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Theoretical study of the γd → π0ηd reaction
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We have done a theoretical study of the γ d → π0ηd reaction starting with a realistic model for the γ N →
π 0ηN reaction that reproduces cross sections and polarization observables at low energies and involves the
γ N → �(1700) → η�(1232) → ηπ 0N process. For the coherent reaction in the deuteron we considered the
impulse approximation together with the rescattering of the pions and the η on a different nucleon than the
one where they are produced. We found this second mechanism very important since it helps share between
two nucleons the otherwise large momentum transfer of the reaction. Other contributions to the γ d → π0ηd
reaction, involving the γ N → π±π 0N ′ process, followed by the rescattering of the π± with another nucleon
to give η and a nucleon, have also been included. We find a natural explanation, tied to the dynamics of our
model, for the shift of the η-d mass distribution to lower invariant masses, and of the π0-d mass distribution to
larger invariant masses, compared to a phase space calculation. We also study theoretical uncertainties related
to the large momenta of the deuteron wave function involved in the process as well as to the couplings present
in the model. Striking differences are found with the experimental angular distribution and further theoretical
investigations might be necessary.
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I. INTRODUCTION

The γ p → π0ηp reaction has shown a great potential to
address relevant issues on hadron physics, such as the na-
ture of some resonances and effects of triangle singularities.
Prior to its measurement, predictions on the cross section at
low energies were made in Ref. [1]. Many different mech-
anisms were investigated in the former work, concluding
that the reaction at low energies was largely dominated by
γ N → �(1700) → �(1232)η → π0Nη. The predictions for
this process were done by considering �(1700) (spin-parity
JP = 3/2−) to be a resonance which appears dynamically
generated from the interaction of pseudoscalar mesons with
the baryons of the �(1232) decuplet [2,3]. The chiral unitary
approach applied to the coupled channels �π , �∗K , �η gives
rise to two resonances, the one at higher energies being asso-
ciated with the �(1700) of the Particle Data Group (PDG)
[4]. It was found in Ref. [3] that this resonance has a strong
coupling to �η in s wave, and hence, the γ N → �(1700) →
�η followed be � → πN provided a natural mechanism to
produce the γ N → π0Nη process. The predictions were soon
corroborated by measurements in Refs. [5–12]. Subsequent
models share the �(1700) mediated mechanism and add new
terms, accounting for higher mass resonances that play a role
at higher photon energies [13–15]. The mechanism of Ref. [1]
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was also found to lead to good results in the description of
beam asymmetry in γ p → π0ηp [6] and of the IS , IC po-
larization observables [16] measured in Ref. [12]. The same
idea regarding the formation of �(1700) and its �π and �η

decay is taken in Ref. [17] to describe the data on π− p →
K0π0� and related reactions. In the model of Ref. [13] an
extra term is included that deserves some discussion. This is
depicted in Fig. 1(b). The diagrams in Fig. 1 are evaluated
phenomenologically in Ref. [13] while in Ref. [1] the coupling
�(1700) → η� is taken from the chiral unitary approach of
Ref. [3]. The latter model does not provide information on
the �(1700) → πN∗(1535) transition, with N∗(1535) being
a dynamically generated resonance itself from the interaction
of pseudoscalar mesons and baryons [18]. Yet, as shown in
the work of Ref. [19], the γ p → πN∗ → πNη mechanism is
possible within the approach of Ref. [1] by considering ηN →
ηN rescattering in the final state of the process depicted in
Fig. 1(a). This is shown in Fig. 2, which depicts a triangle
mechanism for πN∗(1535) production. This mechanism was
shown in Ref. [19] to produce a triangle singularity [20] when
the �(1232), η, and N in the loop are placed on shell and
�(1232) and π go in the same direction. Yet, there is a sub-
tlety in this mechanism because there is a theorem in action,
Schmid theorem, which states that the triangle singularity
stemming from the diagram of Fig. 2 due to the rescattering
of the ηN , when added to the tree-level of Fig. 1(a) does not
change the cross section provided by the tree level [21]. This,
as proven in Ref. [22], is because the sum of the contributions
of the s-wave tree level amplitude of Fig. 1(a) [t (0)

tree] and that
of Fig. 2 (which we denote as tL), where elastic scattering of
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FIG. 1. Two of the diagrams present in the model of Ref. [13].

ηN involves a triangular loop, is such that t (0)
tree + tL = t (0)

treee2iδ ,
with δ being here the s-wave ηN → ηN phase shift. Hence,
one finds that |t (0)

tree + tL|2 = |t (0)
tree|2. The theorem holds ex-

actly in the limit of 	�(1232) → 0 [22], but it was shown to
hold to a good extent for finite widths of the intermediate
state in the loop. In this sense, it was found in Ref. [19]
that the mechanism of Fig. 2 by itself produced a signal for
γ p → πN∗(1535) → πηN compatible with the experimental
data extracted in Ref. [10], but when added coherently to the
mechanism of Fig. 1(a) it did not change the integrated cross
section appreciably (see Fig. 1 of Ref. [19]). Based on this fact
we rely upon the mechanism of Fig. 1(a) for γ p → π0ηp at
low energies which was found to provide a reasonable cross
section for the reaction [1,6]. In this context it is appropriate
to mention that another triangle singularity in the γ p → π0ηp
reaction has been explored at higher energies from a loop
containing a0(980), p and π0 [23].

Having a good model for the γ p → π0ηp reaction is a
necessary step to make good predictions for the γ d → π0ηd
reaction which is the purpose of our study.

The γ d → π0ηd reaction cross section and the π0d , ηd
invariant mass distributions were reported in Ref. [24] and
further mass and angular distributions have been recently re-
ported in Ref. [25]. The experimental data are compared with
theoretical results from Refs. [14,15]. The cross sections from
Ref. [14] are based on the impulse approximation, which
means that one is summing coherently the γ N → π0ηN
amplitudes, with N being the proton or the neutron of the
deuteron, and deuteron form factors are used in the evaluation.
Effects on the final state interaction of the η with the final
deuteron are also considered but they are found to be small.
In Ref. [15] some πN → πN and πN → ηN rescattering
mechanisms with the spectator nucleon are also considered,

FIG. 2. Mechanism of Ref. [19] to generate γ p →
πN∗(1535) → πηN .

FIG. 3. Empirical amplitudes used in Ref. [25] to reproduce the
γ d → π 0ηd observables.

producing an increase of about 20–30% in the cross section.
These mechanisms can be classified as exchange currents,
where the exchanged particles are off-shell and some con-
tain π rescattering from subdominant mechanisms (Fig. 3 of
Ref. [15]). Our mechanism takes into account the rescattering
of the produced π and η of the mechanism of the impulse ap-
proximation. These mesons can be on-shell in the rescattering
process, hence enhancing the effect of the mechanism.

While the works of Refs. [14,15] well reproduce the γ d →
π0ηd integrated cross sections, they show difficulties in re-
producing invariant mass distributions and particularly the
angular distributions. In view of this, a pure empirical model
was suggested in Ref. [25] based on the sum of the two ampli-
tudes depicted in Fig. 3. Two poles were assigned to the π0d
and ηd subsystems and adjusting the parameters of the ampli-
tudes a good reproduction of the observables was obtained.
Given the complexity of the dynamics of the reaction, as
shown in Refs. [14,15], its substitution by the simple model of
Fig. 3 is not very satisfying from the theoretical point of view.
This is the motivation for the present paper, complementary
to those of Refs. [14,15], where we shall investigate in detail
the different mechanisms that contribute to the reaction and
particularly the uncertainties tied to them.

One of the aims of the work of Refs. [24,25] was to
show that the data demanded the presence of a bound ηd
state or maybe a virtual state, and the shift of the peaks
of π0d , ηd invariant mass distributions with respect to the
phase space distributions were considered in Ref. [24] as a
signal of the presence of this bound state. We shall see in the
present work that these shifts are tied to the dynamics of the
γ p → π0ηp reaction, something that is also found using the
model of Ref. [13] at the level of the impulse approximation
in Ref. [25].

The search for an η bound state in nuclei has been persis-
tent since its likely existence was suggested in Refs. [26–28].
The idea was pursued in Ref. [29] where a many body theory
was developed considering the N∗(1535) excitation and the
modification of its properties in nuclei, concluding that while
the binding was found to be certain in heavy nuclei, the width
obtained was bigger than its binding, making thus difficult its
experimental observation. The fact is that after many years
of search no definite conclusion has been obtained about
the existence of such bound state in nuclei [30–32]. Modern
calculations based on chiral unitary theory and many body
theory [33,34] conclude that while for medium and heavy
nuclei bound states appear, their widths are fairly larger than
the binding, in line with the findings of Ref. [29].
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FIG. 4. Different diagrams contributing to the γ d → π0ηd pro-
cess in the impulse approximation.

Further, in case of light nuclei, since a likely ηd bound
state is suggested in Refs. [24,25], we would like to direct
the attention of the reader to the discussion in section 7.3 of
Ref. [32]. As discussed in the former work, in the case of
η 3He, a pole with 0.3 MeV binding is suggested in Ref. [35],
and an approximate Breit-Wigner structure with centroid at
−0.3 MeV below the threshold is found in Ref. [36], but the
pole is in the continuum. Similarly in Ref. [37] it is concluded
that deeper potentials than present ones would be needed to
bind the η in 3He and 4He. A similar conclusion is reached
in Ref. [38] for the η 4He from the study of the dd → η 4He
reaction at threshold, where again, while some accumulation
of strength in the η 4He scattering amplitude is observed
below threshold, no pole in the bound region is found. The
study of the dd → η 4He → π0n 3He, π− p 3He reactions in
Refs. [39,40] also did not find any evidence of η 4He bound
states.

With this background concerning the η 3He or η 4He
states, the possibility of an ηd bound state, with the deuteron
formed by only two nucleons, and quite far away from each
other, seems quite gloom. With this perspective, we proceed
to do a thorough study of the γ d → π0ηd reaction, using the
dynamics that has proved realistic in the study of γ p → π0ηp
cross sections and polarization observables and draw our con-
clusions.

