α and 2α decay of nuclei in the region $94 \leq Z \leq 101$ using the modified generalized liquid drop model

Megha Chandran¹ and K. P. Santhosh ^{1,2,*}

¹Department of Physics, University of Calicut, Kerala 673635, India ²School of Pure and Applied Physics, Kannur University, Swami Anandatheertha Campus, Payyanur, Kerala 670327, India

(Received 23 December 2022; revised 1 February 2023; accepted 9 February 2023; published 22 February 2023)

The α decay and 2α decay of various isotopes of Pu, Am, Cm, Bk, Cf, Es, Fm, and Md in the mass region A = 218 to 273 are investigated using the modified generalized liquid drop model (MGLDM) and universal decay law. The comparison of experimental alpha decay half-lives with the predicted half-lives proves the consistency of our calculations. As a result we broadened our investigation to also include a study of double alpha decay of these isotopes. There is a considerable interest in performing research on double alpha decay, as seen by the proposal submitted at CERN to investigate the double alpha radioactivity of ²²⁴Ra. In view of this, the decay half-lives of most probable 2α emitters, calculated using MGLDM by employing different preformation factors, are presented which can be beneficial for upcoming experimental investigations on this topic. A peak or dip in α and 2α decay half-lives for decay are observed when the daughter and parent nuclei, respectively, contain a magic number of neutrons. From our study, 126 and 162 are found as magic/semimagic numbers. A linear plot is obtained while plotting $\log_{10}T_{1/2}$ of all the isotopes against $ZQ^{-1/2}$, which emphasizes that our estimations are reliable.

DOI: 10.1103/PhysRevC.107.024614

I. INTRODUCTION

 α decay is one of the most significant processes by which an unstable radioactive nucleus decays in the heavy and superheavy regions. The type of decay associated with the emission of a single alpha particle from massive nuclides has received extensive research attention. Multiple theoretical models are suggested to study single α decay as well as continuous sequential α decay of radioactive nuclei [1–3].

Different forms of decay of atomic nuclei accompanied by the simultaneous emission of two particles of the same kind such as double beta (2β) decay [4], double gamma (2γ) decay [5], and two proton (2p) [6] and two neutron (2n) [7] radioactivities are well known today. Similarly, there is a possibility of simultaneous emission of two alpha particles from a heavy nucleus. This process is known as double alpha (2α) decay. In 1985, Poenaru and Ivascu [8] initially suggested the idea of spontaneous and simultaneous emission of 2α particles. Nevertheless, 2α decay was not explored with much interest like 2β , 2γ , 2p, and 2n radioactivities. Lately this topic has started drawing the attention of many researchers. Tretyak [9] investigated the process of double alpha decay of 80 naturally abundant nuclei in 2021. Utilizing the data from the experiment carried out by de Marcillac et al. [10], the author also predicted the experimental half-life limit for 2α emission from ²⁰⁹Bi as $T_{1/2} > 2.9 \times 10^{20}$ years. A micro-scopic computation of half-lives for 2α decays of ²¹²Po and ²²⁴Ra was performed by Mercier et al. [11], and the calculated

half-lives were found to be of the order of those observed for cluster emission. Santhosh and Tinu [12] estimated the 2α half-life of ²⁰⁹Bi using the SemFIS formula and compared it with the experimental half-life limit reported by Tretyak. They also computed 2α half-lives for different isotopes with atomic numbers varying between 85 and 93 and most of the predicted half-lives were below the measurable upper limit thereby paving a way for experimental investigations in the future. Denisov [13] presented a model for the calculation of the double alpha decay half-life of spherical even-even nuclei and estimated the smallest values of the half-lives of the double α decay of different nuclei. He inferred that the half-lives of double alpha decay are much smaller than the emission of the ⁸Be cluster with sequential decay of ⁸Be into two α particles. A proposal exists for an experimental probe of the double α decay with ²²⁴Ra on the ISOLDE facility in CERN [14].

The generalized liquid drop model of Royer and Remaud [15,16] is modified by incorporating the proximity 77 potential by Blocki *et al.* [17], in the well-known theoretical model known as the modified generalized liquid drop model (MGLDM), which was developed by Santhosh *et al.* [18].The MGLDM was designed with the aim of carrying out an extensive investigation on the decay half-lives of radioactive nuclei in the heavy and superheavy regions [19,20]. After examining several works [21–23], it is possible to conclude that MGLDM with a preformation factor can be regarded as an efficient mechanism for replicating the experimental half-lives of α and cluster decay. Since half-lives of nuclei can be counted as fundamental properties, a model that can determine the double α half-life will serve as a motivation for additional experimental

^{*}drkpsanthosh@gmail.com

studies related to double alpha decay. In this paper, we study both alpha and double alpha decay of different isotopes of elements with atomic numbers ranging from 94 (Pu) to 101 (Md) by using MGLDM with various preformation factors. Section II describes the theory of MGLDM and includes expressions for various preformation factors. The results of the work are presented in Sec. III of the paper. Section IV gives the summary of the entire paper.

II. THEORY

A. Modified generalized liquid drop model

In MGLDM, the macroscopic energy for a deformed nucleus is defined as

$$E = E_V + E_S + E_C + E_R + E_P.$$
 (1)

Here the terms E_V , E_S , E_C , E_R , and E_P represent the volume, surface, Coulomb, rotational, and proximity energy terms, respectively.

The volume, surface, and Coulomb energies in MeV, for the prescission zone, are provided by Royer and Remaud [15] as

$$E_V = -15.494(1 - 1.8I^2)A,$$
(2)

$$E_{S} = 17.9439(1 - 2.6I^{2})A^{2/3}(S/4\pi R_{0}^{2}), \qquad (3)$$

$$E_C = 0.6e^2 (Z^2/R_0) \times 0.5 \int (V(\theta)/V_0) (R(\theta)/R_0)^3 \sin \theta \, d\theta.$$
(4)

Here *I* is the relative neutron excess, *S* is the surface of the deformed nucleus, $V(\theta)$ is the electrostatic potential at the surface, and V_0 is the surface potential of the sphere.

