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Nonlinear Regge trajectories and saturation of the Hagedorn spectrum
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We argue that two seemingly different phenomena, namely the well-known saturation of the Hagedorn
exponential distribution and the less familiar saturation of Regge trajectories at resonance masses m ≈ 2–2.5
GeV, are related and have the same origin: quark deconfinement. We show that the slope of the real part of
nonlinear Regge trajectories determines the prefactor f (m) in Hagedorn’s resonance mass density distribution
ρ(m). While the Hagedorn distribution comes from statistics, Regge trajectories contain dynamics.
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I. INTRODUCTION

The spectrum of hadron resonances is among the central
problems of high-energy physics. The properties of highly ex-
cited resonances are intimately connected with the problem of
confinement. We revise the spectrum of hadronic resonances
by relating seemingly two different viewpoints: statistical
(Hagedorn) and dynamical (Regge).

The density of hadron states follows the law [1]

ρ(m) = f (m) exp(m/TH ), (1)

where f (m) is a slowly varying function of mass and TH is the
Hagedorn temperature, originally considered as the limiting
temperature but later interpreted as the temperature of the
color deconfinement phase transition where hadrons “boil,”
transforming the matter into a boiling quark-gluon soup.

Over 50 years after the publication of Hagedorn’s paper
[1] on the spectrum of resonances, many important details
still remain open. In spite of many efforts by different groups
of authors [2–5] involving more new data on resonances, the
calculated value of the Hagedorn temperature shows a sur-
prisingly wide spread from TH = 141 MeV to TH = 340 MeV,
depending on the parametrization and the set of data (baryons,
mesons) used. The discrepancies may have different origins,
in particular (a) the large uncertainties in the specification
and identification of heavy resonances and (b) the analytical
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form of the Hagedorn spectrum, in particular, the form of
the function f (m) multiplying Hagedorn’s exponential. In the
present paper, we address both issues.

In our analyses, we rely on the latest results of the Particle
Data Group [6]. At the same time, we are aware of recent
important developments and progress in theoretical studies
of the Hagedorn spectrum and of the ultimate temperature
based on gauge theories [7], lattice quantum chromodynamics
(QCD) (by which one distinguishes between two different
types of resonances: isolated ones in vacuum and resonance
at a certain temperature), strings, and supergravity [8–10]. Its
possible manifestation in the early universe was discussed in
Refs. [11–13].

Our approach, however, is limited to the world of observed
resonances, summarized by the Particle Data Group, and the-
oretical methods based on analyticity, unitarity, and duality.

Crucial and original in our paper is the identification of
the function f (m) with the derivative of the relevant Regge
trajectory. In the spirit of the analytic S-matrix approach,
Regge trajectories encode an essential part of the strong in-
teraction dynamics; they are building blocks of the theory.
There were many attempts to find analytic forms of the nonlin-
ear complex Regge trajectories, based on mechanical analogs
(string), quantum chromodynamics, etc., suggesting different
and approximate solutions applicable in a limited range. In our
approach, we rely on duality and constraints based on analyt-
icity and unitarity, constraining the threshold and asymptotic
behavior of the trajectories. An important constraint affecting
the spectrum near its critical point is an upper bound on
the real part of Regge trajectories, coming from dual models
with Mandelstam analyticity [14]. Construction of explicit
models of the trajectories satisfying the above constraints is
a nontrivial problem. In the present paper, we propose explicit
models of such trajectories allowing explicit calculations and
compatible with the data on resonances.

Below we argue that while Hagedorn’s exponential rise
comes mainly from the proliferation of spin and isospin
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degeneracy of states with increasing mass that can be counted
directly, the prefactor f (m) reflects dynamics encoded in
Regge trajectories given that f (m) = α′(m), where α′(m) is
the slope of the trajectory.

The low-mass, m < 1.8 GeV spectra do not exhibit any
surprise by following Hagedorn’s exponential. The only open
questions are the value of the Hagedorn temperature TH and
possible differences between the spectra for various particles.
The spectra beyond m = 1.8 GeV are different: On the ex-
perimental side, the high-mass resonances tend to gradually
disappear, their status becoming uncertain. An update of the
Hagedorn mass spectrum can be found in Refs. [2–5]. Dif-
ferent Hagedorn temperatures for mesons and baryons from
experimental mass spectra, compound hadrons, and combina-
torial saturation were studied in Ref. [2].

