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Multiplicity fluctuations and correlations in 5.02 TeV p + Pb collisions at zero impact parameter
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We present a Bayesian method to reconstruct event-by-event multiplicity fluctuations and rapidity correlations
in p + Pb collisions at zero impact parameter from minimum-bias data, without assuming any model of the
collision dynamics. We test it on Monte Carlo simulations with the Angantyr model, then apply it to ATLAS
data on the distribution of charged multiplicity and transverse energy in p + Pb collisions at

√
sNN = 5.02 TeV.

Fluctuations in b = 0 collisions are quantum fluctuations which originate mostly from the proton wave function,
and therefore have the potential to constrain the subnucleonic structure of the proton. The Angantyr model is
found to overestimate fluctuations. In addition, we find that as the rapidity increases (towards the Pb-going side),
not only the multiplicity density increases, but also its relative event-by-event fluctuation. This counterintuitive
phenomenon is also observed in simulations with Angantyr, and with the quantum chromodynamics dipole
model, where its origin can be traced back to the branching process through which gluons are produced.

DOI: 10.1103/PhysRevC.107.024902

I. INTRODUCTION

It came as a surprise, a decade ago, that central proton-
nucleus collisions at the CERN Large Hadron Collider (LHC)
create a fluid, despite the tiny size of the collision vol-
ume [1–6]. The formation of a fluid implies in particular some
equilibration process, which is known to erase the local mem-
ory of initial conditions. One might therefore think that little
can be learned from experimental data about the early stages
of a proton-nucleus collision. Some memory of the initial
conditions does, however, remain through global quantities,
which are conserved throughout the history of the fluid. In
particular, the rapidity [7] and the entropy of the fluid are
conserved to a good approximation. Now, the entropy is pro-
portional to the number of elementary constituents of the fluid,
whether they are partons [8] or hadrons [9]. Therefore, the
final hadron multiplicity reflects the initial gluon multiplicity
at the same rapidity.

We study event-by-event fluctuations of the multiplicity
and long-range rapidity correlations. There are two sources
of fluctuations. The first is the variation of impact parameter,
b, across the sample of events. Our goal is to isolate the
remaining fluctuations, which are quantum fluctuations. The
observables we consider are typically the multiplicities in two
separate rapidity intervals. We reconstruct their variances and
mutual correlation in collisions at b = 0 from minimum-bias
data by simple Bayesian inference, without assuming any
model of the collision dynamics.

Event-by-event fluctuations in b = 0 collisions originate
from the wave functions of the colliding proton and nucleus,
and from the collision process itself. For such an asymmet-
ric system as a p + Pb collision, it seems natural that the

fluctuations are likely to originate mostly from the smaller
of the two projectiles, i.e., the proton. While there is vast
literature on fluctuations in the proton wave function on the
theory side [10–16], observables to constrain them are still
scarce [14], and we will show that proton-nucleus collisions
bring new, nontrivial constraints.

Our approach differs radically from traditional correlation
and fluctuation analyses, which are not done at fixed b. In
order to reduce the dependence on b, one usually forms com-
binations of multiplicities [17], such as ratios [18–20] or linear
combinations whose average value is zero, that go under the
name of νdyn [21–23]. These procedures entail a huge loss
of information. From two observables, one typically extracts
only one fluctuation measure, out of three that are relevant (the
fluctuation of each observable, and their mutual correlation).

The Bayesian reconstruction of impact parameter was
introduced [24] in the context of ultrarelativistic nucleus-
nucleus collisions, and it has also been implemented in
collisions at lower energies [25–27]. It has then been extended
to proton-nucleus collisions [28] and to correlation studies in
nucleus-nucleus collisions [29]. Here, we study correlations in
proton-nucleus collisions, by extending the work of Ref. [29]
to these collisions, along the lines of Ref. [28].

The key ingredient of the reconstruction is to parametrize
the fluctuations at fixed impact parameter in a way that is
both simple and general. We refer to this as to the fluctuation
kernel. A Gaussian kernel is good enough for nucleus-nucleus
collisions [24,29], but it must be replaced with a gamma
kernel for proton-nucleus collisions [28]. In Sec. II, we intro-
duce a simple generalization of the gamma kernel to several
variables. The accuracy of this parametrization is evaluated
through simulations with the Angantyr model [30]. In Sec. III,
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we present the Bayesian method to reconstruct fluctuations
and correlations in proton-nucleus collisions at b = 0 from
minimum-bias data. The method is validated using simula-
tions with Angantyr, then applied to ATLAS data [31], in
which the two observables in each collision are the charged
multiplicity in the central tracker, and the transverse energy
in the forward calorimeter.1 Results on multiplicity fluctua-
tions and correlations at b = 0 are presented in Sec. IV. We
compare ATLAS data with quantitative predictions from the
Angantyr model. In order to link observations with the under-
lying quantum chromodynamics (QCD), we also show results
from a simplified model that can be derived from high-energy
QCD, and from the fluctuating-string model. We discuss how
our results relate to previous analyses of long-range correla-
tions. We argue that our picture provides a natural explanation
for the observed centrality dependence of the multiplicity in
p + Pb collisions.

II. FLUCTUATION KERNEL

A. One variable

Fluctuations in a large system are Gaussian by virtue of the
central limit theorem, so that the Gaussian is a natural choice
for parametrizing the fluctuations of a random variable. The
gamma distribution provides however a better parametrization
for random variables that are positive, such as the multiplic-
ity or transverse energy in a detector. Like the Gaussian,
the gamma distribution is fully determined by its mean and
standard deviation, but unlike the Gaussian, it has positive
support (see Appendix A). Both distributions coincide when
the standard deviation is much smaller than the mean. This is
typically the case for large systems, so that the central limit is
automatically verified also with a gamma distribution.

Alternative distributions with positive support have been
used in the context of high-energy physics, most notably, the
negative binomial distribution (NBD) [32,33]. The gamma
distribution can be viewed as a continuous version of the
NBD, as explained in detail in Ref. [28]. It is therefore more
flexible than the NBD in the sense that it also applies to
continuous variables, such as the transverse energy.

In order to illustrate the usefulness of the gamma dis-
tribution, we have generated 6 × 106 central (b = 0) p +
Pb collisions at

√
sNN = 5.02 TeV using the Angantyr

model [30].2 Angantyr is the heavy-ion version of PYTHIA

8 [34,35], which is a state-of-the-art microscopic description

1As we will argue in Sec. IV A, the fluctuations of the transverse en-
ergy are likely to reflect those of the multiplicity in the corresponding
pseudorapidity window.

2Note that the laboratory frame does not coincide with the center-
of-mass frame of nucleon-nucleon collisions, because of the common
magnetic field and different charge to mass ratios. In the laboratory
frame, the energy of the proton is Ep = 1

2

√
(A/Z )sNN and the energy

per nucleon of the Pb nucleus is EPb = 1
2

√
(Z/A)sNN , with Z = 82

and A = 208.

of hadronic collisions. For each collision event,3 we com-
pute two observables analogous to those measured by the
ATLAS collaboration [31]: the charged multiplicity Nch in the
pseudorapidity interval |η| < 2.5, and the transverse energy
(of charged and neutral particles) EPb

T in the pseudorapidity
interval 3.2 < η < 4.9, where positive values of η correspond
to the Pb-going side.4 The distributions of these two observ-
ables are displayed in Fig. 1. Each distribution is fitted with a
gamma distribution. The fits are of good quality, except for the
lowest values of Nch and EPb

T . One usually eliminates these low
values anyway when fitting experimental data (see Ref. [29]
and Sec. III C below), so that we exclude them from the fit.