II. FORMALISM

A. Tree-level amplitude

Inspired by the success of the formalism for the γ p →
π0ηp process in describing the relevant experimental data, as
shown in Ref. [1], which proceeds through the excitation of
�(1700) in the intermediate step, we can infer that the same
mechanism gives the dominant contribution to γ d → π0ηd .
Considering that the deuteron with I = 0 has the wave func-
tion

|d〉 = 1√
2

[|pn〉 − |np〉], (1)

we have the diagrams shown in Fig. 4. The latter correspond
to the tree-level contributions, also known as the impulse ap-
proximation. We also consider the rescattering of the mesons

FIG. 5. Momenta associated with the different particles appear-
ing in the diagrams of Fig. 4.

off the spectator nucleon, as we will discuss in the next sub-
section. To write the amplitudes for the tree-level diagrams,
we use the following Lagrangian for γ N → �(1700) [19]

−itγ p�∗ = gγ p�∗ �S†�ε, (2)

where �∗ stands for �(1700), �ε is the polarization vector
for the photon, and �S represents the spin transition operator
connecting states with spin 3/2 to 1/2. The s-wave coupling
gγ p�∗ = 0.188, in Eq. (2), as determined in Ref. [19], repro-
duces the experimental data on the radiative decay width of
�(1700) [4]. The amplitude in Eq. (2) is the same for the
proton as well as the neutron since the photon must act as an
isovector particle in the vertex in order to produce �(1700),
an isospin 3/2 baryon. It must be added that it is not required
to consider the isospin weight factor

√
2/3 for the γ N → �∗

transition since it is already embedded in the value of gγ p�∗ .
The vertex �(1700) → �(1232)η is described in terms

of the coupling deduced in Ref. [3], where �(1700) was
found to get generated from the pseudoscalar-decuplet baryon
dynamics, as

−itη��∗ = −igη��∗ (3)

with gη��∗ = 1.7 − i1.4. Finally, for the � → πN transition
we write (as in Ref. [41])

−it�→πN = − f ∗

mπ

�S �pπ T λ, (4)

where �pπ (mπ ) is the momentum (mass) of the pion, f ∗ =
2.13, and �S(T λ) is the spin (isospin) transition operator acting
on states with spin (isospin) 3/2 and taking them to 1/2.
The action of the isospin operator leads to a factor

√
2/3 for

the two types of �πN vertices appearing in the diagrams
in Fig. 4: �+π0 p, �0π0n. Thus, put together, for each of
the diagrams we must consider isospin factors: 1/2 from the
d ↔ pn vertices and

√
2/3 from the � → πN vertex. In other

words, the sum of the amplitudes of the diagrams in Fig. 4 can
be obtained by calculating the contribution of any one diagram
and multiplying it by four times the isospin factor 1/

√
6.

To write the sum of the amplitudes in Fig. 4 we show the
momenta associated with each particle in Fig. 5. In this way,
the sum of the amplitudes for the diagrams in Fig. 4 can be
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written as

−it4a+4b+4c+4d = 4√
6

∫
d4q

(2π )4

(
− f ∗

mπ

�S �pπ

)
(gγ p�∗ �S†�ε)(−igη��∗ )

[ − igd θ
(
qmax − ∣∣ �pdi

N

∣∣)]
× [ − igd θ

(
qmax − ∣∣ �pd f

N

∣∣)] MN

EN (�q)

i

q0 − EN (�q) + iε

MN

EN ( �pd − �q)

i

p0
d − q0 − EN ( �pd − �q) + iε

× M�∗

E�∗ ( �pd − �q + �k)

i

p0
d − q0 + k0 − E�∗ ( �pd − �q + �k) + iε

× M�

E�( �pd − �q + �k − �pη )

i

p0
d − q0 + k0 − p0

η − E�( �pd − �q + �k − �pη ) + iε

× MN

EN ( �pd − �q + �k − �pη − �pπ )

i

p0
d − q0 + k0 − p0

η − p0
π − EN ( �pd − �q + �k − �pη − �pπ ) + iε

, (5)

where gd is the d ↔ pn coupling, with a value of (2π )3/22.68 × 10−3 MeV−1/2 [41] and �pdi
N ( �pd f

N ) is the momentum of the
nucleon in the rest frame of the deuteron in the initial (final) state. Within nonrelativistic kinematics, which is suitable for the
process, we can write

�pdi
N = �pd

2
− �q,

�pd f

N = �pd + �k − �pη − �pπ

2
− �q. (6)

The integration on the q0 variable, in Eq. (5), can be done analytically, using Cauchy’s theorem, to get

−it4a+4b+4c+4d = − 2i

√
2

3

∫
d3q

(2π )3

(
f ∗

mπ

�S �pπ

)
(gγ p�∗ �S†�ε)(gη��∗ )

[
gd θ

(
qmax −

∣∣∣∣ �pd

2
− �q

∣∣∣∣
)]

×
[

gd θ

(
qmax −

∣∣∣∣ �pd + �k − �pη − �pπ

2
− �q

∣∣∣∣
)]

MN

EN (�q)

MN

EN ( �pd − �q)

1

p0
d − EN (�q) − EN ( �pd − �q) + iε

× M�∗

E�∗ ( �pd − �q + �k)

1

p0
d − EN (�q) + k0 − E�∗ ( �pd − �q + �k) + iε

M�

E�( �pd − �q + �k − �pη )

× 1

p0
d − EN (�q) + k0 − p0

η − E�( �pd − �q + �k − �pη ) + iε

MN

EN ( �pd − �q + �k − �pη − �pπ )

× 1

p0
d − EN (�q) + k0 − p0

η − p0
π − EN ( �pd − �q + �k − �pη − �pπ ) + iε

. (7)

One could proceed further by calculating Eq. (7) numerically. However, a more realistic description can be accomplished with
the following consideration: The result of Eq. (7) with the gdθ (· · · ) function for the deuteron is based implicitly on the solution
of the Schrödinger equation obtained with a separable potential, V (| �p |, | �p ′|) = f (| �p |) f (| �p ′|)v. In such a case, one finds that the
wave function in momentum space is

ψ (| �p |) = g
f (| �p |)

E − E ( �p)
(8)

with g being the coupling of the state to the two particle component. This is general for works using separable potentials as
those of Refs. [15,41–45] (see, for example, Eqs. (4.1) and (4.2) of Ref. [42]). In our case the function f (| �p |) is taken as a step
function. Thus, we replace[

gd θ

(
qmax −

∣∣∣∣ �pd

2
− �q

∣∣∣∣
)]

MN

EN (�q)

MN

EN ( �pd − �q)

1

p0
d − EN (�q) − EN ( �pd − �q) + iε

and[
gd θ

(
qmax−

∣∣∣∣∣ �pd + �k− �pη − �pπ

2
− �q

∣∣∣∣∣
)]

MN

EN ( �q)

MN

EN ( �pd − �q + �k − �pη − �pπ )

1

p0
d − EN ( �q) + k0 − p0

η − p0
π − EN ( �pd − �q + �k − �pη − �pπ ) + iε
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FIG. 6. Different diagrams contributing to the rescattering of the pion in the intermediate state. The thick dot stands for the s-wave πN →
πN interaction.

by −(2π )3/2ψ ( �pd

2 − �q) and −(2π )3/2ψ ( �pd +�k−�pη−�pπ

2 − �q), respectively, in the amplitude given by Eq. (7), where ψ represents the
deuteron wave function normalized as

∫
d3q|ψ (q)|2 = 1. Note that for the aforementioned substitution we need four MN/EN type

terms, though there are only three such factors in Eq. (7). However, consistently with the nonrelativistic kinematics applicable
in the present work, such MN/EN ratios are expected to be close to unity and we can introduce one of these factors in Eq. (7). It
is, thus, reasonable to rewrite Eq. (7) as

ttree = 2

√
2

3
gγ p�∗gη��∗

f ∗

mπ

M�M�∗

∫
d3q

(2π )3

(�S �pπ )(�S†�ε)

[E�∗ ( �pd − �q + �k)][E�( �pd − �q + �k − �pη )]

× 1

p0
d − EN (�q ) + k0 − E�∗ ( �pd − �q + �k) + iε

1

p0
d − EN (�q ) + k0 − p0

η − E�( �pd − �q + �k − �pη ) + iε

× (2π )3ψ

( �pd

2
− �q

)
ψ

( �pd + �k − �pη − �pπ

2
− �q

)
, (9)

where we will use different well known parametrizations for
the deuteron wave function, such as those of Refs. [46–49].

B. Rescattering amplitudes

1. Pion rescattering

We now discuss the different possible rescattering dia-
grams which can contribute to the formalism by considering,
based on the results obtained in Refs. [1,19], that the mech-
anism which plays the main role is the photoexcitation of
one of the nucleons to �(1700), followed by �(1700) →
η�(1232). We first discuss the rescattering of the pion pro-

duced at the �(1232) → πN vertex, as shown in Fig. 6. The
pion produced in the process of excitation, and the subsequent
de-excitation, of one of the nucleons can interact with the
spectator nucleon in the s wave or in p wave. The diagrams
corresponding to the s-wave interaction of the rescattered pion
with the spectator nucleon are shown in the first and the
second rows of Fig. 6. The diagrams in the third and fourth
rows depict the p-wave interaction of the rescattered pion with
the spectator nucleon. We have already discussed the different
interaction vertices which are required to write the amplitudes
for the diagrams shown in Fig. 6, except for the s-wave πN
interaction vertex (shown as a filled circle in the diagrams
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TABLE I. Values of the Ai j and Bi j parts of the πN amplitudes
given by Eq. (11). The variables p0

1π and p0
2π , in this table, refer to

the energy of the pion in the initial and final state, respectively. We
will follow the momenta label shown in Fig. 7 to write the amplitudes
for the different rescattering diagrams of Fig. 6. In this case, we will
have p0

1π = q′0 and p0
2π = p0

π .

Processes Ai j Bi j

π 0n → π 0n, π 0 p → π 0 p 2 0
π− p → π 0n 0

√
2(p0

1π + p0
2π )

π+n → π 0 p 0 −√
2(p0

1π + p0
2π )

in the first and second rows). To describe such a vertex, we
follow Refs. [50,51] and use the Lagrangian

LπN = −4π

[
λ1

μ
ψ̄ �φ �φ ψ + λ2

μ2
ψ̄ �τ ( �φ × ∂t �φ)ψ

]
, (10)

where λ1 = 0.0075, λ2 = 0.053, μ represents the pion mass,
τi’s denote the Pauli matrices, ψ̄ = ( p̄, n̄) and ψ = (p, n)T ,
and �φ is related to the pion fields (in the cartesian basis). The
πN s-wave amplitudes obtained from Eq. (10) have a common
structure

t l=0
πN = 4π

(
λ1

mπ

Ai j + λ2

m2
π

Bi j

)
(11)

with the values for Ai j and Bi j summarized in Table I for
the different πN processes appearing in Fig. 6. We shall also
consider the model of Ref. [18] to describe the πN interaction

TABLE II. Values of the isospin coefficients appearing in
Eq. (12), Id pn, I ′

d pn, and I�πN , for the diagrams in Fig. 6. We use
the phase convention |π+〉 = −|I = 1, I3 = 1〉.