For the postscission region [15],

$$E_V = -15.494 [(1 - 1.8I_1^2)A_1 + (1 - 1.8I_2^2)A_2],$$
 (5)

$$E_{S} = 17.9439 \left[\left(1 - 2.6I_{1}^{2} \right) A_{1}^{2/3} + \left(1 - 2.6I_{2}^{2} \right) A_{2}^{2/3} \right], \quad (6)$$

$$E_C = \frac{0.6e^2 Z_1^2}{R_1} + \frac{0.6e^2 Z_2^2}{R_2} + \frac{e^2 Z_1 Z_2}{r}.$$
 (7)

Here A_i , Z_i , R_i , and I_i are the masses, charges, radii, and relative neutron excess of the fragments, r is the distance between the centers of the fragments, and

$$E_p(z) = 4\pi\gamma b \left[\frac{C_1 C_2}{(C_1 + C_2)} \right] \Phi\left(\frac{z}{b}\right)$$
(8)

is the nuclear proximity potential of Blocki *et al.* [17] with γ the nuclear surface tension coefficient and Φ the universal proximity potential [24].

The barrier penetrability *P* is calculated using the following integral [15]:

$$\mathbf{P} = \exp\left\{-\frac{2}{\hbar} \int_{R_{\rm in}}^{R_{\rm out}} \sqrt{2B(r)[E(r) - E({\rm sphere})]} dr\right\}, \quad (9)$$

Where $R_{\rm in} = R_1 + R_2$, $B(r) = \mu$ and $R_{\rm out} = e^2 Z_1 Z_2 / Q$. R_1 , R_2 are the radius of the daughter nuclei and emitted cluster, respectively, μ is the reduced mass, and Q is the released energy.

The partial half-life is related to the decay constant $\boldsymbol{\lambda}$ by

$$T_{1/2} = \left(\frac{\ln 2}{\lambda}\right) = \left(\frac{\ln 2}{\nu P_C P}\right). \tag{10}$$

The assault frequency ν has been taken as 10^{20} s⁻¹ and P_c is the preformation factor.

1. Preformation factor

We suppose that the 2α particle is already generated within the parent nucleus prior to emission, much like in alpha and cluster decay. It is important to highlight that the decay half-life is greatly influenced by the variables on which preformation depends. In earlier works [20–23], various preformation factors were developed to study alpha and cluster decay. Due to the simultaneous emission of both alpha particles during double alpha decay, one can envision a scenario in which 2α particles are formed, pass through the potential barrier as a cluster, and then tunnel through the nucleus to become emitted as two α particles. Preformation factors that depend on Q value, cluster size, atomic number of cluster and daughter nuclei, and the combination of these three parameters were used to calculate alpha and cluster half-life. Thus, MGLDM with various preformation variables that demonstrated its application in the alpha and cluster decay can be viewed as an appealing concept to explain the concept of emission of double alpha particles, and the preformation parameters are as follows.

(1) A preformation factor that depends on Q value is

$$P_c(Q) = 10^{aQ+bQ^2+c},$$
 (11)

with a = -0.25736, $b = 6.37291 \times 10^{-4}$, and c = 3.35106.

(2) A preformation factor that depends on cluster size is

$$P_c(A_c) = 10^{aA_c + b},$$
 (12)

with a = -0.51325 and b = 2.80787

(3) A preformation factor that depends on proton number of cluster and daughter nuclei is

$$P_c(Z_c Z_d) = 10^{a Z_c Z_d + b},$$
(13)

with a = -0.01555 and b = 3.22940

(4) A preformation factor that depends on the combined effect of Q value, cluster size, and proton number of cluster and daughter nuclei is

$$P_{c}(C) = 10^{aA_{c} + bZ_{c}Z_{d} + cQ + dQ^{2} + e},$$
(14)

with a = -0.5559, b = 0.028716, c = -0.4233358, d = 0.001143, and e = 1.490754

In the expressions mentioned above for preformation parameters, Q, A_c , and Z_cZ_d are the Q value, cluster size, and atomic number of cluster and daughter nucleus, respectively. The value of constants in each expression was obtained by least square fitting to the preformation factor extracted from experimentally observed cluster decay data. For this we considered 28 modes of decay from nuclei ranging from Fr to Cm TABLE I. The α decay half-lives of different isotopes of Pu, Am, Cm, Bk, Cf, Es, Fm, and Md predicted using MGLDM and UDL compared with corresponding experimental data [28].

