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The equation of state with quantum statistics corrections is used for particle number fluctuations w of
isotopically symmetric nuclear matter with interparticle van der Waals and Skyrme local density interactions.
The fluctuations, w o 1//C, are analytically derived through the isothermal incompressibility /C at first order
over a small quantum-statistics parameter. Our approximate analytical results appear to be in good agreement
with the results of accurate numerical calculations. These results are also close to those obtained by using more
accurate Tolman and Rowlinson expansions of the incompressibility & near the critical point. A more general
formula for fluctuations w, improved at the critical point, was obtained for a finite particle number average
(N) by neglecting, for simplicity, small quantum statistics effects. It is shown that for a large dimensionless
parameter, o o< KC>(N)/K", where K" is the second derivative of the incompressibility /C as function of the
average particle density n, far from the critical point (o >> 1), one finds the traditional asymptote, @ o< 1//C, for
the fluctuations w. For a small parameter, @ < 1, near the critical point, where C = 0 and o = 0, one obtains
another asymptote of w. These fluctuations, having a maximum near the critical point as function of the average
density n, for finite values of (N) are finite and relatively small, in contrast to the results of the traditional

calculations.
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I. INTRODUCTION

Many works have been devoted to studying the prop-
erties of nuclear systems with strongly interacting particles;
see, e.g., Refs. [1-8]. Realistic versions of the nuclear matter
equation of state include both attractive and repulsive forces
between particles. Thermodynamical behavior of this mat-
ter leads to the liquid-gas first-order phase transition which
ends at the critical point; see Refs. [9-11] and, for special
emphasis on finiteness of nuclear systems in multifragmeta-
tion reactions, Refs. [12,13]. Experimentally, the presence
of the liquid-gas phase transition in nuclear matter was re-
ported and then analyzed in numerous papers (see, e.g.,
Refs. [12-20]). Critical points in different systems of nuclear
matter were studied in many theoretical works; see, e.g., re-
cent Refs. [21-23]. These works, which are mainly based on
the proposed van der Waals (vdW) and effective Skyrme local
density (SLD) approaches for the equation of state accounting
for quantum statistics (QvdW and QSLD) [21,24], were used
to describe the properties of nuclear matter. Also, extensions
for many-component systems, and applications to the fluctua-
tion calculations (see, e.g., Refs. [25-31]), were suggested for
different thermodynamical averages [9,13,32-43].
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The role and size of the effects of quantum statistics was
studied analytically for nuclear matter, and also for pure neu-
tron and pure «-particle matter, in Refs. [44,45]. An analytical
expression for dependence of the critical point parameters
on the particle mass m, degeneracy factor g, and the QvdW
and QSLD interaction constants a, b (or their matrices) for
the vdW and those including y for the SLD was derived in
Refs. [44] and [45], respectively. In particular, the analyti-
cal approach of Ref. [44] was extended [45] to the effective
simple SLD approach [22,46,47]; see also review articles
[48]. This approach is related to the Skyrme forces through
the potential part of the local energy-density functional. Our
consideration was restricted to relatively small temperature,
T < 30 MeV, and not too large particle density. On the other
hand, the temperature T should be sufficiently large to satisfy
the smallness of the quantum statistics parameter [9]. Within
these restrictions, the number of nucleons can be determined
by a conservation rule, and the chemical potential of such
systems is regulated by the particle number density of nuclear
matter. An extension of the formulation to fully relativistic
hadron resonances in a gas system of baryons and antibarions
with vdW two-body interactions was considered in Ref. [49].
Applications of this extended model to the net baryon number
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fluctuations in relativistic nucleus-nucleus collisions was de-
veloped in Refs. [25-31,50]. We do not include the Coulomb
forces and make no distinction between protons and neutrons
(both these particles are referred to as nucleons). In addition,
under these restrictions the nonrelativistic treatment becomes
very accurate and is adopted in our studies.

In the present work we are going to apply the same an-
alytical method as for derivations of the equation of state,
taking into account the quantum statistics effects in terms of
a few first corrections within the QvdW and QSLD models
(see Refs. [44,45]), to analyze the particle number fluctuations
near the critical point of nuclear matter; see also Ref. [51].
Different analytical and numerical approximations to these
fluctuations might be helpful to determine ranges of their
applicability. As shown, e.g., in Ref. [42], the expression of
the particle number fluctuation, w, in terms of the suscep-
tibility, and then, through the incompressibility, o o 1/IC,
was derived from the original definition for w in terms of
the moments of the Gibbs distribution, averaged over phase
space variables, by assuming the smallness of the fluctuations.
However, the limit of this traditional expression to the critical
point, where /C = 0, is obviously divergent. Divergences of
fluctuations w near the critical point are incompatible with a
more accurate equation of state, accounting for interparticle
interaction, as a relation between statistically averaged char-
acteristics of the desired system, which are determined up to
these fluctuations [33,39,40,42]. The main critique of these di-
vergences is that they are due to highly idealized assumptions
(e.g., a mean-field approach up to particle correlations in the
infinite system [10,11]). These assumptions were used in the
derivations of fluctuations @ from the moments of the Gibbs
distribution over particle number N in the grand canonical
ensemble. The traditional expression for the fluctuation (@ o
1/K) in terms of the incompressibility K fails near the critical
point. Some suggestions to overcome the divergence problem
for the fluctuations, taking into account the particle correla-
tions, can be found in Ref. [33]. For the vdW problem, one
can find other specific semianalytical suggestions in Ref. [43].
We will apply another statistical approach [52,53] based on
expansion of the free energy F over powers of a small differ-
ence of the particle number density p and its average n for a
given temperature 7. We are going to use explicitly the statis-
tical Gibbs distribution averaged, however, in phase space for
calculations of the particle number density dispersion and the
corresponding fluctuation w; see also Refs. [38—40]. As is well
known (see, e.g., [38,40]), the expansion of F at second order
leads to the traditional expression for the particle number
fluctuations, w o 1/KC. Taking into account only fourth-order
terms, and neglecting the second-order ones in a very close
vicinity to the critical point, one has several improved re-
sults derived in Refs. [39,40]. We will take into account both
fourth- and second-order terms and obtain a more general
result for these fluctuations, accurately determining the two
asymptotes far from and close to the critical point for a finite
average particle number. In order to compare in detail a more
general asymptote and the two above-mentioned asymptotes
near the critical point, we take the phenomenological vdW and
SLD density-dependent interactions as well-known examples.

In this way, we will neglect the quantum statistics effects
which are not very important for fluctuations, in contrast to
the critical point calculations. Notice that the order parameter
p —n in our approach is essentially different from p — n,,
where n, is the critical value of the average particle number
density n, in the Landau local fluctuation theory. Therefore,
in our mean-field approach, up to statistical correlations, it
is possible to cross the critical point with finite fluctuations
by changing a dimensionless parameter a o< K>(N)/n*TK"
to zero. In this approach, the second derivative K" of the
isothermal incompressibility K is assumed to be not zero at
the critical point (K = 0) for a finite average of the particle
numbers N, (N). Otherwise, we will need to use an expansion
of the free energy F up to high order terms. The parameter «
is a measure of the effective distance from a critical point,
which depends on the interparticle interaction and average
particle number (N). Thus, we will have a transition from
large effective parameter o of the traditional formula for the
fluctuations w to the Rowlinson formula [39] at small &, which
is local near the critical point, within the Smoluchowski and
Einstein fluctuation theory [52,53]. To some extent, that is a
more general approach than the classical Landau fluctuation
theory. The fluctuation calculations based on the statistically
averaged level density obtained analytically in Refs. [54-57]
will be adopted to determine the particle number fluctuations
for finite nuclear systems in a forthcoming work.

The paper is organized as follows. In Sec. II we review
some general relationships of the statistical physics used in
our derivations. In Sec. III, the known analytical derivations
and results for the classical fluctuations are presented fol-
lowing Refs. [9,38-40]. We apply them for the traditional
analytical method of fluctuation calculations in terms of the
incompressibility for the vdW and SLD interparticle interac-
tions in Sec. IV. Then, in Sec. V, we present the improved
derivations for the fluctuation calculations based on the sta-
tistically averaged Gibbs distribution. The same vdW and
SLD interaction models are taken as simple exemplary cases.
All obtained results are discussed in Sec. VI. We compare
our analytical traditional calculations with those modified
by Tolman [38] and Rowlinson [39], and with numerical
calculations carried out by Gorenstein and his collaborators
in Refs. [21,24,25]. The same parameters of simple phe-
nomenological interactions, vdW and SLD, are used for the
comparison between the results of Secs. IV and V. These
results are summarized in Sec. VII. Some details of our
derivations are presented in Appendices A—F. Pecularities
of the classical fluctuations in terms of the first- and high-
order susceptibilities and incompressibilities of nuclear mat-
ter are discussed in Appendices A and B, respectively. In
Appendix C, the analytical results for the critical point are
reviewed for the case of the QvdW and QSLD approaches
taking into account the quantum statistics corrections to the
vdW (Ref. [44,45]) and SLD [45] models. In Appendices D
and E, following Ref. [38,39] we present some details of the
derivations of the general improved fluctuation formula and
its asymptote near the critical point, respectively. Appendix F
is devoted to our approach following the Tolpygo classical
fluctuation theory [40].
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II. GENERAL POINTS

For calculations of classical fluctuations of the particle
numbers, w, within the grand canonical ensemble, one can
start with the particle number average [9,42]

(V) = ZN/W;éV)(q, p;T, u, V)T . (1)
N

Here, WM (q, p; T, 1, V) is the Gibbs distribution function of
phase space variables q, p; dI"y, = dqdp for a given particle
number N (normalized as usually for a classical system).
Other variables, T, u, and V, are the temperature, chemical
potential, and system volume in the grand canonical ensem-
ble, respectively. The Gibbs probability distribution We(év) can
be written in terms of the classical Hamiltonian Hy(q, p) as

WV (q, p: T, 1, V)

1
- —[Hn(q, p) — uN1/T}. 2
Z(T,,u,V)eXp{ [Hv(q, p) — uN)/T}.  (2)
The Hamiltonian Hy(q, p) is the basic part also for the nor-
malization factor,

Z(T, 1, V) =Z/dFN exp {—[Hn(q, p)—uN1/T}.  (3)
N

Thus, the partition function Z(T, u, V) obeys the normal-
ization condition for the distribution Wegv). This distribution,
averaged below over the phase space variables q and p for a

given particle number N, will be denoted as WSZ) (the line
above the quantity means averaging only over the phase space
variables). In addition, the averaging over particle numbers
N, as in Eq. (1), along with averaging over the phase space
variables, will be shown by angle brackets, (W); see Eq. (2)
and Ref. [42]. Using these notations, for the classical entropy
S(T, u, V) one has

ST, 1. V) = —(Inw)
1
= Z[{H) — u(N) + T Z(T,w, V). @)

We may now introduce the equilibrium thermodynamical po-
tential, Q(7T', u, V), for the grand canonical ensemble with the
help of the relationship

Q=F —wH)=U—TS — n(H), U=(H). 5)

The free energy F(T, N, V) of the canonical ensemble is con-
sidered as function of the temperature 7', particle number N,
and system volume V,

F=U-TS. (6)

Then, the chemical potential © can be defined in terms of
the free energy F, u = (3F /90N )r in the canonical ensemble.
From Eq. (5) one finds the standard expression [9] for a
thermodynamical potential €2 of the grand canonical ensemble
in terms of the partition function Z [Eq. (3)],

QT, 1, V)= T In Z(T, u, V). 7

For intensively large systems, one can consider a local density
of the thermodynamic potential € per unit of volume V, i.e.,

the pressure P(T, n) [9]. For such intensive systems in the
grand canonical ensemble, one has Q@ = —VP(T, n), where
we can neglect the explicit volume dependence of the pres-
sure, P(T, n). This dependence is realized only through the
averaged particle number density n = N/V. The equation of
state, P = P(T, n), can be found through the explicit expres-
sion for P(T, n) as a function of temperature 7" and particle
number density n. This takes place, e.g., if we can neglect the
surface part of the system pressure (the capillary pressure due
to the surface tension) with respect to its volume part.