Vertex Coefficient Vertex Coefficient

d ↔ pn 1√
2

�+ ↔ π 0 p
√

2
3

d ↔ np − 1√
2

�0 ↔ π 0n
√

2
3

�+ ↔ π+n −
√

1
3

�0 ↔ π− p
√

1
3

in the s wave, where the t matrices are obtained by solving the
Bethe-Salpeter equation within coupled channels and relevant
data are reproduced. As we shall show, the results obtained
within the two types of inputs are almost identical.

To proceed with writing the amplitudes for the different
diagrams shown in Fig. 6 we assign momenta to different
particles as shown in Fig. 7. The diagram on the left panel in
Fig. 7 corresponds to the s-wave interaction of the rescattered
pion with the nucleon, while the one on the right panel shows
the possibility that the rescattered pion leads to the excitation
of the spectator nucleon to �(1232).

Let us start by writing the amplitude for the diagrams
corresponding to the s-wave interaction of the rescattered pion
[shown in Fig. 6(a)–6(h)]. All such diagrams have a common
structure

−itπres,l=0 =
∫

d4q

(2π )4

∫
d4q′

(2π )4

[
−i Id pn gd θ

(
qmax −

∣∣∣∣ �pd

2
− �q

∣∣∣∣
)](

−I�πN
f ∗

mπ

�S �q ′
)

(−igη��∗ )

× (gγ p�∗ �S†�ε)

[
−i I ′

d pn gd θ

(
qmax −

∣∣∣∣−�pη + �pπ + �pd + �k
2

− �q − �q ′
∣∣∣∣
)]

×
[
−i4π

(
λ1

mπ

Ai j + λ2

m2
π

Bi j

)]
MN

EN (�q )

i

q0 − EN (�q ) + iε

MN

EN ( �pd − �q )

i

p0
d − q0 − EN ( �pd − �q ) + iε

× M�∗

E�∗ ( �pd − �q + �k)

i

p0
d − q0 + k0 − E�∗ ( �pd − �q + �k) + iε

M�

E�( �pd − �q + �k − �pη )

× i

p0
d − q0 + k0 − p0

η − E�( �pd − �q + �k − �pη ) + iε

1

2ωπ (�q ′)
i

q′0 − ωπ (�q ′) + iε

× MN

EN ( �pd − �q + �k − �pη − �q ′)

i

p0
d − q0 + k0 − p0

η − q′0 − EN ( �pd − �q + �k − �pη − �q ′) + iε

× MN

EN (�q + �q ′ − �pπ )

i

q0 + q′0 − p0
π − EN (�q + �q ′ − �pπ ) + iε

, (12)

where Id pn, I ′
d pn, and I�πN are the isospin coefficients for the d → pn (initial and final states) and �(1232) → πN vertices,

respectively. The values of these I coefficients are listed in Table II for different diagrams [Fig. 6(a)–6(h)]. As already mentioned,
gγ p�∗ is same for proton as well as neutron. Considering the values in Table II, it can be seen that the sum of the amplitudes
for the diagrams in Fig. 6(a)–6(h) leads to a global factor 2

√
2/3. Further, integration on the variables q0 and q′0 can be done
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analytically, to get the total contribution as

t total
πres,l=0 = 8π

√
2

3

∫
d3q

(2π )3

∫
d3q′

(2π )3 g2
d θ

(
qmax −

∣∣∣∣−�pη + �pπ + �pd + �k
2

− �q − �q ′
∣∣∣∣
)

× θ

(
qmax −

∣∣∣∣ �pd

2
− �q

∣∣∣∣
)

gγ p�∗ gη��∗
f ∗

mπ

(�S �q ′)(�S†�ε)

×
(

2
λ1

mπ

− λ2

m2
π

[p0 + k0 − p0
η + p0

π − EN (�q ) − EN ( �pd − �q + �k − �pη − �q ′)]
)

MN

EN (�q )

MN

EN ( �pd − �q)

× 1

2ωπ (�q ′)
M�∗

E�∗ ( �pd − �q + �k)

M�

E�( �pd − �q + �k − �pη )

MN

EN ( �pd − �q + �k − �pη − �q ′)

× MN

EN (�q + �q ′ − �pπ )

1

p0
d − EN (�q ) − EN ( �pd − �q) + iε

1

p0
d − EN (�q ) + k0 − E�∗ ( �pd − �q + �k) + iε

× 1

p0
d − EN (�q ) + k0 − p0

η − E�( �pd − �q + �k − �pη ) + iε

× 1

p0
d − EN (�q ) + k0 − p0

η − EN ( �pd − �q + �k − �pη − �q ′) − ωπ (�q ′) + iε

× 1

p0
d + k0 − p0

π − p0
η − EN (�q + �q ′ − �pπ ) − EN ( �pd − �q + �k − �pη − �q ′) + iε

. (13)

Note that all possible cuts related to the diagrams of Fig. 6 are accounted for in Eq. (13). In particular, a πNN cut can be noticed
in the second last term of the formula. The d3q and d3q′ integrations are done numerically keeping explicitly the iε small and
testing the convergence when ε → 0. If unstable particles are involved in the propagators, the iε is substituted by i	/2, with 	

being the width of the particle.
Consistently with the calculations at the tree level, we substitute in Eq. (13)

g2
d θ (· · · )θ (· · · )

p0
d + k0 − p0

π − p0
η − EN (�q + �q ′ − �pπ ) − EN ( �pd − �q + �k − �pη − �q ′) + iε

× MN

EN (�q )

MN

EN ( �pd − �q)

MN

EN ( �pd − �q + �k − �pη − �q ′ )

MN

EN (�q + �q ′ − �pπ )

× 1

p0
d − EN (�q ) − EN ( �pd − �q) + iε

→ (2π )3ψ

( �pd

2
− �q

)
ψ

( �pd + �k − �pη + �pπ

2
− �q − �q ′

)
, (14)

to consider more realistic and well-known deuteron wave functions.
Next, we can write the amplitude for the remaining diagrams for pion rescattering, which involve the excitation of the spectator

nucleon to �(1232) due to the interaction with the rescattered pion [shown as Fig. 6(i)–6(p)]. Following the momenta labels
depicted in Fig. 7(b), we can write

−itπres,l=1 =
∫

d4q

(2π )4

∫
d4q′

(2π )4

[
− i Id pn gd θ

(
qmax −

∣∣∣∣ �pd

2
− �q

∣∣∣∣
)](

−I�πN
f ∗

mπ

�S1 �q ′
)

(−igη��∗ )

× (gγ p�∗ �S†
1�ε)

(
I ′

�πNI ′′
�πN

[
f ∗

mπ

]2

�S2 �pπ �S †
2 �q ′

){
− i I ′

d pn gdθ

(
qmax −

∣∣∣∣−�pη + �pπ + �pd + �k
2

− �q − �q ′
∣∣∣∣
)}

× MN

EN (�q )

MN

EN ( �pd − �q)

M�∗

E�∗ ( �pd − �q + �k)

M�

E�( �pd − �q + �k − �pη )

1

2ωπ (�q ′)
M�

E�(�q + �q ′)

× MN

EN (�q + �q ′ − �pπ )

MN

EN ( �pd − �q + �k − �pη − �q ′)

i

q0 − EN (�q ) + iε

i

p0
d − q0 − EN ( �pd − �q) + iε

× i

p0
d − q0 + k0 − E�∗ ( �pd − �q + �k) + iε

i

q′0 − ωπ (�q ′) + iε

i

p0
d − q0 + k0 − p0

η − E�( �pd − �q + �k − �pη ) + iε

× i

p0
d − q0 + k0 − p0

η − q′0 − EN ( �pd − �q + �k − �pη − �q ′) + iε

i

q0 + q′0 − E�(�q + �q ′) + iε

× i

q0 + q′0 − p0
π − EN (�q + �q ′ − �pπ ) + iε

, (15)
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where Id pn (I ′
d pn) denote the isospin coefficient for the initial (final) d pn vertex, while I�πN , I ′

�πN , and I ′′
�πN represent the same

for the first � → πN vertex, the πN → � transition vertex involving the spectator nucleon and for the vertex of de-excitation
of � leading to the on-shell π0 emission, i.e., � → π0N , respectively. The subscript “1” on the spin operator �S signifies its
action on the upper (lower) nucleon, while the operator with subscript “2” acts on the lower (upper) nucleon in Figs. 6(i)–6(l)
(in Figs. 6(m)–6(p)).

Considering the values of the isospin coefficients given in Table II, integrating over q0, q′ 0, and following the procedure given
by Eq. (14), we obtain

t total
πres,l=1 = 2

3

√
2

3
gη��∗gγ p�∗

(
f ∗

mπ

)3 ∫
d3q

∫
d3q′

(2π )3 ψ

(−�pη + �pπ + �pd + �k
2

− �q − �q ′
)

× ψ

( �pd

2
− �q

)
�S1 �q ′ �S†

1�ε �S2 �pπ �S†
2 �q ′ M�∗

E�∗ ( �pd − �q + �k)

M�

E�( �pd − �q + �k − �pη )

× 1

2ωπ (�q ′)
M�

E�(�q + �q ′)
1

p0
d + k0 − EN (�q ) − p0

η − E�( �pd − �q + �k − �pη ) + iε

× 1

p0
d + k0 − p0

η − EN (�q + �q ′ + �pη ) − E�(�q + �q ′) + iε

× 1

p0
d + k0 − p0

η − EN (�q ) − EN ( �pd − �q + �k − �pη − �q ′) − ωπ (�q ′) + iε

1

p0
d + k0 − EN (�q ) − E�∗ ( �pd − �q + �k) + iε

.

(16)

2. Additional pion rescattering mechanism

So far we have considered γ N → �∗(1700) →
η�(1232) → πηN as the primary mechanism to describe
the γ d → π0ηd reaction. There could be, however, other
intermediate processes which can produce a pion first (instead
of an η), that could further rescatter with the spectator nucleon
of the deuteron and lead to the final π0ηd state. Indeed, in
Refs. [52,53], the γ N → ππN reaction was studied consid-
ering, among others, contributions from the production of the
�(1232), N∗(1440), and N∗(1520) resonances, and the data
on the cross sections were described fairly well. Following
these former works, we could also consider, for example, a
process like γ N → N∗(1440) → �(1232)π → ππN and
one of the pions in the final state could rescatter with one
of the nucleons of the deuteron. However, it was shown in
Refs. [52,53], that for energies of the photon Eγ � 800 MeV,
contributions to the cross section of γ N → ππN from the
production of N∗(1440) or N∗(1520) are small and the domi-
nant contribution comes from the processes γ p → π+�0 →
π+π− p, π+π0n, γ n → π−�+ → π−π0 p, π−π+n, in
which �(1232) is excited. The latter reactions, as shown
in Refs. [52,53], involve a kind of Kroll-Ruderman vertex
for the γ N → π�(1232) reaction. Such Kroll-Ruderman
vertices are obtained by demanding gauge invariance of the
amplitudes. At the end, this Kroll-Ruderman term is found
largely dominant and we rely upon this term.

