγ ∗ + βδ∗

α∗γ + β∗δ |γ |2 + |δ|2
)

, (4)
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and the entanglement of |ψ〉 is therefore

E (|ψ〉) = 1 − Tr1ρ
2
1 = 2|αδ − βγ |2. (5)

It is easy to show that (i) if |ψ〉 = (a|↑〉1 + b|↓〉1) ⊗ (c|↑
〉2 + d|↓〉2) is a product state, E (|ψ〉) = 0, and (ii) the maxi-
mal entanglement is 1/2, which is the case for the maximally
entangled Bell states (|↑ ↑〉 ± |↓ ↓〉)/

√
2 and (|↑ ↓〉 ± |↓ ↑〉)

/
√

2.
The linear entropy is related to another measure of spin

entanglement, the concurrence � = |αδ − βγ | introduced in
Ref. [12]. Both measures have the range (0, 1/2). In fact,
it is possible to show that every entanglement measure for
the bipartite qubit system can be expressed in terms of the
concurrence � [2].

The entanglement measure quantifies the entanglement in
a quantum state |ψ〉, while the entanglement power measures
the ability of a quantum-mechanical operator U to generate
entanglement by averaging over all direct product states it acts
on [13,14]:

E (U ) = E (U |ψ1〉 ⊗ |ψ2〉), (6)

where the average is over the state space H1 and H2. For
qubits we simply average over each Bloch sphere or, equiv-
alently, integrate over all rotations.

There is, however, a subtlety in the definition of the entan-
glement power. It is clear that an operator that is local in the
product space, U1 ⊗ U2, should leave the entanglement of the
initial state unchanged, where U1/2 is a single-qubit operator
acting on H1/2. This leads to the notion of equivalent classes,

U ∼ U ′ if U = (U1 ⊗ U2)U ′(V1 ⊗ V2). (7)

Modulo the redundancy in each equivalent class, it was shown
in Ref. [2] that, for a two-qubit system where U ∈ SU(4),
there are only two operators which minimize the entanglement
power in Eq. (6): the identity and the SWAP. They have the
following matrix representations in the computational basis:

1 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠, SWAP =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠.

(8)
SWAP interchanges the states of two qubits, which makes it
clear that it has minimal entanglement power. It is useful to
write SWAP in the product space using Pauli matrices,

SWAP = (1 + σ · σ )/2, σ · σ ≡
∑

a

σa ⊗ σa. (9)

In this paper, we primarily study the very-low-energy
scattering of nucleons and other spin-1/2 baryons, which is
dominated by the s wave for nonidentical particles. This im-
plies that the S matrix for np scattering can be written as [2]

S = 1
2 (e2iδ1 + e2iδ0 )1 + 1

2 (e2iδ1 − e2iδ0 )SWAP, (10)

where δ0 and δ1 are the scattering phases in the spin singlet
and triplet channels, respectively. In general these phases
could depend on the center-of-mass momentum p. One can
see that S ∝ 1 if δ0 = δ1 and S ∝ SWAP if |δ0 − δ1| = π/2.

They correspond to the SU(4)sm spin-flavor symmetry and the
Schrödinger symmetry, respectively. Note that p cot δi(p) =
−1/ai + r0i p2/2 + · · · , so δ0 = δ1 can be arranged by im-
posing a symmetry that makes the scattering parameters in
the two channels equal. Imposing |δ0 − δ1| = π/2 for all p is
difficult since the δi(p) are complicated functions of p, so if
the constraint is enforced at one value of momentum it will
generically not hold at other values of momentum. However,
there is an exception when δ0 = 0 and δ1 = ±π/2 (or vice
versa) for all p. δ0 = 0 corresponds to a0 = 0; this is a free
theory and the S matrix is trivial. δ1 = ±π/2 corresponds
to 1/a1 = 0, r1i = 0; this corresponds to the unitarity limit
[5]. Both the free theory and the theory at the unitarity limit
are invariant under the Schrödinger symmetry, so this is how
|δ0 − δ1| = π/2 can be realized in a natural way [2].

We will derive the generalization of Eq. (10) for octet
baryons, which allows us to directly recognize when the S
matrix is minimally entangling, thereby sidestepping the pro-
cedure of averaging over initial product states in the definition
of entanglement power in Eq. (6). This simplifies our analysis
greatly.

III. NATURAL AND UNNATURAL SCATTERING LENGTHS

In this section we introduce the concept of natural and
unnatural scattering lengths in the scattering of nonrelativistic
particles, focusing on the s-wave channel. Assuming a single
channel, an equal mass M, and energy below any inelastic
threshold, the S matrix for spinless nonrelativistic particles
can be written as

S = e2iδ(p) = 1 + i
M p

2π
A, (11)

where p is the center-of-mass momentum, δ(p) is the phase
shift, and A is the scattering amplitude. Rewriting e2iδ = (1 +
i tan δ)/(1 − i tan δ) allows us to express

A = 4π

M

1

p cot δ − ip
. (12)

It has been long known that p cot δ admits an expansion in
p2/�2, where � is determined by the range of the two-body
potential such that it dies off exponentially when the distance
r satisfies r� > 1 [15]:

p cot δ = −1

a
+ 1

2
r0 p2 + · · · = −1

a
+ 1

2
�2

∞∑
n=0

rn

(
p2

�2

)n

.

(13)
In the above a is the scattering length, r0 is the effective range,
r1 is the shape parameter, etc. These parameters are measured
experimentally. In particular, a characterizes the effective size
of the target and is related to the total cross section σtot →
4πa2 as p → 0. Equation (13) is referred to as the effective
range expansion (ERE) [16].

The S matrix of a free theory is S = 1 and tan δ = 0 (δ =
0); the scattering length a and all ri’s vanish. On the other
hand, the interaction is “maximal” when S = −1 and tan δ =
∞ (δ = π/2); in this case a → ∞ with all other parameters
in Eq. (13) vanishing and the cross section is σtot = 4π/p2,
which satisfies the unitarity bound. This is the theory with
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the largest possible cross section consistent with unitarity and
hence this is known as the “unitarity limit.” Moreover, at both
δ = 0 and δ = π/2 the theory exhibits Schrödinger symmetry,
which is sometimes referred to as nonrelativistic conformal
invariance, since there is no length scale [5].

In a generic finite-range potential the parameters ri’s in
Eq. (13) are expected to be of O(1/�) for all i. However a
can take any value: it is positive for an attractive potential
with bound states, goes to infinity when the bound state is at
threshold and has zero binding energy, and becomes negative
for weakly attractive potential with resonances (virtual bound
states). Recall that bound states are poles in the S matrix
residing on the positive imaginary axis on the complex plane
and have normalizable wave functions. Resonances are poles
in the lower half complex plane whose wave functions are
non-normalizable.

When the scattering length is large compared to 1/�, it
introduces a subtlety in the perturbative expansion of A in
p/�. Applying the ERE in Eq. (13) to A in Eq. (12), there are
two scenarios we would like to highlight:

(i) Natural scattering length: this is when |a| � 1/� (and
|ri| � 1/�.) In this case the expansion of A in powers
of momentum converges up to p ∼ �:

A = −4πa

M

[
1 − iap +

(
1

2
ar0 − a2

)
p2 + O(p3/�3)

]

=
∞∑

n=0

An, where An ∼ O(pn). (14)

The leading order (LO) contribution is A0 ∼ O(p0).
(ii) Unnatural scattering length: |a| � 1/�, in which case

the expansion breaks down when p ∼ 1/|a|, far below
�. It is then necessary to keep ap to all orders when
expanding in p/� [17,18],

A = −4π

M

1

(1/a + ip)

[
1 + r0/2

(1/a + ip)
p2

+ (r0/2)2

(1/a + ip)2
p4 + · · ·

]

= A−1 +
∞∑

n=0

An, where An ∼ O(pn). (15)

Notice that the LO term in the amplitude now scales
with p−1 for p > 1/|a|.

In low-energy nucleon-nucleon scattering, there is a bound
state, the deuteron, in the spin-triplet channel (3S1) with
the scattering length a1 ≈ 5.4 fm, and a near-threshold vir-
tual bound state in the spin-singlet channel (1S0) with a0 ≈
−23.7 fm. These are (much) larger than the Compton wave-
length of pions, 1/mπ ≈ 1.4 fm, which sets the range of
nuclear interactions. The fact that the two-nucleon system has
scattering lengths (much) larger than 1/mπ is the reason why
it is often stated that nuclear physics is fine tuned or unnatural
[19].

FIG. 1. The first few diagrams contributing to the s-wave ampli-
tude in the center-of-mass frame. A solid black vertex represents the
−C0 vertex, and a grey vertex represents the −C2 p2 vertex.