In any case, the most important issue is the existence of
a “melting point,” where the resonances are transformed to
a continuum of a boiling soup of quarks and gluons. This
critical region or point is studied by various methods: statistics
and thermodynamics, quantum chromodynamics, lattice QCD
calculations, the Massachusetts Institute of Technology (MIT)
bag models, Regge poles, and relations derived within analytic
S-matrix theory. The research objectives are the order of the
assumed phase transition or crossover transition, fluctuations
and correlations of conserved charges, and the Fourier coef-
ficients of net-baryon density. For a recent treatment of these
issues, see Ref. [15].

In the present paper, we extend the existing panorama by
appending the dynamics arising from the behavior of Regge
trajectories. Regge trajectories are rich objects containing in-
formation on the spectrum of resonances. Although they are
usually approximated by infinitely rising linear functions, pre-
dicting an infinite number of resonances, in fact, the analytic
theory confines the rise of their real part, limiting the number
of resonances in nature. Below we show how the nonlinear
complex trajectories affect the Hagedorn spectrum.

More details on the Hagedorn spectrum, Hagedorn temper-
ature, and hot phases of hadronic matter can be found in the
writings of Johann Rafelski [16–18].

The paper is organized as follows. In Subsec. II A, we
discuss various approaches to the density of hadron states,
including the Hagedorn model. In Subsec. II B, we discuss
complex, nonlinear Regge trajectories and their relation to
Hagedorn’s density of states. Both the density of states and
the hadron spectrum are finite and interrelated, as shown in
Subsec. II C by a relevant explicit example. In Sec. III, we
discuss the relation between the spectra and the statistical
properties of the nuclear matter with possible equations of
state of hadronic matter.

II. MELTING HADRONS

The spectrum of resonances and their statistical properties
are interrelated. In this section, we study the relation between
the mass density of hadronic states given by the Hagedorn
spectrum and the dynamics emerging from Regge pole mod-
els, inspecting nonlinear Regge trajectories.

In spite of the huge number of papers, the subject remains
a topical problem of hadron dynamics with numerous open
questions. In this paper, we address the following issues:

(1) the behavior of the meson mass spectrum in the high-
mass region;

(2) the roles of the critical temperature and the prefactor in
ρ(m) in the Hagedorn model of hadronic spectra; and

(3) the finiteness of the Hagedorn spectrum and its conse-
quences.

A. Density of states (Hagedorn distribution) and resonance
spectra (Regge trajectories)

The idea of the spectral description of a strongly interacting
gas was suggested by Belenky and Landau [19]. This ap-
proach treats resonances on equal footing with stable hadrons.
The expression for pressure in this thermodynamic approach
in the Boltzmann approximation is given by

p =
∑

i

gi p(mi ) =
∫ M2

M1

dm ρ(m) p(m), (2)

with

p(m) = T 2m2

2π2
K2

(m

T

)
,

where M1 and M2 are the masses of the lightest and heaviest
hadrons, respectively, and gi-s are particle degenerations.

It was suggested in Refs. [20–22] that for fixed isospin
and hypercharge a cubic density of states, ρ(m) ∼ m3, fits the
data. Moreover, as argued in Ref. [20], the cubic spectrum
can be related to collinear Regge trajectories. Indeed, follow-
ing the arguments of Burakovsky [23], on a linear trajectory
with negative intercept, α(t ) = α′t − 1, some integer values
of α(t ) = J correspond to states with negative spin, J = α(tJ ),
with squared masses m2(J ) = tJ . Since a spin-J state has mul-
tiplicity 2J + 1, the total number of states with spin 0 � J � j
at t = m( j)2 is given by

N ( j) =
j∑

J=0

(2J + 1) = ( j + 1)2 = α′2m4( j). (3)

Hence, the density of states per unit mass interval is obtained
as the derivative of this cumulative quantity,

ρ(m) = dN (m)

dm
= 4α′2m3, (4)

and it grows as the cubic power of the mass. Consequently, for
a finite number of collinear trajectories, N , the corresponding
mass spectrum is given as

ρ(m) = 4Nα′2m3. (5)

A different view on the spectra was advocated by Shuryak
[21], who suggested using a quadratic parametrization, com-
pletely different from the conventional form:

ρ(m) ∼ m2.