In this way, we consider the additional diagrams for pion
rescattering shown in Fig. 8. Following Refs. [52,53], the
γ N → πN Kroll-Ruderman type of vertex is described by the
amplitude

−itKR
γ N→π� = α �S†�ε, (17)

where α is a constant determined from the aforementioned
gauge invariance condition. In this way, the amplitudes for the

γ N → ππN processes shown in Fig. 8 are

−itγ p→π+π0n = I�0π− p
f ∗

mπ

e�S�ε,

−itγ n→π−π0 p = −I�+π+n
f ∗

mπ

e�S�ε, (18)

where I�0(+)π−(+)N+(0) represents the corresponding isospin co-
efficients for �0(+) → π−(+)N+(0) (with N+ ≡ p, N0 ≡ n)

FIG. 7. Momenta associated with the different particles appear-
ing in the two types of diagrams involving rescattering of the pion
(as shown in Fig. 6). The filled (empty) rectangle represents a virtual
�(1700) [�(1232)]. (a) corresponds to an s-wave interaction at the
pion rescattering vertex while (b) depicts the p-wave interaction of
the rescattered pion [leading to formation of �(1232)].
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FIG. 8. Additional diagrams for the γ d → π 0ηd process involv-
ing the rescattering of a pion.

FIG. 9. Momenta labels associated with the particles of the dia-
gram in Fig. 8(a).

given in Table II, and e = √
4πα, with α 
 1/137. Using the

preceding expressions, we can now evaluate the contributions
from the diagrams shown in Fig. 8. For example, in case of the
diagram in Fig. 8(a), using the momenta assignment shown in
Fig. 9, we have

tKR
πres,l=0 = Id pnI ′

d pnI�0π0nI�0π− p

(
f ∗

mπ

)2

e g2
d m4

N m�gηNN∗gπ+nN∗+

×
∫

d4q

(2π )4

∫
d4q ′

(2π )4

1

EN ( �pd − �q + �k − �q ′ − �pπ )

1

EN (�q + �q ′ − �pη )

× 1

p0
d − q0 + k0 − q ′ 0 − p0

π − EN ( �pd − �q + �k − �q ′ − �pπ ) + iε

1

q0 + q ′ 0 − p0
η − EN (�q + �q ′ − �pη ) + iε

(�S �pπ )(�S†�ε)

× 1

q0 + q′0 − EN∗ (�q + �q ′) + iε

1

E�( �pd − �q + �k − �q ′)

1

p0
d − q0 + k0 − q ′ 0 − E�( �pd − �q + �k − �q ′) + iε

1

Eπ (�q ′)

× 1

q ′ 0 − Eπ (�q ′) + iε

1

EN ( �pd − �q)

1

p0
d − q0 − EN ( �pd − �q) + iε

1

EN (�q )

1

q0 − EN (�q ) + iε
θ
(

qmax −
∣∣∣ �pd

2
− �q

∣∣∣)

× θ
(

qmax −
∣∣∣ �pd + �k − �pπ + �pη

2
− �q − �q ′

∣∣∣). (19)

In Eq. (19), gηNN∗ = gηpN∗+ = gηnN∗0 represents the coupling of N∗(1535) to ηN and gN∗+π+n is the coupling of N∗+(1535) to
π+n. The corresponding values are obtained with the model of Ref. [18], in which N∗(1535) is generated from the pseudoscalar
meson-baryon interaction, and are

gηNN∗ = 1.46 − i0.43, gπ+nN∗+ = −0.47 − i0.27. (20)

It should be mentioned that the MN∗/EN∗ factor related to the N∗ propagator is included in the couplings, which is consistent
with the Breit-Wigner parametrization of the ηN and πN amplitudes in Ref. [18]. For instance,

tηN = g2
ηNN∗(1535)

EηN − MN∗ + i	N∗/2
(21)

with EηN representing the total energy of the ηN system.
Next, we can now integrate on the q0 and q ′ 0 variables appearing in Eq. (19) using Cauchy’s theorem and consider Eq. (14)

to introduce the deuteron wave functions. We can repeat the same procedure for all the diagrams shown in Fig. 8 and sum the
contributions to get the following expression in the γ d rest frame:

tKR,total
πres,l=0 = −e

√
2

3

(
f ∗

mπ

)2

gN∗+→π+ηgN∗+→ηpM�

∫
d3q

(2π )3

∫
d3q′ 1

Eπ (�q ′)
1

E�(�q + �q ′
1

EN∗ (�q + �q ′)

×
[

1√
s − E�(�q + �q ′) − EN (�q ) − Eπ (�q ′) + iε

1√
s − E�(�q + �q ′) − EN∗ (�q + �q ′) + i 	�

2 + iε

× 1√
s − E�(�q + �q ′) − p0

η − EN (�q + �q ′ − �pη ) + iε
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+ 1√
s − p0

π − EN (�q + �q ′ + �pπ ) − EN∗ (�q + �q ′) + iε

×
(

1√
s − p0

π − EN (�q + �q ′ + �pπ ) − EN (�q ) − Eπ (�q ′) + iε

× 1√
s − EN (�q ) − Eπ (�q ′) − E�(�q + �q ′) + iε

+ 1√
s − E�(�q + �q ′) − EN (�q ) − Eπ (�q ′) + iε

× 1√
s − E�(�q + �q ′) − EN∗ (�q + �q ′) + iε

)]
(�S �pπ )(�S†�ε). (22)

3. η rescattering

Having considered pion rescattering through s- and p-wave πN interactions, it is important to assess the possible contributions
from the rescattering of η too. We consider the rescattering of η through the mechanisms shown in Fig. 10. It is well known that
the ηN interaction is attractive in the s wave and is related to the formation of N∗(1535). Indeed, as shown in Ref. [18] the ηN
channel has a large coupling to this S11 resonance [see Eq. (20)].

We follow Ref. [18] to account for the ηN ↔ N∗(1535) vertices while writing the amplitudes for the diagrams shown in
Fig. 10. To do this, we label different lines with momenta as shown in Fig. 11. The amplitudes for all the diagrams shown in
Fig. 10 have a common structure and can be written as

−itηres,l=0 =
∫

d4q

(2π )4

∫
d4q′

(2π )4

[
−iId pngd θ

(
qmax −

∣∣∣ �pd

2
− �q

∣∣∣)](
−I�πN

f ∗

mπ

�S �pπ

)
(−igη��∗ )

× (gγ p�∗ �S†�ε)(−igηNN∗(1535))
2

[
−iI ′

d pngd θ
(

qmax −
∣∣∣−�pη + �pπ + �pd + �k

2
− �q − �q ′

∣∣∣)
]

× MN

EN (�q )

i

q0 − EN (�q ) + iε

MN

EN ( �pd − �q)

i

p0
d − q0 − EN ( �pd − �q) + iε

M�∗

E�∗ ( �pd − �q + �k)

× i

p0
d − q0 + k0 − E�∗ ( �pd − �q + �k) + iε

M�

E�( �pd − �q + �k − �q ′)

× i

p0
d − q0 + k0 − q′0 − E�( �pd − �q + �k − �q ′) + iε

1

2ωη(�q ′)
i

q′0 − ωη(�q ′) + iε

× MN

EN ( �pd − �q + �k − �pπ − �q ′)

i

p0
d − q0 + k0 − p0

π − q′0 − EN ( �pd − �q + �k − �pπ − �q ′) + iε
,

× i

q0 + q′0 − EN∗ (�q + �q ′) + iε

MN

EN (�q + �q ′ − �pη )

i

q0 + q′0 − p0
η − EN (�q + �q ′ − �pη ) + iε

. (23)

Using the values of the isospin coefficients given in Table II, integrating over q0 and q′0, and following the procedure
consistent with Eq (14), we obtain

t total
ηres,l=0 = 2

√
2

3

f ∗

mπ

gη��∗gγ p�∗g2
ηNN∗

∫
d3q

∫
d3q′

(2π )3 ψ

( �pd

2
− �q

)
ψ

( �pη − �pπ + �pd + �k
2

− �q − �q ′
)

× �S �pπ �S†�ε M�

E�( �pd + �k − �q − �q ′)

M�∗

E�∗ ( �pd − �q + �k)

1

2ωη(�q ′)
N

p0
d + k0 − EN (�q ) − E�∗ ( �pd − �q + �k) + iε

× 1

p0
d + k0 − EN∗ (�q + �q ′) − E�( �pd + �k − �q − �q ′) + iε

1

p0
d + k0 − E�( �pd + �k − �q − �q ′) − EN (�q ) − Eη(�q ′) + iε

× 1

p0
d + k0 − p0

η − E�( �pd + �k − �q − �q ′) − EN (�q + �q ′ − �pη ) + iε

× 1

p0
d + k0 − p0

π − EN∗ (�q + �q ′) − EN ( �pd + �k − �q − �q ′ − �pπ ) + iε

× 1

p0
d + k0 − p0

π − Eη(�q ′) − EN ( �pd + �k − �q − �q ′ − �pπ ) − EN (�q ) + iε
, (24)
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where the expression for N is

N = [EN∗ (�q + �q ′) + EN ( �pd + �k − �q − �q ′ − �pπ )]EN ( �pd + �k − �q − �q ′ − �pπ )

+ [E�( �pd + �k − �q − �q ′) + Eη(�q ′)][EN∗ (�q + �q ′) + EN ( �pd + �k − �q − �q ′ − �pπ ) + E�( �pd + �k − �q − �q ′)]

+ p0
η[EN∗ (�q + �q ′) + EN ( �pd + �k − �q − �q ′ − �pπ ) + E�( �pd + �k − �q − �q ′) + Eη(�q ′)]

+ p0
π

[
EN∗ (�q + �q ′) + 2EN ( �pd + �k − �q − �q ′ − �pπ ) + E�( �pd + �k − �q − �q ′) + Eη(�q ′) + p0

η + p0
π

]
+ EN (�q + �q ′ − �pη )

[
EN (�q ) + EN∗ (�q + �q ′) + EN ( �pd + �k − �q − �q ′ − �pπ ) + E�( �pd + �k − �q − �q ′)

+ Eη(�q ′) + p0
π − 2p0

d − 2k0
] + 3

(
p0

d + k0
)2 + EN (�q )

[
EN∗ (�q + �q ′) + EN ( �pd + �k − �q − �q ′ − �pπ )

+ E�( �pd + �k − �q − �q ′) + p0
η + p0

π − 2p0
d − 2k0] − [

2EN∗ (�q + �q ′) + 3EN ( �pd + �k − �q − �q ′ − �pπ )

+ 3E�( �pd + �k − �q − �q ′) + 2
(
Eη(q′) + p0

η

) + 3p0
π

](
p0

d + k0
)
. (25)

Finally, as mentioned before, the unstable nature of states
like �∗(1700), �(1232), and N∗(1535) is taken into account
by replacing ER − iε by ER − i	R/2 in the different ampli-
tudes, where R stands for a resonance. In the case of �(1232),
we consider an energy dependent width

	�(M�inv) = 	�

M�

M�inv

(
qπ

qπon

)3

, (26)

where

M2
�inv = E2

� − | �p�|2. (27)

For example, for the impulse approximation, we can deter-
mine M�inv, using the kinematic labels shown in Fig. 5, as

M2
�inv = (

p0
d + k0 − EN (�q) − p0

η

)2 − ( �pd + �k − �q − �pη )2.