IV. EFT FOR NUCLEONS AND BARYONS

In the seminal papers [20,21] Weinberg proposed using
the EFT framework to describe nucleon-nucleon interactions,
which has the advantage of employing a systematic expansion
with well-defined error estimates for the computation of any
observables. Moreover, for the purpose of this work it is worth
emphasizing that the EFT Lagrangian makes the presence of
(approximate) symmetries transparent. Traditionally the EFT
technique requires a separation of scales in the physical sys-
tem of interest, which in the two-nucleon case is complicated
by the presence of unnaturally large scattering lengths.

We start by considering the effective Lagrangian for a non-
relativistic fermion ψ that is invariant under Galilean, parity,
and time-reversal symmetries [17,18]:

Leff = ψ†

(
i∂t + ∇2

2M

)
ψ + C0(ψ†ψ )2

+ C2

8

[
(ψψ )†(ψ

↔
∇2ψ ) + H.c.

]
+ · · · , (16)

where
↔
∇2 ≡

←
∇2 − 2

←
∇ ·

→
∇ +

→
∇2, (17)

is dictated by the Galilean invariance. Terms omitted in Leff

are contact operators containing more derivatives and/or more
fields. In particular, C2n are couplings of contact operators
with 2n spatial gradients.5 We will focus on the s-wave chan-
nel and assume the mass M is very large so that relativistic
corrections can be neglected. Equation (16) can be employed
to describe two-nucleon interactions below the pion threshold.
In this “pionless EFT” pions are integrated out and the EFT is
expected to be valid for p � � ∼ mπ , where p = √

ME and
E is the momentum and total energy in the center-of-mass
frame, respectively.

In the EFT the amplitude A is usually computed by sum-
ming a series of Feynman diagrams to the desired order in
the p/� expansion. This is illustrated in Fig. 1: at O(p0), A0

comes from a single tree diagram with one C0 vertex, while
A1 arises from a one-loop diagram with two insertions of C0.

5Time derivatives beyond the kinetic term are eliminated in favor
of spatial derivatives.
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Going up to O(p2), there are two diagrams: a two-loop dia-
gram with three insertions of C0 and a tree diagram with one
factor of C2, contributing to A2. Notice that, in nonrelativistic
EFT, particles and antiparticles are conserved separately and
the only loop diagrams are the bubble diagrams shown in
Fig. 1. Importantly, the loop integrals are UV divergent and a
subtraction scheme is required to remove the UV divergences.
In what follows we summarize the results and relegate the
technical details to Appendix A.

The goal is to have an expansion of the amplitude calcu-
lated from EFT that matches ERE. This matching allows us to
relate the EFT parameters to physical scattering parameters.
Since natural and unnatural scatterings have different ampli-
tude expansions, one would also expect different expansion
parameters in EFT. This is achieved by carefully selecting
the subtraction scheme and the way bubble diagrams are re-
summed.

The commonly used minimal subtraction (MS) scheme
will match the ERE in the natural case. One finds that

C0 = 4πa

M
, C2 = C0

a r0

2
. (18)

In general, when the scattering length is of the natural size a ∼
O(1/�), C2n ∼ 4π/(M�2n+1). But when a is anomalously
large, we find instead C2n ∼ 4πan+1/(M�n) and the pertur-
bative expansion in p/� breaks down when 1/a � p � �.
This is evident in Eq. (15), where the expansion of A in ERE
starts at A−1 ∼ 1/p for 1/a � p.

It is clear that A−1, involving a negative power in p, can
only come from summing over an infinite set of diagrams in
perturbation. Moreover, a small coupling must exist to justify
the resummation. This is achieved by choosing a different
subtraction scheme, the power divergence subtraction (PDS),
introduced in Refs. [17,18], which subtracts both the 1/(D −
3) and the 1/(D − 4) poles in the bubble diagram. The PDS
subtraction introduces a renormalization scale dependence in
the Wilson coefficients C2n = C2n(μ) and A−1 arises from
summing an infinite number of bubble diagrams with only C0

insertions. In the end,

C0(μ) = 4π

M

(
1

−μ + 1/a

)
,

C2(μ) = 4π

M

(
1

−μ + 1/a

)2 r0

2
. (19)

The μ dependence makes it possible to establish a new power
counting, the KSW-vK counting [17,18,22], which allows for
convergence of perturbative expansion over a much larger
range of momentum when the scattering length is unnaturally
large. This can be seen by taking μ � 1/|a|, then C2n(μ) ∼
(4π/M�n)(1/μn+1). Therefore, when 1/|a| � p � �, we
choose μ ∼ p and

C2n p2n ∼ pn−1. (20)

So formally C0 ∼ 1/p, whose insertions need to be resummed
to all orders while insertions of all other C2n>0 carry positive
powers of p and can be treated perturbatively.

For neutrons and protons, their masses are almost identical
and the EFT has an SU(2)I isospin symmetry under which
they transform as a fundamental representation. Introducing p

and n as two-component Pauli spinors representing the two
spin states of the proton and neutron, respectively, the LO
interactions in the EFT can be written as [4]

Ln f =2
LO = −1

2
CS (N†N )2 − 1

2
CT (N†σN ) · (N†σN ),

N =
(

p
n

)
, (21)

where the Pauli matrices σ = (σ 1, σ 2, σ 2) only act on the
spin degrees of freedom. CS and CT can be expressed in
terms of the couplings in the 1S0 and 3S1 channels as
C̄0 = CS − 3CT and C̄1 = CS + CT , respectively, where C̄i =
(4π/M )[1/(−μ + 1/ai )], i = 1, 2, as in Eq. (19). M is now
the nucleon mass and a0 (a1) is the nucleon-nucleon scattering
length in the 1S0 (3S1) channel. Observe that, when CT = 0,
we have C̄0 = C̄1, which is an indication of Wigner’s SU(4)sm

spin-isospin symmetry [3,4], under which N transforms as a
fundamental representation of SU(4)sm and the CS operator is
invariant. On the other hand, ai → ±∞ is a nontrivial fixed
point since μ(d/dμ)[μC̄i(μ)] = 0. In addition to SU(4) sym-
metry [4] in this case one also has the Schrödinger symmetry
[5]. Reference [1] pointed out that both cases of emergent
symmetries coincide with regions of parameters where the
spin-entanglement is suppressed in the 2-to-2 scattering of
nucleons. Moreover, the S matrix as a quantum logic gate
is the identity for SU(4)sm and the SWAP for Schrödinger
symmetry [2].

In low-energy QCD the nucleons are part of the spin-1/2
baryons which transform as an octet under the SU(3) flavor
symmetry acting on the light flavor quarks: (u, d, s). The
EFT consistent with the SU(3)L × SU (3)R chiral symmetry
of QCD is expressed in terms of the 3 × 3 octet matrix B:

B =

⎛
⎜⎜⎝

�0/
√

2 + �/
√

6 �+ p

�− −�0/
√

2 + �/
√

6 n

�− �0 −
√

2
3�

⎞
⎟⎟⎠.

(22)
It is worth pointing out that, in contrast to the similar matrix
for the meson octet, the baryon matrix B is not Hermitian
because charge conjugation does not return to the same states;
instead it changes baryons to antibaryons. The LO effective
Lagrangian contains six contact operators [8]:

Ln f =3
LO = −c1〈B†

i BiB
†
j B j〉 − c2〈B†

i B jB
†
j Bi〉 − c3〈B†

i B†
j BiB j〉

− c4〈B†
i B†

j B jBi〉 − c5〈B†
i Bi〉〈B†

j B j〉
− c6〈B†

i B j〉〈B†
j Bi〉, (23)

where 〈· · · 〉 denotes the trace over the matrices and i = 1, 2
denotes the two spin states of the baryon. Repeated spin in-
dices are summed over implicitly. It is important to point out
that there is a double-trace operator, 〈B†

i B†
j〉〈BiBj〉, which in

the literature is eliminated using the Cayley-Hamilton identity
[8]:

1
2 〈B†

i BiB
†
j B j〉 − 1

2 〈B†
i B jB

†
j Bi〉 − 〈B†

i B†
j BiB j〉 + 〈B†

i B†
j B jBi〉

= 1
2 〈B†

i Bi〉〈B†
j B j〉 − 1

2 〈B†
i B j〉〈B†

j Bi〉 − 1
2 〈B†

i B†
j〉〈BiBj〉.

(24)
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The fact that there are only six operators at LO is a con-
sequence of SU(3) flavor symmetry group, which will be
discussed in the next section.

