
PHYSICAL REVIEW C 107, 024315 (2023)

Fock space representations of Bogolyubov transformations as spin representations
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The representation on a Fock space of the group of Bogolyubov transformations is recognized as the spin
representation of an orthogonal group. Derivations based on this observation of some known formulas for the
overlap amplitude of two Bogolyubov quasifermion vacuum states that are in some cases more complete than
those in the literature are shown. It is pointed out that the name of an “Onishi formula” is assigned in the literature
to two different expressions which are related but have different scopes. One of them has what has been described
as a sign problem; the other one, due to Onishi and Yoshida, has a more limited scope and no sign problem. I
give a short proof of the latter, whose derivation is missing in the paper by Onishi and Yoshida, and a new,
combinatoric, proof of an equivalent formula recently derived by Robledo.
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I. INTRODUCTION

Bogolyubov quasinucleon vacua and their overlap ampli-
tudes are ubiquitous in contemporary calculations of nuclear
structure. For a review, see [1]. Methods such as the generator
coordinate method [2] and, more specifically, the projection
of a quasinucleon vacuum onto the state space of some con-
served quantum numbers [3] require the calculation of overlap
amplitudes between different vacua. Some formulas for such
overlap amplitudes involve a square root. This gives rise to a
sign ambiguity that has been called in the literature “the sign
problem of the Onishi formula” or similar [4–13], referring
to a paper by Onishi and Yoshida [14]. This sign ambiguity
was first discussed by Wüst and me after being recognized in
the context of quantum number projection of cranked quas-
inucleon vacua [15]. [Our paper has an unfortunate error.
From (3.4) onwards, every matrix transposition except the
second one in the first line on page 321 should be a Hermitian
conjugation.] The ambiguity is shown in the present paper to
be related to the well known double-valuedness of the repre-
sentation of spatial rotations on the spin states of a spin 1/2
fermion, which is the simplest in a family of double-valued,
so-called spin representations of orthogonal transformations.

A Bogolyubov quasinucleon vacuum, or, more generally,
quasifermion vacuum, is determined by the Bogolyubov trans-
formation that relates its annihilation operators to those of the
physical vacuum or some other reference vacuum. In Sec. II,
I first recall the known fact that the group of Bogolyubov
transformations related to some finite-dimensional space of
single-fermion states is isomorphic to an orthogonal group,
and then briefly review the theory of spin representations.
The relation to physics is established by the observation that
the Fock space, that is, the space of states of any number of
fermions inhabiting the space of single-fermion states, has
the structure of a spinor space and therefore carries a spin
representation of the group. In most applications, Bogolyubov
transformations are assumed to be unitary with unit determi-
nant. At the end of Sec. II, I give the details of a derivation of

an expression for the spin-representation image of such a Bo-
golyubov transformation that appears in [15] without a proof.

This expression forms the basis for a derivation in Sec. III
of a formula for the overlap amplitude of two arbitrary mem-
bers of a large class of quasifermion vacua in terms of their
generating Bogolyubov transformations, that is called the
“Onishi formula” in the much cited book by Ring and Schuck
[16]. My derivation does not require certain restricting as-
sumptions made there and in some earlier work. I also rederive
some formulas in the literature for the matrix element between
two Bogolyubov vacua of the transformation of the Fock
space generated by a unitary transformation of the single-
fermion state space, and show that all these formulas have an
unavoidable sign ambiguity due to the double-valuedness of
the spin representation.

The “Onishi formula” of Ring and Schuck is not the for-
mula of Onishi and Yoshida. Their formula for the overlap
amplitude of two quasifermion vacua has a more limited scope
as it applies only when these vacua have nonzero overlaps
with the reference vacuum. Due to this restriction, it has no
sign ambiguity. Notably, Onishi and Yoshida do not show a
derivation of their formula. I give in Sec. IV a short proof of it
by repeated application of a relation mentioned in their paper.

Wüst and I devise in [15] a method to calculate numerically
the unambiguous overlap amplitude of Onishi and Yoshida.
Recently, Robledo proposed another method which may be
numerically more stable [7]. I show in Sec. V that Robledo’s
formula can be derived directly from that of Onishi and
Yoshida. Robledo’s derivation is based on Berezin integration,
and recently some other derivations appeared [11,13]. Before
summarizing the paper in Sec. VI, I show at the end of Sec. V
yet another, combinatoric, derivation.

II. FOCK SPACE REPRESENTATION OF THE
BOGOLYUBOV GROUP

Most structure calculations in atomic, molecular, and nu-
clear physics employ a space S of single-fermion states of
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finite dimension d . Corresponding to orthonormal basic states
|i〉 in S one can define annihilation operators ai. I call field
operators the linear combinations α of ai and a†

i and denote by
F the 2d-dimensional space of these operators. A Bogolyubov
transformation [17] is a linear transformation of F that pre-
serves the anticommutator {α, β}. Since the anticommutator
is a symmetric bilinear form, the group of Bogolyubov trans-
formations, which I call the Bogolyubov group, is isomorphic
to the group O(2d ) of orthogonal transformations in 2d com-
plex dimensions, and I identify the Bogolyubov group with
O(2d ). Given any basis for F , I denote by α− and α| the
row and column of the basic field operators. The coordinate
representation g �→ G of O(2d ) in this basis is then defined by
gα− = α−G, so that g1g2 �→ G1G2, where G is a 2d × 2d ma-
trix. This is a faithful representation; that is, G determines g.