				$\log_{10}[T_{1/2}(s)]$				
Parent nuclei	Emitted cluster	Daughter nuclei	Q Value (MeV)	Experimental	MGLDM	UDL		
²²⁸ Pu ₉₄	α	²²⁴ U ₉₂	8.121584	0.0414	-0.5607	-0.7029		
²³⁰ Pu ₉₄	α	²²⁶ U ₉₂	7.377784	2.0086	2.0379	1.7534		
²³⁶ Pu ₉₄	α	²³² U ₉₂	5.940584	7.9547	8.4003	7.7331		
²³⁸ Pu ₉₄	α	$^{234}U_{92}$	5.940584	9.4420	8.3458	7.6875		
²³⁹ Pu ₉₄	α	$^{235}U_{92}$	5.669484	11.8813	9.8421	9.0865		
²⁴⁰ Pu ₉₄	α	²³⁶ U ₉₂	5.286984	11.3161	12.1333	11.2231		
²⁴² Pu ₉₄	α	²³⁸ U92	4.803184	13.0719	15.4123	14.2754		
²⁴⁴ Pu ₉₄	α	$^{240}U_{92}$	4.587184	15.4082	17.0261	15.7778		
²²⁹ Am ₉₅	α	²²⁵ Np ₉₃	8.321284	0.2553	-0.8274	-0.9347		
²³⁰ Am ₉₅	α	²²⁶ Np ₉₃	7.910684	1.6021	0.5221	0.3435		
²⁴¹ Am ₉₅	α	²³⁷ Np ₉₃	5.750784	10.1351	9.8592	9.1314		
²⁴³ Am ₉₅	α	²³⁹ Np ₉₃	5.234084	11.3654	12.9662	12.0307		
²⁴⁰ Cm ₉₆	α	²³⁶ Pu ₉₄	6.787884	6.4194	5.1705	4.7649		
²⁴² Cm ₉₆	α	²³⁸ Pu ₉₄	6.168284	7.1482	8.0916	7.5063		
²⁴³ Cm ₉₆	α	²³⁹ Pu ₉₄	5.856184	8.9629	9.7425	9.0512		
²⁴⁴ Cm ₉₆	α	²⁴⁰ Pu ₉₄	5.624984	8.7570	11.0515	10.2748		
²⁴⁵ Cm ₉₆	α	241 Pu ₉₄	5.463484	11.4155	12.0110	11.1715		
²⁴⁷ Cm ₉₆	α	²⁴³ Pu ₉₄	5.185984	14.6922	13.7624	12.8068		
²⁴⁸ Cm ₉₆	α	$^{244}Pu_{94}$	5.103184	13.0407	14.3063	13.3152		
²⁴⁷ Bk ₉₇	α	²⁴³ Am ₉₅	5.836884	10.6389	10.2873	9.5937		
²⁴⁰ Cf ₉₈	α	$^{236}Cm_{96}$	7.657684	1.6053	2.5009	2.2945		
²⁴⁶ Cf ₉₈	α	²⁴² Cm ₉₆	6.697884	5.1089	6.3918	5.9694		
²⁴⁸ Cf ₉₈	α	$^{244}Cm_{96}$	6.430584	7.4594	7.6309	7.1359		
²⁴⁹ Cf ₉₈	α	²⁴⁵ Cm ₉₆	6.367084	10.0444	7.9279	7.4166		
²⁵⁰ Cf ₉₈	α	²⁴⁶ Cm ₉₆	6.354884	8.6157	7.9709	7.4594		
²⁵¹ Cf ₉₈	α	²⁴⁷ Cm ₉₆	6.362284	10.4524	7.9158	7.4103		
²⁵² Cf ₉₈	α	$^{248}Cm_{96}$	6.341284	7.9215	8.0033	7.4947		
²⁴¹ Es ₉₉	α	$^{237}Bk_{97}$	8.132784	0.7076	1.1819	1.0707		
²⁵³ Es ₉₉	α	$^{249}Bk_{97}$	6.805784	6.2476	6.2314	5.8584		
²⁵⁴ Es ₉₉	α	$^{250}Bk_{97}$	6.700884	7.3769	6.6976	6.2983		
243 Fm ₁₀₀	α	²³⁹ Cf ₉₈	8.678584	-0.6364	-0.2653	-0.2767		
²⁴⁵ Fm ₁₀₀	α	²⁴¹ Cf ₉₈	8.519784	0.6284	0.2073	0.1766		
246 Fm ₁₀₀	α	$^{242}Cf_{98}$	8.209984	0.1875	1.2269	1.1449		
248 Fm ₁₀₀	α	²⁴⁴ Cf ₉₈	7.651984	1.5378	3.2217	3.0347		
250 Fm ₁₀₀	α	²⁴⁶ Cf ₉₈	7.349384	3.2695	4.3854	4.1366		
252 Fm ₁₀₀	α	²⁴⁸ Cf ₉₈	7.269584	4.9609	4.6784	4.4175		
254 Fm ₁₀₀	α	²⁵⁰ Cf ₉₈	7.286184	4.0669	4.5735	4.3236		
²⁵⁵ Fm ₁₀₀	α	²⁵¹ Cf ₉₈	7.161284	4.8589	5.0806	4.8032		
²⁵⁷ Fm ₁₀₀	α	²⁵³ Cf ₉₈	6.761684	6.9387	6.8237	6.4460		
²⁴⁴ Md ₁₀₁	α	$^{240}Es_{99}$	9.284884	-0.4437	-1.7347	-1.6537		
²⁴⁵ Md ₁₀₁	α	²⁴¹ Es ₉₉	9.367684	0.4202	-1.9899	-1.8943		
²⁴⁶ Md ₁₀₁	α	$^{242}Es_{99}$	9.195184	-0.0362	-1.5116	-1.4363		
²⁴⁷ Md ₁₀₁	α	²⁴³ Es ₉₉	8.883784	0.0756	-0.5956	-0.5626		
$^{258}Md_{101}$	α	²⁵⁴ Es ₉₉	7.345384	6.6491	4.6941	4.4676		

emitting ¹⁴C to ³⁴Si. To find the accuracies of these formulas we computed the standard deviation of cluster decay half-lives and the values obtained are 1.08, 0.995, 1.07, and 0.885, respectively, for preformation probabilities dependent on Q value, cluster size, product of proton number of cluster and daughter nuclei, and the combination of these three parameters, respectively.

B. Universal decay law

The expression for the universal decay law (UDL) for cluster decay proposed by Qi *et al.* [25] is given as

$$\log_{10}(T_{1/2}) = aZ_c Z_d \sqrt{A/Q_c} + b\sqrt{AZ_c Z_d \left(A_d^{1/3} + A_c^{1/3}\right)} + c$$
(15)

FIG. 1. The variation of logarithm of half-life with the mass number of daughter nucleus for α decay from ^{224–254}Pu. Blue circle and red square represent the half-life computed using MGLDM and UDL respectively.

where A_c , A_d , Z_c , and Z_d are mass number of cluster, mass number of daughter, proton number of cluster, and proton number of daughter, respectively. The constants are a = 0.3949, b = -0.3693, c = -23.7615, and $A = A_c A_d/(A_c + A_d)$.

III. RESULTS AND DISCUSSION

The α decay and 2α decay of different isotopes of Pu, Am, Cm, Bk, Cf, Es, Fm, and Md in the mass region A = 218 to 273 are studied using MGLDM by incorporating different preformation factors. The ejected particle is assumed to

FIG. 3. The variation of logarithm of half-life with the mass number of daughter nucleus for α decay from ^{234–262}Cm. The dashed lines represent the minimum and maximum half-lives.

tunnel through a potential barrier before being emitted from the radioactive nucleus. As two α particles are simultaneously emitted in 2α decay, we can envision a scenario where both the alpha particles move as a cluster and leave the nucleus after overcoming the potential barrier. The Q value of a reaction is given by the equation

$$Q = \Delta M_p - (\Delta M_d + \Delta M_c) \tag{16}$$

where ΔM_p , ΔM_d , and ΔM_c are the mass excess of parent, daughter, and cluster nuclei, respectively. For α decay $\Delta M_c = \Delta M_{\alpha}$ and for 2α decay $\Delta M_c = 2 \times \Delta M_{\alpha}$, where ΔM_{α} is the mass excess of α particles. The α decay and 2α decay are energetically possible only if Q > 0. The Q values for the decay of all the isotopes are calculated using the mass excess

FIG. 4. The variation of logarithm of half-life with the mass number of daughter nucleus for α decay from ^{234–262}Bk.

FIG. 5. The variation of logarithm of half-life with the mass number of daughter nucleus for α decay from ^{239–264}Cf.

values from the WS4 mass table [26]. The mass excess values of the α particle and ⁸Be are taken from the mass table of Wang *et al.* [27].