It is worth mentioning that in the large Nc limit, when
the number of color Nc → ∞, the SU(3) flavor symmetry at
the quark level is enlarged into the SU(6) quark spin-flavor
symmetry [7], under which the spin indexes of the u, d , and
s quarks, together with the flavor quantum numbers, com-
bine to transform together as a fundamental representation
of SU(6). In this case the spin-1/2 and spin-3/2 baryons
combine to form a 56-dimensional representation described
by a completely symmetric three-index field �μνρ . The EFT
Lagrangian to the lowest order contains only two operators
[7]:

Lint = [a(�†
μνρ�

μνρ )2 + b�†
μνσ�μντ�

†
ρδτ�

ρδσ ]. (25)

In this limit of SU(6) spin-flavor symmetry, the six Wilson
coefficients in Eq. (23) are related to a and b in the above [7]:

c1 = − 7
27 b, c2 = 1

9 b, (26)

c3 = 10
81 b, c4 = − 14

81 b, (27)

c5 = a + 2
9 b, c6 = − 1

9 b. (28)

We will work out the quantum information-theoretic predic-
tion of the SU(6) symmetry.

V. S MATRICES IN BARYON-BARYON SCATTERING

In this section we study the general S matrix in baryon-
baryon scattering, focusing on the interplay between spin and
flavor quantum numbers due to the Fermi-Dirac statistics.
We establish our notation and formalism by reconsidering
the nucleon-nucleon channel and generalize to octet baryons.
Then we derive conditions for the S matrix to be minimally
entangling.

A. Flavors in np scattering

The S matrix for np scattering in the low-energy limit is
dominated by the s wave and contains two channels, 1S0 and
3S1, and therefore two scattering phases δ0 and δ1. In the
two-qubit computational basis, {|00〉, |01〉, |10〉, |11〉}, the S
matrix can be written as

S = 1 − σ · σ

4
e2iδ0 + 3 + σ · σ

4
e2iδ1 , (29)

where (1 − σ · σ)/4 and (3 + σ · σ )/4 project onto spin states
in the 1S0 and 3S1 subspaces, respectively. The S matrix is
manifestly unitary, SS† = 1. It will be convenient to rewrite
Eq. (29) in terms of the identity and SWAP operators defined in
Eq. (9) [2],

S = 1 − SWAP

2
e2iδ0 + 1 + SWAP

2
e2iδ1

= 1(e2iδ0 + e2iδ1 ) + SWAP(e2iδ1 − e2iδ0 ), (30)

from which we see the S matrix is proportional to an identity
gate when δ0 = δ1 and the SWAP gate when |δ0 − δ1| = π/2.

In nature neutrons and protons are almost degenerate in
mass, due to the small mass splitting between u and d quarks,

which leads to the existence of approximate SU(2)I isospin
symmetry. Under SU(2)I the proton and neutron are par-
ticles with identical isospin quantum number I = 1/2 but
different I3 = ±1/2. Using the notation |I, I3〉 we have p =
|1/2, 1/2〉 and n = |1/2,−1/2〉. It is instructive to reconsider
the S matrix of NN scattering taking into account the isospin
invariance, which introduces interesting interplay between
flavor and spin quantum numbers due to the Pauli exclusion
principle.

The S matrix for the scattering of two-nucleon
Ni(si)Nj (s j ) → Nk (sk )Nl (sl ), where si represents the spin
state of Ni, is now of the tensor product (spin) ⊗ (flavor) =
(spin1 ⊗ spin2) ⊗ (flavor1 ⊗ flavor2):

S = 1 − σ · σ

4
⊗ 3 + τ · τ

4
e2iδ0 + 3 + σ · σ

4
⊗ 1 − τ · τ

4
e2iδ1 ,

(31)
where σa and τa are Pauli matrices in the spin and flavor sub-
spaces, respectively. Moreover, because of the Fermi-Dirac
statistics, the total isospin I = 1 projects into the spin singlet
1S0, while the I = 0 projects into triplet 3S1.

It is worth noting that the S matrix in Eq. (31) is block
diagonal in the flavor basis {|pp〉, |pn〉, |np〉, |nn〉}:

3 + τ · τ

4
=

⎛
⎜⎜⎜⎝

1 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 1

⎞
⎟⎟⎟⎠,

1 − τ · τ

4
=

⎛
⎜⎜⎜⎝

0 0 0 0

0 1
2 − 1

2 0

0 − 1
2

1
2 0

0 0 0 0

⎞
⎟⎟⎟⎠. (32)

This is because the electric charge Q is a conserved quantity
and commutes with the S matrix. So, alternatively, the NN
scattering could be analyzed in individual sectors labeled by
the total charge Q. For example, focusing on the Q = +1
sector which contains {|pn〉, |np〉}, the S matrix becomes

S = 1 − σ · σ

4
⊗

(
1
2

1
2

1
2

1
2

)
e2iδ0

+ 3 + σ · σ

4
⊗

(
1
2 − 1

2

− 1
2

1
2

)
e2iδ1 . (33)

In fact, the S matrix in the flavor subspace is diagonalized in
the isospin basis {(|pn〉 + |np〉)/

√
2, (|pn〉 − |np〉)/

√
2}:

S = 1 − σ · σ

4
⊗

(
1 0
0 0

)
e2iδ0

+ 3 + σ · σ

4
⊗

(
0 0
0 1

)
e2iδ1 , (34)

where (|pn〉 + |np〉)/
√

2 is in the total isospin I = 1 and
(|pn〉 − |np〉)/

√
2 in the total isospin I = 0. The projec-

tion operators in these two different flavor bases are related
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FIG. 2. The spin-1/2 baryons organized in an octet of SU(3)
flavor group. The axes, S, Q, and I3, represent strangeness, charge,
and I3, respectively.

by (
1
2

1
2

1
2

1
2

)
= O†

N

(
1 0
0 0

)
ON ,

(35)(
1
2 − 1

2

− 1
2

1
2

)
= O†

N

(
0 0
0 1

)
ON ,

where

ON =
(

1√
2

1√
2

1√
2

− 1√
2

)
. (36)

We will see that Eqs. (33) and (34) generalize to baryon-
baryon scattering where the isospin SU(2)I is enlarged to the
SU(3) flavor symmetry.

B. Baryon-baryon scattering

Among the baryons, np scattering is special because it is
flavor diagonal, meaning the incoming and outgoing particles
are identical and do not change their flavor quantum numbers.
This is not the case, in general, for the scattering of other
baryons. In Fig. 2 we show the lowest-lying spin-1/2 baryon
octet, with the states plotted according to their isospin (I3)
and strangeness (S) quantum numbers.6 The electric charge,
also shown in Fig. 2, is Q = I3 + (S + 1)/2 according to the
Gell-Mann–Nishima formula. These baryons furnish an octet
representation (8) under SU(3) flavor group, which then dic-
tates that there are only six scattering phases in the S matrix:
8 ⊗ 8 = 27 ⊕ 10 ⊕ 10 ⊕ 8S ⊕ 8A ⊕ 1, where 27, 8S , 1 are

6In a slight abuse of notation we use S to represent both the
strangeness quantum number and the S matrix, with the hope that
the distinction is clear from the context.

TABLE I. The charge and strangeness of baryon pairs.
Strangeness decreases and charge increases from top to bottom.

Q S Q S Q S

nn 0 0 �−�− −2 −2 �−�− −2 −3

np 1 0 �−� �−�0

�−�0 −1 −2 �−�0 −1 −3
pp 2 0 n�− �−�

n�− −1 −1 �+�− �−�+

�0�0 �0� 0 −3
n � ��0 �0�0

n�0 0 −1 �� 0 −2
p�− n�0 �0�+ 1 −3

p�−

p� �−�− −2 −4
p�0 1 −1 �+�

n�+ �+�0 1 −2 �−�0 −1 −4
p�0

p�+ 2 −1 �0�0 0 −4
�+�+ 2 −2

SU(3) irreducible representations (irreps) symmetric in the
flavor quantum numbers and 10, 10, 8A are antisymmetric. In
addition, the Pauli exclusion principle requires that scattering
in the 27, 8S , 1 must be in the 1S0 channel while 10, 10, 8A are
in 3S1. The phases in the S matrix are labeled as δ27, δ8S , δ1,
δ10, δ10, δ8A .