B. Quantifying the difference between fit and data

Throughout this paper, we carry out standard χ2 fits to
Monte Carlo simulations or experimental data. However, we
eventually want to quantify systematic deviations between fit
and data (or simulations), and the χ2 is not appropriate since
one divides the deviation by the statistical error. An alternative
measure of the difference between the probability distribution
Pdata given by the data (or the simulations), and the fit to this
distribution Pfit, is the Kullback-Leibler divergence [38]

DKL ≡
∑

i

Pdata (i) ln

(
Pdata (i)

Pfit (i)

)
, (1)

where the sum runs over all bins. Both probability distribu-
tions must be normalized:∑

i

Pdata (i) =
∑

i

Pfit (i) = 1. (2)

The Kullback-Leibler divergence has a simple interpretation
when the relative difference between Pdata (i) and Pfit (i) is
small for all i. Then, one can write Pfit (i) = Pdata (i)(1 + ε(i)),
where |ε(i)| � 1 is the relative difference between fit and
data. Inserting into Eq. (1) and expanding to lowest nontrival
order in ε(i), one obtains

DKL � 1

2

∑
i

Pdata (i)ε(i)2 = 1

2
〈ε2〉, (3)

where angular brackets denote the average over bins.
Throughout this article, we use the following quantity as a
measure of the accuracy of the fit, and refer to it loosely as
to the “rms error” because it corresponds to the rms value of
ε when the error is small (note that even when the error is
small, it is in fact the rms relative error, that is, the rms error
on a logarithmic plot):

(2DKL)1/2, (4)

where DKL is evaluated using Eq. (1). We always choose bins
which are wide enough that the statistical fluctuations in each
bin contribute little to this rms error.

3The calculations were based on the example main113.cc, which
is part of the official PYTHIA release, and the exact same parameters
were used.

4We follow the convention of the ALICE Collaboration [36], which
is opposite to that of ATLAS [37].
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FIG. 1. Probability distribution of the charged multiplicity Nch at central rapidity (left) and transverse energy EPb
T at forward rapidity (right)

in p + Pb collisions at
√

sNN = 5.02 TeV and b = 0. Symbols: Angantyr simulation [30]. Lines: two-parameter fits using gamma distributions
(solid lines) or Gaussians (dotted lines). The shaded bands correspond to the range of values Nch and EPb

T that are excluded from the fit.

The rms errors of the fits presented in Fig. 1 are 3.1% and
4.4% for the distributions of Nch and EPb

T , respectively. If we
replace the gamma distribution with a Gaussian, these errors
become 52.2% and 36.5%, so that the gamma distribution
increases the precision of the fits by an order of magnitude,
at no additional cost in terms of fit parameters.

The tail of the ET distribution is above the fit. This dis-
crepancy can be put down to hard scatterings, which create
particles with high ET , and whose probability decreases like
a power law at large ET [39], slower than the gamma distri-
bution which is exponential. On the other hand, the tail of the
Nch distribution is below the fit, and it is tempting to postulate
that this is again due to hard processes, which produce a large
ET , but few particles.

C. Extension to several variables

This joint distribution of Nch and EPb
T is displayed in Fig. 2

(left) for our Angantyr simulation of central p + Pb collisions.
These two observables are strongly correlated, even though
the impact parameter is fixed. We explain how to construct a
simple parametrization of this correlated distribution.

While the Gaussian distribution can be readily generalized
to an arbitrary number of correlated variables [29], there is no
standard generalization of the gamma distribution to several
variables. We construct a correlated gamma distribution in
the following way. For a given variable N whose distribution
Pγ (N ) is a gamma distribution, we map it onto a variable N ′
whose distribution PG(N ′) is a Gaussian with the same mean
and variance. This mapping is defined by matching the two
cumulative distributions (see Appendix A for details):∫ N

0
Pγ (x)dx =

∫ N ′

−∞
PG(x)dx. (5)

Once the mean and variance are specified, this equation de-
fines N ′ as a function of N . Note that the lower bound of the
integral is 0 for the variable N , which has positive support,
and −∞ for the Gaussian variable N ′, whose support is the

real axis. Differentiating Eq. (5), one obtains

Pγ (N )dN = PG(N ′)dN ′, (6)

which expresses the equality of elementary probabilities.
In order to construct a correlated version of the gamma

distribution, we start with a correlated Gaussian distribution
for p variables, PG(N ′

1, · · · , N ′
p) [29]:

PG(N ′
1, . . . , N ′

p) = exp
( − 1

2 (N ′
i − N̄ ′

i )�−1
i j (N ′

j − N̄ ′
j )
)

((2π )p|�|)1/2 , (7)

where, in the exponential, we use the Einstein summation
convention over the repeated indices i and j. In this equa-
tion, N̄ ′

i is the mean value of N ′
i , and �i j is the symmetric

covariance matrix. �−1 denotes the inverse matrix and |�|
the determinant.

The marginal distributions of a multivariate Gaussian dis-
tribution are themselves Gaussian, so that each of the variables
N ′

1, · · · , N ′
p follows a Gaussian distribution:

PG(N ′
i ) = 1

(2π�ii )1/2
exp

(
− 1

2�ii
(N ′

i − N̄ ′
i )2

)
. (8)

We then map each variable N ′
i onto a variable Ni according to

Eq. (5).
The correlated gamma distribution Pγ (N1, . . . , Np) is fi-

nally defined by matching the elementary probabilities,
through a straightforward generalization of Eq. (6):

PG(N ′
1, . . . , N ′

p)dN ′
1 . . . dN ′

p = Pγ (N1, . . . , Np)dN1 . . . dNp.

(9)
Using Eq. (6) for each of the variables, we finally obtain

Pγ (N1, . . . , Np) ≡ PG(N ′
1, . . . , N ′

p)

PG(N ′
1) . . . PG(N ′

p)
Pγ (N1) . . . Pγ (Np).

(10)
Note that the mean and variance of Ni coincide with those of
N ′

i by construction. On the other hand, the covariance �i j in
Eq. (7) does not coincide with the covariance of the correlated
gamma distribution, which is somewhat smaller.
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FIG. 2. Left: two-dimensional representation of the Angantyr simulation shown in Fig. 1. The correlated gamma fit is indicated by the
cross, which is the mean value, and by the black line around it, which encompasses the 90% confidence area. We define this area by mapping
the 90% confidence ellipse of the Gaussian distribution (7) to the gamma variables according to Eq. (5) (see Appendix B for details). Right:
the fitted correlated gamma distribution. As in Fig. 1, the shaded area, corresponding to the lowest values of Nch and EPb

T , is excluded from the
fit. Since the fitting function is smooth, it does not present the statistical fluctuations that appear as scattered points on the left plot. The color
is set to white for bins in which the mean number of events is smaller than 1. The same convention holds for similar plots below.