III. CLASSICAL FLUCTUATIONS

As mentioned in the Introduction, the derivation of the
expression for the particle number fluctuations o in terms of
the incompressibility /C from the moments of a mean Gibbs

distribution ng) is questionable near the critical point (CP),
where K = 0. Indeed, the assumption of smallness of w in
this derivation fails near the CP (see, e.g., Refs. [38—40]).
Therefore, to clarify the behavior of fluctuations near the CP,
one has to consider more accurately the derivations within
the classical fluctuation theory [52,53] beginning from the
dispersion (squared) of the particle number distribution:

Dy = ((AN)’) = (N?) — (N)?, ®)
where AN = N — (N) is the deflection of the particle num-

ber N from its average (N). Averages (N“) are the mean «

I L =N .
moments of the distribution function Wiq) (see the previous
section),

(N*) = / NW dN,

/Wﬁ’:)dN =1, k=1,2. 9)

The particle number dispersion Dy [Eq. (8)] can be expressed
in terms of these two moments, (N) and (N?), of the Gibbs

Lo (N .
distribution W éq ), averaged over the phase space variables; see
above. For intensive systems, it is convenient to calculate first
the dispersion D, of the particle number density fluctuations,
e.g., in units of n? for the dimensionless reason,
2
D, (AP (0)) = ()

2 2 n? ' 19

where Ap = p — (p) is the deflection of the particle number
density p from its average (p) = n (see Ref. [38]).

We will discuss the normalization of the dispersion Dy
in terms of the particle number fluctuations later. First, we
will show that the dispersions (8) and (10) are significantly
different by order of the power of (N), linear and quadratic,
far and near the critical point, respectively.

The angle brackets in Eq. (10) are defined by

Pup Pup
(pK)=/0 dpp*“W(p), fo doW(p)=1, (11)

where again k = 1,2 and p,; is the upper limit of the inte-
gration over particle number density p. Notice that for the
vdW interparticle interaction one has a restriction to the upper
limit py, of this integration by its value 1/(3b), where b is
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the volume exclusion parameter [9,44,45], while p,, = oo for
the SLD interaction case. We will expand approximately p,,
to the infinity in all following normalization integrals. The
probability distribution function. The probability distribution
function W (p) in Eq. (11) can be approximated by [38]

[ F(p)—F]
T

W(p)=w®® exp ) (12)

where W is the normalization constant,

o0 r _ = 71
0 T

We omit the temperature variable 7' in the free energy F
because it is a constant in all our following derivations.

Following the ideas of Smoluchowski and Einstein (see
Refs. [38,52,53]), for small fluctuations, the free energy F (o)
for an intensive system can be expanded in powers of a
difference between the particle number density, p, and its
statistical average, (p) = n. Up to fourth-order terms for the
fixed temperature 7', one writes

Fio)— F 1(0°F ( 2
(p) =F(n)+ E(a—pz)p:n p—n)
1 (9*F A
+ﬁ<w)p_n(p_n) e (14)

At fourth order, as will be used below, one writes

A{p}=F(p) — F(n)

1(82F) ( y
= —| —— Io—n
2 3,02 p=n

1 (9'F )
+ﬁ<a_p4)p:n(” — (15)

We introduced here the functional A{p} of the particle number
density p. The first- and third-order terms in these expansions
can be put to zero because our system is considered to be
at statistical equilibrium with a minimum of the free energy
F (p) and there are no external fields under consideration. We
will assume also that the fourth-order terms dominate over
high order terms. As shown in Refs. [10,11,13], a little more
complexly but still analytically, sixth-order terms can be also
taken into account for study of the tricritical point. Some
appearing constants could be included in the normalization
factor W©; see Egs. (12) and (13). Using the expansion of
the free energy F (p), Eq. (14) at fourth order, one can imme-
diately rewrite the probability distribution (12) as

F E
Wa(p) = W,* exp [—ﬁ((p —m 4o~ n)“)}, (16)
where

o_|[[7 _2_2£_4>_1
A —{/0 dPGXp[ T (p n)+12T(p n) )

a7

and F;, and Fy are derivatives of the free energy F given by
Eq. (D3). Indeed, according to Egs. (16) and (17), one has the

normalization condition,

o0
| wtortp =1, m=24 (1)
0
Therefore, assuming that the second-order correction in the
expansion (14) for the free energy F is relatively large with

respect to high order terms, one can neglect all other fourth-
and high-order terms in Egs. (16) and (17),

F
Wa(p) = W,” exp [—ﬁ(p - n)z}, (19)

o_|[F B N
W, _{/0 d,oexp|: 2T(,o n)i|} . (20)

Thus, from Eq. (15) one finds'

where

(Az{p})

—n)?) =2 : 21
((p —n)7) P (21

where A,{p} is given by A{p}, Eq. (15), at the second order,
Arfp} = 3Fr(p —n)? (22)

(see Ref. [38], where A(x) is taken here as the free energy
F(p) for a given temperature 7). Calculating independently
the average of (p — n)? in the left-hand side (Lh.s.) of Eq. (21)
by using approximately the probability distribution W, of the
second order, Eq. (19), for the particle number density disper-
sion D$ one has

DY = ((p—n)’) = / (0 —n)’Wap)dp:  (23)
0

see Eq. (18) for m = 2. Calculating analytically the integral
in Eq. (23) at the second order [Eq. (19)] and comparing the
result with the expression on right of Eq. (21), one obtains
(see Ref. [38])

(Alph) = T/2. (24)

For the expressions of the derivatives of the free energy F (o)
in terms of the incompressibility K and its second derivative,
one can use the well-known [9] relationship between the pres-
sure P(p) and free energy F(p),

oF

Plo)=—= (25)

where

OF _ p* 0F(p)

AV (N) ap (26)

"Notice that the distribution W5, Eq. (19), can be obtained also
starting from the Gibbs expression, ox exp(S), where S is the entropy
(see Ref. [9]). Expanding the entropy near the statistical equilibrium,
(05/9p)p=n = 0, one has a probability distribution of the same Gaus-
sian form. We use here the definitions of the entropy S and free
energy F, through the partition function Z [see Eq. (6)]. In addition,
one can take into account that the high-order (second and higher)
derivatives of the entropy S at the equilibrium are identical to those
of the free energy F over the particle number density p for a constant
temperature 7', and all probability distributions are normalized to 1.
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Differentiating the identity (25) over p and accounting also for
the zero first derivative of F' at the statistical equilibrium p =
n in expansion (14), one can express the second derivative of
F(p) over p at p = n in terms of the incompressibility /C,

3*F (p) _ (N)K(n)
(5),.= 5 @
with
K(n):(w) ) (28)
00 ) pen

Notice that the pressure P(p) is an intensive quantity which
depends on particle number N or volume V only through the
particle number density p in our system. Using Eqgs. (24)
and (27), from the particle number density dispersion D,,,
normalized by n?, Eq. (10), at the second-order expansion of
the free energy, D', Eq. (22), and Eq. (19) for the probability
distribution W5, one obtains

(2)
D_p — L (29)
n? (NYK

Transferring this expression into the particle number disper-
sion Dy, Eq. (8), normalized by (N )2, for an intensive system,
one has

D, Dy

— N —. 30
Using finally the normalization of the dispersion Dy by (N)
we arrive at the well-known [9,32,37-42] local expression for
the fluctuations w in terms of the local isothermal incompress-
ibility, K(T', p):

~Pv T (9P
a)(T,n)w(N)w,C, IC—((SH)T, 31

where P is the pressure, P(T', n), Eq. (25), and P = P(T, n) is
the equation of state in canonical variables.

Notice that this quadratic-approach result coincides with
the well-known traditional result of the Landau theory of clas-
sical fluctuations [9]. Landau [9] normalized particle number
dispersion, Dy, by (N). However, the result for the fluctuation
w, Eq, 31), o 1/IC, is divergent near the critical point, where
IC = 0. In order to improve these fluctuation results we will
expand the free energy F' up to high-order terms in Eq. (14)
(Sec. V). But first, in the next section, let us study the tradi-
tional result (31) in more details.

IV. PARTICLE NUMBER FLUCTUATIONS
AND INCOMPRESSIBILITY

As shown in Sec. III and Appendices A and B, the fluctua-
tions of particle numbers, w [see Eq. (31)], can be expressed in
terms of the isothermal incompressibility . We will compare
the results obtained by employing different approximations
near the critical point. Note that in the derivations of both
formulas, Egs. (A1) and (31), any fluctuations are assumed to
be small. Nevertheless, we will compare the results obtained
by employing different approximations near the critical point
with the popular formulas given by Eqgs. (A1) and (31), though
the value of @ near the CP obtained by these formulas is

expected to be large. In fact, it is still an open question whether
the traditional formula (31) can be applied near the critical
point in the density-temperature (n-T') plane.

For calculations of the incompressibility XC, one can use the
so-called [24] quantum van der Waals (QvdW) or [22] quan-
tum Skyrme local density (QSLD) interaction approaches;
see equations of state (Cl) or (C6), respectively. In this
section, we will follow Refs. [44,45] at first order of the
quantum statistics expansion (see Appendix C). Moreover,
this analytical approach will be applied to the simplest uni-
form one-component intensive system of nucleons interacting
through the repulsive and attractive effective forces. For this
purpose, the incompressibility X will be considered as a linear
and (slightly) nonlinear response of the pressure P to the
particle number density n variations for the nucleon system
at constant temperature 7. Our purpose in this section is to
derive analytical results for the fluctuations w of particle num-
bers near the critical point (CP) within the QvdW and QSLD
approaches at first order of the quantum statistics parameter;
see Ref. [45].

