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Cross effects in spin hydrodynamics: Entropy analysis and statistical operator
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I revisit the construction of first-order spin hydrodynamics and find that the constitution relations receive the
corrections from the cross effects resulting from spin-orbit coupling. Starting from a routine entropy analysis, I
show how to identify cross effects and new cross transport coefficients from the second law of thermodynamics.
Interestingly, the conventional transport coefficient heat conductivity κ is bounded from below by the product
of cross transport coefficients, which means the threshold of heat conduction is changed. With recourse to
Zubarev’s nonequilibrium statistical operator, we reproduce the construction of first-order spin hydrodynamics
and identification of cross effects in a more rigorous way. By seeking the dispersion relations of normal modes,
I find that these cross effects suppress the attenuation of sound modes and heat mode appearing in conventional
hydrodynamics and also have impacts on the damping of non-hydrodynamic spin modes.
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I. INTRODUCTION

It has been proposed for long that the final hadrons pro-
duced in heavy-ion collisions are polarized by the strong
orbital angular momentum [1–4] similar to the well-known
physical phenomenon, Barnett effect, in the context of con-
densed matters [5]. Motivated by the recent measurements
of spin polarization of � hyperons and observed phenomena
of spin alignments in the experiment of heavy-ion collisions
[6–9], the evolution of spin in hot quantum chromodynamics
(QCD) plasma draws extensive attention and constant theoret-
ical efforts are devoted to it. Due to the huge successes made
by relativistic hydrodynamics in describing the evolution of
quark gluon plasma (QGP) created in the collisions, spin
hydrodynamics, namely, relativistic hydrodynamics incorpo-
rating spin degrees of freedom, is considered as a promising
framework. In order to construct a consistent theory of rela-
tivistic spin hydrodynamics, there have been many theoretical
studies along this line, which are based on a general entropy
analysis or the second law of thermodynamics [10–13], quan-
tum kinetic theory of fermions [14–20], holographic approach
[21–23], effective action [24,25], and statistical density oper-
ator [26–29].

Starting from a routine entropy analysis, one can construct
a first order hydrodynamic theory [10,11]. In general, the
energy momentum tensor T μν has an antisymmetric part com-
pared to conventional dissipative first order hydrodynamics.
However, it is widely believed that the definitions for T μν

and the spin tensor Sλμν are not unique and distinct def-
inition choices are related via pseudogauge transformation
[28,30,31]. Therefore one can show that a spin hydrodynamic
theory is equivalent to a conventional hydrodynamics with
spin corrections [11,12]. Hereafter, I confine my discussion to
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the case of a nonvanishing antisymmetric part of T μν . In these
mentioned studies, the constitutive relations and hydrody-
namic motion equations in conventional sector are immune to
spin correction. They act as if they do not ‘feel’ the influence
of spin correction. The only differences from conventional
theory are that more motion equations appear and new dissipa-
tive quantities and transport coefficients are present in the spin
sector. Likewise, they have no interplay with conventional sec-
tor. As a supplement, I comment that this does not mean that
the mechanism of spin-orbit coupling does not set in, which
lies in the decomposition of total angular momentum tensor
�λμν into spin and orbital contributions. Accounting for this
point, the relation-type motion equations of spin densities and
gapped non-hydrodynamic spin modes [10] are exactly the
reflection of spin-orbit coupling.

I revisit the construction of first order spin hydrodynamics
and find a new source responsible for spin-orbit coupling
based on the entropy analysis and statistical operator method.
My findings indicate that the constitutive relations of con-
ventional sector also suffer from spin corrections and vice
versa. There exist the cross effects between the symmetric
and antisymmetric parts of the energy momentum tensor.
Furthermore, these cross effects are included in spin hy-
drodynamic motion equations through modified constitutive
relations, therefore the evolution of spin densities will be
affected by them. I note these cross effects do not appear in
previous related studies [10,11,29].