The presence of flavor nondiagonal channels introduces an
additional layer of complexity in the S matrix and the interplay
between flavor and spin quantum numbers have important
consequences when it comes to entanglement minimization.
When including the flavor quantum number, two comments
are in order: (1) in a scattering experiment the |IN〉 and |OUT〉
states are usually prepared as a pair of particles with defi-
nite flavor quantum numbers in Q and S, and (2) in strong
interactions Q and S are conserved. Due to these considera-
tions, we classify the initial pair of baryons according to the
total Q and S, as shown in Table I. They are divided into
variousone-dimensional (1-dim), three-dimensional (3-dim),
and six-dimensional (6-dim) sectors and an initial pair in a
particular (Q, S) sector is only allowed to scatter into other
pairs within the sector. The np channel is flavor-diagonal and
resides in the (Q, S) = (1, 0) sector. The S matrix is block
diagonal in a basis with definite (Q, S) two-baryon states and
it is simpler to analyze each sector individually.

We will start with the 1-dim sectors with nonidentical
particles,7 which includes the np channel and involves the
27 (flavor symmetric) and the 10 or 10 (flavor antisym-
metric) irreps, as shown in Table II. The S matrix is the
same as in Eq. (33) with δ0 = δ27 and δ1 = δ10 for the pairs
{np, �−�−, �+�0}, while δ1 = δ10 for {n�−, p�+, �−�0}.

For three-dimensional subspaces, the irreps involved are
27, 8S, 8A, 10, and 10. (We list all the flavor eigenstates, i.e.,

7For identical particles the particles must be in a spin singlet state
and the S matrix simply multiplies this state by a phase.
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TABLE II. The baryon pairs in one-dimensional subspaces of S
and Q values, and the flavor irreps they sit in.

Symmetric Antisymmetric
Baryon pairs flavor irrep flavor irrep

np, �−�−, �+�0 27 10

n�−, p�+, �−�0 27 10

states with definite Q and S, within each irrep in Appendix B.)
The S matrix can be written in the form

S = 1 − σ · σ

4
⊗ (P27 e2iδ27 + P8S e2iδ8S )

+ 3 + σ · σ

4
⊗ (P10 e2iδ10 + P10 e2iδ10 + P8A e2iδ8A ), (37)

where P27 is a projection operator onto the 27 irrep in the
flavor space, etc. Again only flavor-symmetric irreps appear
in the 1S0 channel; the flavor-antisymmetric irreps reside in
the 3S1 channel.

The projection operators can be worked out as follows, us-
ing the (Q, S) = (0,−1) sector spanned by {�0n, �− p,�n}
as an illustration. From Appendix B, we see baryon pairs in
this sector have components in several irreps:

|27〉 =
√

2

3
|�0n〉S +

√
1

3
|�− p〉S, (38)

|27〉′ = −
√

1

30
|�0n〉S +

√
1

15
|�− p〉S +

√
9

10
|�n〉S,

(39)

|8S〉 =
√

3

10
|�0n〉S −

√
3

5
|�− p〉S +

√
1

10
|�n〉S, (40)

|10〉 =
√

2

3
|�0n〉A +

√
1

3
|�− p〉A, (41)

|10〉 = −
√

1

6
|�0n〉A +

√
1

3
|�− p〉A +

√
1

2
|�n〉A, (42)

|8A〉 = −
√

1

6
|�0n〉A +

√
1

3
|�− p〉A −

√
1

2
|�n〉A, (43)

where the S and A subscripts denote symmetrized and anti-
symmetrized flavor quantum numbers states, respectively,

|F1 F2〉S/A ≡ 1√
2

(|F1〉 ⊗ |F2〉 ± |F2〉 ⊗ |F1〉). (44)

Equations (38)–(43) define an SU(3)-flavor basis, in which the
flavor part of the S matrix in the R irrep must be proportional
to e2iδR 1.8 In this basis the projectors in the S matrix are all
diagonal, similar to the np scattering in the isospin basis in
Eq. (34),

P27 = Diag (1, 0, 0, 0, 0, 0), (45)

8Recall that the S matrix must be invariant under SU(3) rotations
in the respective irrep.

P′
27 = Diag (0, 1, 0, 0, 0, 0), (46)

P8S = Diag (0, 0, 1, 0, 0, 0), (47)

P10 = Diag (0, 0, 0, 1, 0, 0), (48)

P10 = Diag (0, 0, 0, 0, 1, 0), (49)

P8A = Diag (0, 0, 0, 0, 0, 1). (50)

These projection operators satisfy the relations
∑

R PR = 1
and PRPR′ = δRR′PR.

A physical scattering process takes as an initial state one
of the states from the flavor eigenbasis consisting of {|�0n〉,
|�− p〉, |�n〉, |n�0〉, |p�−〉, |n�〉}. In this physical basis the
projection operator PR becomes

PR → O† PR O, O =
(

1√
2
PS

1√
2
PS

1√
2
PA − 1√

2
PA

)
, (51)

where O is the generalization of Eq. (36) with

PS =

⎛
⎜⎝

√
2/3

√
1/3 0

−√
1/30

√
1/15

√
9/10√

3/10 −√
3/5

√
1/10

⎞
⎟⎠,

PA =

⎛
⎜⎝

√
2/3

√
1/3 0

−√
1/6

√
1/3

√
1/2

−√
1/6

√
1/3 −√

1/2

⎞
⎟⎠. (52)

For the 6-dim sector listed in Table I, the construction of the
S matrix proceeds similarly. In Appendix B we provide the
SU(3) basis in all flavor sectors. The basis transformation
matrices PS and PA in each sector can be read off from the
tables in Appendix B.

C. Minimally entangling S matrix

To study the entanglement property of the S matrix, it will
be illuminating to again first consider the nucleon-nucleon
channel. In this regard we will rewrite Eq. (31) in terms of
the identity and SWAP operator defined in Eq. (9):

S = 1 − SWAP

2
⊗ 1 + SWAP

2
e2iδ0

+ 1 + SWAP

2
⊗ 1 − SWAP

2
e2iδ1 , (53)

where SWAP ≡ (1 + τ · τ)/2 is the SWAP operator acting in the
flavor space. Now if we set δ0 = δ1 = δ,

S = e2iδ

2
(1 ⊗ 1 − SWAP ⊗ SWAP) = e2iδ 1 ⊗ 1, (54)

where we have used the fact that SWAP ⊗ SWAP = −1 ⊗ 1 due
to Fermi-Dirac statistics,

SWAP ⊗ SWAP |N1, s1; N2, s2〉
= |N2, s2; N1, s1〉 = −|N1, s1; N2, s2〉. (55)

So the S matrix is an identity gate in both the spin and
the flavor space. Moreover, the emergent SU(4)sm spin-flavor
symmetry is evident since S matrix is proportional to the
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identity. Similarly, if δ1 = δ0 ± π/2 = δ,

S = e2iδ

2
(SWAP ⊗ 1 − 1 ⊗ SWAP) = e2iδ SWAP ⊗ 1, (56)

where the Fermi-Dirac Statistics again implies

1 ⊗ SWAP |N1, s1; N2, s2〉 = −SWAP ⊗ 1 |N1, s1; N2, s2〉.
(57)

In this case, the S matrix is a SWAP gate in the spin space and
an identity in the flavor space or, equivalently, an identity in
the spin and a SWAP in the flavor.

The discussion above highlights the interplay of entan-
glement in the spin subspace and in the flavor subspace, in
the presence of Fermi-Dirac statistics: the ability of the S
matrix to generate entanglement in the spin space is equivalent
to the ability to entangle in the flavor space. This is most
clear when considering the operator 1 ⊗ (1 + SWAP), which
entangles flavor but not spin. However, using Eq. (57) we see

1 ⊗ (1 + SWAP) = (1 − SWAP) ⊗ 1, (58)

which now entangles the spin but not flavor.
More generally, the S matrix in baryon-baryon scattering

can be written as

S = 1

2

∑
R∈{27,8S,1}

R′∈{10,10,8A}

[1 ⊗ (PR e2iδR + PR′ e2iδR′ )

− SWAP ⊗ (PR e2iδR − PR′ e2iδR′ )]. (59)

where some irreps are absent in 3-dim and 1-dim sectors.
Comparison with Eqs. (54) and (56) suggests that the S matrix
in the above equation is minimally entangling if one of the two
following conditions is satisfied:

S ∝ 1
2 (1 ⊗ 1 − SWAP ⊗ SWAP) = 1 ⊗ 1, (60)

S ∝ 1
2 (SWAP ⊗ 1 − 1 ⊗ SWAP) = SWAP ⊗ 1. (61)

Letu s consider the two possibilities in turn.
The first possibility is achieved when∑

R

PR e2iδR +
∑

R′
PR′ e2iδR′ = e2iδI 1, (62)

∑
R

PR e2iδR −
∑

R′
PR′ e2iδR′ = e2iδI SWAP, (63)

where δI is an arbitrary phase shift. To solve for these two
relations it is more convenient to choose the SU(3)-symmetric
basis for the flavor subspace, for examples Eqs. (38)–(43), in
which the projection operator takes particularly simple forms,
as shown in Eqs. (45)–(50). In this basis the SWAP is also
simple because the SU(3)-symmetric states are eigenstates of
SWAP:

SWAP |R〉 = |R〉 for R ∈ {27, 8S, 1}, (64)

SWAP |R′〉 = −|R′〉 for R′ ∈ {10, 10, 8A}, (65)

where the eigenvalues are +1 for the flavor symmetric irreps
and −1 for the flavor antisymmetric irreps. More explicitly, in
the basis of Eqs. (38)–(43), the relations in Eqs. (62) and (63)

TABLE III. Conditions in each flavor sector for the S matrix to
be minimally entangling. An identity gate is achieved when all the
phases are equal, while a SWAP gate is when the phases differ by
π/2.