For relatively small fluctuations of particle numbers, w, one
has Eq. (31). In Eq. (31), P is the pressure for the equation of
state, which is given in the one-component QvdW and QSLD
models for symmetric nucleons matter by Egs. (C1) and (C6),
respectively. Notice that we use a more general definition
of the incompressibility K as the variation derivative of the
pressure of the equation of state over the particle number
density n at constant temperature, in contrast to its standard
definition as the following first partial derivative of pressure
(see Appendix A). With this approximation for the incom-
pressibility, /C;, one finds from Eq. (31) the expression for
a magnitude of fluctuations:

T opP
oo, =—, K=(—]. (32)
! ]C[ Bn T

Equation (31) can be first derived from Eq. (A1) in terms of
the susceptibility x (see Appendix A). As shown in Appen-
dices A and B, using then linear variations for the chemical
potential o as function of the particle number density n,
which are therefore valid for small fluctuations, one can derive
Eq. (32). The value of this fluctuation, w, diverges in the CP
limit, n — n. and T — T.. Therefore, it can be considered
only on a finite [sufficiently large for applications of Eq. (32)
but small for using expansion near the CP] distance from the
CP. The incompressibility K in Eq. (31) as function of the
density n and temperature 7', can be expanded in power series
near the critical point T, n. over both variables 7" and n. The
derivatives are evaluated here at the current point 7', n within
the precision of high-order terms. Up to second-order terms,
one has

T
[ORSNOR ]C—3,
JP 2P
O o —n,
o= (5n), () om0
2P oy MY o o)
anoT T\ ), T
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As suggested in Refs. [38,39], we use approximately the fol-
lowing definition, valid at the critical point:?

P 9*P
()= )= o

Assuming (see Refs. [38,39]) then that the variations linear in
temperature and quadratic in density are dominant over high-
and low-order variations, one can define another approxima-
tion near the CP:

©_ T

ORRON = o’ 35)
3
92P 1/0%P
KO= —T-T)+-(— —n)?. (36
3= Jnar )+2<8n3>T(n ne)’. (36)

As mentioned above, in these both approaches, Egs. (33) and
(35) [with Eq. (36)], to the variation of the incompressibility
K and of the fluctuations w, Eq. (31), all the derivatives are
still taken at a current point n, T'.

A. Fluctuations within the QvdW approach

For the Fermi statistics parameter in the quantum van der
Waals (QvdW) model, one finds [44,45]

£ R 732

= —, = —
T—bn’ ° 7 2g(mTyPR

(37
where m is the particle mass and g the system degeneracy.
Substituting Eq. (C1) for the pressure Py in the fluctuation
wy, Eq. (32), one can now obtain w, at the first order over a
small quantum-statistics parameter §, Eq. (37), in the explicit
analytical form

o(T,n) ~ w, = [(1 +28)/(1 —nb)* —2na/T1"", (38)

where § is given by Eq. (37), § = §(T, n). Then, the behav-
ior of w(T, n), Eq. (38), near the critical point (T, n.; see
Eq. (C2) for the first-order analytical CP expressions [44,45])
will be studied within the QvdW model. Expanding now the
incompressibility X in powers of the temperature difference
T — T, [using the expression in the parentheses of Eq. (38)
for the fluctuations w, ], we calculate immediately derivatives
of the pressure Py, Eq. (C1), over the density n at a current
T, n point. With the help of the new variables

t=T/T.—1, v=n/n. — 1, (39)

one can fix first n =n. (v =0) and find the behavior of
w(T, n) as function of temperature 7 near the critical point.
For this purpose, it is convenient to present §(7', n), Eq. (37),
as

8(T,n) =d8[(1 + )T, (1 + v)nc]. (40)

We will take now the limit of this expression at v =0 and a
small 7. In this case, v = 0, one can approximate §(7, n) at

2The CP is assumed to be of the simplest second-order, in contrast
to a high-order CP when high-order derivatives become also zero.

TABLE I. Results for the CP parameters of the vdW model
[Eq. (C4)] (second column) and of the QvdW at first order over the
quantum statistics parameter § [Eqs. (C2) and (37)] (third column)
for symmetric nuclear matter; see Eq. (C5) for vdW parameters.
Numerical results obtained within the accurate QvdW model in
Ref. [24] are shown in the fourth column.

Critical point vdW First order Numerical
parameter Eq. (C4) Eq. (C2) full QvdW
T. (MeV) 29.2 19.0 19.7

n. (fm=) 0.100 0.065 0.079
P, (MeV fm™) 1.09 0.48 0.56
the first-order expansion over T by

R/, 3

S((1 4+ )T, n.)~ 1—=1]), 41

(4ot o) 2g(mn>3/2<1—ﬁ>( 2 ) @

where 8 = bn,.

The critical point (CP) of the liquid-gas phase transition
satisfies the well-known equations (34) (see Ref. [9]). Using
now Eq. (38) and the first of these CP equations near the CP,
one finds (v = 0)

(© Ten, —1
@ ~ a)] ((1 + t)n’ nc) = GW,'ET El (42)
where
P (1-B)
~ —, §.=08(1,n.). 43
G~ m e A= 3T @)

Taking the exclusion-volume parameter b from Eq. (C5) and
the results for T, n., and P, for nucleon matter (g =4, m =
938 MeV) from Table I, one finally obtains Gw . ~ 0.29.
This value is only slightly different from that of Gw ; ~ 0.26,
obtained in Ref. [25]. For the case of the classical vdW model
(8, = 0), one arrives at the well-known result Gw , = 1/6.

Similarly, using Eq. (41), for the fluctuations w(7, n),
Eq. (38), at the second-order expansion over v, for the con-
stant T = T, (t = 0), one finds

§(T., (1 +v)n.)
N 3/ n, ! v V2 g m
N2g(mTc)3/2(l—/3)< +1—/3+(1—/3)2>' @

Finally, using the fluctuations ,; [Eq. (38)] and both CP
equations of Eq. (34) near the CP, one arrives for T = 0 at

T.n, _
Y Gwa v (45)

o~ o (T, (1 +v)n.) =

where
G o~ P AP
Y Tone 3B128,(1 4 B) + B

The last number was obtained by using Eq. (C5) and Table 1.
For the case of the classical vdW approach (5, = 0), one has
from Eq. (46) that Gw,, = 2/9, which is the same as that
shown in Ref. [24].

~033.  (46)
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B. Fluctuations within the QSLD approach

Substituting the pressure Psx, Eq. (C6), onto Eq. (32) for
the QSLD fluctuation wg, ; at the first order over a small
quantum-statistics paramet’er ¢ [see Eq. (37)], one obtains
wg, 1, also in explicit analytical form,

wg (T, n) ~ “’g()l
Ag N
=|1+2¢e—23

y+1

T

-1
+bg (¥ + D(y +2) ] N CY))
where ¢ = ¢(T, n) is the quantum-statistics parameter [see
Eq. (37)]. Other QSLD interaction parameters, dag,, bg,, and
y, are defined in Eq. (C9). For the classical (zero) SLD ap-
proximation to the fluctuations, a)gl)(), one finds from Eq. (47)

0) ~ ,(0)
wg (T, n) = g
)

P 2aSank
- T(O)
Sk

[n(O)]y+1 -1
+ b (v + Dy + 2)5“7} . (48)
TSk

As in Sec. IV A, the fluctuations wg, (T, n), Eq. (47), near
the critical point TS(kl,)c’ nélk)c (see Eq. (C7) for the first-order
analytical CP expressions [44,45]) will be derived within the
QSLD approach. Expanding now the incompressibility X in
terms of powers of the temperature difference T — T, [see
the expression in parentheses of Eq. (47)], for the fluctuations
wg ; with the help of the new variables [Eq. (39)], one can,
again, fix first n at n = n, (v = 0). In this way, one finds the
behavior of wg, (T, n) as function of temperature 7" near the
critical point. The quantum-statistics parameter (7, n) for the
QSLD approach plays the same role as (7, n) for the QvdW
fluctuation calculations. We have similar expressions for them
[see Egs. (40), (41), and (44)] where we only need to replace
8 by ¢. Using now Eq. (47), and the first equation in Eq. (34),
at first order over t near the CP, one finally obtains (v = 0)

Ten, 1
g ~ GSk,rT s (49)
with
Gsx o ~ 1 o 0.32 (50)
T T 1—e, T

where ¢. = &(T¢, n.); see Eq. (37). In these evaluations, we
used the first-order critical temperature Ts(kl) and particle num-
ber density n(slk), from Table II for nucleon matter (g =4
and m = 938 MeV), which were obtained in Ref. [45]. For
the case of the classical SLD model (¢, = 0), one arrives at
Gsk.r = 0.27.

Similarly, we use Eq. (40). Replacing then & by ¢ for the
fluctuations wg, (T, n), Eq. (47), in the second-order expan-
sion over v we apply both CP equations in Eq. (34) near the
CP at constant 7 = T, (r = 0). Finally, for the fluctuations

TABLE II. Results for the CP parameters of symmetric nu-
clear matter in the quantum-statistics Skyrme local-density (QSLD)
model; second, third, and fourth columns are given for y = 1/6 in
the three upper lines and ¥ = 1 in the three bottom lines as shown in
the fifth column; see Eq. (C9) and Ref. [45]. Zeroth- and first-order
results for the CP values [Egs. (C8) and (C7)] are shown in the
second and third columns, respectively. Numerical results obtained
within the accurate QSLD model in Ref. [22] are shown in the fourth
column.

Critical point Zeroth order  First order ~ Numerical
parameter Eq. (C8) Eq. (C7) full QSMF y
Tsk, (MeV) 20.1 15.1 153 1/6
Ny (fm ™) 0.060 0.047 0.048

Psc (MeV fm™) 0.325 0.194

Tsk.c MeV) 259 21.2 21.3 1
ng . (fm ™) 0.065 0.059 0.059

Py (MeV fm™) 0.560 0.421

wg [Eq. (47)] at T = 0, one approximately arrives at

Tn,
w oA
k
S Pc

Gskov 2, (51)

P. 2T,
Tone y(y 4+ D(y + 2)bgnl ™

In the last estimate, we used Eq. (C9) for the SLD param-
eters and Table IT at ¥ = 1/6. Notice that the first order in
expansion of the inverse fluctuation w~! for T = T, over v
disappears because of the second equation for the critical
point in Eq. (34). For the case of the classical SLD model
(6, = 0), one finds from Eq. (52) a slightly different value,
GSk,v ~ 0.48.

As the QvdW and QSLD fluctuations (7T, n), Egs. (38)
and (47) respectively, are functions of the two variables T
and n, one needs to introduce the two-dimensional critical-
order index, 1 and 2. The first component is related to the
fluctuation change along the 7 axis and the second one is
along the n axis of the T', n range. Another characteristic of the
critical point (T, n.) in the T-n plane is the two-dimensional
fluctuation-slope coefficient {Gw -, Gw,,} ~ {0.29, 0.33} for
the QvdW and {Gsk ¢, Gsk.v} ~ {0.32,0.47} for the QSLD
approach. For the QvdW case, the slopes {Gw ., Gw,,} de-
pend on the vdW interaction parameters through the critical
values 7, and n. (and therefore P.) and explicitly through
the exclusion-volume constant b. In the case of the QSLD
approach, {Gsk.;, Gsk.»}, one obtains their dependence on the
interaction parameters (agy, b, and y) for Gsi . [Eq. (50)]
only through the critical temperature 7, and density n. while
for Gsk,, one finds also the explicit dependence on b, , and y .
Notice also that the temperature, o< 1/t [Egs. (42) and (49)],
and the density, o< 1/v? [Eqgs. (45) and (51)], fluctuation de-
pendence near the CP can be seen also from Eq. (36) for a)gc).