I employ natural units h̄ = kB = c = 1. The metric
tensor here is given by gμν = diag(1,−1,−1,−1), while
�μν ≡ gμν − uμuν is the projection tensor orthogonal to
the four-vector fluid velocity uμ with uμuμ = 1. In the
following, the shorthand notations ∇μ ≡ �μν∂ν , D ≡ uμ∂μ

are used as the spatial and temporal component of the
derivative. In addition, I utilize the symmetric/antisymmetric
shorthand notations: X (μν) ≡ (X μν + X νμ)/2, X [μν] ≡
(X μν − X νμ)/2, X 〈μν〉 ≡ (

�μ
α �ν

β+�ν
α�

μ
β

2 − �μν�αβ

3 )X αβ .
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II. ENTROPY ANALYSIS

All macroscopic conservation laws relevant for the evolu-
tion of spinful fluids read

∂μT μν = 0, ∂μNμ = 0, ∂λ�
λμν = 0. (1)

Here, Nμ,�λμν are the conserved current and total angu-
lar momentum tensor. These three equations express the
conservation of the energy-momentum tensor, conserved cur-
rent, and total angular momentum tensor, respectively. The
rank three tensor �λμν is often canonically decomposed into
two distinct parts �λμν = (xμT λν − xνT λμ) + Sλμν , where
Sλμν = −Sλνμ. Then the last equation of Eq. (1) can be also
written as

∂λSλμν = T νμ − T μν, (2)

where T μν has both symmetric and antisymmetric nonzero
components: T μν ≡ T (μν) + T [μν].

Note that I have modified the thermodynamic relation in
equilibrium

T s + μn = e + P − 1
2ωμνSμν, (3)

where T , s, μ, n, e, and P denote the local temperature,
entropy density, chemical potential, conserved charge density,
energy density, and static pressure, respectively. In addition, I
introduce a “spin potential” ωμν conjugate to the spin density
Sμν and it is counted as O(∂1) in derivative counting scheme
following the same prescription used in [10]. Note ωμν and
Sμν are both antisymmetric.

Applying the derivative expansion and assuming the parity
symmetry of the system, the constitutive relations can be
organized as

T μν = euμuν − P�μν + T μν
(1) , (4)

Nμ = nuμ + jμ, (5)

Sμαβ = uμSαβ + Sμαβ

(1) , (6)

sμ = suμ + jμs , (7)

and T μν
(1) is split into two parts

T (μν)
(1) = 2h(μuν) + πμν + �μν, (8)

T [μν]
(1) = 2q[μuν] + τμν, (9)

where T μν
(1) , Sμαβ

(1) denote the first order correction to the energy
momentum tensor and spin tensor, jμ, jμs are the charge diffu-
sion and entropy fluxes, πμν and  denote shear stress tensor
and bulk viscous pressure, and hμ is heat flow. Meanwhile,
τμν and qμ are the counterparts of πμν and hμ in the anti-
symmetric sector. I also require that jμs uμ = jμuμ = hμuμ =
qμuμ = τμνuν = πμνuν = 0.

When considering nonzero spin density and spin potential,
the entropy current is assumed to have the familiar form used

in [32],

sμ = uν

T
T μν + p

T
uμs − μ

T
jμ − 1

2

1

T
ωαβSαβuμ + O(∂2)

= suμ + uν

T
T μν

(1) − μ

T
jμ + O(∂2). (10)

Temporarily, this is treated as an ansatz and it will be verified
in the next section that this prescription is consistent with
the nonequilibrium entropy current employed in the statistical
operator.