(28)

Further, qπ and qπon, in Eq. (26), are defined as

qπ = λ1/2
(
M2

�inv, M2
N , m2

π

)
2M�inv

,

qπon = λ1/2
(
M2

�, M2
N , m2

π

)
2M�

.

FIG. 10. Different diagrams contributing to the rescattering of η

in the intermediate state.

III. RESULTS AND DISCUSSIONS

With the amplitudes discussed in the previous section we
calculate the invariant mass distributions for ηd and π0d in
the final state as

dσ

dMηd
= M2

d

8|�k|s
1

(2π )4 | �pπ |∣∣ �pRηd
η

∣∣ ∫ dcos θπ

×
∫

d�Rηd
η

∑
μ,λ

∑
μ′

∣∣tλ
μ,μ′

∣∣2
, (29)

dσ

dMπ0d
= M2

d

8|�k|s
1

(2π )4
| �pη|

∣∣ �pRπd
π

∣∣ ∫ dcos θη

×
∫

d�Rπd
π

∑
μ,λ

∑
μ′

∣∣tλ
μ,μ′

∣∣2
, (30)

where �k is the momentum of the photon, s is the standard
Mandelstam variable, �pπ ( �pη ) is the pion (η) momentum in
the global center of mass frame, and �pRηd

η ( �pRπd
π ) denotes the

η (pion) momentum in the rest frame of ηd (πd ):

| �pπ | = λ1/2
(
s, m2

π , M2
ηd

)
2
√

s
,

| �pη| = λ1/2
(
s, m2

η, M2
π0d

)
2
√

s
, (31)

∣∣pRπd
π

∣∣ = λ1/2
(
M2

π0d , m2
π , M2

d

)
2Mπ0d∣∣pRηd

η

∣∣ = λ1/2
(
M2

ηd , m2
η, M2

d

)
2Mηd

. (32)

FIG. 11. Momenta associated with the different particles shown
in Fig. 10(a).
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FIG. 12. Differential cross sections obtained in the impulse approximation as a function of the ηd (upper panels) and π0d (lower
panels) invariant masses. The left (right) side figures show average cross sections for the beam energy range Eγ = 950–1010 MeV
(Eγ = 1010–1150 MeV). Experimental data, shown as filled circles, are taken from Ref. [24]. The deuteron wave functions considered in
the calculations are based on the following parametrizations for the NN potentials: Bonn [46], Paris [47], Reidt hard-core (HC) and soft-core
(SC) [48], Hulthén [49], and chiral effective field theories [54]. In the latter case, we show the results obtained with the wave function
determined by using the hardest (softest) cutoff R = 0.8 fm (R = 1.2 fm) considered in Ref. [54] at which the low energy constants appearing
in the Lagrangian at next-to-next-to-next-to-leading order are determined.

The variable �Rηd
η (�Rπd

π ) in Eq. (29) [Eq. (30)] denotes the
solid angle of η (π ) in the ηd (πd ) rest frame.

The summation signs in Eqs. (29) and (30) indicate the sum
over the polarizations of the particles in the initial and final
states, with the bar over the sign representing averaging over
the initial state polarizations. The subscript in tλ

μ,μ′ indicates
the dependence of the amplitudes on the spin projections of
the deuteron in the initial (μ) and final (μ′) states, while the
superscript denotes the dependence on the transverse polar-
ization of the photon. The contributions from the different
spin transitions for the different amplitudes are summarized
in Appendix A.

Further, we calculate the amplitudes in the global center of
mass frame. Thus, we must boost �pRπd

π and �pRηd
η to the global

center of mass frame. The boosted η momentum is

�pη = �pRηd
η + �pRηd

π

[
�pRηd
π �pRηd

η∣∣ �pRηd
π

∣∣2

(
E Rηd

γ d√
s

− 1

)
− E Rηd

η

Mηd

]
,

(33)

where E Rηd
γ d =

√
s + | �pRηd

π |2 is the total energy of γ d in the

ηd rest frame, �pRηd
π is the pion momentum in the ηd rest

frame, which is related to the pion momentum in the global
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center of mass frame as

�pRηd
π =

√
s

Mηd
�pπ . (34)

The expression for �pπ is analogous to Eq. (33), and can be
obtained by interchanging the π , η subscripts in Eq. (33).

Since we carry out the calculation of the amplitudes in the
global center of mass frame, �pd + �k = 0 and p0

d + k0 is taken
as

√
s.

Further, it can be useful to specify the directions chosen
for the different momenta in our formalism. We choose the
photon momentum to be parallel to the z axis, such that
�k = (0, 0, |�k|). When calculating the ηd invariant mass dis-
tribution, we write

�pπ = | �pπ |( sin θπ , 0, cos θπ ), (35)

�pRηd
η = ∣∣ �pRηd

η

∣∣( sin θRηd
η cos φRηd

η ,

sin θRηd
η sin φRηd

η , cos θRηd
η

)
. (36)

For the calculations of the πd invariant mass distribution, we
choose

�pη = | �pη|( sin θη, 0, cos θη ), (37)

�pRπd
π = ∣∣ �pRπd

η

∣∣( sin θRπd
π cos φRπd

π ,

sin θRπd
π sin φRπd

π , cos θRπd
π

)
. (38)

We are now in a position to start discussing the results.
Before beginning, though, we must remind the reader that the
experimental data on ηd and π0d invariant mass spectra are
presented for two different set of beam energies in Ref. [24]:
(1) 950–1010 MeV (2) 1010–1150 MeV. To compare our re-
sults with the experimental data, we calculate the ηd and π0d
mass distributions for different beam energies in each range
and calculate the average of the results obtained. In particular,
we consider the energies Eγi = 950, 980, and 1010 MeV for
the first energy range and Eγi = 1010, 1050, 1100, and 1150
MeV for the second energy range. Then, the differential cross
sections are determined as

dσ

dMinv
= 1

n

n∑
i=1

dσ (Eγi )

dMinv
, (39)

where n is the number of photon energies considered in the
specified intervals and dσ (Eγi )/dMinv corresponds to the dif-
ferential cross sections calculated for a certain value of Eγi .
Note that the physical region associated with Minv changes
with Eγi , thus, when calculating Eq. (39), a value of zero
is attributed to the differential cross section whenever we
are outside of the corresponding Minv physical region for the
given value of Eγi . This procedure reproduces the phase space
distributions obtained in Ref. [24].

Besides, we must also keep in mind that an input required
for the calculations is the deuteron wave function. As men-
tioned earlier, there are several parametrizations available in
the literature [46–49], which have all been determined by
fitting the data on NN scattering, e− d scattering. Modern
calculations of the deuteron wave function have been done
by using effective field theories describing the NN inter-
action at next-to-next-to-next-to-leading order [54]. In view
of such findings, we consider the different descriptions of

FIG. 13. Accumulation of events satisfying the condition in
Eq. (40) for values of qmax in the range 0–1000 MeV.

Refs. [46–49,54] and study the consequently arising uncer-
tainties in the model. With this motivation, we show the ηd
and π0d mass distributions obtained within the impulse ap-
proximation, in Fig. 12, when considering the deuteron wave
functions from Refs. [46–49,54]. We focus first on evaluating
the contributions to the cross sections from the s-wave part of
the deuteron wave function.

It can be seen in Fig. 12 that the shape of the data [24]
on the differential cross section can already be reproduced
with the impulse approximation, and that the magnitude is
substantially sensitive to the choice of the wave function con-
sidered in the calculations. The sensitivity of the results to

FIG. 14. Deuteron wave functions (s-wave part) based on the
following parametrizations for the NN potentials: Bonn [46], Paris
[47], Reidt hard-core (HC) and soft-core (SC) [48], and Hulthén [49].
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FIG. 15. Differential cross sections as a function of the ηd (upper panels) and π0d (lower panels) invariant masses, as obtained in the
impulse approximation and by considering the rescattering of π0 in the p wave (orbital angular momentum L = 1), as well as in the s wave
(L = 0), and the rescattering of η in the s wave (L = 0). The left (right) side figures show average cross sections for the beam energy range
Eγ = 950–1010 MeV (Eγ = 1010–1150 MeV). Experimental data, shown as filled circles, are taken from Ref. [24].

the different parametrizations of the deuteron wave function
implies that they must differ in the momentum range relevant
to the process.

To understand such differences, it can be useful to investi-
gate how the momentum gets distributed among the nucleons
in the deuteron (in the initial and final states). For this purpose,
we generate random numbers when calculating the phase-
space integration for the differential cross sections, and collect
the events which satisfy the condition

θ

(
qmax−

∣∣∣∣ �pd

2
− �q

∣∣∣∣
)

×θ

(
qmax −

∣∣∣∣ �pd + �k − �pη − �pπ

2
− �q

∣∣∣∣
)

= 1, (40)

while changing qmax from 10 to 1000 MeV, in steps of 10
MeV, with qmax being a cut-off for the loop variable | �q| in
Eq. (9). In this way, if we call Ri the number found for
the ith value of qmax, the difference Ri+1 − Ri provides the
fraction of events where either | �pd/2 − �q| or |( �pd + �k − �pη −
�pπ )/2 − �q| are between qmax and qmax + 10 MeV. Such an
analysis gives us the information on the typical momentum
value picked by the deuteron wave function. The result is
depicted in Fig. 13 for three different beam energies, cho-
sen as an example. It can be deduced from Fig. 13 that the
deuteron wave function gets determined, most frequently, in
the momentum range 300–400 MeV.