In both the statistical bootstrap model [1] and in the
dual resonance model [24,25] the resonance spectrum takes
the form of Eq. (1). In the dual resonance model, f (m) ∼
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d
dm Reα(m2). In this work, we use nonlinear complex Regge
trajectories to determine this prefactor, as discussed in the next
subsections.

The meson and baryon spectra differ, in particular by their
slopes, as shown, e.g., in Refs. [2,3]. More important is the
question of the asymptotic behavior of ρ(m) for large masses.
In theory, Hagedorn’s exponential may rise indefinitely; how-
ever, starting from m ≈ 2.5 GeV resonances are not observed.
The question arises of whether it is a “technical” issue (the res-
onances gradually fade becoming too wide to be detected) or
there is a critical point where they melt to a continuum, trans-
forming the hadron matter to a “boiling soup.” Remarkably,
this point can be illuminated by means of Regge trajectories,
as we shall demonstrate in the following.

In the present paper, we concentrate on the meson spec-
trum, more specifically that of ρ and its excitations. This
familiar trajectory is chosen just as a representative example.
Other trajectories, including baryonic ones as well as those
with heavy (c and b) flavors, will be studied later. We are
interested in the high-mass behavior, starting from m ≈ 1.8
GeV. Beyond this value, the exponential behavior of the Hage-
dorn spectrum is expected to change drastically. Referring
to perfect low- and intermediate-mass fits of Ref. [3], we
concentrate now on its behavior above 1.8 GeV.

Note that instead of comparing the density of states ρ(m) to
the data it is customary to accumulate states of masses lower
than m,

Nexp =
∑

i

gi�(m − mi ), (6)

where gi is the degeneracy of the ith state with mass mi in spin
J and isotopical spin I , i.e.,

gi =

⎧⎪⎨
⎪⎩

(2Ji + 1)(2Ii + 1), for nonstrange mesons

4(2Ji + 1), for strange mesons

2(2Ji + 1)(2Ii + 1), for baryons

.

The theoretical equivalent of Eq. (6) is

Ntheor (m) =
∫ m

mπ

ρ(m′)dm′, (7)

where the lower integration limit is given by the mass of the
pion. We identify f (m) in ρ(m) with the slope of the relevant
nonlinear complex Regge trajectory α′(m). In the next subsec-
tion, we discuss the properties of these trajectories following
from the analytic S-matrix theory and duality and present an
explicit example of such a trajectory.

B. Regge trajectories

At low and intermediate masses, light hadrons fit linear
Regge trajectories with a universal slope, α′ ≈ 0.85 GeV2. As
masses increase, the spectrum changes: Resonances tend to
disappear. The origin and details of this change are disputable.

Termination of resonances associated with a “ionization
point” was also studied in a different class of dual models,
based on logarithmic trajectories [26].

Possible links between the Hagedorn spectra and Regge
trajectories appear in the statistical bootstrap and dual models

(s
)

α
R

e
 

max
αRe (s)

0 s0 sth s

(s
)

α
Im

0 s0 sth s

(b)

(a)

FIG. 1. Typical behavior of the real (a) and imaginary (b) parts of
Regge trajectories in dual models with Mandelstam analyticity [14].

[25], according to which the prefactor f (m) in Eq. (1) depends
on the slope of the relevant Regge trajectory, α′(m2), which is
a constant for linear Regge trajectories.

We extend the Hagedorn model by introducing the slope of
relevant nonlinear Regge trajectories. Anticipating a detailed
quantitative analysis, one may observe immediately that a flat-
tening of Reα(s = m2),1 shown in Fig. 1, results in a decrease
of the relevant slope α′(m) and a corresponding change in the
Hagedorn spectrum. Following Eq. (1), we parametrize

ρ(m) =
(

d

dm
Reα(m2)

)
× exp(m/TH ). (8)

Based on the decreasing factor Reα′ in Eq. (8), the exponential
rise of the density of states slows down near to the melt-
ing point around m ≈ 2–2.5 GeV. The cumulative spectrum,
Eqs. (6) and (7), accordingly tends to a constant value.