In the derivations of fluctuations ' and a)gk) , [Egs. (42) and

(45) and Egs. (49) and (51), respectively] and " [Eq. (36)]
for the QvdW model we used Eq. (34) for the CP before

Gsk,» &

~ 047, (52)
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the CP limit, in contrast to the w; [Eqs. (38) and (47)] and
w5 [BEq. (33)] approximations. Thus, similarly, one obtains
qualitatively the same properties of the fluctuations near the
CP for the QSLD approach as for the QvdW model.

V. IMPROVED CALCULATIONS OF THE FLUCTUATIONS
NEAR THE CRITICAL POINT

As mentioned in Introduction, we need to improve the
calculations of the particle number (density) fluctuations to
avoid their divergence near the critical point having zero in-
compressibility, = 0, as seen from Eq. (31). In order to
clarify the behavior of fluctuations near the critical point, one
has to expand the free energy F(p) up to high-order terms
in expansion (14) beyond the second-order approach consid-
ered in Sec. III. These high-order terms are needed because
the second derivative of the free energy is zero at the CP.
Assuming that the fourth derivative of the free energy is not
zero at the critical point, one can stop the expansion (14) at
the fourth-order term; see Egs. (15) for A{p} and (16) for the
probability distribution W,. As shown in Appendix D, for the
dispersion D, at fourth order, Eq. (15), one obtains a more
general expression, valid also at the critical point,

D, A
n2  2n2 o

-1}. (53)

According to Egs. (D2) and (DY), « and A are given by

6(N)K? A 12KC
o= n2TK" > - K .
The statistical average of the dimensionless free energy dif-
ference A{p} = A{p}/T, Eq. (15), (A{p}) can be largely
approximated within the mean field approach by Egs. (D16),
(D17), and (D18). We introduced also the dimensionless pa-
rameter o, Eq. (D9), which is a measure of the effective
distance from the critical point. Indeed, for large «, far from
the critical point, one finds asymptotically, from a more gen-
eral equation (53) for the dimensionless dispersion D,,, the
following limit:

(54)

&eﬁ—— a>1 (55)
n? 2~ (N)K’ '

The superscript m in DY means the mth-order term of the
expansion of D,, Eq. (15). In particular, for the second-order
term of this expansion one has m = 2. The particle number
dispersion Dy, Eq. (8), can be evaluated from the following
approximate relationship:

Dy D,
NE T (56)
Using, then, Egs. (53) and (56), one obtains
A(N)? 4(A
Dy ~ (N) - <{,0}>_1 . 57)
2n? o

For small «, near the critical point, up to small corrections of
high order in powers of 1/(N), from Egs. (56) and (57) one

approximately arrives at another known limit [39]:

D (N2 6T
Dy — Dy N = (N)¥%/ , a1 (58)
1’12 HZIC//

The supercript m = 4 in 'Dg‘) shows the fourth-order term of
the same expansion (15). With the expressions (54) for « and
A in terms of the incompressibility K and its second derivative
K", one can rewrite Eq. (53) for the particle number dispersion
in a more explicit way. Taking, for instance, the normalization
of the particle number dispersion Dy [see Eq. (57)] as in
Eq. (31), for the sake of comparison, one obtains

o = Dy/(N) (59)

6(NYK
~ 1
n2K” \/ +

see Eqgs. (D16)—(D18) for expressions for (Ar) as functions
of a. According to Eqgs. (55) and (58), one finds the limits to
the expressions for the two asymptotical traditional (o > 1)
and improved (¢ < 1) dispersions in a more explicit form:

Dy (ND® T
— =

2UA{p))2TK"
3Ny K2

L), (60)

- - 1 1
“TW) R b

Dy  (N)D 6(N)T
el - L (62
Ny e @<

Both these limits, far from the critical point (¢ >> 1) and near
the CP (@ <« 1), are well known; see Refs. [9] and [39] (Ap-
pendix E), respectively, also Ref. [40] (Appendix F). The limit
for o < 11in Eq. (62) to the CP is the same as in Ref. [39] if we
neglect the second-order term and keep only the fourth-order
component in derivations of Sec. III and Appendix D; see
more details in Appendix E.

Figure 1 shows the dependences of the generalized expres-
sion (53) (solid line “1”) for the dispersion D, in the units,
explained in the caption, as a function of the critical parameter
o. The dashed (“2” and “3”) and dotted (“4” and “5”) lines
present the asymptotes for & > 1 and o « 1, for the main
term and its first correction, respectively:

n? 1—1/Qa)
D _— 1, 63
e RN « > (63)
n2
Dy —> —7(1/2—-gqJe), a <1 (64)
Cy4

where

_,[T/4) + TG/HITG/4)

B 4T(1/4)L(5/4)
and I'(x) is the standard gamma function. As seen from this
figure, lines “2” and “5” show the well-known asymptotic
results, Egs. (55) and (58), in Refs. [38,39]. The convergence
is seen even better if we take into account also the first
corrections to these main components of the asymptotes [see
Egs. (63) and (64)]. We formally prolonged them analytically
to other values of « far away from the limit boundaries, where
we have main asymptotes [Egs. (55) and (58)]. The reason
is to find the values of « where one finds their convergence
to a more general formula (53) far from (o > 1) and near
(¢ <« 1) the critical point, relatively. As seen from this figure,

~ 0331,  (65)
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FIG. 1. The particle number density dispersion, D,, normalized
by the factor n?/ /€4 Eq. (F3) with (D3), as a function of the
parameter o, Eq. (D9) [in Eq. (54)], for a symmetric nucleon system.
Solid line “1” shows the generalized formula (53). Dashed lines (rare
“2” and frequent “3”’) show asymptotes (the main term and that with
the first correction) in expansion over 1/«) at @ > 1, valid far from
the critical point, respectively; see Eq. (63). Dotted lines (frequent
“4” and rare “5”) present the opposite asymptotes (the main constant
term, 1/2, and that with the first correction in expansion over \/a),
Eq. (64), respectively.

one can see their convergence at the ends of the shown interval
of «. In some sense, the formula (53), derived in Appendix D
in the mean field approach [10] neglecting density-density
correlations, is more “universal” than the traditional fluctua-
tion formula (31), as an analytical transition of the result for
fluctuations w from that at the critical point (¢ = 0) to the
result of Eq. (31). The tradition formula (31) is valid in fact far
from the critical point at @ >> 1 at any large but finite particle
number average (N). We emphasize that this transition is
presented independently of the specific effective interactions.
Thus, from this figure, one can evaluate the values of «, as a
measure of the distance from the critical point, for which one
can use the asymptotes (61) and (62).

The expressions (60) and, in particular, (62) can be finite
at the critical point if the second derivative of the incom-
pressibility KC, K”, is not zero. As noticed in Refs. [39,40],
the result, Eq. (62), for some intensive systems agrees better
with the experimental data on opalescence than the traditional
Eq. (31). However, we should note that the approaches used
in Refs. [38,39] (Appendices D and E) and in Ref. [40]
(Appendix F) with approximately the same probability distri-
bution Wy, Eq. (16), for calculations of the statistical averaged
dispersion, or variance {(p — n)?), are somewhat different. As
shown in Appendix D for the derivations by the Tolman ap-
proach [38], the statistical consistency condition (D7) for the
quantity (p — n)? in average, ((o — n)?), and the mean field
approach neglecting density-density correlations, with the ex-
pansion (14), is essentially used, in contrast to the Tolpygo
approach [40]; see Appendix F. This explains a difference
in analytical results for the dispersion D, in Appendices D
and F. Therefore, the limits of the variance D, in both com-
pared approaches, to the critical point (¢ — 0), are different
by a constant; cf. Egs. (58) and (F6) (see Fig. 2). As seen

| cz—oc”2 c, =1

g

VQO-OS

~

g

on-o.s— .
041 .
021 .

L | L | L | I

0001 0.01 o 1 100

FIG. 2. Ratio of the particle number density dispersion, D™,
Eq. (F1) with Eq. (F2), in the K. Tolpygo (KT) approach (Ap-
pendix F) to that of DY, Eq. (53), in the R. Tolman (RT) approach
(Appendix D and Fig. 1) as a function of the same parameter o,
Eq. (D9), or Eq. (F5) for ¢, = 1 and ¢, = 4/« for the same system as
that of Fig. 1.

from Fig. 2, the limit for large « is the same for these com-
pared approaches. Another peculiarity of our approach to the
classical fluctuation theory in both discussed versions (see
Appendices D and F) is the basic one-parameter analytical
transition over the effective distance « from the CP, in contrast
to the two-parameter analytical transition over ¢, o F> and
¢, « Fy, separately. Both these approaches are remarkable in
showing that for the mean field approach (up to the correla-
tions above a mean field) for the finite particle number average
(N) of a nuclear matter piece is finite everywhere including
the critical point, in contrast to the traditional divergent result,
o = T /K. Notice also that in this way we may consider high-
order critical points by taking into account high-order terms in
the expansion (15) for the free energy. It is clear also how to
extend Appendix D to the fluctuation results, accounting for
even more important effects of density-density correlations.

So far we did not need to specify the interactions which are
presented here only in terms of the pressure of the equation of
state through the incompressibility and its second derivatives.
Notice also that, for relatively large temperatures 7' and small
mean particle-number densities n, the quantum statistics pa-
rameter ¢ [Eq. (37)] is small. Therefore, in this part of the
T-n plane, in contrast to the calculations of the critical points,
for simplicity one can neglect the quantum statistics effects in
the pressure for approximate evaluations of the fluctuation w.
Indeed, as shown in the previous section, the fluctuations w
within the QvdW and QSLD models do not depend much on
these effects. Therefore, we will first consider more accurate
calculations, near the CP, of the fluctuations w in terms of
the same vdW and SLD pressures of the corresponding equa-
tions of state, neglecting small quantum statistics corrections
[9,44,45].

Substituting now the pressure for the vdW equation of state
(Cl) at § = 0 into Eq. (62), valid near the CP, one obtains

, - L=’V

(¢ — 0) vdW. (66)
bn
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Notice that this result is independent of temperature 7" and of
the attractive vdW constant a but depends on the product of
the particle number density n times the repulsive exclusion-
volume interaction constant b. It is not the case for the SLD
interparticle interaction. As expected, the value of w at the
critical point (C4) is finite (of the order of or smaller than
N ), for a finite average number of particles, (N). More ac-
curately, this value of the fluctuations, w, is 4+/{N) /3. Notice
that this value is a little larger than that in Ref. [40] because
of reasons explained above in this section; see Appendices D
and F. Substituting the SLD equation of state (C6) at ¢ =0
into Eq. (62), one arrives at

" 6T (N)
TV vy + D(y +2)bnr !