Table I depicts the comparison of predicted α decay halflives of various isotopes of Pu, Am, Cm, Bk, Cf, Es, Fm, and Md calculated using MGLDM with preformation factor $P_c = 1$, with the experimental data obtained from Kondev *et al.* [28]. The predicted values are also compared with the values computed using the universal decay law of Qi *et al.* [25].

The standard deviation of the theoretical half-lives from the experimental half-lives is calculated using the

FIG. 6. The variation of logarithm of half-life with the mass number of daughter nucleus for α decay from ^{239–264}Es.

FIG. 7. The variation of logarithm of half-life with the mass number of daughter nucleus for α decay from ^{244–269}Fm.

equation

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left[\left(\log_{10} T_{1/2}^{\text{theory}} - \log_{10} T_{1/2}^{\text{exp}} \right)^2 \right]}.$$
 (17)

The experimental data and the logarithm of alpha half-life values predicted using MGLDM and UDL agree fairly well, with a standard deviation of 1.18 and 1.20, respectively. This outcome demonstrates that our estimations are valid and reliable. Consequently, we come to the conclusion that double alpha decay can also be researched using this method in order to achieve better results. Figures 1–8 show the variation of logarithms of half-life predicted using MGLDM and UDL

FIG. 8. The variation of logarithm of half-life with the mass number of daughter nucleus for α decay from ^{244–269}Md.

TABLE II. Com	parison of half-life	predicted using UE	DL and MGLDM with different	preformation factors for	or 2α and 3	⁸ Be emissions.
---------------	----------------------	--------------------	-----------------------------	--------------------------	----------------------	----------------------------

		Daughter nuclei	Q Value (MeV)	$\log_{10}[T_{1/2}(s)]$					
Parent nuclei	Emitted cluster			$\overline{T_{1/2}^{ m MGLDM}}$	$T_{1/2}^{(Q)}$	$T_{1/2}^{(A_c)}$	$T_{1/2}^{(Z_c Z_d)}$	$T_{1/2}^{(C)}$	$T_{1/2}^{(\text{UDL})}$
²²⁹ Pu ₉₄	⁸ Be	221 Th ₉₀	15.48403	19.073	19.554	20.371	21.442	17.973	21.398
	2α		15.57587	18.765	19.268	20.064	21.134	17.701	21.102
²³⁰ Am ₉₅	⁸ Be	$^{222}Pa_{91}$	16.01253	18.091	18.698	19.389	20.522	17.080	20.491
	2α		16.10437	17.796	18.424	19.094	20.227	16.821	20.206
²³² Cm ₉₆	⁸ Be	$^{224}U_{92}$	16.02473	18.768	19.377	20.066	21.261	17.647	21.189
,,,	2α		16.11657	18.469	19.101	19.768	20.962	17.384	20.901
²³⁴ Bk ₉₇	⁸ Be	$^{226}Np_{03}$	16.13603	19.120	19.756	20.418	21.675	17.928	21.574
	2α	1 95	16.22787	21.286	18.822	19.479	20.119	21.377	21.286
²³⁶ Cf ₉₈	⁸ Be	²²⁸ Pu ₉₄	16.54053	18.526	19.257	19.824	21.143	17.374	21.045
	2α		16.63237	18.235	18.988	19.533	20.853	17.119	20.764
²³⁹ Es ₉₉	⁸ Be	$^{231}Am_{95}$	16.73813	18.563	19.342	19.862	21.243	17.373	21.133
	2α		16.82997	18.275	19.075	19.573	20.955	17.121	20.854
$^{241}Fm_{100}$	⁸ Be	$^{233}Cm_{96}$	17.19803	17.826	18.713	19.124	20.568	16.698	20.464
	2α	20	17.28987	17.547	18.455	18.845	20.289	16.454	20.193
²⁴⁵ Md ₁₀₁	⁸ Be	$^{237}Bk_{97}$	17.40863	17.794	18.730	19.092	20.598	16.632	20.489
- 01	2α		17.50047	17.517	18.475	18.815	20.321	16.390	20.221

with the mass number of daughter nuclei for the α decay from $^{224-254}$ Pu, $^{224-254}$ Am, $^{234-262}$ Cm, $^{234-262}$ Bk, $^{239-264}$ Cf, $^{239-264}$ Es, $^{244-269}$ Fm, and $^{244-269}$ Md. Only those decays with half-lives up to 10^{40} s are plotted in all these figures. The blue circle in the figure represents the predictions of MGLDM whereas the red square represents the UDL predictions. From Fig. 3, which depicts the α decay of $^{234-262}$ Cm, we can observe that the half-life is minimum when the mass number of the daughter nuclei is 256. The neutron number of the daughter nucleus corresponding to mass number 256 is 162. We can therefore draw the conclusion that $\log_{10}T_{1/2}$ is minimum for the parent isotope when the daughter nucleus has a magic number of neutrons. A shorter half-life suggests that there is a greater likelihood that the nucleus will disintegrate. The daughter nucleus which possesses a magic number of neutrons will be more stable in comparison with other daughter nuclei formed during α decay. The daughter nucleus will have a high degree of stability when the minimal $\log_{10}T_{1/2}$ value is deeper. The half-life peaks at mass number 254, which corresponds to the parent isotope's neutron number 162. Parent isotopes having a magic number of neutrons show comparatively longer half-life indicating that they are stable against α decay. The parent nuclei's stability grows together with the height of the peak corresponding to maximum $T_{1/2}$ value.

According to Fig. 4, during the α decay of $^{234-262}$ Bk, minimum half-life is seen at mass number 257 or more specifically at neutron number 162. Similarly when the parent nuclei's neutron number is 162, corresponding to mass number 255, the half-life is maximum, representing extra stability against the decay. From Fig. 5, we can see that when the daughter nuclei's neutron number is 162 or at mass number 258, minimum $T_{1/2}$ is observed for the α decay of $^{239-264}$ Cf. Maximum $T_{1/2}$ occur at mass numbers 256 when the number of neutrons of the parent isotope is 162.