Combined with the thermodynamic relation and hydrody-
namic equations, one can derive the divergence of the entropy
current

∂μsμ = n

e + p
hμ′∇μ

μ

T
+ πμν

T
∂〈μuν〉 + 

T
θ

+ qμ

(
−u∂

T
uμ + ∂μ

1

T
+ 2ωμνuν

T

)

+ τμν

[
1

2
�μρ�νσ

(
∂ρ uσ

T
− ∂σ uρ

T

)
+ ωμν

T

]
� 0,

(11)

where the non-negative sign follows from the second law
of thermodynamics, and I use the notations θ ≡ ∂μuμ, hμ′ ≡
hμ − e+P

n jμ. It is clearly shown that in equilibrium

ωμν = −T

2
ωth

μν, ωth
μν ≡ �μρ�νσ

(
∂ρ uσ

T
− ∂σ uρ

T

)
,

(12)

ωμνuν = nT

2(e + P)
∇μ

μ

T
+ 1

T
∇μT, (13)

where the spin potential is fixed with the thermal vorticity
ωth

μν in accordance with available conclusions [28,33]. On the
other hand, a conclusion can be drawn from Eq. (13) that
the components of spin potential parallel with fluid velocity
receives the contribution from the combined temperature and
chemical potential gradients in equilibrium. In order to im-
pose the condition of non-negative entropy production, one
may cast ∂μsμ into a sum of squares like

ax2 + by2 � 0, a, b � 0, (14)

which is sufficient for scalar and rank two tensor dissipative
processes in the following explicit form:

πμν = 2η∇〈μuν〉, (15)

 = ζθ, (16)

τμν = 2ηs
(∇[μuν] + �μρ�νσ ωρσ

)
, (17)

η � 0, ζ � 0, ηs � 0, (18)

where η, ζ , and ηs represent shear viscosity, bulk viscosity,
and “rotational viscosity” ηs [34], respectively. As long as the
dissipative quantities take the above form, one can write part
of ∂αsα as the sum of terms as ax2 or by2. Here, x(y) refers
to the thermodynamic force, a(b) refers to the correspondent
transport coefficient. For example, ax2 = ζθ2 for the scalar
dissipative process.
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However, Eq. (14) is a sufficient but not necessary condi-
tion if vector dissipative processes are taken into consideration
because I can lose the requirement to allow the cross term xy
as

ax2 + by2 + cxy � 0, a, b � 0, 4ab � c2. (19)

It can be clearly seen that Eq. (14) is a special case of
Eq. (19) with c = 0. Motivated by this simple illustration,
the sufficient and necessary conditions of semipositive
entropy production is then specifically collected as for vector
dissipation quantities:

hμ′ = −κ
nT

e + P
∇μ μ

T
+ γ

(
Duμ + ∇μT

T
− 2ωμνuν

)
, (20)

qμ = λ

(
Duμ + ∇μT

T
− 2ωμνuν

)
+ ξ

(
− nT

e + P
∇μ μ

T

)
,

(21)

κ � 0, λ � 0, (22)

κλ � 1

4
(γ + ξ )2. (23)

One can map the linear laws for vectors into Eq. (19) with

x = n
√

T

e + P
∇i

μ

T
, (24)

y = Dui + ∇iT

T
− 2ωiνuν, (25)

a = κ, b = λ, c = γ + ξ, (26)

where i = 1, 2, 3 denotes spatial indices. Here, κ represents
heat conductivity, while “boost heat conductivity” λ [10]
together with ηs is new in spin hydrodynamics. Moreover, I
propose two new transport coefficients γ and ξ , which refer to
cross effects shown in the vector sector in spin hydrodynamics
and have not appeared in the entropy analysis of related works
[10,11,29]. An interesting difference from conventional
hydrodynamics is that heat conductivity κ is bounded from
below by (γ+ξ )2

4λ
. This can be regarded as a threshold above

which the fluids can sustain heat conduction (the fluctuation
with κ smaller than (γ+ξ )2

4λ
is acausal and unstable).

A cross between rank two tensors, i.e., πμν and τμν is
forbidden owing to symmetry. In essence, the symmetric
tensor πμν transforms as a quintet while the antisymmetric
tensor τμν transforms as a triplet in the Clebsch-Gordan tensor
decomposition of SO(3) group 3 ⊗ 3 = 3 ⊕ 5 ⊕ 1, which for-
bids the cross of πμν and τμν . There is only one representation
of SO(3) group for vector enabling the cross effects for vector
transport. When there is a strong external field, rotational
invariance is broken and another cross effects will appear [35].
There is still one thing to note. When the fluid on discussion is
neutral, then hμ′ ∼ O(∂2), only one vector dissipative current
qμ exists and there is no proposed cross effect [10].