The correlated gamma distribution can be defined for an
arbitrary number p of random variables, but in the remainder
of this paper, we only implement the simplest case p = 2,
where N1 ≡ Nch and N2 ≡ EPb

T . There are five parameters:
the means and variances of each variable, and their mutual
correlation, which is encoded in the off-diagonal element �12

in Eq. (7). The fit to Angantyr results with a correlated gamma
distribution is displayed in the right panel of Fig. 2. It is
obtained by carrying out a five-parameter fit to the distribution
on the left. However, four out of these five parameters are
already known from the marginal distributions in Fig. 1, so

FIG. 3. Distribution of Nch and ET for 3 × 105 Pb + Pb collisions
at

√
sNN = 5.02 TeV and b = 0 simulated with Angantyr. Here, ET

denotes the sums of transverse energies deposited in 3.2 < η < 4.9
and −4.9 < η < −3.2, corresponding to the forward and backward
calorimeters of ATLAS [40]. As in Fig. 2, the black line represents
the 90% confidence area of the correlated gamma fit (not shown).

that the only extra fit parameter is �12. One sees by eye that
the correlated gamma distribution captures the main features
of the simulation. A closer examination reveals that the fit
is not perfect. As already seen in Fig. 1, the fit has a longer
tail in the Nch direction, and a shorter tail in the ET direction.
The rms error is 12.3%. It is significantly larger than for the
projections, but much smaller than the rms error of a two-
dimensional Gaussian fit (not shown) which is 46.0%. Thus,
the quality of the fit is improved by a factor ≈4 by replacing
the correlated Gaussian distribution with a correlated gamma
distribution, at no extra cost.

For the sake of comparison, we have also carried out a sim-
ulation of Pb + Pb collisions at b = 0. The joint distribution
of Nch and ET for this simulation is displayed in Fig. 3. The
system size is much larger, as can be seen by comparing the
values of Nch and ET with those in Fig. 2. Correspondingly, the
relative fluctuations are smaller and more Gaussian [29]. We
have carried out fits (not shown) with a correlated Gaussian
and with a correlated gamma distribution. The rms errors are
6.3% and 5.9%. The small difference between these two errors
means that for this system, the correlated gamma distribution
is a marginal improvement over the Gaussian distribution.
This is not surprising since both distributions coincide for a
large system. The error with the correlated gamma distribution
is smaller by a factor ≈2 than for the p + Pb collisions, which
is also not surprising as fluctuations in larger systems are more
generic.

Thus the correlated gamma distribution provides a decent
parametrization of fluctuations at b = 0, both for proton-
nucleus and nucleus-nucleus collisions. We have not run
simulations for other values of b,5 but we expect that the

5The currently available version of Angantyr does not allow one to
run at fixed positive impact parameter.
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FIG. 4. Joint probability distribution of Nch and EPb
T in minimum-bias p + Pb collisions at

√
sNN = 5.02 TeV. Left: Angantyr simulations.

Lines encompass the 90% confidence area of b = 0 collisions, either calculated directly (dotted line, corresponding to the solid line of Fig. 2),
or reconstructed (solid lines, where each line corresponds to a different initialization of the fit parameters, corresponding to the range of
parameters in Table I). The right panel displays the fit obtained using Eq. (13) with one specific initialization, and the corresponding 90%
confidence area of b = 0 collisions.

correlated gamma parametrization still works, nevertheless
getting worse as b increases, similar to what is observed for
Gaussian parametrizations in Pb + Pb collisions [29].

III. BAYESIAN RECONSTRUCTION OF b = 0 COLLISIONS

We now describe how correlations and fluctuations at b =
0 can be inferred from minimum-bias data. First, we explain
why we choose the impact parameter as a centrality criterion,
rather than, say, the number of participant nucleons, which
may be thought a more relevant measure of the collision
activity [41]. The reason is that:

(i) Any observable defined from an ensemble average at
fixed b (for instance, the average value, or the variance,
of the multiplicity in a given rapidity interval) is a
smooth function of b2 due to b → −b symmetry.

(ii) The cumulative distribution of b, which we denote by
cb [24], is itself proportional to b2 near b = 0:

cb = πb2

σinel
, (11)

where σinel denotes the total inelastic cross section of
the collision.6

Therefore, any ensemble-averaged observable is a smooth
function of cb and has no singularity at cb = 0. This simple
and robust property, which is the only input of our recon-
struction, is not satisfied with alternative definitions of the
centrality.

6In this paper, we focus on results for b = 0, which are independent
of the value of σinel.

A. Method

We assume that for a fixed value of b or, equivalently, cb,
the probability distribution of the observables Ni of interest
(in our case, Nch and EPb

T ) is a correlated gamma distribution
as constructed in Sec. II C, which we denote by Pγ (N1, N2|cb).
This correlated gamma distribution has five parameters, which
are the five parameters of the Gaussian distribution (7), and
which we denote collectively by 
 j (cb), j = 1, . . . , 5. We
assume that each of these parameters is a smooth function
of cb, without any singularity at cb = 0. We parametrize
these functions in a way that is as general as possible. The
parametrization we choose is the exponential of a polyno-
mial [29], which guarantees that 
 j (cb) > 0. The degree of
the polynomial must be large enough in order to obtain a
satisfactory fit to the data. Here, a polynomial of degree 2 was
found to be sufficient:


 j (cb) = 
 j (0) exp
( − a1, jcb − a2, jc

2
b

)
. (12)

The probability distribution of N1 and N2 in minimum-bias
collisions is then obtained by integrating over cb:

P(N1, N2) =
∫ 1

0
Pγ (N1, N2|cb)dcb. (13)

We fit the left-hand side, as obtained from simulation or exper-
imental data, with the right-hand side. According to Eq. (12),
there are three fit parameters for each of the parameters of the
gamma distribution, so that there is a total of 15 fit parameters.
The only constraint that we impose on the fit parameters is that
the mean values of N1 and N2 decrease with increasing impact
parameter.

B. Validation using Angantyr simulations

We now assess the accuracy of the Bayesian reconstruction
by applying it to 2 × 107 minimum-bias p + Pb collisions at√

sNN = 5.02 TeV simulated with Angantyr. Each quantity
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TABLE I. Comparison between values reconstructed from sim-
ulations of minimum-bias collisions (Fig. 4), or calculated directly
by simulating p + Pb collisions at b = 0 (see Fig. 2), for several
observables: average values and standard deviations of Nch and EPb

T ,
Pearson correlation coefficient r ≡ �12/(σET σNch ). For reconstructed
values, we obtain a range depending on the initialization of the fit pa-
rameters. The last column is the maximum error on each observable.

reconstruction direct calculation max. error

N̄ch 178.0–183.1 177.0 3.4%
σNch 70.1–76.1 76.8 9.5%

ĒPb
T 43.9–45.8 GeV 45.4 GeV 3.3%

σET 23.5–25.8 GeV 23.2 GeV 11.2%
Pearson r 0.844–0.865 0.846 2.2%

reconstructed at b = 0 can be compared with that calculated
directly by simulating events at b = 0, so that we can assess
quantitatively the accuracy of the reconstruction.