Figure 6 shows that, for the α decay of $^{239-264}$ Es, $T_{1/2}$ acquires its lowest value at mass number 259, with neutron number 162, whereas $T_{1/2}$ is at its highest when the mass

number of the daughter (neutron number of the parent) is 257 (162). By analyzing Fig. 7, we can infer that when $^{244-269}$ Fm undergoes α decay, the daughter nucleus has minimum $T_{1/2}$ at mass number 260 when the neutron number of the daughter is 126. Due to the magicity of the parent nuclei, maximum half-life is exhibited when the mass number of the daughter is 258, where the corresponding neutron number of the parent is 162. As shown in Fig. 8, for the α decay of $^{244-269}$ Md, the least half-life is obtained at mass number 261 corresponding to magic neutron number 162, while the half-life peaks at mass number 259 when the parent nuclei's neutron number 152.

By examining all these graphs, we can conclude that the magicity of the neutron number plays a crucial role in the decay process of all these isotopes. The half-life is at its

FIG. 9. The variation of logarithm of half-life with the mass number of daughter nucleus for 2α decay from ^{218–258}Pu and ^{218–258}Am.

FIG. 10. The variation of logarithm of half-life with the mass number of daughter nucleus for 2α decay from $^{223-268}$ Cm and $^{223-268}$ Bk.

minimum when the daughter nucleus possesses a magic number of neutrons. Since daughter nuclei with magic number of neutrons are more stable, the parent nuclei readily emit an alpha particle to create them. Such processes will proceed very easily when compared to other decay and hence exhibit a minimum half-life. However when the parent nuclei contain a magic number of neutrons they will not be ready to destroy their stable configuration by undergoing decay. These processes take longer to complete because they are resistant to decay, giving them maximum half-life. In general, a minimum half-life symbolizes the magicity of the daughter nucleus whereas maximum half-life represents the magicity of the parent nucleus.

FIG. 11. The variation of logarithm of half-life with the mass number of daughter nucleus for 2α decay from $^{223-268}$ Cf and $^{223-268}$ Es.

FIG. 12. The variation of logarithm of half-life with the mass number of daughter nucleus for 2α decay from $^{238-273}$ Fm and $^{238-273}$ Md.

Given the validity of our results from α decay, we attempted to expand our investigation to double alpha decay as well. The double α decay of the isotopes of Pu, Am, Cm, Bk, Cf, Es, Fm, and Md in the mass region A = 218 to 273 is also studied using MGLDM with the aid of different preformation factors.

Table II shows the comparison of half-lives of 2α and ⁸Be emissions from ²²⁹Pu, ²³⁰Am, ²³²Cm, ²³⁴Bk, ²³⁶Cf, ²³⁹Es, ²⁴¹Fm, and ²⁴⁵Md. $T_{1/2}^{MGLDM}$ in column 5 in Table II represents the logarithm of decay half-life in seconds estimated using MGLDM. $T_{1/2}^{(Q)}$, $T_{1/2}^{(A_c)}$, $T_{1/2}^{(Z_cZ_d)}$, and $T_{1/2}^{(C)}$ in columns 6–9 in Table II give the half-life determined using MGLDM with various preformation factors mentioned in Eqs. (11)–(14) given

FIG. 13. The logarithm of 2α half-life of all the isotopes calculated using Q dependent preformation factor P_c (Q) and cluster size dependent preformation factor P_c (A_c) plotted against $ZQ^{-1/2}$.