Any Regge trajectory should satisfy the followings (for a
comprehensive review see Ref. [27]):

(1) threshold behavior imposed by unitarity;
(2) asymptotic constraints: the rise of real part of Regge

trajectories is limited, Reα(s) � γ
√

t ln t, s → ∞;
and

(3) compatibility with the nearly linear behavior in the
resonance region (Chew-Frautschi plot).

The threshold behavior of Regge trajectories is constrained
by unitarity. As shown by Barut and Zwanziger [28], t-

1We use the (here positive) variables s or t interchangeably with
crossing symmetry in mind.
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channel unitarity constrains the Regge trajectories near the
threshold t → t0 to the form

Imα(t ) ∼ (t − t0)Reα(t0 )+1/2. (9)

Here t0 is the lightest threshold, e.g., 4m2
π for the meson

trajectories. Since Reα(4m2
π ) is small, a square-root threshold

is a reasonable approximation to the above constraint.
In the resonance region below flattening near m = √

s �
2.5 MeV, the meson and baryon trajectories are nearly linear
(Chew-Frautschi plot). Fixed-angle scaling behavior of the
amplitude constrains the trajectories even more, down to a
logarithmic behavior [29].

The combination of the threshold behavior Eq. (9) and
the above asymptotic behavior suggested the explicit model
[30] of trajectories as a sum of square-root thresholds (see the
details in Subsec. II C).

There are several reasons why the nonlinear and complex
nature of the Regge trajectories is often ignored, namely
(1) the observed spectrum of meson and baryon resonances
(Chew-Frautschi plot) seem to confirm their linearity; (2) in
the scattering region, t < 0, the differential cross section,
dσ/dt ∼ exp((2α(t ) − 2) ln s) is nearly exponential in t ; and
(3) dual models, e.g., the Veneziano amplitude, are valid only
in the narrow-width approximation, corresponding to linear
Regge trajectories (hadronic strings). Deviation from linearity
is unavoidable, but its practical realization is not easy. At-
tempts are known in the literature; see, e.g., Refs. [23,31,32]
and references therein.

As a final remark, we comment on a typical feature
of dual analytic models, namely the extremely broad reso-
nance approximation, suggested in Ref. [14], by which the
unitarization procedure, contrary to the narrow resonance
(Veneziano-like) models in Fig. 25 of Ref. [14], move the
resonance pole from the real (negative) axis to the physical
region of broad resonances, harmless to its basic properties,
e.g., polynomial boundedness (for more details, see Ref. [14]).
This property is essential for the parametrization of our Regge
trajectory α(t ). Due to our factor f (m) = (Reα(m)), the spec-
trum is a “mixture” of narrow and wide resonances, and
therefore not purely “Hagedornian” anymore.

C. The ρ trajectory and the Hagedorn spectrum

Trajectories satisfying the above requirements have
been studied extensively in the past. A particularly sim-
ple and transparent nonlinear trajectory was suggested in
Refs. [30,33] and is defined as a sum of square-root thresholds
formed by stable particles, allowed by quantum numbers.
While the imaginary part of such a trajectory starts to be
nonzero by exceeding the lightest threshold and rises indef-
initely, its real part terminates at the heaviest threshold (see
Fig. 1).

Specifically, Ref. [33] defines trajectories as

α(s) = λ −
∑

i

γi
√

si − s, (10)

where all two-particle stable thresholds are included in the
sum. For the ρ-meson trajectory, two meson-meson and four
baryon-antibaryon channels are taken into account, as listed

TABLE I. Parametrization of the ρ trajectory [33].

Channel si γi

ππ 0.078 0.127
KK 0.976 0.093
NN 3.52 0.761
	
 5.31 0.761


 5.66 0.761
�� 6.98 0.761

in Table I along with corresponding thresholds si and weights
γi. Note that for simplicity the same weight is used for all
baryon-antibaryon channels.

The real and imaginary parts of the trajectory described by
Eq. (10) with parameters from Table I are shown in Fig. 2.
The vertical lines indicate thresholds si. As expected, above
the highest threshold (s6 = 6.98 GeV2) the real part reduces
to a constant, Reα = λ.