Let us now look at the different wave functions, with the
focus on the momentum region 300–400 MeV (shown as an
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FIG. 16. Differential cross sections determined by considering the rescattering of a pion, including contributions from the processes shown
in Fig. 8, and η rescattering. We also show the differences obtained within two models for the description of the πN interaction in the s wave:
the one of Ref. [51] (dotted line) and the one of Ref. [18] (dashed line), where N∗(1535) is generated from the pseudoscalar-baryon interaction.

inset in Fig. 14). Before further discussions, we should recall
that in our approach the wave function of the deuteron has
been normalized as ∫

d3 p|〈 �p |ψ〉|2 = 1, (41)

which is consistent with the value of the gd coupling ap-
pearing in the expressions which have been identified as the
deuteron wave function. As can be seen in Fig. 14, the dif-
ferent parametrizations of the deuteron wave function agree
well in the 50–250 MeV region. However, there are significant
differences in the momentum region relevant for the calcu-
lations, which should not come as a surprise. The different
parametrizations of Refs. [46–49] for the NN potential are
based on meson exchange potentials and, thus, should be ex-
pected to work at distances where the nucleons do not overlap.
The same can be said for the model of Ref. [54]. However,

at the momentum values falling in the range 300–400 MeV,
a significant overlap between the nucleons is expected and
the NN scattering models of Refs. [46–49,54] cannot provide
precise descriptions for the deuteron wave function.

We must now proceed and show the contributions from the
rescattering diagrams (shown in Figs. 6 and 10). The results
on the differential cross sections are shown in Fig. 15, as a
function of the ηd and π0d invariant masses. Experimental
data are taken from Ref. [24]. Since we have already dis-
cussed the uncertainties with different deuteron wave function
parametrizations, we find it sufficient to show the results ob-
tained with the Bonn [46] and Hulthén models [49], which
differ appreciably in the momentum region of interest. The
results in Fig. 15 show that the contribution from the rescat-
tering processes depends on the deuteron wave function and
can describe most characteristics of the data, especially for the
beam energy range 1010–1150 MeV. The uncertainties arising
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FIG. 17. Differential cross sections obtained considering the pion rescattering in the p wave and the wave function of Ref. [25].

from the parametrizations of NN potentials are unavoidable
and inherent to the process. More precise calculations are
not feasible since the reaction mechanism attributes momenta
values at which the deuteron wave function can not be deter-
mined in terms of meson exchange potentials.

We can see that the effect of rescattering is relevant and
leads to an increase of the strength of the mass distribution
of about 50%, with the rescattering of a pion in the p wave,
through the mechanism πN → �(1232) → πN , producing
the dominant contribution. Dynamically, an extra scattering
weakens the contribution to the amplitude in general, but in
this case the rescattering mechanism helps sharing the mo-
mentum transfer between the two nucleons of the deuteron
and involves the deuteron wave function at smaller momenta,
where it is bigger.

It is interesting to see that our calculations differ appre-
ciably from phase space. It is easy to trace that back to our
dynamical model. If we look at Fig. 4, the mechanism favors
the π0 to go with as high energy as possible to place the
�(1232) on shell. This leaves less energy for the η and the
ηd invariant mass becomes smaller, something clearly seen
in the experimental data. Conversely, the π0 goes out with

larger energy than expected from phase space leading to a πd
invariant mass bigger than for phase space.

Next, we determine the contribution to the differential
cross sections of the rescattering mechanisms illustrated in
Fig. 8. We show in Fig. 16 the results obtained when includ-
ing such rescattering contributions. As can be seen from the
figure, the mechanisms shown in Fig. 8 give a small contri-
bution to the differential cross sections and can be neglected.
This is in line with our finding that the contributions related
to the rescattering of the η are quite small (see Fig. 15).
There we had the ηN → N∗(1535) → ηN amplitudes in the
rescattering, while now we have the πN → N∗(1535) → ηN
amplitude, and from Ref. [18] the coupling of N∗(1535) to ηN
is, in modulus, ≈3.1 (4.5) times the coupling of N∗(1535) to
π− p (π0n).

It is also relevant to show the changes produced in the
differential cross sections when a more detailed model for
describing the πN interaction is considered. The model ex-
plained in Sec. II B 1 for describing the πN interaction in
the s wave does not involve coupled channels and resolution
of the Bethe-Salpeter equation to determine the scattering
matrix. Thus, resonance contributions, which will change the
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FIG. 18. Differential cross sections obtained in the impulse approximation by considering the s- (L = 0) and d-wave (L = 2) components
of the deuteron wave function within the parametrization of Ref. [46] and the wave function obtained from chiral effective field theories [54].
To facilitate the estimation of the effect of including the d-wave component of the deuteron wave function, we also show the results obtained
with the Hulthén wave function [49], which only takes into account a L = 0 component.

energy dependence considered for the πN → πN amplitude,
are not implemented. In Ref. [18], the interaction between
pseudoscalar mesons and baryons from the octet were studied
in the zero strangeness sector within a coupled channel ap-
proach. The Bethe-Salpeter equation was solved and the πN
scattering matrices obtained, together with the corresponding
phase shifts and inelasticities, were compared with those ex-
tracted from partial wave analysis. Compatible results were
found for energies of the πN system ≈1100–1600 MeV. In
Fig. 16 we also show (as a dashed line) the results obtained
considering the model of Ref. [18]. The agreement with the
results obtained by using the model of Ref. [51] is remarkable.

Continuing with the estimation of uncertainties, in
Ref. [25], the Hulthén wave function with different parameters
to those considered in Ref. [49], and which reproduces the
momentum distribution of nucleons in a deuteron derived

from the d (e, e′ p)n reaction, was used to determine the Fermi
momentum of the initial bound proton. It is then interesting
to quantify the differential cross section obtained with such a
wave function. We show the results in Fig. 17. As can be seen,
the magnitude obtained with the wave function of Ref. [25]
is between the one found with the s-wave component of the
deuteron wave function of Ref. [46] and that determined with
the one of Ref. [49].

Note, however, that so far, all the results found have been
obtained by considering only the s-wave component of the
deuteron wave function. In view of the result found in Fig. 13,
the d-wave component of the deuteron wave function can be
important. To estimate the relevance of including the d-wave
component of the deuteron wave function in the results for the
differential cross section, we calculate the tree level amplitude
by considering the s- and d-wave contributions of the deuteron
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FIG. 19. Differential cross sections as a function of the polar
angle of the outgoing deuteron. Data are taken from Ref. [25].

wave function with the parametrization of Ref. [46] and the
wave function of Ref. [54], which is determined from chiral
effective field theories. Details of this calculation are provided
in Appendix B. In Fig. 18, we show the results obtained for
the differential cross sections considering the new tree level
amplitudes. As can be seen, including the d-wave compo-
nent of the deuteron wave function produces an important
enhancement of the magnitude of the differential cross sec-
tion to an extent that (1) the results found with the model
of Ref. [46] almost coincide with those obtained with the
Hulthén parametrization of the deuteron wave function [49],
which only considers the s-wave component. (2) In the case
of the model of Ref. [54], including the d-wave component
produces a result which is close to the one obtained with the
s-wave component of the wave function of Ref. [46].

As to the contribution of this d-wave component in the
rescattering mechanisms, we do not calculate it, but argue
here that it should be small. This is because the rescattering
mechanisms redistributes the momenta transfer and the mo-
menta involved in the deuteron wave function in this case are
substantially smaller than those in the impulse approximation.
In view of the results obtained, and taking as reference the
wave function of Ref. [46] (which is the one commonly used
in a large number of works involving the deuteron), our results
with the d-wave component of the deuteron wave function
and including the rescattering mechanisms should be very
close to those obtained with the Hulthén wave function of
Ref. [49] and rescattering (long-dash-dotted line in Fig. 15).
All together we see a fair, though not perfect, reproduction of
the invariant mass distributions, underestimating the data at
lower photon beam energies.

Next, we would like to show the results on the angular
distributions in Fig. 19. In this case too, we depict the re-
sults obtained with the impulse approximation and with the
inclusion of the rescattering processes. Since the contribution

FIG. 20. Differential cross sections as a function of the polar
angle of the outgoing deuteron including the d-wave component in
the deuteron wave function of Refs. [46,54]. Data are taken from
Ref. [25].

from s-wave η rescattering is not significant (see Fig. 15) we
find it sufficient to consider the effects from the rescattering
of a pion. The uncertainties coming from the description of
the deuteron wave function (based on Bonn [s-wave compo-
nent only] and Hulthén potentials) are also shown. It can be
seen from the figure that the differential cross sections are
underestimated at the forward angles, while at backward an-
gles are overestimated. One might wonder if the inclusion of
the d-wave component of the deuteron wave function could
improve the disagreement. As can be seen in Fig. 20, the
d-wave component of the deuteron wave function increases
significantly the differential cross section, producing an angu-
lar distribution using the (Bonn) wave function of Ref. [46]
which is compatible to that found with the Hulthén wave
function of Ref. [49]. In the case of the chiral wave function
[54], the inclusion of the d-wave component produces an
angular distribution which is similar to the one obtained with
the L = 0 component of the wave function of Ref. [46]. Inde-
pendently of the deuteron wave function considered, the shape
obtained for the angular distribution continues to differ from
the data. The discrepancies shown in Figs. 19 and 20 are strik-
ing, particularly since forward angles require large deuteron
momenta.

Similar findings have been noted in Refs. [14,15] too,
where the ηNN and πNN interactions are implemented with
the former system giving rise to a virtual ηNN state [44,55].
In view of the discrepancies between the experimental data
on the angular distribution and the theoretical calculations,
further investigations might be necessary, including some
other mechanisms which will help sharing the momentum
transfer.