As seen from this expression, the SLD fluctuations depend
on the temperature 7 and interaction constants b and y, but
are independent of the attractive interaction constant a as in
the vdW case. For the value at the critical point, one obtains
also finite results of the order of /N, namely, 1.45./(N) for
y =1/6 and 0.44,/(N) for y =1 for a given value of the
particle number average (N). Thus, in contrast to the tradi-
tional expression (31), for the fluctuations w, Egs. (66) and
(67), valid in the limit to the CP, depend on the mean particle
number (N) by a factor which is proportional to the value of
(N).

(@ — 0)SLD.  (67)

VI. DISCUSSION OF THE RESULTS

Figure 3 shows the particle number fluctuations (7T, n)
as a function of the dimensionless temperature 7' /T, versus
density n/n, variables for symmetric nuclear matter by the
traditional calculations employing Eq. (31). The zeroth-order
approximation using Eq. (C3) [vdW (a)] and the first-order
[QvdW (b), Eq. (38)] approach within the quantum statistics
expansion over § are shown in these contour plots. The con-
tour plot of Fig. 3(b) presents the calculations of fluctuations
w, [Eq. (38)] without using an expansion over a distance
from the critical point. As seen from Fig. 3 [cf. panels (a)
and (b)], the quantum statistics effects in fluctuations » are
small, as demonstrated by their numerical values. Note that
we excluded a large shift of the critical point by choosing
the scaling CP units. Then, the panels (a) and (b) become
qualitatively very similar. As a function of the density n, the
w, contour plot (b) is approximately symmetric with respect
to the CP. The vdW contour plot (b) is only a little asym-
metric far from the CP. As functions of the temperature T,
both plots [(a) and (b)] are similar but very asymmetric with
respect to T = T,. Therefore, they are shown only above the
critical point, T > T.. Huge values of the fluctuations near
the critical point are shown by white regions. Contour plots
for fluctuations w at a few next high orders in the quantum
statistics expansion over § are visually almost the same as for
the first order and, therefore, are not shown in Fig. 3.

Figure 4 presents a comparison between fluctuations w
using different approximations [within Eq. (31)] near the CP,
separately, as functions of the mean density n, T = T, panel
(a), and temperature T, n = n,, panel (b), both with a better

(a) T T T
130
B
125"
120 ]
o I ]
l_ L 4
115 - ]
110 1
1.05- 1
\4. L 6 1 L L w7\ 5 L 3 \:
08 1.0 =2 14
n/nc
(b) — —— -
130 ]
125 ]
L 4 |
120+ .
¢
- I ]
115
§|
1'10f J
5
105" .
[ L ‘6 ‘8\ L . I L L L | L N 9 7\
| Sy S— | S——
06 0.8 10 12 T4
n/nc

FIG. 3. Contour plots for the QvdW approximations to the parti-
cle number fluctuations w as functions of the averaged density n and
temperature 7' (in units of the corresponding critical values 7, and
n.) near the critical point. The zero approximation, vdW (a), Eq. (31)
with the vdW pressure [Eq. (C3)], and the first-order QvdW approach
(b) in the quantum statistics expansion over a small parameter §
[Eq. (38)]. Numbers in white squares at lines of constant fluctuations
w(T, n) show their values.

resolution (see Sec. IV A). Huge bumps near the CP in the
fluctuations w, [solid line “1”, Eq. (38)] are shown in both
panels of this figure. Similar bumps appear near the CP for
fluctuation w; as those in Eq. (33) for w,, which is not shown
therefore in Fig. 4 for simplicity: These two approaches, w,
and w;, near the CP converge to each other in the limit to
the CP with decreasing distance from the CP. A divergence of
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FIG. 4. Fluctuations of the particle numbers, w, for a nucleon system as function of the mean particle-number density » (a) and of the
temperature 7" (b) in units of critical values n. and T, respectively. Solid black lines “0” show the zeroth order (vdW), and other lines present
different approximations with the first quantum-statistics correction; solid red lines “1” are the results of calculations by Eq. (38) for w, ; dotted
blue lines “2” show Egs. (45) in (a) and (42) in (b) for a)ﬁ“‘); dashed green lines “3” are given by Eq. (36) for co;").

the fluctuations [see Eq. (31) for w] at the CP peak is seen
explicitly in the a)i") “2” curves [dashed blue, Egs. (45) in
Fig. 3(a) and (42) in Fig. 3(b)], as well as in the w{”’ “3’
lines’ [long-dashed green, Eq. (36)]. They explicitly diverge
at the CP as in the standard vdW approach (thin black solid
line). Notice that the lines “2” and “3” converge to each
other better, the smaller the distance is from the CP. This is
naturally in good agreement with the analytical arguments
based on Eq. (36), and in line with the arguments given in
Sec. IV A. Such an agreement becomes essentially worse with
increasing distance from the CP. Both the “2” and “3” curves
have a similar divergent behavior because in calculations of
both curves we neglected first- and second-order derivatives
of the isothermal incompressibilities over density n near the
critical point, Eq. (34). A huge sharp bump in the density
(T =T.) (a) and, even much sharper, in the temperature (n =
n.) (b) dependence for different approximations are largely in
agreement. This agrees also with the accurate numerical cal-
culations [21] using the same formula (31) for the fluctuations
w at the incompressibility /C, close to zero in the CP limit,
K — 0. As seen from Fig. 3, differences between the position
of this bump and CP values for the temperature dependence
(b) are more pronounced in contrast to the density function
(a). But, in fact, these differences are relatively very small
within errors of the derivations (see also Fig. 3). Note also that
the density n behavior (a) is largely symmetric with respect
to the CP, in contrast to a very asymmetric temperature T
dependence (b). This is seen also in the contour plots of Fig. 3
where we show T ranges only above the CP.

Notice that it is obviously impossible to realize practically
the conditions for validity of the considered approximations
to the fluctuations w calculated in terms of the incompress-
ibility C by Eq. (31) in the limit to the CP. We have to
involve more and more terms of expansion of the variation
derivative of the incompressibility K [Eq. (31)] over a dis-
tance from the CP. On the way to the CP, one has to stop
at small but finite distance from the CP where a huge bump
appears. The considered variations fail because they become

smaller or of the order of next derivatives contributions in
the expansion of the incompressibility /C in the denomina-
tor of the fluctuations w, Eq. (31), beyond Eq. (33); see
Refs. [38—40]. As mentioned above, one may find also argu-
ments for validity of the derivations of Eqs. (31) [or Eq. (A1)]
for the fluctuations w through the derivatives of the ther-
modynamic averages (pressure or particle number density)
in Refs. [9,33,38-40,42,43]. As emphasized in these works,
large values of relative fluctuations are in contradiction with
the basic assumptions of statistical physics because thermo-
dynamic averages, defined up to their fluctuations, become
meaningless [9,33,38,39,42,43]. According to the assump-
tions in these derivations (see Secs. III and 1V), we should
have an opposite tendency, namely, that the relative fluctu-
ations w must be small, in particular near the critical point.
Therefore, more accurate calculations of the particle number
fluctuations in terms of the statistically averaged Gibbs distri-
bution over particle numbers should be considered in a very
close range near the critical point of nuclear matter.

In order to compare with the traditional calculations of
Sec. IV (Figs. 3 and 4), we will discuss now the fluctuations
within a more general theory (see Sec. V) for the same two
simple examples of the vdW and SLD approaches to the inter-
particle interactions but neglecting small quantum corrections.
We will discuss then the asymptotic approximations to the
generalized formula (53) for the particle number fluctuations
o far from and close to the critical point [Egs. (61) and (62)].

Figure 5 shows the particle number fluctuations
[Eq. (60), solid lines] divided by constant (N), w/(N) =
Dy/(N)?, where Dy is the dispersion for the vdW interparti-
cle interaction parameters, critical temperature (T = T;), and
several typical particle numbers averages. Their asymptotes,
Eq. (61), for large o are shown at the same values of the
particle number average (N) (short double lines mean an
interruption of the lines to simplify the presentation of the
figure). See also Fig. 6 for the critical parameter « as function
of the particle number density n/n. at the critical value of
the temperature 7 = 7, and the same set of values of (N).
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FIG. 5. The particle number fluctuations w [Eq. (60), solid lines],
divided by constant (N), i.e., the dispersion Dy normalized by (N)?,
are shown as functions of the average particle number density n
(in units of its critical value) at the critical temperature 7 = T, for
a symmetric nucleon system with the vdW effective interaction at
different particle number averages (N). Dashed lines present the
corresponding traditional asymptote, Eq. (61) (o > 1). The particle
number averages (N) = 10 (“1” and “2”), 100 (the same but with
primes), and 1000 (with double primes) are taken as typical exam-
ples. Solid lines “17, “1’”, and “1”” are obtained by the generalized
formula (53); and dashed lines ‘27, “2"”, and “2”” show the tradi-
tional asymptote (61) in the same units. In order to compare with the
traditional approach, the parameters of the vdW effective interactions
are given by Eq. (C5) [see Eq. (C2) and Table I for the critical values].

Dashed lines are the traditional approach (61) for « > 1,
valid far from the critical point (Fig. 5). This (traditional)
approach is related to the second-order power expansion of the
free energy F'(p) over difference (p) — n in Eq. (14) for the
fixed temperature T at the critical point, 7 = T, (see Sec. III).
The dashed lines present the second-order asymptote of the
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FIG. 6. The parameter «, Eq. (D9), as function of the particle

number average # in the critical value units 7, at the critical temper-

ature T = T, for the vdW interaction, and at the same values of the
particle number averages (N).
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FIG. 7. Contour plots for the improved calculations of the fluctu-
ations w [see Eqgs. (60) (top) and (62) (bottom)], both divided by the
particle number average (N), as functions of particle number density
n and temperature 7 in their critical values’ units. The interval of
n/n. is the same as in Fig. 3. Slightly smaller temperatures 7'/T; are
taken to see more details near the critical point. For example, we use
(N) = 100 in these plots.

generalized formula (53) at o >> 1. This traditional result is
the same as that of Egs. (31) and (61) for the fluctuations w,
shown in Figs. 3(a) and 4(a), as a curve for the pure vdW
approach neglecting the quantum effects but with another nor-
malization. The normalization of the dispersion Dy in Fig. 5 is
taken as (N)? for a uniform comparison at different effective
distances o from the CP. There is clearly seen a divergence
of this asymptotic (o > 1; see dashed lines) approach at the

024610-12



PARTICLE-NUMBER FLUCTUATIONS NEAR THE ...