Putting s = m2 and differentiating the real part of the tra-
jectory with respect to m, we obtain

d

dm
Reα(m2) =

∑
i

γim√
si − m2

, (11)

where for a given m the sum includes only terms satisfying
m2 < si. Substitution into (8) yields

ρ(m) = d

dm
Reα(m2) exp(m/T )

=
∑

i: si>m2

γim√
si − m2

exp(m/T ). (12)

FIG. 2. Real and imaginary parts of the ρ trajectory.
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FIG. 3. Mass density ρ(m) calculated by using the derivative of
the smoothed ρ-meson trajectory as a prefactor, Eq. (12). The ex-
ponential density without any prefactor is also shown (dashed line),
using the same temperature and normalization. Above the highest
threshold, the derivative, and hence the density vanishes (not seen
due to the logarithmic scale).

As in Eq. (11), the sum includes for a given m only terms
with si > m2; the derivative and thus the mass density vanish
above the highest threshold. At the thresholds si, the derivative
and hence the density diverge. However, the relevant integral,
Eq. (7), stays finite. For simplicity, we smooth the trajectory
Reα(s) in the vicinity of the thresholds using splines. With
this procedure, the derivative becomes finite and continuous
and can be integrated numerically. An example of the resulting
mass density ρ(m) is shown in Fig. 3.

The mass density ρ(m) can now be integrated using Eq. (7)
in order to obtain the theoretical prediction for the mass spec-
trum, Ntheor(m). Figure 4 shows the result, together with the
experimental cumulative spectrum Nexp(m) using the states
listed by the Particle Data Group [6].

As expected, Ntheor(m) flattens above the highest threshold
(corresponding to m ≈ 2.65 GeV), since the density ρ(m) de-
fined with Eq. (12) vanishes in that region. This is consistent
with the experiment, since no unflavored mesons have been
observed above m ≈ 2.5 GeV [6]. On the other hand, the
integrated spectrum using a simple form ρ = em/T is rising
indefinitely, thus failing to describe flattening of the data at
high masses.

The temperature and normalization used in Fig. 4 were
determined from a least-squares fit to data. The fit was per-
formed separately for two models (a simple exponent and an
exponent with a prefactor). The optimal temperature for the
pure exponent is T = 0.41 GeV, slightly larger but generally
consistent with the previous studies. Inclusion of the prefactor
steepens the curve (see, e.g., Fig. 3), and thus a larger temper-
ature (T = 1.45 GeV) is required to fit the data.

FIG. 4. Hadron mass spectrum Ntheor from Eq. (7) using the mass
density of Eq. (12) (blue line) compared to data (black histogram).
Additionally, Ntheor obtained from a simple exponential mass density
is also shown (green dashed line).

Resonances may melt for two reasons: (1) for square-root
α(s) trajectories (10), whose real part terminates at some
large mass and consequently the derivative vanishes, or (2)
for densities of resonances modelled by powerlike functions
rather than exponentials.

The above is only a representative example intended to
show the interrelation between the Hagedorn spectrum and the
one based on nonlinear complex Regge trajectories (Chew-
Frautchi plot). The present results can be extended in several
directions:

(1) by including other trajectories, mesonic and/or bary-
onic;

(2) by including heavy flavors such as b quarks, both in
the Hagedorn and Regge spectra; and

(3) working with alternative parametrizations of nonlin-
ear, complex Regge trajectories.

III. BOILING QUARKS AND GLUONS

In the previous section, we inspected the spectrum of res-
onances by combining two different approaches: statistical
(Hagedorn) and dynamical (Regge). We have focused on the
region of heaviest resonances, the region where hadrons may
melt transforming in a boiling “soup” of quarks and gluons.
Melting may happen in different ways, characterized by the
details for a phase transition of colorless hadronic states into
a quark-gluon soup, whatever it be [34]. In terms of hadron
strings, this process corresponds to breakdown (fragmenta-
tion) of a string. Lacking any theory of confinement providing
a quantitative description of interacting string, we will not
pursue this model. Instead we use thermodynamics adequate
in this situation. To complement the previous section, we
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present our arguments below related to the possible change
of phase from a different, thermodynamic perspective.