(Q, S) sectors Minimal entanglement conditions

np
�−�− δ27 = δ10 or δ27 = δ10 ± π

2
�+�0

n�−

p�+ δ27 = δ10 or δ27 = δ10 ± π

2
�−�0

(p�, p�0, n�+)
(n�, n�0, p�−)
(�−�, �−�0, n �−) δ27 = δ8S = δ10 = δ10 = δ8A or
(�+�, �+�0, p�0 ) δ27 = δ8S = δ10 ± π

2 = δ10 ± π

2 = δ8A ± π

2
(�−�0, �−�0, �−�0 )
(�−�+, �0�,�0�0)

δ27 = δ8S = δ1 = δ10 = δ10 = δ8A or
(�+�−, �0�0, ��0, δ27 = δ8S = δ1 = δ10 ± π

2 = δ10 ± π

2
�− p, �0n, ��) = δ8A ± π

2

become∑
R

PR e2iδR +
∑

R′
PR′ e2iδR′ = e2iδI

(
13

13

)
, (66)

∑
R

PR e2iδR −
∑

R′
PR′ e2iδR′ = e2iδI

(
13

−13

)
, (67)

where 13 is a 3 × 3 identity matrix. From the matrix represen-
tations of PR/R′ in Eqs. (45)–(50), it is easy to see the solution
for the above equation is when all the scattering phases are
equal:

δR = δR′ ≡ δI ⇒ S = e2iδI 1 ⊗ 1. (68)

So the solution for an identity gate in the np scattering gener-
alizes to the baryon scattering.

Next we consider the second possibility, which is reached
through the relations∑

R

PR e2iδR +
∑

R′
PR′ e2iδR′ = e2iδS SWAP, (69)

∑
R

PR e2iδR −
∑

R′
PR′ e2iδR′ = e2iδS 1. (70)

Again in the SU(3)-symmetric basis the solution is when

δR ≡ δS = δR′ ± π

2
⇒ S = e2iδS SWAP ⊗ 1. (71)

Again this is a generalization of the solution leading to the
SWAP gate in np scattering.

In Table III we list the explicit solutions for the S matrix to
be minimally entangling for each (Q, S) sector.

VI. ENTANGLEMENT MINIMUM AND SYMMETRY

In this section we investigate the possible emergent sym-
metries in the EFT when the S matrix is minimally entangling.

025204-9



QIAOFENG LIU, IAN LOW, AND THOMAS MEHEN PHYSICAL REVIEW C 107, 025204 (2023)

TABLE IV. Minimal entanglement conditions on Wilson coefficients in each flavor subspace.

Flavor subspaces Minimal entanglement conditions

np

�−�− c2 = −c6 or c1 + c5 = − 2π

Mμ
, c2 + c6 = ± 2π

Mμ
�+�0

n�−

p�+ c1 = c6 or −c2 + c5 = − 2π

Mμ
, c1 − c6 = ± 2π

Mμ
�−�0

(p�, p�0, n�+)
(n�, n�0, p�−)

(�−�, �−�0, n �−) c1 = −c2 = −1

2
c3 = 1

2
c4 = c6 or

(�+�, �+�0, p�0) c1 = −c2 = −1

2
c3 = 1

2
c4 = −c5 − 2π

Mμ
= c6 ± 2π

Mμ
(�−�0, �−�0, �−�0)
(�−�+, �0�, �0�0 )

(�+�−, �0�0, ��0, �− p, �0n, ��) c1 = c2 = c3 = c4 = c6 = 0 or
c1 = c2 = c3 = c4 = 0, c5 = −2π/Mμ, c6 = ±2π/Mμ

The Lagrangian for the EFT is given in Eq. (23). It will be con-
venient to project the contact operators into irreps of SU(3)
flavor symmetry, and the corresponding SU(3)-symmetric
Wilson coefficients are [6]

C27 = c1 − c2 + c5 − c6, (72)

C8S = − 2
3 c1 + 2

3 c2 − 5
6 c3 + 5

6 c4 + c5 − c6, (73)

C1 = − 1
3 c1 + 1

3 c2 − 8
3 c3 + 8

3 c4 + c5 − c6, (74)

C10 = c1 + c2 + c5 + c6, (75)

C10 = −c1 − c2 + c5 + c6, (76)

C8A = 3
2 c3 + 3

2 c4 + c5 + c6. (77)

At the leading order in EFT, the relation between the Wilson
coefficient Ci and the scattering phase δi is simple and given
by Eqs. (13) and (19):

p cot δi = −
(

μ + 4π

MCi

)
, (78)

where the natural scattering length is recovered by setting
μ = 0. The conditions for a minimally entangling S matrix
in Eqs. (68) and (71) translate directly into constraints on the
Wilson coefficients,

δR = δR′ ⇒ CR = CR′ (natural and unnatural), (79)

δR = δR′ ± π

2
⇒

⎧⎪⎪⎨
⎪⎪⎩

CR = − 4π

Mμ
, CR′ = 0

CR = 0, CR′ = − 4π

Mμ

(unnatural).

(80)

There are no values of Ci that allow the π/2 phase difference
in the natural scattering length case. Moreover, the values

of CR,R′ in the unnatural π/2 phase difference case set δR =
0, δR′ = π/2 or vice versa. When the scattering phase δ =
π/2, the scattering length becomes infinite and the channel
exhibits the Schrödinger symmetry. In this case the channel
reaches the unitarity limit. When the phase δ = 0, the S matrix
corresponds to a free theory and is also invariant under the
Schrödinger group. In Table IV we list the corresponding
constraints on the Wilson coefficients for each (Q, S) sector,
as deduced from Table III.

The previous discussion concerns minimal entanglement
in a particular (Q, S) sector and the constraints in Eqs. (79)
and (80) apply to only a subset of irreps of 8 ⊗ 8 that are
involved, except for the 6-dim (Q, S) = (0,−2) sector, where
all six irreps enter. In this case, minimal entanglement in the
6-dim sector forces minimal entanglement in all other (Q, S)
sectors for scattering of non-identical baryons. This is the
global entanglement minimum and the constraints are

δR = δR′ , ∀ R, R′ ⇒ c1 = c2 = c3

= c4 = c6 = 0, c5 unconstrained, (81)

δR = δR′ ± π

2
, ∀ R, R′ ⇒ c1 = c2 = c3 = c4 = 0,

c5 = − 2π

Mμ
, c6 = ± 2π

Mμ
, (82)

where the first line applies to both natural and unnatural cases,
and the second line only applies to the unnatural case. The
first condition was first reported in Ref. [1] and leads to the
emergent SU(16)sm spin-flavor symmetry. The second condi-
tion results in the S matrix being a SWAP operator in either the
spin or the flavor space and we expect Schrödinger symmetry
to emerge, similarly to the case of np scattering that was first
reported in Ref. [23].

025204-10



MINIMAL ENTANGLEMENT AND EMERGENT SYMMETRIES … PHYSICAL REVIEW C 107, 025204 (2023)

TABLE V. Symmetries predicted by entanglement minimization
in each flavor sector.

Flavor Subspace Symmetry of Lagrangian

np SU(6) spin-flavor symmetry or
�−�− Schrödinger symmetry in 27 and 10
�+�0 irrep channels

n�− conjugate of SU(6) spin-flavor symmetry or
p�+ Schrödinger symmetry in 27 and 10
�−�0 irrep channels

(p�, p�0, n�+)
(n�, n�0, p�−)
(�−�, �−�0, n �−) SO(8) flavor symmetry or
(�+�, �+�0, p�0 ) Schrödinger symmetry in
(�−�0, �−�0, �−�0) 27, 8S, 8A, 10 and 10 irrep channels
(�−�+, �0�, �0�0 )

(�+�−, �0�0, ��0, SU(16) symmetry or
�− p, �0n, ��) SU(8) and Schrödinger symmetry

Next we will use the EFT Lagrangian to investigate the
emergent symmetries associated with the conditions listed in
Table IV, starting from the 1-dim sectors and then moving
toward the global minimum at the 6-dim sector.