I define γ , ξ as the symmetric/antisymmetric cross dif-
fusion coefficients because these cross effects are similar to
cross diffusion phenomena widely known in multicharge flu-
ids [36]. Noticing that hμ appears in the symmetric sector
of T μν , then γ characterizes the response of T (μν) to the
thermodynamic force belonging to antisymmetric sector T [μν]

and vice versa. This can be further interpreted as a reflection
of spin-orbit conversion through Eq. (2). Therefore the con-
stitutive relations in a conventional sector, specifically frame
independent current hμ − n

e+P jμ, receive spin corrections and
vice versa. In this way, my results show that a chemical-
potential gradient can induce an antisymmetric part of the
energy-momentum tensor i.e., the four divergence of the spin
tensor, which is closely related to a well-known source for
polarization named the spin Hall effect [37–42]. Note as an
aside, γ should equate with ξ according to the Onsager recip-
rocal relation.

III. NONEQUILIBRIUM STATISTICAL OPERATOR
AND KUBO RELATIONS

The presence of γ and ξ is evident in the language of
a nonequilibrium statistical operator developed by Zubarev
[43,44],

ρ̂(t ) = Q−1 exp

[
−

∫
d3x Ẑ (x, t )

]
, (27)

Q = Tr exp

[
−

∫
d3x Ẑ (x, t )

]
(28)

with the operator Ẑ defined as

Ẑ (x, t ) ≡ ε

∫ t

−∞
dt ′eε(t ′−t )

[
βν (x, t ′)T̂0ν (x, t ′)

−α(x, t ′)N̂0(x, t ′)−1

2
β(x, t ′)ωρσ (x, t ′)Ŝ0ρσ (x, t ′)

]
,

(29)

where β stands for the inverse local temperature and βν ≡
βuν, α ≡ βμ, and ε → +0 should be taken after the thermo-
dynamic limit. A generic and natural tensor decomposition
reads as

T̂ μν = êuμuν − p̂�μν + T̂ (μν) + T̂ [μν], (30)

T̂ (μν) = 2ĥ(μuν) + π̂μν + ̂�μν, (31)

T̂ [μν] = 2q̂[μuν] + τ̂ μν, (32)

N̂μ = n̂uμ + ĵμ, (33)

Ŝμαβ = uμŜαβ + Ŝμαβ

(1) , (34)

which consistently matches the form of Eqs. (4) to (6) in
hydrodynamic description.

Following the practice detailed in [45], one can work out
the linear response of T̂ μν and N̂μ to the perturbation. Here,
I only focus on the vectors ĥ′ and q̂ within them. Thus the
linear thermodynamic current-force relations Eqs. (20) and
(21) are reproduced with dissipative quantities replaced by
their corresponding operators and the transport coefficients
are expressed in terms of Kubo correlators:

κ = −β

3

∫
d3x′

∫ 0

−∞
dt ′eεt ′

(ĥ′μ(x), ĥ′
μ(x′, t ′)), (35)

λ = −β

3

∫
d3x′

∫ 0

−∞
dt ′eεt ′

(q̂μ(x), q̂μ(x′, t ′)), (36)
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γ = −β

3

∫
d3x′

∫ 0

−∞
dt ′eεt ′

(ĥ′μ(x), q̂μ(x′, t ′)), (37)

ξ = −β

3

∫
d3x′

∫ 0

−∞
dt ′eεt ′

(q̂μ(x), ĥ′
μ(x′, t ′)), (38)

where the Kubo correlator is defined as

(X̂ (x, t ), Ŷ (x′, t ′))

≡
∫ 1

0
dτ 〈X̂ (x, t )(e−Âτ Ŷ (x′, t ′)eÂτ − 〈Ŷ (x′, t ′)〉l )〉l . (39)