The distribution of Nch and EPb
T in minimum-bias collisions

is displayed in the left panel of Fig. 4. At first sight, it looks
similar to the distribution in collisions at b = 0, shown in
Fig. 2. Therefore, it is not surprising that some information
about b = 0 collisions can be reconstructed from minimum-
bias events.

We carry out a 15-parameter fit of this minimum-bias
distribution, as explained in Sec. III A. The number of fit
parameters is too large for their values to be precisely con-
strained by simulated data. In practice, the set of fit parameters
returned by the fitting algorithm depends somewhat on the
initial guess, which means that the algorithm does not find
the absolute minimum of the χ2. We have not attempted
to solve this numerical issue since the fits, despite not be-
ing identical, are all of equivalent quality, and the quality is
excellent. Specifically, the rms error of the fit lies between
4.2% and 7.3%, significantly smaller than when fitting b = 0
simulations alone in Fig. 2. The ten additional parameters
introduced to model the b dependence partially compensate
for the imperfection of the correlated gamma distribution.

We are eventually interested in b = 0 collisions, which are
described by only five out of the 15 fit parameters [
 j (0) in
Eq. (12)]. Table I lists the ranges of values for these param-
eters for the various initial guesses, as well as the reference
value obtained by simulating events at b = 0. The maximum
error in the right column is defined as the largest relative
difference between the reconstructed value and the reference
value. The average values of Nch and EPb

T at b = 0 are re-
constructed with ≈3% accuracy, and their standard deviations
with ≈10% accuracy.7 It is quite remarkable that these quan-
tities can be reconstructed so well with such minimal input.

7The error on the reconstruction of the mean value was larger by a
factor ≈3 in Ref. [28]. The reason is twofold. First, it was assumed
in Ref. [28] that the ratio of variance to mean was independent of
centrality. Here, we relax this assumption, following Ref. [29]. The
variances and the covariance then decrease with b faster than the
mean, which is probably not physical [29] but results in a much im-
proved reconstruction of b = 0 quantities, which is our goal. Second,

C. Application to ATLAS data

The left panel of Fig. 5 displays the distribution of Nch and
EPb

T measured by ATLAS in minimum-bias p + Pb collisions
at

√
sNN = 5.02 TeV [31]. The central detector of ATLAS

only detects a fraction of the charged particles in the inter-
val |η| < 2.5, which explains why values of Nch are much
lower than in the Angantyr simulation in Fig. 4. The fit using
Eq. (13) is displayed in the right panel. Compared to Angantyr
simulations, the sensitivity of final results to initial guesses is
much reduced. We attribute this to the fact that fluctuations are
smaller in ATLAS data than in Angantyr simulations, a point
to which we come back in Sec. IV. Reconstructed mean values
at b = 0 are N̄ch = 94, ĒPb

T = 60 GeV. Standard deviations
are σNch = 32 and σET = 24 GeV, and the Pearson correlation
coefficient between Nch and EPb

T is r = 0.65. The rms error of
the fit is 4.5%. Based on the validation in Sec. III B, we expect
that the accuracy of the reconstruction is of order 3% for mean
values, and 10% for standard deviations.

We finally explain why we only reconstruct observables
at zero impact parameter, not their full impact parameter
dependence. First, it is impossible to reconstruct the im-
pact parameter dependence of the covariance matrix from
minimum-bias data alone. The reason is that for b > 0, a
simultaneous increase in Nch and ET can be produced either
by an decrease of b, or by a fluctuation at fixed b, and both
effects cannot be disentangled. In the case of nucleus-nucleus
collisions, a detailed study [29] has shown that the impact
parameter dependence can be reconstructed only for the mean
values, and for a specific projection of the covariance matrix
representing the width of the distribution of (Nch, ET ). We
have not attempted to extend this study to proton-nucleus
collisions,8 but we expect that conclusions would be quali-
tatively similar. This suggests that the parameters a1, j and a2, j

in Eq. (12) are of little significance if j labels an element of
the covariance matrix, but may contain relevant information
for the mean values N̄ch and ĒT . We obtain a1 � 1.6 and
a2 � 0.7 for N̄ch, a1 � 1.0 and a2 � 1.8 for ĒT . To leading
order, the dependence on impact parameter is determined by
a1. We find that a1 is smaller for ET , in the Pb-going rapidity
region, than for Nch, around central rapidity. This suggests that
the dependence on impact parameter becomes weaker as one
gets closer to the rapidity of the Pb nucleus.

IV. RESULTS AND MODEL COMPARISONS

A. Relative fluctuations in central p + Pb collisions

The observable which we use to characterize fluctuations
and correlations is the relative covariance matrix σi j , also
referred to as the robust covariance [21]. If N1 and N2 de-
note multiplicities in two separate rapidity intervals, it is

the reconstruction of mean values and variances is more precise if
one fits the joint distribution of (Nch, EPb

T ) than if one fits the marginal
distributions.

8One reason is that the Angantyr model which we use for the
validation cannot be run at fixed b for b > 0.
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FIG. 5. Joint probability distribution of Nch and EPb
T in minimum-bias p + Pb collisions at

√
sNN = 5.02 TeV. Left: ATLAS data [31]. Two

lines are drawn, which almost coincide, and correspond to the 90% area of b = 0 collisions given by the Bayesian reconstruction for two
different initializations of the fit, as in Fig. 4. Right: fit using Eq. (13) for one specific initialization. We have applied the cuts Nch � 6 and
EPb

T > 10 GeV, and the excluded range is shown as a shaded area. In the right panel, the cut between the colored region and the white region
has been placed arbitrarily (due to the various triggers used by ATLAS, the rule of one event per bin used in previous plots was ambiguous).

defined by

σi j = 〈NiNj〉 − 〈Ni〉〈Nj〉 − 〈Ni〉δi j

〈Ni〉〈Nj〉 , (14)

where i, j = 1, 2, and angular brackets denote an ensemble
average, in our case an average over b = 0 collisions. The last
term in the numerator subtracts self-correlations from the vari-
ance [21], and isolates the dynamical fluctuations. After this
subtraction is carried out, the relative variance depends little
on the size of the rapidity bin (see Fig. 7 for an illustration).
It is also independent of the detector efficiency, which is a
constant factor canceling between the numerator and the de-
nominator [21]. Therefore, it makes sense to compare ATLAS
data directly with Angantyr simulations, even if the ATLAS
detector only detects a fraction of the charged particles.

Equation (14) can be readily generalized to observ-
ables other than multiplicities, such as the transverse energy

FIG. 6. Schematic representation of a p + Pb collision at b = 0,
where the proton size can be small (a) or large (b) depending on
the event. Depending on the proton size, the number of wounded
nucleons in the nucleus varies, as indicated by the relative volume of
the interaction regions, colored in red.