Finally, it is important to quantify the impact of the un-
certainties present in the model. Following Ref. [19] we have
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FIG. 21. Uncertainties produced in the invariant mass distributions when allowing variations in the couplings of ±4% of their values. The
results shown correspond to the case of considering the Hulthén wave function [49] and incorporate the rescattering contributions.

relied on the mechanism of Fig. 1(a), but according to the
results shown in Fig. 1 of Ref. [19], the inclusion of the
ηN rescattering through the mechanism of Fig. 2 produces
an increase of ≈10% in the corresponding cross section.
In the strict limit of validity of the Schmid theorem [21],
the mechanism of Fig. 4 and related rescattering would in-
corporate the mechanism of rescattering of πη of Fig. 2
introducing the phase e2iδ , as discussed in the Introduction,
which would not change the cross section. In practice one
finds the small increase of 10% in the γ N → π0ηN cross
section. Thus, the findings of Ref. [19] can effectively be
incorporated increasing the coupling of �(1700) to γ N by
≈4%. One may argue that since the Kroll-Ruderman rescatter-
ing term of Fig. 8 does not have this phase, including the phase
would modify the interference. Yet, we proved that these
Kroll-Ruderman rescattering terms are negligible and we do
not worry about that, but consider the change of 4% in the
γ N → �(1700) coupling when evaluating the uncertainties.
Further, the couplings of �(1700) to ηN , N∗(1535) to πN
and ηN are obtained from the residues of the corresponding
scattering matrices in the complex energy plane and typical
uncertainties of ≈4% can also be related to them. Such an
uncertainty would arise from the use of different cut-offs when

regularizing the two-body loops entering in the calculation of
the scattering matrix, as well as the use of physical masses
instead of average masses for particles belonging to the same
isospin multiplet. In Fig. 21 we show the invariant mass dis-
tributions obtained for the case of the Hulthén wave function
[49] when allowing variations in the couplings and includ-
ing the different rescattering mechanisms considered in this
work.

IV. CONCLUSIONS

We have made a theoretical study of the γ d → π0ηd re-
action based on a realistic model for the elementary γ N →
π0ηN reaction that has been tested before in the calculations
of the cross sections and polarization observables. It is based
on the dominance of the γ N → �∗(1700) → �(1232)η →
π0ηN at low energies of the photon, where �∗(1700) is dy-
namically generated from the pseudoscalar meson interaction
with the decuplet of the baryons. This picture determines
the �∗(1700) → η�(1232) coupling such that a prediction
without fitting to the data can be done. In fact predictions of
the cross section were done prior to the measurement of the
reaction and good agreement was found.
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When applied to the study of the coherent γ d → π0ηd
reaction we find two types of mechanisms: the impulse ap-
proximation, where the amplitude comes from summing the
elementary amplitudes on the p and the n of the deuteron, and
the rescattering mechanism of both the π0 and η. The π0 in
the s wave and p wave, through �(1232) excitation, and the
η through N∗(1535) excitation in the s wave. What we find is
that the reaction involves large momenta of the deuteron, in a
region of momenta corresponding to short distances where the
nucleons clearly overlap and it is difficult to give very precise
values of the deuteron wave function. This is why we used
different models which helped us quantify the uncertainties of
the theoretical calculation and they were found to be sizable.
With this caveat in mind it was still possible to establish
that a reasonable reproduction of the mass distributions can
be obtained, although at low photon energies the cross sec-
tions obtained somewhat underestimate the experimental data.
One relevant feature of the experimental data, which was the
shift of the mass distribution to lower invariant mass with
respect to phase space for ηd is obtained and explained on the
basis of the dynamical features of the model, where in γ p →
π0ηp the π0 is favored to be produced at higher energies to
put �(1232) on shell and this makes the ηd invariant mass
smaller. The same argument can be used to see that the π0d
mass distribution should peak at higher energies than phase
space, something also observed in the experiment.

The biggest shortcoming of the model is that it pre-
dicts angular distribution clearly peaking at backward angles,
something in clear conflict with experiment that gives a much
flatter distribution. The disagreement persists even when con-
sidering contributions from the d-wave component of the
deuteron wave function, which we find to be sizable. A similar
discrepancy has also been reported in other theoretical mod-
els, even with the presence of an ηNN virtual state.

Another finding of the calculations is that the rescattering
of the π0 and η with the spectator nucleon of the impulse
approximation increased the cross sections appreciable, in as
much as 50%. The mechanism becomes particularly relevant
in this reaction because it involves large momentum transfer
in the one-body mechanism of the impulse approximation.
Instead, when the two-body mechanism of the rescattering is
considered, the momentum transfer is shared between the two
nucleons of the deuteron involving smaller momenta in the
deuteron wave functions, enhancing the contribution of that
mechanism. We also considered rescattering from the process
γ N → π±π0N ′, followed by rescattering of π± to produce
an η, but found the contribution of this mechanism to be
extremely small.

As to using the results of the reaction to claim a possible ηd
bound state, as claimed in Refs. [24,25], it is a difficult task
given the intrinsic uncertainties of the conventional mecha-
nisms disclosed by our calculations. The striking experimental
shape of the angular distribution will require further thoughts
along other mechanisms not envisaged by us, and any other
theoretical calculation so far, that help share the momentum
transfer, which is extremely large for forward deuteron angles
in the impulse approximation.
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APPENDIX A: SPIN TRANSITION ELEMENTS

The amplitudes for the different diagrams discussed in
Sec. II consist of different spin structures. In this section we
evaluate the transitions of the spin parts of the amplitudes.
Let us begin with the tree-level amplitude, given by Eq. (9),
in which the spin structure corresponds to �S �pπ �S†�ε . Here, �S
represents the operator for spin transitions between 3/2 and
1/2. Exploiting a useful property∑

polarizations

SiS
†
j = 2

3
δi j − i

3
εi jkσk (A1)

and considering that � is produced at the vertex �∗ → �η,
which implies that the spin projections of �∗ and � always
coincide, i.e., m�∗ = m�, we can write

�S �pπ �S†�ε =
∑
m�

pπi ε j Si|m�〉〈m�|S†
j

= 2

3
�pπ �ε − i

3
εi jk pπiε jσk . (A2)

Let us denote the matrix elements for the spin structure in
Eq. (A2) by W λ

μ,μ′ , where the indices μ,μ′ = −1, 0, 1 rep-
resent, respectively, the spin projections ↓↓, ↑↓ + ↓↑, and
↑↑ of the deuteron, and λ = 1, 2 denotes the two possible
polarizations of the photon. Thus, for example, we can write

W λ
1,1 = 〈↑↑|�S �pπ �S†�ελ |↑↑〉,

W λ
1,0 =

〈
1√
2

(↑↓ + ↓↑)|�S �pπ �S†�ελ|↑↑
〉
,

W λ
1,−1 = 〈↓↓|�S �pπ �S†�ελ|↑↑〉.

The sum over polarizations in Eqs. (29) and (30) requires
calculations of W λ

μ,μ′ for different spin projections of the
deuteron in the initial and final states and for the transverse
polarizations of the photon [�ε1 = (1, 0, 0), �ε2 = (0, 1, 0)].
We list these elements in Table III.

025202-20



THEORETICAL STUDY OF THE γ d → π 0ηd REACTION PHYSICAL REVIEW C 107, 025202 (2023)

TABLE III. Spin transition elements W λ
μ,μ′ for different polariza-

tions of the deuteron in the initial (μ) and final (μ′) states. Since
W λ

μ′,μ is the negative of the complex conjugate of W λ
μ,μ′ , it suffices to

list any one of them.

μ μ′ W λ
μ,μ′

1 1 2
3 �pπ �ελ − i

3 (pπx ελy − pπyελx )
1 0 − i

3
√

2
(−pπz ελy + ipπz ελx )

1 −1 0
0 0 2

3 �pπ �ελ

0 −1 − i
3
√

2
(−pπz ελy + ipπz ελx )

−1 −1 2
3 �pπ �ελ + i

3 (pπx ελy − pπyελx )

Next, we discuss the evaluation of the spin part of the
rescattering amplitudes, Eqs. (13), (16), and (24). The spin
transition elements for the rescattering of pion, involving s-
wave πN interactions, given by Eq. (13), can be obtained
by replacing �pπ → �q ′ in the expressions given in Table III.
The elements for the rescattering of pion involving the γ N →
πN Kroll-Ruderman vertex, as well as the elements for the
η-rescattering amplitudes, are identical to those given in Ta-
ble III.

Finally, the spin part of the pion rescattering ampli-
tudes, involving p-wave πN interactions [Eq. (16)] is
�S1 �q ′ �S†

1�ε �S2 �pπ �S †
2 �q ′, which using Eq. (A1) can be written as

(
2

3
�q ′�ε − i

3
εi jk q ′

i ε jσk

)(
2

3
�pπ �q ′ − i

3
εi jk pπi q

′
jσk

)
. (A3)

Let us denote the matrix elements related to Eq. (A3) as
Wλ

μ,μ′ . We list these elements for the different transitions in
Table IV.

APPENDIX B: CONTRIBUTION OF THE D-WAVE
COMPONENT OF THE DEUTERON WAVE FUNCTION

To determine the contribution from the d-wave compo-
nent of the deuteron wave function, we follow Ref. [46] and
consider the following wave function for the deuteron in mo-
mentum space:

�M
d (�k) =

√
4π

[
ψ0(k)Y1M

01 (k̂) + ψ2(k)Y1M
21 (k̂)

]
, (B1)

where �k is the linear momentum of the deuteron, k̂ are the
spherical angles associated with �k, k = |�k|, ψL(k) is the com-
ponent of the deuteron wave function associated with the
two nucleon orbital angular momentum L, and YJM

LS (k̂) repre-
sent the normalized eigenfunctions of the two nucleon orbital
angular momentum L, spin S, and total angular momentum
J with projection M. The latter can be written in terms of
spherical harmonics YLm as

YJM
LS (k̂) =

∑
m

C(L, S, J; m, M − m)YLm(k̂)|S, M − m〉,
(B2)

where m is the projection of L, C(L, S, J; m, M − m) are
Clebsch-Gordan coefficients for the combination L ⊗ S = J ,
and |S, M − m〉 are the corresponding spin states related to the
composition of L ⊗ S to give J . The spherical harmonics are

TABLE IV. Spin transition elements Wλ
μ,μ′ for different polarizations of the deuteron in the initial (μ) and final (μ′) states.