PHYSICAL REVIEW C 107, 024610 (2023)

T TT T T T I
7 ": \ T:TC SLLD <N>=10 ; general
1 A R W ¥=1/6 — o>l
! 100 general
| ESSE
1
i

—L_genera]
-==-o>>1 |

W/<N>

1000

(=]

.1

0.01

FIG. 8. The same as in Fig. 5 but for the SLD effective inter-
action with the same parameters [Eq. (C9) and critical values of
Eq. (C7) and Table II] as in Sec. IV for y = 1/6.

critical point as in Fig. 3(a). As seen from Fig. 5, one ob-
tains a maximum of the finite small value near the critical
density value, n & n.. This maximum in the dependence on
the particle number density n, w/(N) ~ Dy/{N)?, near the
critical temperature 7 =~ T, monotonically decreases rapidly
with increasing particle number average (), in contrast to an
increasing behavior of the dispersion Dy [Eq. (8)]. Notice that
our analytical calculations shown in Fig. 5 are in a qualitative
agreement with the numerical results presented in Fig. 11 of
Ref. [11]. These results were obtained by using the numerical
statistical percolation model of the phase transitions [58]. We
should only take into account that the second variance in
Ref. [11] is related to the dispersion Dy, i.e., the fluctuation
w/(N) in Fig. 5, multiplied by (N)2.

Figure 7 presents contour plots for the fluctuations w over
the particle number average (N), i.e., the quantity w/(N). In
the upper plot (a) we show the improved results of calcula-
tions, according to Eq. (60), while in the bottom plot (b) we
consider the limit of Eq. (60), Eq. (62), at @ < 1. As seen

T
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FIG. 9. The same as in Fig. 8 but for the SLD interaction with
the parameters of Eqs. (C9) and (C7) at y = 1 (Table II).
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FIG. 10. The same as in Fig. 6 but for the SLD interaction with
y =1/6and 1.

from these two plots, the results are similar in both panels
near the critical point. We find in both plots a final maximum
at a finite particle number average (N), in contrast to another
limit result, Eq. (61), shown in Fig. 3(a). It is convenient to
normalize the fluctuations as Dy /(N)? because the dispersion
Dy is of the order of (N)? near the critical point (¢ < 1). This
is in contrast to the results for the fluctuations, valid far from
the critical point (« > 1) where Dy is of the order of (N), as
usual in the standard statistical physics [9].

Figures 8 and 9 show qualitatively the same fluctuations,
w/(N), as in Fig. 5, but for the SLD interaction with parame-
ters y = 1/6 and y = 1, respectively; see also Fig. 10 for the
critical parameter « as function of the particle number density
n/n, for the SLD case at both values of y. The difference
between the vdW and SLD cases is only in a slightly greater
asymmetry of the vdW curves and their small deflections of
the maxima from the critical point. We may note also slightly
larger values at maxima in Figs. 8 and 9, as compared with the
vdW results presented in Fig. 5 for the same particle number
averages (N). The same qualitative agreement with the results
of Ref. [11] was found as for the vdW interparticle interaction,
mentioned above.

VII. SUMMARY

The generalized particle number fluctuations @ are de-
rived for an isotopically symmetric nuclear matter within the
Smoluchowski Einstein statistical theory. This more general
result is obtained by using the fourth-order expansion of the
free energy F(p) over small difference of the particle number
density p from its average n, and including the second-order
terms. Thus, we found the fluctuation w as a function of
the dimensionless parameter o o< K2(N)/n?>TK", where K
and K" are the isothermal incompressibility and its second
derivative at a given temperature 7'. In the limit of large «,
a > 1, we derived the traditional asymptotic expression for
the fluctuations w, w o 1/K. This result is equivalent to that
obtained early by the second-order power expansion of the
free energy F (p) over the particle number density difference
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p —n, where n is the average of p. For small values of «
near the critical point, ¢ < 1, one finds another known finite
asymptotic expression of w. This expression is improved lo-
cally near this point at finite particle number averages (N).
Such an asymptote was derived early by using the fourth-order
power expansion of the free energy F'(p) over small p — n but
neglecting the second-order term which is zero at the critical
point. We found that the values of o determine the effective
distances from the critical point where one can apply these
well-known asymptotes. These results are obtained for any
interparticle interactions. In addition, these two asymptotes
were studied in detail by using the specific vdW and SLD
interactions as simple examples.

Equations of state obtained within the quantum van der
Waals (QvdW) and Skyrme local density (QSLD) approaches
were used to study analytically the particle-number fluctua-
tion w, first by the traditional calculations. These analytical
calculations were performed in terms of the isothermal incom-
pressibility K, w o< 1//C, in the vicinity of the critical point
in isotopically symmetric nuclear matter. The expressions for
the fluctuations w are obtained accounting for the leading
first-order corrections using the quantum statistics expansion
over the small parameter o< & o /i°n/g(mT)*/? in the QvdW
model and that (¢) in the QSLD model. A simple and explicit
dependence of the particle number fluctuations w on the sys-
tem parameters, such as the particle mass m, degeneracy factor
& and interaction parameters a and b for the QvdW and ag,
by, and y for the QSLD approaches, is demonstrated at the
first order of this expansion. Such an analytical dependence on
the particle mass m and degeneracy factor g is absent within
the classical vdW and SLD approximations. The quantum
correction effects, which are quite significant to obtain the
CP parameters of the nucleon matter, appear to be small for
the fluctuations w. They lead to a notable asymmetry of the
w(T, n) values in the T-n plane as function of temperature
T for both discussed models. In this respect, the temperature
dependence of the fluctuations w is especially pronounced for
all these approximations.

We derived the analytical expressions for the fluctuations
o in terms of the incompressibility /C near the critical point
as functions of the distances from the CP, in units of 7; and
n,. For the temperature T behavior of the fluctuations w at
constant critical density, n = n_, one obtains w o« (T — T,)~!
with the critical index —1 for the order parameter T — T, of
the Landau theory of phase transitions. The particle number
density n dependence of w at T = T has another critical in-
dex —2, w « (n — ng)~2, for the order parameter n — n.. The
temperature behavior of the fluctuations @ was obtained to be
qualitatively the same for the QvdW and QSLD approaches
but with slightly different slope coefficients. They are in good
agreement with more accurate numerical calculations for the
QvdW case. To our knowledge, there are no numerical re-
sults for the fluctuation slope constant in the QSLD case.
The QvdW density dependence near the CP is essentially
different from that of the SLD model by the slope coefficient.
This is in contrast to the slope coefficients in temperature
dependence of the fluctuations w. We found good qualitative
and quantitative agreement between these analytical results
and those accounting for a high-order derivative expansion

near the critical point which were suggested by Tolman and
Rowlinson.

In line with the accurate traditional numerical calculations
of the particle number fluctuations w in terms of the incom-
pressibility K, w o« 1/, we found analytically an expected
huge bump near the critical point. The obvious reason is the
divergence in the zero incompressibility limit, Z — 0, at the
CP, for all compared approaches to the incompressibility /C.
The results are similar to those of the approximate first-order
analytical and more accurate numerical calculations realized
with and without using the expansion of the incompress-
ibility near the CP at zeroth- (vdW or SLD) and first-order
(QvdW or QSLD) approaches over a small parameter of the
quantum statistics, respectively. Several leading high-order
derivative approximations to the incompressibility K were
analyzed near the critical point. The convergence of the sim-
plest explicitly given analytical results for the fluctuations w
near the critical point to their approximations, suggested by
Tolman and Rowlinson in Refs. [38,39], was found for the
isothermal incompressibility K. This is expected because, as
is well known, the traditional calculations of particle number
fluctuations  in terms of the incompressibility diverge at
the critical point for infinite nuclear matter. Therefore, these
results cannot be applicable in a close distance from the CP.
They lead to indetermination of the corresponding averaged
particle numbers, which are defined up to their fluctuations,
in the equation of state. The well-known reason is that the
derivation of these particle number fluctuations @ in terms
of the isothermal susceptibility, or the incompressibility /C,
from the original definition through the moments of the Gibbs
distribution over particle numbers in the grand canonical en-
semble fails if fluctuations are not small. This is common
for any used interparticle (vdW and SLD) interactions. These
results of the fluctuation calculations are weakly dependent on
the quantum statistics corrections.

We analyzed the particle number fluctuations w, improved
near the critical point, for a finite particle-number piece of
nuclear matter. We took into account the additional fourth-
order terms in expansion of the free energy F(p) in powers
of small difference between the density p and its aver-
age n beyond the quadratic approximation of the traditional
classical-fluctuations theory, but along with the quadratic
terms. Using the vdW and SLD interparticle interaction ap-
proaches and neglecting small quantum statistical effects, we
obtained analytically finite values of the particle number fluc-
tuations w near the critical point at any finite particle number
average (N). This is in contrast to the traditional divergent
calculations in terms of the incompressibility or particle num-
ber density susceptibility. As shown in our calculations, the
fluctuations w, divided by the particle number averaging (N),
have a relatively small finite maximum near the critical point.
This maximum of the particle number fluctuations, w/(N), de-
creases with increasing particle number average (N), having
the zero limit when (N) goes to the infinite. For the disper-
sion (or variance) Dy, one respectively finds the increasing
dependence on (N), in agreement with the numerical results
obtained earlier by the percolation model of phase transitions.
A range of the critical point vicinity, where the traditional
(o > 1) results for fluctuations, w o 1/K, cannot be applied,
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decreases with increasing particle number average (N). The
transition range between the two asymptotes, & >> 1 and o <
1, is smaller the larger the value of (N) is for significantly
large values of (N).

As perspectives, we are going to develop the Smolu-
chovski Finshtein method to higher-order expansions over
the order parameter p — n than the present fourth-order ap-
proach for studying the phase transitions. We will study also
the fluctuations near the critical point in terms of moments
of the statistical level density by using another alternative
microscopic-macroscopic approach for finite Fermi systems
[54-57]. The improved saddle-point method [59-65] for an-
alytical calculations of the inverse Laplace integrals for the
level density near the critical point will be used to remove
the divergences. Then, we will calculate the level-density mo-
ments averages over the particle number and other variables
by using the initial definition for the corresponding statisti-
cal fluctuations. Our derivations within the vdW and SLD
forces can be straightforwardly extended to other types of
interparticle interactions, in particular, to more general and
more realistic statistical nuclear approaches. In particular, our
derivations might be extended to account for the isotopic
proton-neutron asymmetry. We believe that our results of
interest also to shed more light on the reasons for the experi-
mental opalescence phenomenon data.
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APPENDIX A: FLUCTUATIONS AND SUSCEPTIBILITY

According to Ref. [42], taking the variations of both sides
of Eq. (1) over u with the help of Egs. (2) and (3) and
changing the order of the integrations over the phase space
I' and derivative over the chemical potential w, for small
first-order variations §u in p, for the particle number fluctu-
ations Dy /(N), where Dy = ((AN)?) is the particle number
dispersion normalized to (N}, one obtains

Ty _(dn
(,()(T, n) - 75 X=\< ) (Al)
T

du
where n = n(T, u) is the particle number density average
in the grand canonical ensemble. Notice that this result is
the same as that found in Ref. [38] [Egs. (8) and (10)] in
the second-order approximation of the Smoluchovski and
Einstein fluctuation theory (Sec. III). Evaluating this linear
response x far from the critical point as (6n/8); ~ n/u, one

finds small fluctuations (7, n) ~ T/ if T/u K 1, i.e., for
relatively small temperatures.