ET in a calorimeter, which is obtained by summing the
contributions of all particles falling in the acceptance window:
ET = ∑

i ET,i, where ET,i is the transverse energy of particle
i. The only modification lies in the self correlation, i.e., the
last term of the numerator of Eq. (14), for which one must
substitute [29,42]

〈Ni〉 →
〈∑

i

(ET,i )
2

〉
. (15)

A calorimeter measures the energy without resolving the con-
tributions of individual particles, therefore the right-hand side
cannot be measured. It can however be estimated. In the case
of ATLAS p + Pb data, we take it from the Angantyr calcu-
lation. It is a small relative correction (of order 6%) to the
variance of EPb

T .
The relative covariance for collisions at b = 0, recon-

structed from ATLAS p + Pb data, is

σATLAS =
(

0.101 0.084
0.084 0.147

)
, (16)

where the first variable is Nch and the second is EPb
T . We

evaluate the maximum error on these figures to be ≈25%
by carrying out the same analysis as in Sec. III B. This ex-
perimental result can be compared with that of Angantyr
simulations of b = 0 collisions:

σAngantyr =
(

0.182 0.187
0.187 0.244

)
. (17)

Angantyr overpredicts the relative (co)variances. In order to
interpret this finding, let us list the physical mechanisms
contributing to fluctuations in event generators. The number
of nucleons hit by the incoming protons plays an essential
role. In a Glauber calculation with a fixed nucleon-nucleon
cross section [41], the nuclear volume traversed by the proton
does not fluctuate, but the number of nucleons in this vol-
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FIG. 7. Rapidity dependence of the average multiplicity per unit
rapidity (top) and of the relative variance (bottom) in the QCD
dipole model, for three different values of the saturation scale rs. The
relative variance is defined as the variance divided by the square of
the mean, and corresponds to the diagonal elements of the relative
covariance matrix (14). It has been evaluated with two different
bin sizes: 0.05 (empty markers) and 0.1 (filled markers). Results
are independent of the bin size, as anticipated [21] when no short-
range correlations are present. The rapidity variable Y is defined by
Eq. (20).

ume does, corresponding to a quantum fluctuation associated
with the nuclear wave function. If the cross section fluctuates
event to event, the collision volume itself fluctuates, which
entails much larger fluctuations in the number of wounded
nucleons [12], as illustrated in Fig. 6. In the Angantyr model,
these cross-section fluctuations are present, and correspond to
fluctuations in the proton size. Our study therefore suggests
that these proton-size fluctuations are too large in Angantyr.9

9Note that contrary to a naive Glauber calculation, not all wounded
nucleons are equivalent in Angantyr. The scatterings are softer in
events where the proton is fatter [15], because the average number
of multiparton interactions depends on the nucleon-nucleon impact
parameter.

This shows that proton-nucleus data constrain the theoretical
description of subnucleonic fluctuations. It would be interest-
ing to test other models of proton-nucleus collisions, such as
the EPOS model [43], or the hydrodynamic model with initial
conditions from the three-dimensional Glauber model [44,45],
in this context.

One also observes that the relative variance is larger for ET

than for Nch, that is, σ22 > σ11, both for data and Angantyr
simulations. This could be due to the fact that an energy (ET )
fluctuates more than a multiplicity (Nch). In order to rule out
this possibility, we have carried out Angantyr simulations at
b = 0 and calculated ET and Nch in the same pseudorapidity
window. We have found that their relative variances are almost
identical. They differ only by 0.5% in the window |η| < 2.5,
and by 3% in the window 3.2 < η < 4.9. We conclude that
in a given pseudorapidity window, the relative variance of ET

and the relative variance of Nch are equivalent observables.
This should eventually be checked experimentally, by com-
paring the relative fluctuations of Nch and

∑
pT in the same

detector, as suggested in [29].
The conclusion is that even though ATLAS does not mea-

sure the charged multiplicity in the window 3.2 < η < 4.9,
but only the transverse energy, the relative variance of the
multiplicity would be almost identical, if measured. The ob-
servation that σ22 > σ11 therefore implies that the relative
multiplicity fluctuations are larger at forward rapidity, on the
Pb-going side, than in the central rapidity region. Now, the
average multiplicity per unit rapidity dN/dy is also larger on
the Pb-going side in p + Pb collisions [36]. One might naively
think that the larger the multiplicity, the smaller its relative
fluctuations. This reasoning works for statistical fluctuations,
but we observe here the opposite trend for dynamical fluctua-
tions.10

B. Multiplicity fluctuations in the QCD dipole model

In order to figure out how the observed phenomena relate
with the underlying fundamental QCD dynamics, we now
investigate a simple model of gluon production in the scat-
tering of a hadron off a large nucleus, that can be derived
from QCD in an asymptotic limit appropriate to very high
energies [46–48]. The hadron in its ground state is modeled as
a quark-antiquark color singlet of fixed size r0, referred to as
a color dipole. As for the nucleus, it is solely characterized by
a single size rs, called the saturation radius, related to the sat-
uration momentum by Qs ∼ 1/rs. Physically, rs corresponds
to the size of color-singlet domains inside the nucleus in its
rest frame. The value of rs is fixed throughout the calculation.
Therefore, the dipole traverses a slab of nuclear matter of fixed
length, similar to a proton-nucleus collisions at b = 0.

This model is too simple to be quantitatively compared
with proton-nucleus data, but we can at least investigate
whether the same qualitative trends are present. We can
evaluate the observables studied above, namely, the rapidity

10A similar phenomenon was seen in b = 0 Pb + Pb collisions [29],
where both the mean and the relative variance of the multiplicity are
maximum at midrapidity.
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dependence of the mean multiplicity and of the variance, and
the rapidity correlation.

Let us briefly describe the model. We first need to compute
the quantum fluctuations in the wave functions of the colliding
objects. The density fluctuations in the nucleus are neglected.
The trick of the dipole model is to start from the rest frame
of the nucleus. When the process is viewed in this frame, all
the fluctuations can be ascribed to the hadron. The gluons that
are emitted in the collision are already present in the wave
function of the hadron. The ones that eventually go to the final
state are liberated thanks to the energy transfer induced by the
interaction.

We now explain how the gluon content of the simplified
hadron is determined. This content depends on the rapidity
at which one observes it. The larger the rapidity, the more
gluons one sees.11 In the framework of the QCD color dipole
model [49], the increase of the number of gluons as a function
of rapidity is modeled as a Markovian process. Starting with
a quark-antiquark pair at rest, of size vector 
r0 in the plane
transverse to the collision axis, and increasing its rapidity
by the infinitesimal quantity dy, an additional gluon may be
found at the transverse position 
r1 (up to d2
r1) with respect to
the antiquark with the probability

αsNc

π
dy

r2
0

r2
1 (
r0 − 
r1)2

d2
r1

2π
, (18)

where αs � 1 is the strong coupling constant, and Nc is the
number of colors. Note that each gluon is assigned a trans-
verse position through this equation. This gluon emission can
be viewed as the branching of one dipole into two dipoles
of respective size vectors 
r1 and 
r0 − 
r1, the endpoints of
which coincide with the antiquark and the gluon, and with the
quark and the gluon, respectively.12 Upon a further increase
of the rapidity, each of these two dipoles may split inde-
pendently into two other dipoles, with the same probability
function (18), up to the substitution of the size vectors. This
further branching corresponds to a second gluon emission, off
the quark, the antiquark, or off the first gluon. Thus the evolu-
tion of the gluon content as a function of rapidity is generated
by a Markov chain whose kernel is given by Eq. (18).