The Hagedorn exponential spectrum of resonances Eq. (1)
results in a singularity in the thermodynamic functions at crit-
ical temperature T = Tc and in an infinite number of effective
degrees of freedom in the hadronic phase. Also, as shown
in Ref. [35], a Hagedorn-like mass spectrum is incompatible
with the existence of the quark-gluon phase. To form a quark
phase from the hadronic phase, the hadron spectrum cannot
grow more quickly than a power. This is possible [21] in case
of a simple power parametrization ρ ∼ mk, compatible with
k ≈ 3, for the observable mass spectrum in the interval 0.2–
1.5 GeV. Assuming ideal contributions to thermodynamical
quantities, we hence take energy density in the form

ε =
∫ ∞

0
ρ(m)T 4σ (m/T )dm = λkT k+5, (13)

and obtain the corresponding pressure and sound velocity
square as follows:2

p = λk

k + 4
T k+5, c2

s = 1/(k + 4). (14)

The above empirical power-like behavior has also theoret-
ical background. In Ref. [36], an asymptotic, T � m, EOS
was derived by using the S-matrix formulation of statistical
mechanics [37]. It was shown that the existence of the for-
ward cone in hadronic interactions with nondecreasing total
cross sections, i.e., pomeron dominance, confirmed by numer-
ous experiments at high energies, results in an asymptotic,
T � m EOS p(T ) ∼ T 6 where m is a characteristic hadron
(e.g., pion) mass. The inclusion of nonasymptotic (secondary)
Regge terms produces a minimum in the p(T ) dependence at
negative pressure, with far-reaching observable consequences.

Such an asymptotic formula for the pressure, different from
the standard p(T ) ∼ T 4, was derived on different grounds also
in Ref. [21].

The unorthodox p ∼ T 6 asymptotic behavior is orthogonal
to the canonical (perturbative QCD) form ∼T 4. Still, it cannot
be rejected, e.g., when assuming a screening of the action of
large-distance van der Waals forces at high temperatures and
densities.

In Ref. [38], the asymptotic form ∼T 6 was extended to
lower temperatures by adding nonasymptotic Regge-pole ex-
changes. The resulting EOS is

p(T ) = aT 4 − bT 5 + cT 6, (15)

where a, b, c are parameters connected with Regge-pole fits
to high-energy hadron scattering. The remarkable property of
this EOS, apart from the nonstandard asymptotic behavior,
∼T 6, is the appearance of the nonasymptotic term T 5 with

2Note that the definition of entropy density s, energy density ε, and
velocity of sound cs in the case of μ = 0:

s(T ) = p′(T ), ε(T ) = T s − p, c2
s = d p

dε
= p′

T p′′ = s

T s′ .

0

−

0

∗( )
∗( )

∗

FIG. 5. Icons a and b show the standard bag EoS, Eq. (17), with
constant B; here s∗(T ) = s(T )/T 3. The dotted line corresponds to
the modified bag EoS (23). Icons c and d feature the Källmann EoS
[41], where B = AT .

negative sign, creating a local minimum with negative pres-
sure. This metastable state with negative pressure was shown
[39] to produce inflation of the universe.

In the next part, we discuss the phase transition of colorless
hadronic states into quark-gluon soup in the framework of
modified quark bag models.

The standard bag equation of state assuming, for simplicity,
vanishing chemical potential, μ = 0:

pq(T ) = π2

90
νqT 4 − B, (16)

ph(T ) = π2

90
νhT 4, (17)

where pq(T ) and ph(T ) are pressure in the quark-gluon
plasma (QGP) and in the hadronic gas phase, respectively,
B is the bag constant, and νq(h) is the number of degrees of
freedom in the QGP (hadronic gas). From Eqs. (16) and (17),
one finds the characteristic parameters of the phase transition
[see Fig. 5(a)]:

pc = Bνh/(νq − νh), Tc = [90B/π2(νq − νh)]1/4. (18)

Since s(T ) = d p(T )/dT, the relevant formula for the entropy
density can be rewritten as [see Fig. 5(b)]

s(T ) = (2π2T 3/45)νh[1 − �(T − Tc) + νq�(T − Tc),

(19)

s∗(T ) = s(T )/T 3, s∗
c = sc/T 3

c , sc = π2T 3
c

45
(νh + νq ).