A. Minimal entanglement in 1-dim sectors: SU(6)

As shown in Table II, there are two different classes
of 1-dim sectors: {n�−, p�+, �−�0} involves 10 and
{np, �−�−, �+�0} contains 10. Recall that 10 and 10 are
irreps of SU(3) related by complex conjugation, under which
(Q, S + 1) → (−Q,−(S + 1)). This can also be seen from
the “eightfold way” in Fig. 2, where the action of complex
conjugate gives n ↔ �0, p ↔ �−, and �+ ↔ �−.

Let us consider {n�−, p�+, �−�0} first. Minimizing the
entanglement in this class requires C27 = C10. This turns out to
be a prediction of the SU(6) spin-flavor symmetry which com-
bines the two spin states with the three quark flavors (u, d, s)
into a fundamental representation (6) of SU(6), whose corre-
sponding Lagrangian in Eq. (25) contains only two parameters
a and b. Reexpressing the SU(3)-symmetric Wilson coeffi-
cients using Eqs. (26)–(28), we find

C27 = a − w 1
27 b, C8S = a + 1

3 b, C1 = a − 1
3 b, (83)

C10 = a + 7
27 b, C10 = a − 1

27 b, C8A = a + 1
27 b. (84)

Thus SU(6) symmetry predicts

C27 = C10 ⇒ δ27 = δ10, (85)

leading to minimal entanglement in all three channels in
{n�−, p�+, �−�0}. In principle there are three other linear
relations among the SU(3)-symmetric Wilson coefficients fol-
lowing from the SU(6) spin-flavor symmetry, although they
do not seem to lead to entanglement suppression in other
channels.

On the other hand, requiring minimal entanglement in
{np, �−�−, �+�0} gives C27 = C10, which is not a predic-

TABLE VI. Wilson coefficients of each irrep, in lattice units,
from data in Refs. [6,25], where μ = mπ = 806 and 450 MeV,
respectively, in the simulations. For C27 there are several values
obtained from different channels and methods listed in Ref. [25]. We
picked one with the smallest error bar as a representative.

C27 C10 C10 C8A

Natural [6] −16.7(2.8) −50(50) −11.1(2.5) −7.7(1.8)

Unnatural [6] 1.89(4) 1.75(6) 2.00(8) 2.17(9)

Natural [25] −28+3
−5 −29+3

−4 −19+1
−1

Unnatural [25] 10.0+0.5
−0.5 11.3+0.5

−0.5 12.8+0.5
−0.5

tion of SU(6). However, since {np, �−�−, �+�0} channels
are the complex conjugate of {�−�0, p�+, n�−}, one can
see that C27 = C10 is a prediction of SU (6), where the two
spin states together with (u, d, s) quarks now transform as the
antifundamental representation (6) of SU(6).

B. Minimal entanglement in 3-dim sectors: SO(8)

As seen from Table IV, in 3-dim flavor sectors the identity
gate is achieved when c1 = −c2 = − 1

2 c3 = 1
2 c4 = c6. Quite

unexpectedly, the Lagrangian in Eq. (23) simplifies upon the
use of the Cayley-Hamilton theorem in Eq. (24),

L = −(c1 + c5) 〈B†
i Bi〉〈B†

j B j〉 + c1〈B†
i B†

j〉〈BiBj〉. (86)

The above Lagrangian has an emergent SO(8) symmetry. This
is the easiest to see by projecting the baryon matrix B in
Eq. (22) into SU(3) generators T a which satisfy [T a, T b] =
i f abcT c and Tr (T aT b) = 1

2δab:

Ba ≡ Tr(BT a), a = 1, . . . , 8, (87)

�B = (B1, . . . , B8)

= 1
2 (�+ + �−, i�+ − i�−, p + �−, ip − i�−,

n + �0, in − i�0,
√

2�0,
√

2�), (88)

where we have chosen T a = λa/2, where λa, a = 1, . . . , 8 are
the famed Gell-Mann matrices for the SU(3) eightfold way
[24]. Then the Lagrangian becomes

L = −2(c1 + c5)( �B†
i · �Bi )( �B†

j · �Bj ) + 2c1( �B†
i · �B†

j )( �Bi · �Bj ),
(89)

where we recall the i, j indices represents the two spin states
of the baryon. In this notation the first operator in Eq. (89)
preserves an SU(8) flavor symmetry,

�B → U �B, U†U = 1. (90)

However, the second operator is invariant only under an SO(8)
subgroup of SU(8):9

�B → O �B, OTO = 1, where O ∈ SO(8). (91)

9Group generators of SU(N ) are N × N traceless Hermitian matri-
ces, among which the purely imaginary ones are antisymmetric and
hence generators of the SO(N ) subgroup.
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TABLE VII. Baryon-baryon scattering channels in 27.

Scattering channels

nn
np
pp

n�−√
2
3 �0n +

√
1
3 �− p

−
√

1
30 �0n +

√
1
15 �− p +

√
9

10 �n

−
√

1
3 �+n +

√
2
3 �0 p√

1
15 �+n +

√
1

30 �0 p +
√

9
10 �p

�+ p√
1
3 �+�− −

√
2
3 �0�0√

3
5 ��0 +

√
1
5 �− p −

√
1
5 �0n√

1
60 �+�− −

√
1

120 �0�0 −
√

3
20 �0n −

√
3

20 �− p +
√

27
40 ��

�−�−

�−�0√
3
5 ��− −

√
2
5 �−n√

3
5 ��+ −

√
2
5 �0 p

�+�0

�+�+

�−�−

−
√

2
3 �0�− +

√
1
3 �−�0

−
√

1
30 �0�− +

√
1
15 �−�0 +

√
9

10 ��−√
1
3 �+�− +

√
2
3 �0�0

−
√

1
15 �+�− +

√
1

30 �0�0 +
√

9
10 ��0

�+�0

�−�−

�−�0

�0�0

Thus the Lagrangian in Eq. (89) is invariant under an emergent
SO(8) symmetry.

C. Minimal entanglement in 6-dim sector: SU(8) and SU(16)

When the global entanglement is minimized, c1–c4 oper-
ators all vanish, and only c5 and c6 operators are present,
depending on whether the scattering is natural or unnatural.
In the case of a natural scattering length, only c5 is nonzero
and the Lagrangian is

L = −c5 〈B†
i Bi〉〈B†

j B j〉. (92)

As reported in Ref. [1] this Lagrangian has an SU(16) global
symmetry:

B = (n↑, n↓, p↑, p↓, . . . ), L = −c5(B†B)2. (93)

When both c5 and c6 are nonzero, as in the case of an unnatural
scattering length,

L = −c5 〈B†
i Bi〉〈B†

j B j〉 − c6 〈B†
i B j〉〈B†

i B j〉
= −2c5( �B†

i · �Bi )( �B†
j · �Bj ) − 2c6( �B†

i · �Bj )( �B†
i · �Bj ). (94)

TABLE VIII. Baryon-baryon scattering channels in 8S .

Scattering channels√
3

10 �0n −
√

3
5 �− p +

√
1

10 �n√
3
5 �+n +

√
3

10 �0 p −
√

1
10 �p

−
√

2
5 ��0 +

√
3

10 �− p −
√

3
10 �0n√

2
5 �+�− −

√
1
5 �0�0 +

√
1

10 �0n +
√

1
10 �− p +

√
1
5 ��√

2
5 ��− +

√
3
5 �−n√

2
5 ��+ +

√
3
5 �0 p√

3
10 �0�− +

√
3
5 �−�0 −

√
1

10 ��−√
3
5 �+�− −

√
3

10 �0�0 +
√

1
10 ��0

From the reasoning in Sec. VI B, one sees that the SU(8)
symmetry exhibited in Eq. (90) leaves the above Lagrangian
invariant. The SU(8) flavor symmetry is in addition to the
nonrelativistic conformal invariance that is present when c5

and c6 flows to the UV fixed point. The full symmetry predic-
tions following from entanglement minimization are listed in
Table V.

VII. RESULTS FROM LATTICE QCD

In QCD, baryon-baryon interactions were simulated nu-
merically by the NPLQCD Collaboration and four out of the
six scattering lengths in SU(3)-symmetric channels were eval-
uated in Ref. [6] for both natural scattering length (μ = 0) and
unnatural scattering length (μ = mπ ), where mπ = 806 MeV
is the mass of the pion in the simulation. More recently new
simulations with a more realistic pion mass, mπ = 450 MeV,
appeared in Ref. [25] for three out of the six channels.