In Eq. (A1), the variation derivative is the isothermal sus-
ceptibility x. Assuming, again, small relative fluctuations
with respect to the average particle number, at the linear
(first-order) variations, we can restrict ourselves to the linear
response function (linear susceptibility),

xV = (an/du);. (A2)
Within this linear approximation, one has explicitly
) T (on
o~ (T,n)=——]) . (A3)
n\ou/p

The linear response x [Eqgs. (A1)—(A3)] diverges at the critical
point, in contrast to its derivations. As shown in Appendix B
under the same condition of small fluctuations, one obtains
from Eq. (A1) [in particular, from Eq. (A3)] the well-known
expression (31) [or Eq. (32)] for the fluctuations, normal-
ized to (N), in terms of the isothermal incompressibility C
[9,32,37-42].

Let us consider variations of the relationship (1) over the
chemical potential u, taking into account high-order varia-
tions, for instance second-order ones. We will still take these
variations at constant temperature 7, i.e., consider nonlinear
(second-order) isothermal susceptibility x ®). Equation (A1)
is valid for any order of the variation derivative (nonlinear
susceptibility), but now one can specify it for the second-order
fluctuations w®. Taking immediately the variations over p
up to the second order at T = const in Eq. (1), one obtains
high (second) order corrections to Eq. (A3). Equation (A3)
is named usually the second cumulant of the averaged Gibbs
distribution function, Eq. (2), averaged over the phase space.
The dispersion §® ((N)), taking into account up to the third
cumulant moment of the averaged Gibbs distribution, takes
the form

T s — o Ws) 4 L O
(N)(S ((N)) = (0p) + Y @)y +---, (Ad)
where w® is the so-called kurtosis. It can be normalized by
(N?), in analogy with oW, Eq. (A3) (see Ref. [24]): w® =
({N3) — (N)3)/(N?). Similarly, one can obtain the third-order
moment (or third cumulant) of the averaged Gibbs distribu-
tion, Eq. (2). This third-order moment is coming from the
third-order variations of the average (N), Eq. (1), over the
chemical potential p, and so on. This allows us to go beyond
the restrictions of the first-order cumulant fluctuations (",
shown explicitly in Eq. (A3). Namely, this is beyond the first
variation derivative for the susceptibility x: linear suscepti-
bility x ", Eq. (A2). The expression (A1) for the fluctuation
w of the particle number is more general. However, it is still
singular exactly at the CP where the linear susceptibility x "
(A2) is infinity in the sum (A4).

APPENDIX B: DERIVATIONS OF THE CLASSICAL
PARTICLE-NUMBER FLUCTUATIONS

Within the canonical ensemble, one can use the free energy
F(T,N,V), Eq. (6), as a characteristic thermodynamic func-
tion of the temperature 7', particle number N, and volume V.
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Assuming the thermodynamic limit condition for our infinite
system, one can express F in terms of that per particle [9],

F(T,N,V)=Nf(T,7), B

where ¥ is the volume per particle,
v=-, n=N/V. (B2)
n

For the pressure P and chemical potential p, one has

(), =~(50)
P=—(—) =—(= (B3)
W) ),

_ (3N _ . 1(df
“‘(8N>T_f n(aﬁ>T‘ B9

Taking the first variation of Eq. (B4) over particle number
density n through the relationship (B2), one obtains

2
Sp = i(ﬂ) on. (BS5)
T

n3 \ 992

and

Therefore, one finds

on n’
— ) == (B6)
ow /)y (92f/00°)p
According to Eq. (A3) and Eqgs. (B6), (B3), and (B2), one
arrives at Eq. (31).

Note that the same result can be obtained more easily by
using the Jacobian (linear) transformations [9]

(an) _ D(n,T) 1 B7)
T

ou)y  Du,T)  D(u,T)/Dn,T)
and
ow/)r D, T)

Therefore, substituting Eqs. (B7) and (B8) into Eq. (A3) for
the particle number fluctuations w, one can carry out can-
cellation in ratios of the denominator by using the Jacobian
properties. Finally, once again one obtains Eq. (31).

Note that these derivations, based on the first derivative
transformations, fail near the critical point because of the
divergence of fluctuations due to zeros in the denominators.
Therefore, strictly speaking, Eq. (31) cannot be used in the
close vicinity of the critical point [see Eq. (34)], in contrast to
the fluctuation formula; see, e.g., Eq. (60) obtained in Sec. V
from the moments of the averaged Gibbs distribution.

APPENDIX C: ANALYTICAL CRITICAL-POINT RESULTS
WITHIN THE QVDW AND QSLD MODELS

1. The van der Waals model with quantum-statistics corrections

Following Refs. [44,45], we introduce a small quantum
statistics parameter § of expansion of the pressure P(7, n),
accounting for the vdW interaction in terms of the vdW attrac-
tive parameter a and repulsive exclusion-volume parameter
b. For the Fermi statistics, one has Eq. (37) for §. Up to the

first leading quantum statistics corrections over 6 to the vdW
model, one has

nT 5 2
PW(T,n)zm[l+8+0(8 ) —an”. (C1)
It was shown in Refs. [44,45] that at small § the expansion
of the pressure Pw (T, n) over powers of § becomes rapidly
convergent to the accurate results for sufficiently large tem-
perature T and small particle-number density n. Therefore,
even the first-order terms provide already a good approxi-
mation. The first quantum-statistics corrections in Eq. (C1)
increase with the particle number density » and decrease with
the increase of the system temperature 7', particle mass m,
and degeneracy factor g. A new feature of quantum statistics
effects in the system of particles with the vdW interaction is
the additional factor (1 — bn)~! in the correction § [Eq. (37)]
with respect to the ideal gas case. Thus, the quantum statis-
tics effects become stronger due to the repulsive interaction
between particles.

The first-order equation of state [Eq. (C1)] within the
quantum vdW (QvdW) model describes the corresponding
liquid-gas phase transition. The critical point (CP) of this
transition satisfies the equations of (34) [9]. Using Eq. (C1)
in the first approximation over §, one derives from Eq. (34)
the system of two equations for the CP parameters n, and T
at the same corresponding order. The solutions of this system
in the same first-order approximation over § have the form

TV = 701 - 25,
n = (1 - 28)). (C2)

In Eq. (C2), the values 7% and n{?) are the CP parameters of
the classical vdW model with the pressure [Eq. (C1) at § = 0]

T
POT, n) = 1 '1 — —an’. (C3)

These CP values are the zero-order approximation in the
QvdWw, § = 0:

8 1

7O = 2% =292 Mev, n® = — =0.100 fm3,
27b 3b

PO = # = 1.09 MeV fm . (C4)

The constants a and b of the QvdW model, a > 0 and b >
0, are responsible for attractive and repulsive interactions
between particles, respectively. We will compare our ana-
Iytical first-order results for fluctuations with those of more
accurate numerical calculations [25-31]. Therefore, as in
Refs. [21,22,24,44,45], we fix the model parameters a and
b using the ground state properties of isotopic symmetric
nuclear matter (see, e.g., Ref. [1]): at T =0 and n = ny =
0.16 fm™, one requires P = 0 and the binding energy per
nucleon ¢(T = 0,n = ng)/ny = —16 MeV. From the above
requirements, one finds

a = 329.8 MeVfm®, b= 3.35fm’. (C5)

The parameter 4, in Eq. (C2) is given by Eq. (37), taken at the
CP of the zero-order approximation (C4), i.e., at n = n*) and
T=T9, 8,=8T =T, n=nD). Substituting Eq. (C2)
for the results of the corresponding critical temperature, TV,
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and density, n{", into the equation of state [Eq. (C1)], at
a given perturbation order, one can calculate the CP pres-
sure P at the same order, PV = Py(T = TV, n = n(V)
[Eq. (C1)]. Notice that the temperature 7" and density n{"
are decreased for Fermi statistics with respect to 7% and n"",

in contrast to the opposite behavior for Bose particles.

2. The Skyrme local-density model with quantum
statistics corrections

The pressure function of the quantum-statistics Skyrme
local-density (QSLD) model [22], after some transformations,
can be presented as [45]

Ps (T, n) = nT(1 + &) — agn* + bgn? 2, (C6)

where ag,, b, , and y are interaction constants of the QSLD
parametrization [22].

Within the QSLD approach, one can consider the crit-
ical points for a first-order liquid-gas phase transition, for
instance, for pure nucleon matter. The critical point (CP)
for the QSLD model obeys the same equation (34) but with
the quantum-statistics Skyrme local-density pressure, P =
Psx (T, n) [Eq. (C6)]. Solving the system of equations (34)
with the equation of state (C6) in the first-order approximation
over &, Eq. (37), one obtains [45]

1) ~ 4(0)
Tg o = T (1 = 2¢y),

2¢
1) ~ (0 0
Ngk,c = nSk,c(l - v+ 1)'

In Eq. (C7), the temperature Ts(l?!)c and density n(S(l)(),c are the
solutions of equations [see Eq. (34) with the QSLD pressure
(C6)] at zero-order perturbation, ¢ = O:

€N

©)
7O _ 2yagng .
Sk,c ,y +1 ’
2 1/y
g, = [ sk } ; (C8)
' by (y + D(y +2)

see also Ref. [47] where another Skyrme parametrization for
the critical temperature and particle number density at zero
quantum statistics corrections was used. For the parameters
ag, and by, of Skyrme parametrization, the degeneracy for
nucleon system, g = 4, and m = 938 MeV, one has [22]

ag, = 1.167 GeV fm”,
bg = 1.475 GeV fm*™ |y = 1/6,
ag, = 0.399 GeV fm”,

bg = 2.049 GeV fm*™ | y = 1. (C9)

The QSLD parameters are chosen by fitting the properties
of one component (in our case, nucleons) at the temperature
T=0.

The value g, in Eq. (C7) is defined by Eq. (37) for ¢ at
T = TS(]?,)C and n = ngl)(),c [Eq. (C8)]. For the CP pressure at
& = 0, one finds from Egs. (C6) and (C8),

pO ©0) 70

_ ©) 12 (0) v+2
Sk,e — Msk,cdske aSk[nSk,c] +bSk[nSk,c] . (C10)

The first-order pressure, Ps(ll() .» can be straightforwardly calcu-
lated from Eq. (C6) using the expressions for TS(kl,)c and n(SL)C
[Eq. (CT)], Py, = Psi(T = T4y, n = n§ ) [Eq. (CO)].