The expression of this kernel follows from a perturbative
QCD calculation (see, e.g., [50] for a review). The fact that
hadrons have a finite transverse size is an essential property
for our study, but this property is essentially nonperturbative
and must be added by hand. We account for it by supplement-
ing the branching probability with the multiplicative cutoff
function

e−r2
1 /(2R2

IR ) × e−(
r0−
r1 )2/(2R2
IR ), (19)

designed to strongly suppress branchings into dipoles of sizes
larger than RIR [48], where RIR is an infrared cutoff of the
order of 1 fm.

11We neglect the production of quark-antiquark pairs which be-
comes negligible as rapidity increases.

12The identification of the quark-antiquark-gluon system with a
pair of dipoles actually holds true in the large-Nc limit.

The gluonic content is evaluated up to the rapidity of the
nucleus, where the scattering occurs. These gluons are virtual,
in the sense that they are quantum fluctuations with a finite
lifetime. In order for a gluon to become real, it needs to be
put on-shell through a transfer of energy in the scattering
process. Inspired by the McLerran-Venugopalan semiclassical
approximation [51], we assume that the dipoles which scatter
are those of size r larger than rs. The gluons which go to
the final state are those which coincide with the endpoints of
these dipoles, as well as the gluons which belong to the set of
their ancestor dipoles. The rapidity of a gluon is defined as the
rapidity at which is was produced.

This whole picture can be justified from first principles
in the so-called “double-logarithmic approximation” if the
parameters are strongly ordered according to rs � r0 � RIR.
In practice, we apply it by choosing parameters relevant for
current experiments, where there is no such strong ordering.
The infrared cutoff RIR is chosen slightly larger than the initial
dipole size r0, namely 1.5 r0. The saturation radius of the
nucleus rs should be of the order of A−1/6r0 [51], where r0 is
a typical hadronic size and A = 208 is the atomic number of
the nucleus. We implement three different values: rs = 0.4 r0,
0.5 r0, and 0.6 r0.

The numerical implementation of the model is described in
Ref. [52]. The rapidity variable Y in our calculation is related
to the physical rapidity by

Y = αsNc

π
(y − yh), (20)

where yh is the rapidity of the hadron. The gluon content is
evaluated for y > yh, corresponding to positive Y . The mul-
tiplicative factor in Eq. (20) is motivated by Eq. (18), which
implies that the results are independent of αs when plotted as
a function of Y . The maximum value of Y in our simulation,
corresponding to the rapidity of the nucleus, is Y = 2. This
matches the rapidity range of the LHC, which is ≈17, if
αs ≈ 0.12. The reason why we pick such a small value for
the strong coupling is that the leading-order dipole rapidity
evolution, as encoded in the kernel (18), is known to be too
fast: setting a value of the coupling smaller than what would
be realistic effectively slows down the latter, and makes the
gluon number density closer to that expected in the data.

The probability distribution of the number of gluons is
shown in Appendix C for two different rapidity windows. It
is qualitatively similar to the distribution of multiplicity in
Angantyr simulations and in experiment.

Figure 7 presents the average gluon density dNg/dY and
its relative variance as a function of the rapidity variable Y .
As in Sec. IV A, the relative variance is defined as the variance
divided by the square of the mean. Both the mean multiplicity
and the relative variance increase as a function of rapidity,
similar to the observation in p + Pb collisions. The increase of
the relative variance as a function of rapidity can be put down
to the branching process (18). The number of branchings
necessary to produce a gluon typically increases as a function
of its rapidity. Each process is random, and increasing the
number of processes also increases the randomness, hence
the increase in the relative variance. This increase is more
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FIG. 8. Rapidity correlations in the QCD dipole model. The
quantity plotted it the Pearson correlation coefficient (21) as a func-
tion of Y1 and Y2. It is plotted in the form of a matrix, so that the
vertical axis is descending instead of ascending. The saturation radius
is rs = 0.5 r0.

pronounced for larger values of rs, corresponding to smaller
values of the saturation momentum Qs.

Note that the absolute value of the relative variance in
Fig. 7 is much larger than in data and in Angantyr simulations
of p + Pb collisions [compare with Eqs. (16) and (17)]. This
discrepancy can be ascribed to the fact that a proton does not
reduce to a quark-antiquark pair. Including more components
typically reduces the relative variance. For a proton consisting
of N independent dipoles of identical sizes, for instance, the
relative variance would be smaller by a factor N .

Finally, Fig. 8 depicts the rapidity correlation. We plot the
Pearson correlation coefficient, defined as

r(Y1,Y2) ≡ σ (Y1,Y2)

(σ (Y1,Y1)σ (Y2,Y2))1/2 , (21)

where σ (Y1,Y2) is the relative covariance matrix. It gradually
deviates from unity as the difference between the two rapidi-
ties increases. This phenomenon is responsible for the rapidity
decorrelation, which has been much studied first in the context
of anisotropic flow [53] and more recently for multiplicity
fluctuations [54,55]. In the dipole model, the correlation re-
mains very strong even at large relative rapidities.

C. Multiplicity fluctuations in the fluctuating string model

For the sake of comparison, we briefly discuss a different
model, the fluctuating-string model, which has been success-
ful in describing data on longitudinal correlations [54,56,57]
but, unlike the color dipole model, fails to predict the increase
of the relative variance with rapidity, at least in its simplest
version.

In string models, hadrons are produced by the fragmenta-
tion of strings. In the simplest version of the fluctuating-string
model, each string produces a uniform rapidity density, over

some interval in rapidity. But the end points of the inter-
val are allowed to fluctuate event by event, which gives
rise to multiplicity fluctuations. In the simplest version of
the model, only one end of the string fluctuates (Fig. 1 of
Ref. [56]), that on the proton side, and the location of the end
point is distributed uniformly in rapidity. The mean multiplic-
ity and the covariance matrix can be calculated analytically
(Appendix B1 of Ref. [57]). We denote by yp the rapidity
of the proton and by yPb that of the nucleus. For a single
string, the multiplicity density increases linearly with rapid-
ity [58,59] for yp < y < yPb:

dN

dy
∝ y − yp, (22)

and the relative covariance matrix is given by

σ (y1, y2) = yPb − y2

y2 − yp
, (23)

where the rapidities have been ordered according to y1 � y2.
The relative variance corresponds to the limiting case y1 =
y2 = y:

σ (y, y) = yPb − y

y − yp
. (24)

It decreases as a function of y. This example illustrates that
the increase seen in ATLAS data, which is reproduced both
by Angantyr and by the color dipole model, is not a trivial
phenomenon. For N independent strings, the relative variance
is smaller by a factor N . We have not investigated whether
more sophisticated versions of the fluctuating string model, in-
cluding double-end fluctuations and fluctuations in the string
tension [57,60], may fix this wrong rapidity dependence.