_

|--|

	Daughter nuclei	Q Value (MeV)	$\log_{10}[T_{1/2}(s)]$						
Parent nuclei			$T_{1/2}^{ m MGLDM}$	$T_{1/2}^{(Q)}$	$T_{1/2}^{(A_c)}$	$T_{1/2}^{(Z_c Z_d)}$	$T_{1/2}^{(C)}$	$T_{1/2}^{(\text{UDL})}$	
²¹⁸ Pu ₉₄	²¹⁰ Th ₉₀	18.26777	11.260	12.398	12.558	13.629	11.231	13.751	
²¹⁹ Pu ₉₄	²¹¹ Th ₉₀	18.27667	11.199	12.339	12.498	13.568	11.174	13.699	
²²⁰ Pu ₉₄	212 Th ₉₀	17.95257	12.013	13.077	13.312	14.382	11.864	14.499	
$^{221}Pu_{94}$	213 Th ₉₀	18.74137	9.947	11.195	11.245	12.316	10.098	12.489	
²²² Pu ₉₄	214 Th ₉₀	19.31437	8.520	9.902	9.818	10.889	8.889	11.097	
²²³ Pu ₉₄	²¹⁵ Th ₉₀	19.77767	7.407	8.897	8.705	9.776	7.952	10.009	
$^{224}Pu_{94}$	²¹⁶ Th ₉₀	20.09387	6.659	8.223	7.958	9.028	7.324	9.279	
²²⁵ Pu ₉₄	²¹⁷ Th ₉₀	19.17847	8.735	10.086	10.034	11.104	9.053	11.327	
²²⁶ Pu ₉₄	²¹⁸ Th ₉₀	18.20107	11.140	12.262	12.438	13.509	11.085	13.688	
²²⁷ Pu ₉₄	²¹⁹ Th ₉₀	17.31877	13.495	14.409	14.793	15.863	13.102	15.988	
²²⁸ Pu ₉₄	²²⁰ Th ₉₀	16.37477	16.241	16.933	17.539	18.609	15.485	18.658	
²¹⁸ Am ₉₅	210 Pa ₉₁	18.86467	10.449	11.726	11.747	12.88	10.532	12.984	
²¹⁹ Am ₉₅	211 Pa ₉₁	18.89637	10.333	11.617	11.631	12.763	10.428	12.877	
²²⁰ Am ₉₅	²¹² Pa ₉₁	18.85077	10.408	11.682	11.707	12.839	10.486	12.959	
²²¹ Am ₉₅	213 Pa ₉₁	18.58917	11.031	12.243	12.329	13.461	11.009	13.574	
²²² Am ₀₅	214 Pa ₀₁	19.37057	9.066	10.461	10.365	11.497	9.342	11.658	
²²³ Am ₀₅	215 Pa ₀₁	19.91267	7.765	9.286	9.063	10.196	8.245	10.386	
$^{224}Am_{05}$	²¹⁶ Pa ₀₁	20 19717	7 087	8 674	8 385	9 517	7 674	9 724	
$^{225}Am_{05}$	²¹⁷ Pa ₀₁	20.51677	6 347	8.008	7 645	8 778	7.055	9.001	
²²⁶ Am ₀₅	²¹⁸ Pa ₀₁	19 53027	8 542	9 974	9 841	10.973	8 878	11 170	
$^{227}Am_{05}$	²¹⁹ Pa ₀₁	18 57837	10.838	12.049	12.136	13 269	10.813	13 427	
$^{228}Am_{05}$	²²⁰ Pa ₀₁	17 68157	13 181	14 181	14 479	15.612	12 813	15.127	
$^{229}Am_{05}$	221 Pao	16 82317	15.609	16 408	16 908	18.040	14 912	18 084	
$^{223}Cm_{oc}$	²¹⁵ Llo2	20.00377	8 222	9 764	9 519	10.715	8 621	10.859	
$^{224}Cm_{oc}$	²¹⁶ U ₂₂	20.00377 20.49267	7.086	8 741	8 384	9 579	7 669	9 747	
²²⁵ Cm _o	²¹⁷ Uo2	20.19207	6 572	8 278	7 869	9.065	7 238	9 247	
²²⁶ Cmos	²¹⁸ Llo2	20.71107	5 919	7 691	7.002	8 412	6 693	8 607	
²²⁷ Cm _o	²¹⁹ Llos	19 95267	8 193	9 7 2 3	9 4 9 1	10.686	8 573	10.858	
²²⁸ Cmor	²²⁰ Llo2	18 94957	10 562	11.859	11.860	13.055	10 563	13 191	
²²⁹ Cm _o	²²¹ Llo2	18 08847	12 759	13.855	14.058	15.055	12 432	15 344	
²³⁰ Cmoc	²²² Llo2	17 30767	14 901	15.813	16 199	17 394	14 275	17 434	
²³¹ Cm _o	²²³ Llas	16 67737	16 740	17 504	18.038	19.233	15 871	19 223	
²²³ Bkoz	²¹⁵ Nn	19.85407	9 237	10.745	10.030	11 793	9.466	11 882	
²²⁴ Bkoz	²¹⁶ Nn	20 56017	7 588	0 250	8 887	10.144	8.083	10.267	
²²⁵ Bkoz	²¹⁷ Np	20.30017	6.611	8 381	7 000	0 166	7 267	0 308	
²²⁶ Bk	²¹⁸ Np	20.99137	6.421	8 208	7.909	9.100 8.976	7.207	9.500	
$227 Bk_{}$	²¹⁹ Nn	21.00277	5 837	7.684	7.136	8 303	6.618	9.120 8.556	
²²⁸ Bkoz	²²⁰ Np	20.32177	7 976	9 501	9.274	10 531	8 381	10.676	
²²⁹ Bkoz	²²¹ Np	10 45247	9.974	11 388	11 272	12 529	10.051	12 6/8	
²³⁰ Bk	²²² Np	19.43247	11 057	13 18/	13 255	14 512	11.728	1/ 505	
²³¹ Bk	²²³ Np	17 01877	13.873	1/ 028	15.255	16.428	13 365	16 /60	
²³² Bkoz	²²⁴ Nn	17 32687	15 517	16.434	16.816	18.073	14 783	18 075	
²³³ Bkoz	²²⁵ Np	16 78707	17.003	17 883	18 301	10.673	16 152	10.075	
$^{223}Cf_{}$	²¹⁵ P ₁₁	20 70907	7 9/8	9.653	9.246	10.565	8 38/	10.636	
²²⁴ Cf	216 P 11-1	20.70907	8 350	10.018	9.240	10.505	8 710	11 0/0	
²²⁵ Cf	$217 \mathbf{p}_{11-1}$	20.30637	7 005	8 802	8 303	0.622	7 580	0 720	
²²⁶ Cf	²¹⁸ Du-	21.10017	6.080	0.002 7.081	8.303 7 387	9.022	6.820	9.720	
$227 Cf_{cf}$	²¹⁹ D 1-	21.32117	6 1/12	7.201 8.024	7.307	8 750	6 867	0.021	
²²⁸ Cf	220 D 11-	21.4/01/ 21.60877	5 6/19	0.024 7 501	7. 4 39 6 0/6	0.139 8 765	6 155	0.00U 8 207	
$^{229}Cf_{}$	²²¹ Du	21.090//	J.040 7 510	0.245	0.940	0.203	7 020	0.397	
230 Cf	222 Du	20.80237	1.318	9.243 10.707	0.01/	10.130	1.989	10.200	
²³¹ Cf	223 Du	20.02377	9.230	10./9/	10348	11.808	9.428	12 746	
C1 98	224 Dec	19.2018/	11.034	12.424	14.062	15.0/2	10.944	15./40	
233 Cf	225 D	10.3010/	14.704	15.9/5	14.002	13.381	12.394	13.424	
234 Cf	226 Des	10.01/0/	14.232	15.551	15.549	10.009	13.00/	10.880	
C198	r u94	17.30237	13.077	10.033	10.973	10.293	14.090	10.2/3	