(20)

The above simple bag model EOS can also be modified
[41,42] by making the bag “constant” T dependent, B(T ) =
AT , to produce a metastable QGP state with negative temper-
ature [see Figs. 5(c) and 5(d)]:

pq(T ) = (π2/90)νqT 4 − AT, ph(T ) = (π2/90)νhT 4.

(21)
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∗( )

+−

FIG. 6. Modified bag EOS Eq. (24), including metastable states.
Icon a is the p(T ) dependence while icon b is s∗(T ) = s(T )/T 3.

In Ref. [40], EOS Eq. (19) was modified by the replace-
ment

�(T − Tc) → 1

2

[
1 + tanh

(
T − Tc

�T

)]
, (22)

where �T is a parameter related to the smoothness of a
crossover transition. With the above substitution, the EOS can
be rewritten as

T − Tc

�T
= arctanh(��s∗), (23)

where � = 45/[π2(νq − νh)], �s∗ = s∗ − s∗
c , behaving as

shown by the dotted line in Fig. 5(b). This modification,
however, smoothes down first-order phase transitions in EOS,
thus excluding possible metastable states. It may serve as a
springboard for a further modification suggested in Ref. [43],
namely:

(T − Tc)/�T = arctanh(��s∗) − γ�s∗, (24)

where γ is the “metastability parameter.” For � − γ > 0,
EOS Eq. (24) is of the same type as Eq. (23), while for
� − γ < 0 a loop emerges in the entropy density [Fig. 6(b)],
similar to the loop in the density to pressure dependence, de-
scribed by the van der Waals equation or the EOS of a magnet
in vicinity of the Curie point, replacing �s∗ with the order pa-
rameter of the phase transition and substituting (T − Tc)/�T
by the corresponding conjugate field. For � − γ < 0, the
curve s∗(T ) contains a nonphysical region (interval CD) with
ds/dT < 0. The intervals (AC) and (DE ) of s∗(T ) correspond
to metastable states, C and D being the spinodal points where
ds/dT ∼ c−2

s , with cs being the sound speed.
Another important feature of the EOS Eq. (24) is that for

� − γ = 0 it describes second-order phase transitions, with
singular behavior of the thermal capacity at T = Tc. Really, in
this case, we have T − Tc ∼ (�s∗)3 near T = Tc.

IV. SUMMARY AND CONCLUSIONS

We related two different approaches to the critical point in
the hadron spectra using statistical (Hagedorn) and dynamical
(Regge) models. Our innovation is in the use of nonlinear
Regge trajectories, predicting a limited spectrum of hadron
states, ignored in most of the papers on Regge-pole theory.
Although our analyses is limited to the simple case of the ρ

meson spectrum, this technique and the results can (and will)
be extended to other hadrons.

In this work, we showed that the observed saturation of
the number of hadrons as a function of mass can be easily
explained in the Regge theory by using nonlinear trajectories
and attributing the prefactor in Hagedorn’s density to the slope
of the corresponding Regge trajectory. Due to flattening of the
latter, the slope vanishes, and the number of states flattens. In
this way, we enter the most intriguing of the strong interaction,
namely the expected transition of excited colorless hadrons
into the hypothetical boiling soup of quarks and gluons.

Flattening of the exponential density of states and of
the linear rise of Regge trajectories point to the same
phenomenon, namely quark deconfinement (“melting” of
hadrons). The two phenomena are correlated but they are not
identical. Their combined study and further fits to the data
may reduce the available freedom of the relevant parametriza-
tions and tell us more about the onset of deconfinement.

The maximum mass of existing resonances depends on the
parameters fitted to the observed resonances. Resonances tend
to disappear (fade) beyond some mass. Their nonobservability
may have two reasons: Either they are not visible because
of their large width (decay time) or they melt, losing their
individual features. These phenomena, especially the second,
“boiling” phase, can be studied also in the framework of
thermodynamics, e.g., by studying the relevant equation of
state (EoS).
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