We also derive for completeness the Pearson correlation
coefficient describing the rapidity decorrelation. Inserting
Eq. (23) into Eq. (21), one obtains

r(y1, y2) =
√

(y1 − yp)(yPb − y2)

(y2 − yp)(yPb − y1)
, (25)

where we again order rapidities according to y1 � y2. The
Pearson correlation coefficient is typically smaller than in
the color dipole model (Fig. 8), corresponding to a stronger
rapidity decorrelation.

D. Discussion of related analyses

We finally discuss how our findings relate to previous
analyses: The analysis of long-range multiplicity correla-
tions carried out by ATLAS in Ref. [61], and the centrality
dependence of the rapidity spectrum dN/dy in p + Pb colli-
sions [36,37].

The ATLAS collaboration has measured the relative co-
variance matrix of the multiplicity distribution σ (η1, η2),
defined as in Eq. (14), in narrow bins of η, in the range
−2.5 < η < 2.5. The solid symbols (labeled |η−| < 0.1) in
the middle panel of Fig. 11 of Ref. [61] represent the variation
of 1 + σ (η, η) as a function of η+ = 2η in p + Pb collisions
at 5.02 TeV. As η increases, the relative variance σ (η, η) first
decreases, down to a minimum value compatible with 0 at
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η = 0, then increases up to a maximum value of ≈0.009 at
η = 2.5. At first sight, these results seem incompatible with
our claim that the relative variance increases monotonically
as a function of η. In addition, the order of magnitude of
σ (η, η) is smaller by an order of magnitude than our values
in Eq. (16).

The only major difference lies in the definition of the
sample of events over which the variance is evaluated. In this
paper, the event sample consists of all collisions at b = 0. In
Ref. [61], it consists of events with a fixed total multiplicity
(more precisely, events where the multiplicity in |η| < 2.5 lies
within a narrow bin). If one fixes the integral of dN/dy, the
only remaining source of multiplicity fluctuations is a fluctu-
ation in the shape of dN/dy [62]. The largest source of such
fluctuation is the forward-backward asymmetry [63], which
naturally generates a variance proportional to |η|2 (referred to
as “butterfly” fluctuations in Ref. [59]).

We finally discuss the centrality dependence of
dN/dy [36,37]. One observes experimentally that as the
collision becomes more central, the asymmetry between
the p-going side and the Pb-going side becomes more and
more pronounced, down to small centrality percentiles [37].
We argue that this is a natural consequence of the fact
that the relative variance increases towards the Pb-going
side, as shown in Sec. IV A, and that the multiplicity is
strongly correlated across the rapidity range, as exemplified
by the large value of σ12. In experiment, centrality is defined
according to multiplicity in some rapidity window. More
central is defined as higher multiplicity. With this definition,
the variation of impact parameter is essentially irrelevant for
the 10% most central collisions, and one may consider for
simplicity that they are all at b = 0.

In the limit where the rapidity correlation is maximal,
corresponding to a Pearson correlation coefficient (21) equal
to unity, the deviation of dN/dy from its mean value is pro-
portional to the square root of the variance for all y:

dN

dy
=

〈
dN

dy

〉
(1 + X

√
σ (y, y)), (26)

where X is a random number with zero mean and unit variance
which characterizes the amplitude of the multiplicity fluctua-
tion. More central events correspond to events with higher X .
Since both 〈dN/dy〉 and σ (y, y) increase with y, the asym-
metry between the p-going side y < 0 and the Pb-going side
y > 0 becomes more and more pronounced as X increases.
This qualitatively explains the trend observed experimentally,
that the asymmetry increases down to arbitrarily small cen-
trality percentiles. We intend to carry out a more quantitative
study in a forthcoming publication.

V. CONCLUSION

We have introduced a method to reconstruct the averages,
standard deviations and covariances of multiplicities in p +
Pb collisions at b = 0, using as input data for minimum-bias
collisions. This method is particularly robust in the sense that
it does not rely on any specific model of the collision. We
manage to reconstruct average values with ≈3% accuracy,

and standard deviations with ≈10% accuracy. The method has
been applied to ATLAS data at 5.02 TeV.

Isolating b = 0 collisions is a crucial improvement for the
study of fluctuations. In minimum-bias data, the dominant
source of fluctuations is the decrease of the length of nuclear
matter traversed by the proton as b increases. By selecting b =
0 collisions, we eliminate this trivial source of fluctuations,
and we isolate quantum fluctuations. Quantum fluctuations are
present in both proton and nuclear wave functions, and also in
the collision process. These various sources cannot be sepa-
rated, but it seems natural that the fluctuations are larger in the
smaller system, namely, the proton. This implies that proton-
nucleus collisions have the ability to constrain the description
of the proton substructure. We have illustrated this by compar-
ing ATLAS data with calculations with the Angantyr model,
which turns out to overestimate multiplicity fluctuations. We
have also shown that the relative multiplicity fluctuation in-
creases as a function of rapidity. This is a nontrivial effect:
The fluctuating string model, in its simplest version, predicts
a decrease instead. We have argued on the basis of the QCD
dipole model that this increase, which originates from the soft
gluon cascade, is sensitive to the saturation scale.
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APPENDIX A: MAPPING GAUSSIAN TO GAMMA

The one-dimensional Gaussian distribution is

PG(N ′) = 1

σ
√

2π
exp

(
− (N ′ − N̄ ′)2

2σ 2

)
. (A1)

Its cumulative distribution is

FG(N ′) ≡
∫ N ′

−∞
PG(x)dx (A2)

= 1

2

[
1 + erf

(
N ′ − N̄ ′

σ
√

2

)]
. (A3)

The gamma distribution is

Pγ (N ) = 1


(k)θ k
Nk−1e−N/θ (A4)

with N > 0. Its mean and standard deviation are

N̄ = θk, (A5)

σ = θ
√

k (A6)
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These two equations define, for each gamma distribution, the
Gaussian distribution (A1) with the same mean and variance.
The cumulative distribution is

Fγ (N ) ≡
∫ N

0
Pγ (x)dx (A7)

= 1


(k)
γ

(
k,

N

θ

)
, (A8)

where γ (s, x) denotes the lower incomplete gamma function.
Eq. (5) can be rewritten as

Fγ (N ) = FG(N ′). (A9)

The mapping between N and N ′ is obtained by solving nu-
merically this equation, with the explicit expressions (A2)
and (A7). It is the bottleneck of our reconstruction proce-
dure, which is much slower than that of Ref. [29] for this
reason.