I have taken the ensemble average with the local equilibrium
statistical operator

ρ̂l ≡ Q−1
l exp(−Â), Ql = Tr exp(−Â), (40)

Â =
∫

d3x
[
βν (x, t )T̂0ν (x, t ) − α(x, t )N̂0(x)

− 1

2
β(x, t )ωρσ (x, t )Ŝ0ρσ (x, t )

]
. (41)

The cross correlations (ĥ′, q̂) and (q̂, ĥ′) appear naturally and
no symmetries vanish them.

Unlike ordinary transport coefficients, e.g., κ appearing
also in conventional fluids, new transport coefficients in
spin hydrodynamics are not well defined in the strict hy-
drodynamic limit ω → 0. As spin densities are inherently
dissipative quantities, they are introduced as dynamic modes
in the same fashion as Hydro+ framework [46], namely, the
frequency scale ω � �s (�s is the relaxation rate of non-
hydrodynamic spin modes). Then the constitutive relations
should be replaced by

T [μν] =
{

2q[μuν] + τμν, �s  ω  �,

0, ω  �s,
(42)

where � represents the relaxation rate of other non-
hydrodynamic modes. In the strict hydrodynamic limit, spin
hydrodynamics reduces to the usual hydrodynamics. In this
sense, these spin-related transport coefficients should be de-
fined in a constrained limit �s  ω  � [47],

λ = 1

3
lim

�sω�

∂

∂ω
ImGR

q̂q̂(, ω), (43)

γ = ξ = 1

3
lim

�sω�

∂

∂ω
ImGR

ĥ′q̂ (, ω), (44)

where GR
ÂB̂

(ω, k) is the Fourier transformation of the retard
two point Green function

GR
ÂB̂(x, t ) ≡ −iθ (t )[Â(x, t ), B̂(0, 0)], (45)

and the Onsager relation γ = ξ follows directly from

GR
ÂB̂(x, t ) = GR

B̂Â(−x, t )ηAηB (46)

with ηA the parity of Â under the time reverse (ĥ′ and q̂ have
the same parity).

There are some comments followed in order. First, analo-
gous to conventional transport coefficients η, ζ , κ , new ones,
ηs and λ, are also defined via a self-correlation function and

thus non-negative meeting the condition Eqs. (18) and (22)
[45]. Second, a specific extraction of λ from hydrodynamic
correlators would lead us to the same formula as Eq. (43) [45].
Third, the sign of γ and ξ is indefinite but they need not obey
a non-negative requirement.

In the remainder of this section, I present how to reproduce
the entropy analysis by means of the nonequilibrium statistical
operator. Following [43], I define the entropy as

S ≡ −〈ln ρl〉l . (47)

Noticing that ρ̂ is a solution of Liouville’s equation when ε is
taken to be zero after thermodynamic limit, S = − Tr(ρ̂ ln ρ̂ ))
is not a qualified definition. With the covariant matching
conditions uμδ〈T̂ μν〉uν = uμδ〈N̂μ〉 = uμδ〈Ŝμρσ 〉 = 0, the en-
tropy is detailed as

S = ln Ql +
∫

d3x
[
β(x, t )〈ê(x)〉 − α(x, t )〈n̂(x)〉

− 1

2
β(x, t )ωi j (x, t )〈Ŝi j (x)〉

]
, (48)

where I have prescribed that the operators in presence are
time independent but their expectation values have time de-
pendence following [43] and I work in the comoving frame
uμ = (1, 0, 0, 0) for simplicity.