		<i>Q</i> Value (MeV)	$\log_{10}[T_{1/2}(s)]$						
Parent nuclei	Daughter nuclei		$\overline{T_{1/2}^{ m MGLDM}}$	$T_{1/2}^{(Q)}$	$T_{1/2}^{(A_c)}$	$T_{1/2}^{(Z_c Z_d)}$	$T_{1/2}^{(C)}$	$T_{1/2}^{(\text{UDL})}$	
²³⁵ Cf ₉₈	²²⁷ Pu ₉₄	16.96297	17.247	18.078	18.545	19.864	16.258	19.801	
$^{223}Es_{99}$	²¹⁵ Am ₉₅	21.40977	7.069	8.936	8.367	9.749	7.653	9.791	
²²⁴ Es ₉₉	²¹⁶ Am ₉₅	21.16787	7.551	9.362	8.849	10230	8.044	10.274	
²²⁵ Es ₉₉	²¹⁷ Am ₉₅	20.97227	7.939	9.706	9.238	10.619	8.359	10.666	
²²⁶ Es ₉₉	²¹⁸ Am ₉₅	21.55937	6.639	8.541	7.938	9.319	7.279	9.388	
²²⁷ Es ₉₉	²¹⁹ Am ₉₅	22.05897	5.571	7.587	6.869	8.250	6.397	8.336	
²²⁸ Es ₉₉	²²⁰ Am ₉₅	22.08627	5.479	7.501	6.777	8.158	6.315	8.251	
²²⁹ Es ₉₉	²²¹ Am ₉₅	22.21107	5.191	7.242	6.489	7.871	6.074	7.972	
²³⁰ Es ₉₉	$^{222}Am_{95}$	21.33157	6.975	8.824	8.273	9.654	7.529	9.748	
²³¹ Es ₉₉	²²³ Am ₉₅	20.56967	8.616	10.289	9.914	11.296	8.885	11.376	
²³² Es ₉₉	$^{224}Am_{95}$	19.89977	10.140	11.658	11.438	12.819	10.156	12.882	
²³³ Es ₉₉	²²⁵ Am ₉₅	19.27407	11.639	13.012	12.937	14.319	11.418	14.358	
²³⁴ Es ₉₉	²²⁶ Am ₉₅	18.78657	12.856	14.114	14.154	15.535	12.449	15.554	
²³⁵ Es ₉₉	$^{227}Am_{95}$	18.31647	14.077	15.226	15.376	16.757	13.492	16.753	
²³⁶ Es ₉₉	²²⁸ Am ₉₅	17.86817	15.290	16.334	16.588	17.969	14.534	17.939	
²³⁷ Es ₉₉	²²⁹ Am ₉₅	17.52347	16.249	17.212	17.547	18.928	15.360	18.877	
²³⁸ Es ₉₉	$^{230}Am_{95}$	17.18767	17.212	18.096	18.510	19.892	16.195	19.818	
238 Fm ₁₀₀	²³⁰ Cm ₉₆	18.47577	14.249	15.436	15.548	16.991	13.610	16.6969	
239 Fm ₁₀₀	²³¹ Cm ₉₆	18.12117	15.195	16.298	16.493	17.936	14.420	17.896	
²⁴⁰ Fm ₁₀₀	²³² Cm ₉₆	17.75017	16.218	17.234	17.516	18.959	15.302	18.897	
²³⁸ Md ₁₀₁	230 Bk ₉₇	19.78187	11.558	13.049	12.856	14.362	11.299	14.365	
²³⁹ Md ₁₀₁	231 Bk ₉₇	19.41837	12.433	13.839	13.731	15.237	12.037	15.229	
240 Md ₁₀₁	$^{232}Bk_{97}$	19.05677	13.331	14.653	14.629	16.135	12.798	16.113	
²⁴¹ Md ₁₀₁	²³³ Bk ₉₇	18.68017	14.298	15.532	15.596	17.102	13.621	17.064	
$^{242}Md_{101}$	$^{234}Bk_{97}$	18.25197	15.442	16.576	16.740	18.246	14.603	18.185	
$^{243}Md_{101}$	²³⁵ Bk ₉₇	17.86027	16.525	17.568	17.824	19.329	15.536	19.245	
²⁴⁴ Md ₁₀₁	²³⁶ Bk ₉₇	17.63867	17.140	18.130	18.438	19.944	16.066	19.849	

TABLE III. (Continued.)

in Sec. II. $T_{1/2}^{(\text{UDL})}$ given in column 10 represents the UDL half-life predictions. Since the mass defect ⁸Be is slightly greater than that of 2α , a larger Q value and shorter half-life can be anticipated for 2α decay than ⁸Be emission. We can observe this by analyzing Table II. The half-lives for 2α decay are less than that of ⁸Be emission and as a result 2α decay is more probable than ⁸Be emission. Moreover, the possibility of ⁸Be emission is less since it is a weakly bound nucleus.

In Fig. 9, the logarithms of decay half-lives computed using the MGLDM with different preformation factors and UDL for the 2α decay of $^{218-258}$ Pu and $^{218-258}$ Am are plotted along the *y* axis and the mass numbers of daughter nuclei are plotted along the *x* axis. As depicted in Figs. 10–12, similar graphs are drawn for the 2α decay of $^{223-268}$ Cm, $^{223-268}$ Bk, $^{223-268}$ Cf, $^{223-268}$ Es, $^{238-273}$ Fm, and $^{238-273}$ Md.

A peak and dip in half-life are observed at mass numbers 212 and 216, respectively, for the 2α decay of $^{218-258}$ Pu. The daughter nuclei contain 126 neutrons when the mass number of the daughter is 216 whereas the parent nuclei's neutron number is 126 when the daughter's mass number is 212. The same is true for the decay of $^{218-258}$ Am, where maximum and minimum $T_{1/2}$ are found at mass numbers 213 and 217, respectively, as demonstrated in Fig. 9. In the case of $^{223-268}$ Cm, half-life shows a minimum value at mass number

218 corresponding to magic neutron number 126. Figure 10 shows that for the double alpha decay of $^{223-268}$ Bk, minimum $T_{1/2}$ is observed at mass number 219 when the daughter nuclei possess magic neutron number 126.

For mass number 220, representing neutron number 126, the least half-life is shown for 2α decay from $^{223-268}$ Cf. At mass number 216, when the parent nucleus contains 126 neutrons, the 2α decay of Cf attains a maximum value for halflife. From Fig. 11, the least half-life for the decay of ^{223–268}Es is noted at mass number 221, which indicates neutron magic number 126. The decay half-life achieves maximum value at mass number 217 for $^{223-268}$ Es, when the parent nuclei's neutron number is 126 whereas for $^{238-273}$ Fm, maximum $T_{1/2}$ is observed at 254, when the parent nuclei's neutron number is 162. The analysis of Fig. 12 shows that the half-lives approach their minimum values at mass number 258 for the 2α decay of $^{238-273}$ Fm and at mass number 259 for the 2α decay of ${}^{238-273}$ Md corresponding to neutron number 162. Double alpha decay from ${}^{238-273}$ Md shows maximum $T_{1/2}$ at mass number 255, when the parent isotope has 162 neutrons. The observations from the double alpha decay of these isotopes are similar to those from alpha decay. The decay half-lives approach their maximum and minimum values when the parent nuclei and daughter nuclei, respectively, possess a magic number of neutrons.

Table III lists the isotopes having the shortest half-lives for double alpha decay. $T_{1/2}^{\text{MGLDM}}$ in column 4 in Table II represents the logarithm of the decay half-life in seconds estimated using MGLDM. $T_{1/2}^{(Q)}$, $T_{1/2}^{(A_c)}$, $T_{1/2}^{(Z_cZ_d)}$, and $T_{1/2}^{(C)}$ in columns 5–8 in Table II give the half-life determined using MGLDM with various preformation factors mentioned in Eqs. (11)–(14) given in Sec. II. $T_{1/2}^{(\text{UDL})}$ given in column 9 represents the UDL half-life predictions.