APPENDIX B: 90% CONFIDENCE ELLIPSE

Here we recall the definition of the 90% confidence el-
lipse for a generic two-dimensional Gaussian distribution. We
start with a symmetric two-dimensional Gaussian distribution
centered at the origin, with unit width, for two variables
t1 and t2:

p(t1, t2) = 1

2π
exp

(
− t2

1 + t2
2

2

)
= 1

2π
exp

(
− r2

2

)
, (B1)

where r2 = t2
1 + t2

2 . The probability f that r < r0 is obtained
by integrating over the disk of radius r0:

f =
∫

r<r0

p(t1, t2)dt1dt2 = 1 − exp

(
− r2

0

2

)
. (B2)

The 90% confidence circle is the circle which contains 90% of
the probability, that is, the circle for which f = 0.9. Its radius
r0 is obtained by inverting Eq. (B2):

r0 =
√

−2 ln(1 − f ). (B3)

This can be generalized to an arbitrary Gaussian distribu-
tion by carrying out the following change of variables:

t2
1 + t2

2 →
∑

j,k

(x j − x̄ j )�
−1
jk (xk − x̄k ), (B4)

where the new variables are (x1, x2). The above equation can
be rewritten in matrix form as

t T T = (t X − t X̄ )�−1(X − X̄ ), (B5)

where T and X are column vectors, and t T and t X their
transpose (line vectors). We then solve this equation to express
X as a function of T :

X = X̄ + �1/2T, (B6)

where �1/2 is the square root of the positive semidefinite
matrix � whose eigenvalues are all positive:

�1/2 = 1√
Tr� + 2

√|�|
(� + I

√
|�|), (B7)

FIG. 9. Distribution of the number of gluons in two different
rapidity intervals. Symbols: Monte Carlo simulation with the QCD
dipole model. Lines: gamma distributions with the same mean and
variance as the simulation.

where Tr� denotes the trace, |�| the determinant, and I the
2 × 2 identity matrix. Through Eq. (B6), the confidence circle
of radius r0 is mapped into an ellipse centered at X̄ . This is
the ellipse depicted in Fig. 1 of Ref. [29] (with f = 0.99).
In the case of the correlated gamma distribution, one must at
the end carry the transformation from the Gaussian variables
to the gamma variables, as explained in Appendix A. Due to
the nonlinearity of this transformation, the 90% confidence
curve depicted in Fig. 2 (see also Figs. 4 and 5) is no longer
an ellipse, but it still contains 90% of the probability by
construction.

APPENDIX C: GLUON NUMBER FLUCTUATIONS IN THE
QCD DIPOLE MODEL

We present numerical results on the distribution of gluon
numbers in the Monte Carlo implementation of the QCD
dipole model presented in Sec. IV B, in order to illustrate their
similarity with distributions of multiplicity and transverse en-
ergy shown in the main body of the paper. We generate 106

events with the saturation radius rs set to 0.5 r0. For each
event, we compute the gluon number in two different rapidity
intervals, whose disposition and size are similar to the pseu-
dorapidity intervals in which ATLAS measures the charged
multiplicity Nch and the forward transverse energy EPb

T . The
distributions of these two numbers are displayed in Fig. 9.
The number of gluons is smaller in the interval at the larger
rapidity, despite the fact that dN/dY increases with Y (Fig. 7),
because the interval is narrower. The distributions are very
close to gamma distributions, shown as lines in Fig. 9. The rms
errors, defined by Eq. (4) are 16.0% for the rapidity interval
0.8 < Y < 1.4, and 7.5% for the interval 1.5 < Y < 1.7.

The joint distribution is displayed in the left panel of
Fig. 10. The right panel displays the correlated gamma dis-
tribution with the same mean and covariance matrix. Both
distributions look very similar to the eye. The rms error as
defined from the Kullback-Leibler divergence is in fact rather
large, 43.5%. But it is largely dominated by the first few bins,
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FIG. 10. Left: joint distribution of the number of gluons in the two rapidity intervals. Right: correlated gamma distribution with the same
means, variances, and covariance.

where the fit overestimates the simulation by a large factor.
If we had excluded the first few bins, as in fits to Nch and EPb

T

distributions shown in this paper, the rms error would be much
smaller.

[1] P. Bożek, Phys. Rev. C 85, 014911 (2012).
[2] B. Abelev et al. (ALICE Collaboration), Phys. Lett. B 719, 29

(2013).
[3] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 725, 60

(2013).
[4] V. Khachatryan et al. (CMS Collaboration), Phys. Rev. Lett.

115, 012301 (2015).
[5] A. M. Sirunyan et al. (CMS Collaboration), Phys. Rev. C 101,

014912 (2020).
[6] R. D. Weller and P. Romatschke, Phys. Lett. B 774, 351 (2017).
[7] J. D. Bjorken, Phys. Rev. D 27, 140 (1983).
[8] J. Y. Ollitrault, Eur. J. Phys. 29, 275 (2008).
[9] P. Hanus, K. Reygers, and A. Mazeliauskas, Phys. Rev. C 100,

064903 (2019).
[10] J. P. Ralston and B. Pire, Phys. Rev. Lett. 61, 1823 (1988).
[11] H. Heiselberg, G. Baym, B. Blättel, L. L. Frankfurt, and M.

Strikman, Phys. Rev. Lett. 67, 2946 (1991).
[12] M. Alvioli and M. Strikman, Phys. Lett. B 722, 347 (2013).
[13] B. Schenke and R. Venugopalan, Phys. Rev. Lett. 113, 102301

(2014).
[14] H. Mäntysaari and B. Schenke, Phys. Rev. Lett. 117, 052301

(2016).
[15] C. Bierlich, G. Gustafson, and L. Lönnblad, J. High Energy

Phys. 10 (2016) 139.
[16] H. Mäntysaari, B. Schenke, C. Shen, and W. Zhao, Phys. Lett.

B 833, 137348 (2022).
[17] M. I. Gorenstein and M. Gazdzicki, Phys. Rev. C 84, 014904

(2011).
[18] S. Jeon and V. Koch, Phys. Rev. Lett. 83, 5435 (1999).
[19] S. Jeon and V. Koch, Phys. Rev. Lett. 85, 2076 (2000).
[20] S. Acharya et al. (ALICE Collaboration), Eur. Phys. J. C 79,

236 (2019).
[21] C. Pruneau, S. Gavin, and S. Voloshin, Phys. Rev. C 66, 044904

(2002).

[22] J. Adams et al. (STAR Collaboration), Phys. Rev. C 68, 044905
(2003).

[23] S. Acharya et al. (ALICE Collaboration), Phys. Lett. B 832,
137242 (2022).

[24] S. J. Das, G. Giacalone, P. A. Monard, and J. Y. Ollitrault, Phys.
Rev. C 97, 014905 (2018).

[25] J. D. Frankland et al. (INDRA Collaboration), Phys. Rev. C 104,
034609 (2021).

[26] P. Parfenov, D. Idrisov, V. B. Luong, and A. Taranenko,
Particles 4, 275 (2021).

[27] L. Li, X. Chen, Y. Cui, Z. Li, and Y. Zhang, arXiv:2201.12586
[nucl-th].

[28] R. Rogly, G. Giacalone, and J. Y. Ollitrault, Phys. Rev. C 98,
024902 (2018).

[29] K. Vahid Yousefnia, A. Kotibhaskar, R. Bhalerao, and J.-Y.
Ollitrault, Phys. Rev. C 105, 014907 (2022).

[30] C. Bierlich, G. Gustafson, L. Lönnblad, and H. Shah, J. High
Energy Phys. 10 (2018) 134.

[31] G. Aad et al. (ATLAS Collaboration), Phys. Rev. C 90, 044906
(2014).

[32] A. Giovannini and L. Van Hove, Z. Phys. C 30, 391 (1986).
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