APPENDIX D: MORE ACCURATE
IMPROVED FLUCTUATIONS

Taking into account the quadratic term in the expansion
(14) along with the second-order term, the quantity (p — n)>,
which we are going to average, should be statistically con-
sistent with the expansion (14) up to fourth order terms in
the mean field approximation [10,38]. Using the denotation
x = p — n for shortness, for x> one has [see Eq. (15)]

x* 4+ Ax* — B{p} =0, (D1)

where

A=12R/F, B{p}=24A{p}/F. (D2)

Here, F, and Fj are the derivatives of the free energy F over
the density p:

Fn = ("F/0p™)p=p, m=2,4, (D3)

and A{p} is given by Eq. (15). Equation (D1) is a compli-
cated self-consistent transcendent identity for x because the
last term B{p} depends on x = p — n in a cumbersome way
through Egs. (D2) and (15). Taking the statistical average over
the Gibbs distribution We(qN ), Eq. (2), in Eq. (D1) term by term,
one has

(%) + A?) = (Blp)) = 0, (D4)
where

(B{p}) = 24(A{p})/Fy.

The angle brackets have the same meaning as in Sec. II,
including averaging over the phase space p and q, and over
the particle numbers N. Expanding (x*) over the statistical

(D5)

correlations, one can present (x*) in terms of the square (x?)?
and a density-density correlation term:
(x*y = ((x2))? + corr. term, (D6)

where corr. term = (x*) — (x?)? is the density-density corre-
lation term. In the mean field approximation, we may neglect
this small density-density correlation term in Eq. (D6) be-
cause it is due to the residue interaction above a mean field.

It seems that we do not need to take care of the identities
(D1) and (D4) in the case when we might be able to solve
analytically exactly our problem with the Gibbs averaging,
accounting for statistical correlations in all orders above the
mean field approximation. However, simplifying our statisti-
cal problem by using this mean field approach, one should
take care of executing still these identities approximately
with the statistical accuracy of the mean field approximation,
i.e., after neglecting correlation terms of Eq. (D6). Thus, at
the zero-order approximation over these correlations, from
Eq. (D4) one finds the approximately closed equation of the
consistency condition (D1), taken in average, for (x?) with an
accuracy up to such correlations:

() + A(x?) — (B{p}) = 0. (D7)
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This equation optimizes our statistical errors when we use the
mean field approximation Wy, Eq. (16), to the Gibbs distribu-
tion W), Eq. (2), in evaluations of (A{p}); see Eq. (15) and

eq °
Refs. [10,38]. Solving Eq. (D7) with respect to (x?), for a real

positive solution, one obtains

<x2>~§< 1+ﬁ—82>—1>

_A[ 4 )
2 o

(D8)

where A{p} = A{p}/T is a dimensionless quantity.

It was convenient and constructive in Eq. (D8) to re-write
the variance (x?) by introducing explicitly the critical dimen-
sionless parameter o ox Fy/FyT:

_6(F)?

TE
Another dimensionless parameter is ¢, o F3/T. These two
parameters « and ¢, were introduced instead of the origi-
nal parameters F, and Fy of the potential difference A{p}
[Eq. (15)]. Then, the constant .4 in Eq. (D8) can be expressed
in terms of «, Eq. (D9), and ¢4 as

A= \/> 24T

It is helpful also to use the obvious relationship [see Egs. (D9)
and (D10)]

DY)

(D10)

A? o«
(B(p))  (Alp))

Obviously, at the critical point one has o = 0 because F,
KC = 0if Fy is assumed to be relatively finite, F;, > const > 0.
For small parameter «, one has effectively a small distance
from the critical point while for large « one finds a large
distance from the CP in the averaged particle number den-
sity n for a given temperature 7. Thus, « is a dimensionless
effective measure of the distance from the CP in the density-
temperature plane.

So far in this Appendix, the angle brackets were defined
as the statistical averaging with the general Gibbs distribution
WV of the grand canonical ensemble; see Eq. (2) for WV, In
order to evaluate now approximately the average of the dimen-
sionless potential variation (A{p}) which appears in Eq. (D8),
we will use the average statistical distribution function Wy
as a good approximation to the averaged W\, within the
mean field approach. Then, for the statistical average of A{p}
[Eq. (15)], (A{p}), one approximately has (see Ref. [38] and
Secs. Il and V)

(D11)

(Alp)) = (As(p)) + (Aslo)), (D12)
where
(Aafp)) = / (o — nYWadp.
(Baloh) = 50 / (o —n)Wadp,  (DI3)
0

In Eq. (D13), Wy is the probability distribution given by
Eq. (16) with the normalization condition (18). With Eq. (15),
from Eq. (D12), one writes

) 1 2 4
(Aafp}) = %fo dxew] ET(FZ); +F4f 2] 514y
Jo~ dxexp [— 55 (Fax? + Fix*/12)]
and
(Aulo]) = Fy Jo- x*dxexp [— 5 (Fox® + Fax*/12)]
O 24 S dxexp [ (B + Fix'/12)]
(D15)

where x = p — n, as above.

Using Egs. (D12), (D14), and (D15) for calculations of the
average of the dimensionless potential difference A{p}, one
finds more explicit expressions in terms of the modified Bessel
functions:

(Afp}) = (Aa{p}) + (Asfp}), (D16)
where
(Batoh = 2200
4\/—[(01 +4)11/4(8> - 0114/4(%)
)2 )
and
(Batpp) = L2
- o ) o)) 2.

(D18)

Here, I,(z) and K, (z) are the modified Bessel functions of the
order v [K,(z) is named also the MacDonald Bessel function].
For « > 1, far from the critical point, one obtains (A{p}) ~
(A7)/T =~ 1/2; see Eq. (24). In the case o < 1, near the CP,
one obtains (A{p}) &~ (A4)/T =~ 1/4; see also Eq. (E6) in the
next Appendix.

Dividing by n? the left and final right sides of Eq. (D8),
one arrives at the dimensionless particle-density fluctuations,
Eq. (10); see also Eq. (53). Differentiating the relationship
(25) between the pressure P(p) and free energy F(p) over
p, and using the conditions of the statistical equilibrium, one
finds the relationships

(N)/C, F =

n? n

(N)ICN

P = d

(D19)

They are useful in the derivations of Sec. V; see Eq. (54),
and asymptotes (55) for ¢ > 1 and (58) for @ < 1, neglecting
small corrections of high order in powers of 1/(N). In princi-
ple, we may take into account the density-density correlations
by using the standard iteration procedure. However, to calcu-
late the correlation term in Eq. (D6) at any given order we
have to specify the interparticle interaction.
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APPENDIX E: ASYMPTOTICAL FOURTH-ORDER
IMPROVED FLUCTUATIONS

It is useful to present briefly the derivation of the limit
a < 1 neglecting the second-order term of the free energy
expansion at the very beginning [38,39]. In this case, for the
free energy expansion, one has from Eq. (15)

APt} =F(p) = F(n)
1 (0*F 4
=—|— —n)". El
24<304>p=n(p n) (ED)
As shown in Appendix D, in the mean field approximation,

i.e., at the zero-order density-density correlations, one finds
from Egs. (D7) and (D5)

24(AP{p})
(94F /3 p*)

p=n

((p =) = (0 —n)")? ~ . (B2
where Aff) {p} is given by Eq. (E1), at the fourth order under
the assumption of neglecting the second-order term. Notice
that the angle brackets in Eq. (E2) have the same meaning as
in Egs. (D4)—(D6).

For the evaluation of average (Aff)) in the last equation
in (E2), with good accuracy within the mean field approxi-
mation, one can use the probability distribution W,V ~ w,
valid namely in the mean-field approximation,

4 4),0 Fy
W (0) = WP exp [—mw —ah| @)

where

00 E -1
w0 = {/o dpexp [—ﬁ(,o — n)4)i|} ; (B4

see Eq. (16) without the second-order term. Therefore, as in
Appendix D, one has

F
(AP (p}) = ﬁ((p — )

%

L T—c
2 ), (o —n)"W,"dp, (E5)

where W4(4) is the normalized probability distribution of
the fourth order with zero second-order term, Eq. (E3)
fy? W, Ydp = 1). Calculating now analytically integral in
Eq. (ES), and comparing the result with the expression on very
right of Eq. (E2), one obtains

. (E6)

IS

(a8 p)) ~

Differentiating over p the relationship (25) between the pres-
sure P(p) and free energy F(p) for a constant temperature
T, similarly as for the second order case, one can express
the fourth derivative of F'(p) over p at p = n in terms of the
second derivative of the incompressibility /C,

3*F(p) _ (NK"(n) with
at ), on®
3
K" (n) = (8 P(p)> 7 E)
303 ) o

where P is the pressure P(T, p), Eq. (25),and P = P(T, n) is
the equation of state in canonical variables. Using Eqs. (E6)
and (E7), from the particle number density dispersion D,
normalized by n?, Eq. (10), at the fourth-order expansion of
the free energy (taking again zero for the second-order term)
'Df), with the probability distribution W4(4), Eq. (E3), i.e., in
the mean field (zero-order correlations) approximation, one
naturally obtains the same limit as given in Eq. (58). Em-
ploying finally the same normalization of the dispersion Dy
by (N), in order to compare with Eq. (31), we arrive at the
expression (62), derived early in Ref. [39].

APPENDIX F: OTHER IMPROVED APPROACH TO
THE PARTICLE NUMBER FLUCTUATIONS

Following Ref. [40] we assume in fact the mean field
approximation Wy(p), Eq. (16), for the Gibbs distribution
averaged in the phase space and particle numbers from the
very beginning, everywhere in the calculations of particle
number fluctuations. Finally, for calculations of the dispersion
(variance) D, = ((p — n)?), one obtains

Dy = {(p —n)*) = Ma/ My, (F1)

where

Miu(cyscq) = / dp(p —n)"
0

x exp[—c,(p — n)2 —c4(p — ”)4]

o0
~ 2/ dxx™
0

x exp(—c,x? — e xt), m=0,2, (F2)

23 Fy
= —, =— F3
2T or T ar *3)

see Eq. (D3) for the derivatives F,, of the free energy F. From
Eq. (F2) one obtains the explicit expressions for the moments
of the distribution function, M,,, in terms of the MacDonald
Bessel functions K, («/8),

My = $(cy/cy) exp (—a/8)
X [K3/4(a/8) — Ky/4(et/8)],
Mo = 3(er/c)* exp(@/8)Kija(@/8),  (F4)
where
o = c3/ey (F5)
[see Egs. (D9) and (F3)].

1. The limit casec, = 0

Taking the limit ¢, — O to the critical point, from Egs. (F1)
with Eq. (F4) for the moments M,,, one obtains the disper-

sion:
24T
338, | —
\' F
6T n?

TR (F6)

TG4 1
"TT/4) Jo

= 0.676
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For the normalized dispersion, D, /nz, one finally finds

Do _ o676 | (F7)
n2 <N>n210"

The constant in front of the square root is smaller than that in
Eq. (58). For the particle number fluctuation w, Eq. (59), at
the critical point, from Eq. (F6) one approximately finds

T(N)
n2]C// .

o = 1.66 (F8)

2. The limit case ¢, = 0
Taking the limit ¢, — 0, from Egs. (F1) with Eq. (F4) for
the moments M,,,, one obtains
1T Tn?
’T 2R (MK

(F9)

Similarly as in the previous subsection of this Appendix, for
the particle number fluctuation w, Eq. (59), from Eq. (F9) one
approximately finds

w=T/K. (F10)
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