We list the values of CR from Refs. [6,25] in Table VI.
Focusing on simulations with mπ = 806 MeV in Ref. [6]
for now, we see that, in the case of unnatural scattering
length, C27 ≈ C10 ≈ C10 ≈ C8A . These results imply the pres-
ence of SU(6) spin-flavor symmetry, which can then be used
to deduce the other two Wilson coefficients C8S and C1 us-
ing Eqs. (26)–(28). In the end the Wilson coefficients in all
SU(3)-symmetric channels are all approximately in the same
numerical range, a strong indicator of SU(16) spin-flavor
symmetry. On the other hand, in simulations using more re-
alistic mπ = 450 MeV in Ref. [25], only three channels are
provided, among which the SU(6) predictions seem to con-
tinue to hold up well. In the case of natural scattering length,
SU(6) spin-flavor symmetry requires C27 ≈ C10 or C27 ≈ C10,
without which the other two Wilson coefficients cannot be

TABLE IX. Baryon-baryon scattering channels in 1.

Scattering channels

1
2 �+�− +

√
1
8 �0�0 + 1

2 �0n + 1
2 �− p +

√
1
8 ��
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TABLE X. Baryon-baryon scattering channels in 10.

Scattering channels

np

−
√

1
6 �0n +

√
1
2 �− p +

√
1
2 �n√

1
3 �+n +

√
1
6 �0 p −

√
1
2 �p√

1
2 ��− −

√
1
6 �−�0 −

√
1
3 �−n√

1
2 ��+ −

√
1
6 �+�0 −

√
1
3 �0 p

�−�−

−
√

2
3 �0�− +

√
1
3 �−�0

√
1
3 �+�− +

√
2
3 �0�0

�+�0

deduced. As can be seen from Table VI, C27 ≈ C10 seems to
work in Ref. [25], where a lower mπ is employed.

At this point it is clear that no firm conclusion can be
drawn from the lattice data. It would be desirable to improve
on the precision of lattice simulation, as well as computing
the Wilson coefficients in more SU(3)-symmetric channels,
in order to gain further insights on the possible emergent
symmetries in low-energy QCD.

VIII. CONCLUSION

In this paper, building upon the work of Refs. [1,2], we
showed that successive entanglement minimization in SU(3)-
symmetric channels leads to increasingly large emergent
symmetries in low-energy interactions of spin-1/2 baryons, as
demonstrated in Table V. Our findings strongly hint at a new
paradigm where symmetry can be considered as the outgrowth
of entanglement minimization. With the benefit of hindsight,
it may not seem surprising that there is a correlation between
entanglement and symmetry since, from the thermodynamic
point of view, both are related to the presence of “order”
(or the lack thereof) in the physical system.10 This paper
represents a first step in establishing a quantitative relation
between entanglement and symmetry.

There are many other questions to be answered before we
can fully grasp the implications of results in this work. We
have considered emergent global symmetries in low-energy
QCD. It would be natural to explore similar connections in
other physical systems, for example few-body systems in
atomic, molecular, and optical (AMO) physics, as well as
other types of symmetries such as the gauge symmetry.11

In addition, global symmetries considered in this work are
realized in the Wigner-Weyl mode, where the spectrum of

10Recall that the von Neumann entropy in Eq. (1) is an entangle-
ment measure.

11For an exploratory study in this direction, see Ref. [12].
12See Ref. [11] for an initial study.

the dynamical system furnishes linear representations of the
symmetry group. It would be interesting to understand the
Nambu-Goldstone mode, commonly referred to as sponta-
neous symmetry breaking, from the perspective of quantum
information science.12

Entanglement may also provide a new context to under-
stand another long-standing puzzle in fundamental physics:
whether nature is fine tuned. The large scattering length in
np scattering in the 3S1 channel gives rise to a near-threshold
bound state—the deuteron—whose existence is often at-
tributed to fine tuning: the binding energy of deuteron is only
2.2 MeV, smaller than the typical nuclear binding of O(10)
MeV. On the other hand, we now know that the large scatter-
ing length is associated with the S matrix realizing the SWAP

gate. It remains to be seen whether other fine-tuned systems
can be understood in a similar fashion.

Last but not least, insights into the precise relation be-
tween entanglement and symmetry may in the long run help
us devise efficient quantum algorithms to simulate physical
systems with a certain type of symmetry. Given the ubiqui-
tous presence of symmetries in nature, this may have broad
applications.
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APPENDIX A: PIONLESS EFT FOR NUCLEONS
AND BARYONS

In this Appendix, we introduce the pionless EFT, which is
essentially a nonrelativistic quantum field theory for fermions.
The goal is to explain how to reproduce ERE in Eq. (13) in an
EFT and discuss the power counting scheme for unnaturally
large scattering length.

In a nonrelativistic EFT, the scaling of t differs from that
of �x [26]:13

�x → λ�x, t

M
→ λ2 t

M
, ψ → λ−3/2ψ, (A1)

which leaves the kinetic terms in Eq. (16) invariant. The
scaling makes it transparent that the Wilson coefficient of an
operator with 2n spatial derivatives, C2n, is of order

C2n ∼ O
(

1

M�2n+1

)
. (A2)

In this power counting scheme, the leading order diagram is
the tree-level diagram with the C0 vertex, as can be seen from

13To understand the scaling of t , recall the nonrelativistic dispersion
E = | �p|2/(2M ).

025204-13



QIAOFENG LIU, IAN LOW, AND THOMAS MEHEN PHYSICAL REVIEW C 107, 025204 (2023)

Fig. 1:

A0 = −C0. (A3)

It reproduces Eq. (14) if

C0 = 4πa

M
. (A4)

Going to higher orders in Fig. 1 we need to evaluate UV divergent loop integrals, in D spacetime dimensions, of the form [17,18]

In = −i(μ/2)4−D
∫

dDq

(2π )D

i2q2n

(E/2 + q0 − q2/2M + iε)(E/2 − q0 − q2/2M + iε)

= − (μ/2)4−D

(4π )(D−1)/2
�

(
3 − D

2

)
M(ME )n(−ME − iε)(D−3)/2, (A5)

and a subtraction scheme is needed. Recall the ERE in the
denominator of Eq. (12) is a polynomial in p, which the
EFT aims to reproduce. A subtraction scheme that achieves
this goal is the minimal subtraction (MS) which removes the
1/(D − 4) divergence, if any, and leads to [27]

IMS
n = (ME )n

(
M

4π

)√−ME − iε = −i

(
M

4π

)
p2n+1. (A6)

The nice feature that the loop momentum q in IMS
n gets

converted to the external momentum p allows one to use
the tree-level, on-shell vertex at the operator insertion in the
loop diagram. Evaluating the loop diagrams in Fig. 1 and
comparing with Eq. (14) order by order in pn, we arrive at
the following relations in the MS scheme [17,18]:

A0 = −C0, A1 = i
C2

0 M p

4π
, A2 = C3

0 M2 p2

16π2
− C2 p2,

(A7)
which give

C0 = 4πa

M
, C2 = C0

a r0

2
. (A8)

Notice that in the MS scheme C2n is independent of the
renormalization scale μ. Also in this scheme, if |a| � 1/�,
the perturbative expansion converges up to � and the power
counting in Eq. (A2) is reproduced. The EFT in this case could
describe a bound state well below the threshold.

On the other hand, if a � 1/� ∼ 1/mπ , Eq. (A4) is in-
compatible with the naive expectation C0 ∼ 1/(M�) and the
perturbative expansion in C0 would not converge in the regime
|1/a| � p � �. The physics behind the breakdown of pertur-
bative expansion in the case of large scattering lengths is the
presence of shallow bound states, which manifest themselves
as poles in the amplitudes. In this case, one needs to repro-
duce a different amplitude expansion from ERE, Eq. (15).
The leading order term in Eq. (15) scales as p−1, and since
every diagram has a positive order of p, A−1 in Eq. (15) has
to come from an infinite sum of diagrams. As pointed out
by Weinberg [20,21], poles can be generated by resumming
the bubble diagrams (see Fig. 1) with any number of C0

insertions:

Aresum = −C0

M
+

(
−C0

M

)
I0

(
−C0

M

)

+
(

−C0

M

)
I0

(
−C0

M

)
I0

(
−C0

M

)
+ · · ·

= 1

(C0/M )−1 − I0
. (A9)

Resumming the bubble diagrams is equivalent to solving the
Schrödinger equation with the potential given by C0. [20,21].