μ μ′ Wλ
μ,μ′

1 1 [ 2
3 �q ′�ελ − i

3 (q′
xελy − q′

yελx )][ 2
3 �pπ �q ′ − i

3 (pπx q′
y − pπy q′

x )]

1 0 1√
2
{[ 2

3 �q ′�ελ − i
3 (q′

xελy − q′
yελx )][− i

3 (pπy q′
z − q′

y pπz − i[pπx q′
z − q′

x pπz ])]

+ (− i
3 )(−q′

zελy + iq′
zελx )( 2

3 �pπ �q ′ − i
3 [pπx q′

y − pπy q′
x])}

1 −1 (− i
3 )2(−q′

zελy + iq′
zελx )(pπy q′

z − q′
y pπz − i[pπx q′

z − q′
x pπz ])

0 1 1√
2
{[ 2

3 �q ′�ελ − i
3 (q′

xελy − q′
yελx )][− i

3 (pπy q′
z − q′

y pπz + i[pπx q′
z − q′

x pπz ])]

+ (− i
3 )(−q′

zελy − iq′
zελx )( 2

3 �pπ �q ′ − i
3 [pπx q′

y − pπy q′
x])}

0 0 1
2 {[ 2

3 �q ′�ελ − i
3 (q′

xελy − q′
yελx )][ 2

3 �pπ �q ′ + i
3 (pπx q′

y − pπy q′
x )]

+(− i
3 )2(−q′

zελy + iq′
zελx )[(pπy q′

z − q′
y pπz + i[pπx q′

z − q′
x pπz ])]

+(− i
3 )2(−q′

zελy − iq′
zελx )[(pπy q′

z − q′
y pπz − i[pπx q′

z − q′
x pπz ])]

+ [ 2
3 �q ′�ελ + i

3 (q′
xελy − q′

yελx )][ 2
3 �pπ �q ′ − i

3 (pπx q′
y − pπy q′

x )]}
0 −1 1√

2
{(− i

3 )[−q′
zελy + iq′

zελx ][ 2
3 �pπ �q ′ + i

3 (pπx q′
y − pπy q′

x )]

+ (− i
3 )(pπy q′

z − q′
y pπz − i[pπx q′

z − q′
x pπz ])[

2
3 �q ′�ελ + i

3 (q′
xελy − q′

yελx )]}
−1 1 (− i

3 )2(−q′
zελy − iq′

zελx )(pπy q′
z − q′

y pπz + i[pπx q′
z − q′

x pπz ])

−1 0 1√
2
(− i

3 ){(−q′
zελy − iq′

zελx )( 2
3 �pπ �q ′ + i

3 [pπx q′
y − pπy q′

x])
+[ 2

3 �q ′�ελ + i
3 (q′

xελy − q′
yελx )][pπy q′

z − q′
y pπz + i(pπx q′

z − q′
x pπz )]

−1 −1 [ 2
3 �q ′�ελ + i

3 (q′
xελy − q′

yελx )][ 2
3 �pπ �q ′ + i

3 (pπx q′
y − pπy q′

x )]
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normalized as∫
d� |YLm(k̂)|2 = 1,

∫
d�Ylm(k̂)Y ∗

L′m′ (k̂) = δLL′δmm′ .

(B3)

The factor
√

4π in Eq. (B1), which is not included in the
parametrization of Ref. [46], makes the wave function in
Eq. (B1) to be normalized as∫

d3k
∣∣�M

d (�k)
∣∣2 = 1 (B4)

with ∫
d3k

[
ψ2

0 (�k) + ψ2
2 (k)

] = 1, (B5)

which is compatible with the normalization considered in
this work. This makes that with this normalization, following
Ref. [46], the s- and d-wave components of the deuteron wave
function can be written as

ψ0(k) = 1√
2π

n∑
j=1

Cj

k2 + m2
j

= ψ̃0(k)√
4π

,

ψ2(k) = 1√
2π

n∑
j=1

Dj

k2 + m2
j

k2

m2
j

= ψ̃2(k)√
4π

, (B6)

where n = 1, 2, . . . , 11, ψ̃0(k) and ψ̃2(k) are the s- and d-
wave components of the deuteron wave function1 with the
normalization followed in Ref. [46], and the expressions for
Cj , Dj , and mj can be found in Ref. [46]. Note that when
only the s-wave component of the deuteron wave function is
considered in the calculations, the normalization is changed
such that ∫

d3kψ
only
0 (�k)2 = 1. (B7)

In this situation, the parametrization of ψ
only
0 (�k) is given by

ψ
only
0 (�k) = 1

N

n∑
j=1

Cj

k2 + m2
j

, (B8)

where N 
 4.33225 is the normalization constant needed to
satisfy Eq. (B7). In this way, we can write

ψ0(k) = N√
2π

1

N

n∑
j=1

Cj

k2 + m2
j

≡ ωsψ
only
0 (�k) (B9)

with ωs ≡ N/(
√

2π ) 
 0.9751.

1Note that the expression for ψ̃2, which we obtain directly from the
Fourier transform of the d-wave component of the deuteron wave
function in coordinate space, w(r) in Ref. [46] (see Eq. (C20) of
Ref. [46]), is not the same as that given in Eq. (C22) of Ref. [46].
Curiously, it can be checked that Eq. (C22) of Ref. [46] and the ψ̃2 of
Eq. (B6) differ by a global minus sign. One can show that the Fourier
transform of Eq. (C22) of Ref. [46] produces −w(r) instead of w(r),
as it should, with w(r) being given by Eq. (C20) of Ref. [46], which
actually coincides with the results of the Table XIX of Ref. [46].

Let us consider, for example, the case, J = M = 1. We
have then

Y11
01 (k̂) = Y00(k̂)|1, 1〉 = 1√

4π
|1, 1〉,

Y11
21 (k̂) =

√
3

5
Y22|1,−1〉 −

√
3

10
Y21|1, 0〉 + 1√

10
Y20|1, 1〉

(B10)

with

Y22(k̂) = 1

4

√
15

2π
sin2θ [cosφ + isinφ]2,

Y21(k̂) = −
√

15

8π
sinθcosθ [cosφ + isinφ], (B11)

Y20(k̂) =
√

5

4π

1

2
(3cos2θ − 1),

where θ and φ are the polar and azimuthal angles related to �k.
Using Eqs. (B1), (B9), (B6), and (B10), we have the fol-

lowing wave function for the deuteron for J = M = 1:

�1
d (�k) = ωsψ

only
0 (�k)|1, 1〉 + ψ̃2(k)

[√
3

5
Y22|1,−1〉

−
√

3

10
Y21(k̂)|1, 0〉 + 1√

10
Y20|1, 1〉

]

= ωsψ
only
0 (�k)|↑↑〉 + ψ̃2(k)

×
[√

3

5
Y22|↓↓〉 −

√
3

10
Y21(k̂)

1√
2

(|↑↓〉 + |↓↑〉)

+ 1√
10

Y20| ↑↑〉
]
, (B12)

where in the last line we have written the two nucleon spin
states |1, 1〉, |1, 0〉〉, |1,−1〉 in terms of the spin projections of
each nucleon. Using Eq. (B12), we can obtain the matrix ele-
ments determined in Appendix A. For example, a combination
like

W λ
11ψ

only
0 (Q)ψonly

0 (Q′), (B13)

where W λ
11 = 〈↑↑ |�S �pπ �S†�ελ| ↑↑〉, �Q = �pd

2 − �q, �Q′ =
− �pη+�pπ

2 − �q, Q = | �Q|, Q′ = | �Q′|, and which appears in
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the tree level amplitude, becomes

〈
�1

d ( �Q′)
∣∣�S �pπ �S†�ελ

∣∣�1
d ( �Q)

〉 =
[(

ωsψ
only
0 (Q′) + ψ̃2(Q′)

1√
10

Y ∗
20(Q̂′)

)
〈↑↑|

+ ψ̃2(Q′)

√
3

5
Y ∗

22(Q̂′)〈↓↓| −
√

3

10
Y ∗

21(Q̂′)
1√
2

(〈↑↓| + 〈↓↑|)
]

(�S �pπ �S†�ελ)

×
[(

ωsψ
only
0 (Q) + ψ̃2(Q)

1√
10

Y ∗
20(Q̂)

)
|↑↑〉

+ ψ̃2(Q)

√
3

5
Y ∗

22(Q̂)|↓↓〉 −
√

3

10
Y ∗

21(Q̂)
1√
2

(|↑↓ + |↓↑〉)

]

=
(

ωsψ
only
0 (Q′) + ψ̃2(Q′)

1√
10

Y ∗
20(Q̂′)

)(
ωsψ

only
0 (Q′) + ψ̃2(Q′)

1√
10

Y ∗
20(Q̂′)

)
W λ

11

−
√

3

10

(
ωsψ

only
0 (Q′) + ψ̃2(Q′)

1√
10

Y ∗
20(Q̂′)

)
Y21(Q̂)ψ̃2(Q)W λ

21

+ 3

5
ψ̃2(Q′)ψ̃2(Q)Y ∗

22(Q̂′)Y22(Q̂)W λ
33 − 3

5
√

2
Y ∗

22(Q̂′)Y21(Q̂)ψ̃2(Q′)ψ2(Q)W λ
23

−
√

3

10
Y ∗

21(Q̂′)ψ̃2(Q′)
(

ωsψ
only
0 (Q) + ψ̃2(Q)

1√
10

Y20(Q̂)

)
W λ

12

− 3

5
√

2
Y ∗

21(Q̂′)Y22(Q̂)ψ̃2(Q′)ψ̃2(Q)W λ
32 + 3

10
Y ∗

21(Q̂′)Y21(Q̂)ψ̃2(Q′)ψ̃2(Q)W λ
12, (B14)

where we have used that W λ
13 = W λ

31 = 0. Similarly, we can
calculate the matrix elements

〈
�M ′

d ( �Q′)
∣∣�S �pπ �S†�ελ

∣∣�M
d ( �Q)

〉
(B15)

with M, M ′ = −1, 0, 1 and determine the differential cross
section. A good estimation, however, can be obtained by re-
alizing that the differential cross sections found with only the
s-wave component of the deuteron wave function are domi-
nated by transitions where the values μ and μ′ in W λ

μ,μ′ are the
same, the latter being around 6 times bigger than that obtained
from transitions where μ �= μ′ (whenever these ones are not
zero). Thus, the main contribution to the differential cross
section when including the d-wave component of the deuteron
wave function comes from diagonal terms, i.e., μ = μ′. At
the same time, transitions where μ = μ′ contributes equally

to the differential cross section. The same is the case for those
transitions involving W λ

μ,μ′ and W λ
μ′,μ. Then, to estimate the

effect of including the d-wave component of the deuteron
wave function in the determination of the differential cross
section within the impulse approximation, we use the follow-
ing expression:

dσ

dMinv
= 3

dσ11(s + d waves)

dMinv
+ 2

[
dσ12(s wave)

dMinv

+ dσ13(s wave)

dMinv
+ dσ23(s wave)

dMinv

]
, (B16)

where σi j refers to the contribution of the transition element
i j to the cross section σ , and the text between brackets ex-
presses whether we include, or not, the L = 0 (s wave) and
2 components (d wave) of the deuteron wave function when
calculating the cross section.
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