Due to their great probability of undergoing decay and likelihood of being observed experimentally, the isotopes with the shortest half-lives ($<10^{20}$ s) for double alpha decay are only highlighted in Table II. A proposal [14] has been submitted at the ISOLDE facility in CERN for probing the double alpha radioactivity of ²²⁴Ra. Hence there is a growing interest in investigating 2α decay experimentally and we anticipate that our findings regarding the double alpha decay of these isotopes will be helpful while planning future double alpha decay experiments.

Additionally, we plotted the logarithms of 2α decay half-lives of all the isotopes predicted by MGLDM with different preformation factors against $ZQ^{-1/2}$ and found them to be linear. The plots created using the Q dependent preformation factor and the cluster size (A_c) dependent preformation factor are displayed in Fig. 13. All the plots are fitted into a straight line and the slope and intercept are obtained for each plot. The slopes obtained by using P_c (Q), P_c (A_c), P_c (Z_cZ_d), and P_c (C) are 4.2349, 4.4208, 4.4170, and 4.1240, respectively, whereas the corresponding intercepts are -82.7736, -86.6510, -85.2593, and -81.9688. The linear nature of the plots connecting $\log_{10}T_{1/2}$ versus $ZQ^{-1/2}$ stresses the reliability of our predictions using MGLDM with different preformation factors.

- [1] P. R. Chowdhury, C. Samanta, and D. N. Basu, Phys. Rev. C 73, 014612 (2006).
- [2] V. Yu. Denisov and A. A. Khudenko, Phys. Rev. C 81, 034613 (2010).
- [3] B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. C 45, 2247 (1992).
- [4] M. Goeppert-Mayer, Phys. Rev. 48, 512 (1935).
- [5] E. Beardsworth, R. Hensler, J. W. Tape, N. Benczer-Koller, W. Darcey, and J. R. MacDonald, Phys. Rev. C 8, 216 (1973).
- [6] K. P. Santhosh, Phys. Rev. C 104, 064613 (2021).
- [7] Z. Kohley, T. Baumann, D. Bazin, G. Christian, P. A. DeYoung, J. E. Finck, N. Frank, M. Jones, E. Lunderberg, B. Luther, S. Mosby, T. Nagi, J. K. Smith, J. Snyder, A. Spyrou, and M. Thoennessen, Phys. Rev. Lett. **110**, 152501 (2013).
- [8] D. N. Poenaru and M. Ivascu, J. Physique Lett. 46, 591 (1985).
- [9] V. I. Tretyak, Nucl. Phys. At. Energy 22, 121 (2021).
- [10] P. de Marcillac, N. Coron, G. Dambier, J. Leblance, and J. P. Moalic, Nature (London) 422, 876 (2003).
- [11] F. Mercier, J. Zhao, J.-P. Ebran, E. Khan, T. Nikšić, and D. Vretenar, Phys. Rev. Lett. **127**, 012501 (2021).
- [12] K. P. Santhosh and Tinu Ann Jose, Phys. Rev. C 104, 064604(2021).
- [13] V. Yu. Denisov, Phys. Lett. B 835, 137569 (2022).
- [14] Ch. Theisen and E. Khan, CERN-INTC Proposal No. 2022-016 /INTC-CLL-049, 2022 (unpublished).

IV. CONCLUSIONS

In our present paper we have studied the α decay and 2α decay of different isotopes of Pu, Am, Cm, Bk, Cf, Es, Fm, and Md in the mass region A = 218 to 273 using MGLDM and UDL. We compared the α decay half-lives of these isotopes predicted using MGLDM and UDL with corresponding experimental data. With standard deviations of 1.18 and 1.20, respectively, the half-lives predicted using MGLDM and UDL are in good agreement with the experimental results, demonstrating the validity of our method. Consequently, we expanded our research to also examine the double alpha decay of these isotopes using MGLDM by utilizing different preformation factors. From our analysis, we concluded that minimum and maximum half-lives indicate the stability of daughter nuclei and parent nuclei, respectively. At neutron numbers 126 and 162 of the parent or daughter nuclei a peak or dip in half-lives is observed. The nuclei possess an extra stability at magic numbers 126 and 162. Hence the parent nuclei with magic neutron number will be stable against decay whereas the magic daughter nuclei will be formed with ease after undergoing decay, resulting in maximum and minimum $T_{1/2}$, respectively. Thus the magicity of the nucleus plays a significant role in the half-life of the nucleus. We have also obtained linear plots when $\log_{10}T_{1/2}$ of all the isotopes are plotted against $ZQ^{-1/2}$ which further proves the reliability of our calculations.

ACKNOWLEDGMENTS

K.P.S. would like to thank the Council of Scientific and Industrial Research, Government of India, for the financial support under the scheme "Emeritus Scientist, CSIR," Grant No. 21(1154)/22/EMR-II.

- [15] G. Royer and B. Remaud, J. Phys. G: Nucl. Part. Phys. 10, 1057 (1984).
- [16] G. Royer and B. Remaud, Nucl. Phys. A. 444, 477 (1985).
- [17] J. Blocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang, Ann. Phys. (NY) **105**, 427 (1977).
- [18] K. P. Santhosh, C. Nithya, H. Hassanabadi, and D. T. Akrawy, Phys. Rev. C 98, 024625 (2018).
- [19] K. P. Santhosh, C. Nithya, and Tinu Ann Jose, Phys. Rev. C 104, 024617 (2021).
- [20] K. P. Santhosh and Tinu Ann Jose, Phys. Rev. C 99, 064604 (2019).
- [21] K. P. Santhosh and Tinu Ann Jose, Nucl. Phys. A. 992, 121626 (2019).
- [22] K. P. Santhosh and Tinu Ann Jose, Indian J. Phys. 95, 121 (2021).
- [23] K. P. Santhosh and Tinu Ann Jose, Pramana 95, 162 (2021).
- [24] J. Blocki and W. J. Swiatecki, Ann. Phys. (NY) 132, 53 (1981).
- [25] C. Qi, F. R. Xu, R. J. Liotta, and R. Wyss, Phys. Rev. Lett. 103, 072501 (2009).
- [26] N. Wang, M. Liu, X. Wu, and J. Meng, Phys. Lett. B 734, 215 (2014).
- [27] M. Wang, W. J. Huang, F. G. Kondev, G. Audi, and S. Naimi, Chinese Phys. C 45, 030003 (2021).
- [28] F. G. Kondev, M. Wang, W. J. Huang, S. Naimi, and G. Audi, Chin. Phys. C 45, 030001 (2021).