To reproduce Eq. (15) in the EFT, one could use a dif-
ferent subtraction scheme, the PDS scheme, and resum all
bubble diagrams with insertions of C0, as shown in Fig. 3.
This is what is known as the KSW-vK scheme [17,18,22,27–
29]. Under PDS scheme, the 1/(D − 3) divergence is also
removed:

δIn = −M(ME )nμ

4π (D − 3)
,

IPDS
n = −μ + ip

4π
M(ME )n = −M(μ + ip)p2n

4π
. (A10)

The resummed amplitude under PDS scheme is

Aresum,PDS = −
∑

n C2n p2n

1 + M(μ + ip)/4π
∑

n C2n p2n
. (A11)

FIG. 3. The diagrams contributing to leading order s-wave am-
plitudes A−1 and A0 in the center-of-mass frame under PDS scheme.
A solid black vertex represents the −C0 vertex, and a grey vertex
represents the −C2 p2 vertex.
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TABLE XI. Baryon-baryon scattering channels in 10.

Scattering channels

n�−√
2
3 �0n +

√
1
3 �− p

−
√

1
3 �+n +

√
2
3 �0 p

�+ p√
1
2 ��− +

√
1
6 �−�0 +

√
1
3 �−n√

1
2 ��+ +

√
1
6 �+�0 +

√
1
3 �0 p

−
√

1
6 �0�− +

√
1
3 �−�0 −

√
1
2 ��−

−
√

1
3 �+�− +

√
1
6 �0�0 +

√
1
2 ��0

�−�0

To match it to ERE, we consider the quantity

p cot δ = 4π

MA + ip = − 4π

M
∑

n C2nP2n
− μ. (A12)

Comparing the Taylor expansion of Eq. (A12) and Eq. 13, we
get

C0 = 4π

M(1/a − μ)
, C2 = r0

2

C0

1/a − μ
. (A13)

The leading order terms in amplitude expansion are

A−1 = −C0

1 + C0M
4π

(μ + ip)
, A0 = −C2 p2[

1 + C0M
4π

(μ + ip)
]2 .

(A14)

It is now evident that A−1 comprises diagrams with the vertex
C0 to all orders, and A0 comprises diagrams with one C2

insertion and C0 insertions to all orders. The MS scheme
results can be recovered by setting μ = 0.

APPENDIX B: BARYON-BARYON SCATTERING
CHANNELS

The SU(2)spin × SU(3)flavor symmetry dictates low-energy
baryon-baryon interactions. The lowest lying baryons have
spin 1/2 and transform as an eight-dimensional adjoint repre-
sentation under SU(3) flavor symmetry. Just as two 1/2 spins
can be projected into total spin S = 0 and S = 1 states, the

TABLE XII. Baryon-baryon scattering channels in 8A.

Scattering channels

−
√

1
6 �0n +

√
1
2 �− p +

√
1
2 �n√

1
3 �+n +

√
1
6 �0 p −

√
1
2 �p

−
√

2
3 �−�0 +

√
1
3 �−n√

1
2 �0n +

√
1
2 �− p

−
√

1
6 �0n +

√
1
6 �− p +

√
2
3 �−�+

−
√

2
3 �+�0 +

√
1
3 �0 p

−
√

1
6 �0�− +

√
1
3 �−�0 +

√
1
2 ��−

−
√

1
3 �+�− +

√
1
6 �0�0 −

√
1
2 ��0

64-dimensional two-baryon flavor space is divided into six
irreducible representations (irreps) of SU(3), according to 8 ⊗
8 = 27 ⊕ 10 ⊕ 10 ⊕ 8S ⊕ 8A ⊕ 1. We list the states of each
irrep in the flavor eigenbasis in Tables VII–XII, which are then
used to determine projection matrices in each flavor sector. It
is important to keep in mind that flavors of the two baryons
are symmetrized in {27, 8S, 1} irreps and antisymmetrized
in {10, 10, 8A} irreps, as we omit symmetric/antisymmetric
subscripts in the tables for simplicity.

We briefly outline the computation process below. Since
the Lagrangian is SU(3) invariant, the tensor product de-
composition dictates that the Lagrangian is a sum of six
SU(3)-symmetric operators which mediate 2-to-2 scattering
for each of the irreps separately, and whose coefficient will be
denoted as {C27,C10,C10,C8S ,C8A ,C1}. The SU(3) symmetry
further determines that each operator has to be diagonal in
the SU(3)-symmetric basis. Since Q and S are conserved, the
Lagrangian can also be split into different (Q, S) sectors,

L =
∑
Q,S

LQ,S. (B1)

Each LQ,S contains channels from different irreps. One can
compute LQ,S by expanding Eq. (23) in terms of individual
baryon fields and picking out terms in desired (Q, S) sector.
LQ,S is then organized into the diagonal form. For example,
the Lagrangian involving the {�0n, �− p,�n} sector is diag-
onalized as

LQ=0,S=−1 = −(c1 − c2 + c5 − c6)(ψ†
1 ψ1 + ψ

†
2 ψ2) − (− 2

3 c1 + 2
3 c2 − 5

6 c3 + 5
6 c4 + c5 − c6

)
ψ

†
3 ψ3

− (c1 + c2 + c5 + c6)
(
ψ

(1) †
4 ψ

(1)
4 + ψ

(2) †
4 ψ

(2)
4 + ψ

(3) †
4 ψ

(3)
4

)
− (−c1 − c2 + c5 + c6)

(
ψ

(1) †
5 ψ

(1)
5 + ψ

(2) †
5 ψ

(2)
5 + ψ

(3) †
5 ψ

(3)
5

)
− (

3
2 c3 + 3

2 c4 + c5 + c6
)(

ψ
(1) †
6 ψ

(1)
6 + ψ

(2) †
6 ψ

(2)
6 + ψ

(3) †
6 ψ

(3)
6

)
, (B2)
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where

ψ1 =
√

2

3

(
�0

↑n↓ − �0
↓n↑√

2

)
+

√
1

3

(
�−

↑ p↓ − �−
↓ p↑√

2

)
, (B3)

ψ2 = −
√

1

30

(
�0

↑n↓ − �0
↓n↑√

2

)
+

√
1

15

(
�−

↑ p↓ − �−
↓ p↑√

2

)
+

√
9

10

(
�↑n↓ − �↓n↑√

2

)
, (B4)

ψ3 =
√

3

10

(
�0

↑n↓ − �0
↓n↑√

2

)
−

√
3

5

(
�−

↑ p↓ − �−
↓ p↑√

2

)
+

√
1

10

(
�↑n↓ − �↓n↑√

2

)
, (B5)

ψ
(1)
4 =

√
2

3
�0

↑n↑ +
√

1

3
�−

↑ p↑, (B6)

ψ
(1)
5 = −

√
1

6
�0

↑n↑ +
√

1

3
�−

↑ p↑ +
√

1

2
�↑n↑, (B7)

ψ
(1)
6 = −

√
1

6
�0

↑n↑ +
√

1

3
�−

↑ p↑ −
√

1

2
�↑n↑. (B8)

By replacing operators F1↑F2↑ in ψ
(1)
i with (F1↑F2↓ +

F1↓F2↑)/
√

2 or F1↓F2↓, one gets ψ
(2)
i or ψ

(3)
i . Scattering chan-

nels can be read off and are listed in Eqs. (38)–(43). To further
identify the irrep of each ψi, we compute the eigenvalues
of Casimir operators acting on these states. SU(3) has two
Casimir operators,

C1 =
∑

a

T aT a, C2 =
∑
abc

dabcT aT bT c, (B9)

where dabc = 2Tr({T a, T b}T c) is the totally symmetric d
constants of SU(3). Here C1 = (p2 + q2 + 3p + 3q + pq)/3
and C2 = (p − q)(3 + p + 2q)(3 + q + 2p)/18, where (p, q)
for the irreps are 27 = (2, 2), 10 = (3, 0), 10 = (0, 3), 8 =

(1, 1), and 1 = (0, 0) [30]. Every irrep can be determined
by a unique set of eigenvalues of C1 and C2. This process
also allows us to find the values of C27,C10,C10,C8S , and
C8A in terms of the ci. We complete the tables by repeating
this process for every (Q, S) sector. Alternatively, the states
can be found using lowering operators in SU(3). Since these
states are weights of each irrep, one can start by identifying
the unique highest weight in each irrep, whose (Q, S) values
are fixed by the representation theory. To find the highest
weights of 8S, 8A, and 1, it is useful to also consider the
action of two Casimir operators, which fixes the linear com-
bination of multiple physical states with same (Q, S) values.
Then one can derive all remaining weights by repeated action
of three lowering operators, I− = T 1 − iT 2,V− = T 4 − iT 5,
and U− = T 6 − iT 7.
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