Conveniently, the change with time of entropy can be read-
ily expressed as

∂S

∂t
= ∂ ln Ql

∂t
+

∫
d3x

[
∂β(x, t )

∂t
〈ê(x)〉 − ∂α(x, t )

∂t
〈n̂(x)〉

− 1

2

∂ (β(x, t )ωi j (x, t ) )

∂t
〈Ŝi j (x)〉

]

+
∫

d3x
[
β(x, t )

∂〈ê(x)〉
∂t

− α(x, t )
∂〈n̂(x)〉

∂t

− 1

2
β(x, t )ωi j (x, t )

∂〈Ŝi j (x)〉
∂t

]
. (49)

One can show that the first line of Eq. (49) vanishes due to
nontrivial cancellation. By utilizing the equations of motions
in hydrodynamics and neglecting terms of higher order in
gradients, I obtain

∂S

∂t
= −

∫
d3xσ (x) −

∫
dσi ji

s(x, t ) (50)

with the identification of the entropy diffusion flux as the sum
of the energy, charge flux, and 〈q̂i〉

ji
s(x, t ) ≡ β(x, t )(〈ĥi〉 − 〈q̂i〉) − α(x, t )〈 ĵ i〉 (51)

and dσ i is an element of surface where the fluxes flow in or
out. The entropy production rate is written as the product of
current and force,

σ ≡
(

〈ĥi〉 − e + p

n
〈 ĵ i〉

)
n

e + p
∇iα + 〈̂〉θ

+ 〈q̂i〉(−βDui + ∇iβ + 2βωi ju
j )

+ 〈π̂ i j〉∂iu j + 〈τ̂ i j〉(∂iu j + ωi j ), (52)
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which is nothing but Eq. (11) in local rest frame. On the other
hand, the spatial integral over Eq. (52) can be cast into a
concise self-correlation form as [43]

∫
d3xσ (x) =

∫
dteεt (C,C(t )) � 0, (53)

where C ≡ ∑
a

∫
dxĜaFa, and Ĝa, Fa denote the dissipative

quantities in operator form and correspondent thermodynamic
force appearing in Eq. (52). They are linearly associated with
each other by the linear laws Eqs. (15) to (17) and Eqs. (20),
(21). Then one can conclude ∂αsα � 0 has been more rig-
orously proved by the method of statistical operator. As a
result, the conditions outlined in Eqs. (18), (22), and (23) are
automatically satisfied.

IV. LINEAR MODE ANALYSIS

A linear mode analysis is given to seek the impacts of cross
effects on spin hydrodynamic motion. I choose to perturb the
quiescent equilibrium system according to

e(x) = e0 + δe(x), P(x) = P0 + δP(x),

n(x) = n0 + δn(x), ui(x) = 0 + δui(x),

Sμν (x) = 0 + δSμν (x), ωμν (x) = 0 + δωμν (x) (54)

in line with the settings of [10]. For concreteness, the Landau
definition for velocity is taken and uμ = (1, δui ) + O((δu)2).
Now κ should be interpreted as the charge diffusion coeffi-
cient instead of heat conductivity.

With the perturbations given in Eq. (54), one can linearize
the hydrodynamic equations to obtain

0 = ∂0δn + n̄0
(
∂iδπ

i + (λ1 − γ1)∂i∂
iδe + (λ2 − γ2)∂i∂

iδn − (Db − D′
b)∂iδS0i − (ξ1 − κ1)∂i∂

iδe − (ξ2 − κ2)∂i∂
iδn

)
, (55)

0 = ∂0δe + ∂iδπ
i + 2(λ1∂i∂

iδe + λ2∂i∂
iδn − Db∂iδS0i − ξ1∂i∂

iδe − ξ2∂i∂
iδn), (56)

0 = −∂0δπ
i − β1∂iδe − β2∂iδn + (η′ + η′

s)(∂ j∂ jδπ
i − ∂i∂ jδπ

j ) + ηt∂i∂ jδπ
j + Ds∂ jδSi j, (57)

0 = ∂0δSi j + 2{DsδSi j + η′
s(∂

iδπ j − ∂ jδπ i )}, (58)

0 = ∂0δS0i − 2(λ1∂
iδe + λ2∂

iδn) + 2DbδS0i + 2ξ1∂
iδe + 2ξ2∂

iδn, (59)

where n̄0 ≡ n0
e0+P0

is reduced charge density and Einstein summation prescription over repeated (spatial) indices is assumed. In
addition, the following constants are introduced:

β1 ≡
(

∂P

∂e

)
n

, β2 ≡
(

∂P

∂n

)
e

, c1 ≡
(

∂e

∂T

)
n

, c2 ≡
(

∂n

∂T

)
e

, χs ≡ ∂Si j

∂ωi j
, Ds ≡ 2ηs

χs
,

η′
s ≡ ηs

e0 + P0
, χb ≡ ∂Si0

∂ωi0
, Db ≡ 2λ

χb
, Db

′ ≡ 2γ

χb
, λi ≡ λβi

e0 + P0
+ λ

ciT
, γi ≡ γ βi

e0 + P0
+ γ

ciT
,

ξi ≡ ξβi

e0 + P0
− ξ

ciT
, κi ≡ κβi

e0 + P0
− κ

ciT
, ηt ≡ 1

e0 + P0

(
ζ + 4

3
η

)
, η′ ≡ η

e0 + P0
. (60)

One should be cautious that χb ≡ ∂Si0

∂ωi0
= β

2 Tr[ρ̂l (Ŝi0)2] � 0

instead of χb ≡ ∂Si0

∂ωi0 .
For simplicity, I suppose that the fluctuations δ f =

δ f (t, z). I work in the Fourier space with Ã(k) ≡∫
d4xei(wt−k·x)A(x), and the Fourier transformation of lin-

earized hydrodynamic equations Eqs. (55) to (59) will lead
us to the dispersion relations of normal modes in spin hydro-
dynamics,

ω = −2iDs, (61a)

ω = −2iDb, (61b)

ω =
{−2iDs − iη′

sk
2 + O(k4),

−iη′k2 + O(k4),
(61c)

ω =
⎧⎨
⎩

±csk − i�‖k2 + O(k3),
−2iDb − iDb1k2 + O(k4),
−iDk2 + O(k4),

(61d)

where Eqs. (61b) and (61c) are doubly degenerate and

c2
s ≡ β1 + β2n̄0,

�‖ ≡ ηt

2
+ β2

2 n̄2
0

2c2
s (e0 + P0)

(
κ − γ ξ

λ

)
,

Db1 ≡ 4λ2χ11 + (γ − λ)2n̄2
0χ22 + 4(γ λ − λ2)n̄0χ12

λ
(
χ11χ22 − χ2

12

) ,

D ≡ n̄2
0

n̄2
0χ22 − 2n̄0χ12 + χ11

(
κ − γ ξ

λ

)
. (62)

On the other hand, the susceptibility matrix elements
are defined as χab ≡ ∂φa

∂λb
with φ = (δn, δe, δπ z, δS0z ) and

(δμ − μ

T δT, δT
T , δuz, δω0z ) [48]. The susceptibility matrix is
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explicitly written as

χ4×4 =

⎛
⎜⎜⎜⎜⎜⎝

(
∂n
∂μ

)
T T

(
∂n
∂T

)
μ/T 0 0(

∂e
∂μ

)
T T

(
∂e
∂T

)
μ/T 0 0

0 0 e0 + P0 0

0 0 0 χb

⎞
⎟⎟⎟⎟⎟⎠. (63)

With a straightforward exercise in thermodynamic deriva-
tives, I have checked that the leading order imaginary parts
of these frequencies are negative consistent with theoretical
stability requirements stability in the rest frame. However, the
modes may not remain stable in a moving frame, which calls
for a detailed calculation. Several comments are followed in
order.

(i) Besides conventional hydrodynamic modes, namely,
two sound modes, one charge diffusion mode or heat
mode, and two shear modes, I find another six non-
hydrodynamic gapped modes reflecting nonconserved
property of spin densities. Considering cross effects
affect the constitutive relation of the charge current
in Landau frame, the collective motion of spinful
fluids should be different from a spinless one. Com-
pared to conventional hydrodynamics, I have only five
hydrodynamic modes in common on which a direct
comparison is based. As far as the contributions up
to O(k2) are concerned, only the damping rates of the
charge diffusion mode and sound modes receives spin
modification of the form κ − γ ξ

λ
. This is reasonable

because impacts on heat conduction or charge dif-
fusion only have relation with the sound modes and
charge diffusion mode. The correction originates from
the cross diffusion between orbit and spin motion and
the cross effects suppress the attenuation of sound
modes and charge diffusion mode owing to contrary
sign. Note that the suppression factor κ − γ ξ

λ
is con-

sistent with Eq. (23) and confirms the conclusion that
κ − γ ξ

λ
= 0 is a threshold above which heat mode (or

charge diffusion mode) survives.
(ii) My results can also be readily compared with a

closely related work [10] sharing the same settings.
Nevertheless, I also take into account the charge
diffusion and cross effects and thus find an extra
charge diffusion mode. The leading order damping
coefficients of non-hydrodynamic spin modes are all
unchanged only Db1 receives the correction from
cross effects. Viewing that cross effects only source
the perturbation of T 0i component, the collective mo-
tion in T i j sector remain unchanged. When turning
off the charge diffusion and cross effects, my results
match the analysis in [10].

(iii) In this work, I concentrate our focus on nonconserved
spin densities, the motion equations of which are
inherently relaxation-type. Consequently, I have not
found propagating degrees of freedom in spin sector.
I note that there are associated studies investigating
the dispersion relations of hydrodynamic spin modes,
where their analysis is carried out for conserved total

angular momentum tensor [49,50]. In that case, hy-
drodynamic spin modes show up and transverse ones
propagate with a propagation speed cspin, contrary to
what is reported herein. The relation between non-
hydrodynamic and hydrodynamic spin modes, and
how to map them deserves further researches.

(iv) Noticing all non-hydrodynamic spin modes attenu-
ate according to the damping rate Ds or Db. In the
limit of k → 0, these gapped modes still decay in
contrast to hydrodynamic modes and their presence
introduce two new frequency scales Ds and Db. Spin
hydrodynamics should be treated as conventional hy-
drodynamic evolution plus dissipative spin dynamics
in a constrained regime ω � Ds, Db. This is why the
constitutive relation Eq. (42) is supposed to be phe-
nomenologically introduced. After characteristic time
scales τ ∼ 1

Ds
or 1

Db
, the system behaviors fall into the

control of ordinary spin-averaged hydrodynamics.

As a supplement, I stress that the constitutive relations
have gone through the test of time reversal symmetry [45,48]
required by the Onsager relations, manifesting the effective-
ness of newly defined transport coefficients ηs, λ, γ , ξ in spin
hydrodynamics.

V. SUMMARY

In this article, I revisit the first-order spin hydrodynamic
theory from a general entropy analysis and Zubarev’s
nonequilibrium statistical operator. By carefully rethinking
the construction, a new source is found contributing to the
constitutive relation of the frame-invariant heat flow or charge
diffusion current hμ − e+p

n jμ and its correspondence in
T [μν] named qμ. The new contribution reflects cross effects
in spinful fluids originating from the spin-orbit coupling.
Based on the method of nonequilibrium statistical operator,
I show how to identify these new cross effects and transport
coefficients. One interesting finding shows that the transport
coefficient κ also appearing in conventional fluid dynamics
is now bounded from below by nonzero cross transport
coefficients. A linear mode analysis demonstrates that the
damping of sound modes and charge diffusion mode (or heat
mode) is suppressed by cross effects. These cross effects
impact the motion of T 0i and Ni, and an immediate extension
to the present research is to see that how the analytical
solution [51,52], or related causality and stability analysis
[53,54] will change by rethinking the corrections brought by
cross effects. Considering the widespread uses of the first
order hydrodynamic framework, my proposed cross effects
should be laid importance on as a nontrivial supplement and
reconsidered in some of related studies.
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