Usually a Bogolyubov transformation is assumed to be
also unitary in the sense that it preserves the Hermitian inner
product {α†, β} in F . See, however, [18] for an exception. The
Hermitian field operators αi+ = ai + a†

i and αi− = −i(ai −
a†

i ) obey {αis, αi′s′ } = {α†
is, αi′s′ } = 2δis,i′s′ . (The use of i both

as an index and to denote the imaginary unit should cause
no confusion.) In this basis, the condition of simultaneous
orthogonality and unitarity reads GT G = G†G = 1, where 1
denotes the unit matrix. Hence G is real. This implies, in par-
ticular, that gα† = (gα)†. The group of unitary Bogolyubov
transformations, the unitary Bogolyubov group, is thus iso-
morphic to the group O(2d, R) of orthogonal transformations
in 2d real dimensions associated with a positive definite
quadratic form, and I identify the unitary Bogolyubov group
with O(2d, R). This isomorphism of the unitary subgroup of
a complex orthogonal group to the real subgroup was pointed
out by Weyl [19], and the isomorphism of the general and
unitary Bogolyubov groups to the complex and real orthog-
onal groups in 2d dimensions was noticed by Balian and
Brezin [18]. Most of the discussion of O(2d ) in the present
section applies almost verbatim also to O(2d, R). I shall in
general not mention explicitly the modifications pertaining to
this case.

The group O(2d ) has a maximal connected subgroup
SO(2d ) of index 2. The transformations in SO(2d ) have de-
terminant 1 and those in its, also connected, coset determinant
−1 [19]. That these sets are connected means that there is a
continuous path between any two elements. The elements of
SO(2d ) may be seen as rotations of the 2d-dimensional space
and those of the coset as combinations of a rotation and a
reflection. These two types of orthogonal transformations are
sometimes called proper and improper, and one can distin-
guish accordingly between proper and improper Bogolyubov
transformations.

The Fock space K associated with S is the space of states
formed by the action of a polynomial in the creation opera-
tors a†

i on a state killed by the annihilation operators ai and
conceived as a vacuum state. It has the structure of a spinor
space [20]. The operators on K form an algebra isomorphic to
the Clifford algebra [21] Cl(2d ), and I identify the algebra
of operators on K with Cl(2d ). Every element of Cl(2d )
can then be written as a a polynomial in field operators. It
was shown by Brauer and Weyl that O(2d ) has a double-
valued representation on the spinor space K, the so-called spin

representation [20]. Specifically, this representation maps ev-
ery g ∈ O(2d ) to a pair ±ḡ of elements of Cl(2d ) in such a
way that g1g2 �→ ±ḡ1ḡ2, and there is a path in SO(2d ) from
the identity 1 back to itself which connects its images ±1
continuously. As pointed out by Weyl [19], the second prop-
erty implies that the connected sets, SO(2d ) and its improper
coset, are not simply connected: this path cannot be contracted
to a point. That (unitary) Bogolyubov groups are not simply
connected was noticed in [15].

The representation g �→ ±ḡ is defined in [20] by

(gα)ḡ = ḡα (1)

and

(τ ḡ)ḡ = 1, (2)

where τ is the linear operator on Cl(2d ) that inverts the order
of the factors in every product of field operators. For a given
g, the condition (1) determines ḡ within a numeric factor, and
the condition (2) fixes this factor up to a sign. Since both
conditions are compatible with the group relations, they thus
define a possibly double-valued representation. The fact that
this representation turns out actually double-valued implies
that the entire Bogolyubov group (or its unitary subgroup)
cannot be mapped continuously and single-valuedly into the
space of linear transformations of the Fock space in such a
way that this map g �→ ḡ obeys (1) for every g and α. This
will turn out in Sec. III to be the origin of the so-called sign
problem of the Onishi formula mentioned in the Introduction.
In fact, (1) alone allows the normalized ḡ to be multiplied
by a g-dependent numeric factor, but for the resulting map to
be continuous, this factor must depend continuously on g, so
the resulting map remains double-valued. From now on, ḡ is
understood to satisfy both conditions (1) and (2).

The space Cl(2d ) of operators on K is the direct sum
of subspaces Cl±(2d ) formed by the operators that can be
expressed by polynomials in field operators whose terms
have only even and only odd degree, respectively. Evi-
dently Cl±(2d ) Cl±(2d ) = Cl+(2d ) and Cl+(2d ) Cl−(2d ) =
Cl−(2d ) Cl+(2d ) = Cl−(2d ). For the reflection g of F along
the direction of the vector α1+, that is,

α1+ �→ −α1+, αis �→ αis for is �= 1+, (3)

the operator

ḡ =
∏

is �=1+
αis, (4)

obeys (1) and (2). The order of the factors in (4) is immaterial
since reordering changes at most the sign of the product. Or-
thogonal transformation gives an analogous expression for a
spin-representation image of any other reflection, and all these
images belong to Cl−(2d ). Since every proper orthogonal
transformation is the product of an even number of reflections,
and every improper orthogonal transformation a product of
an odd number of reflections [22], it follows that the spin
representation maps SO(2d ) into Cl+(2d ), and its improper
coset into Cl−(2d ). This construction succeeds in O(2d, R).
There, the spin-representation image of every reflection is
unitary, whence it follows that the image of every g is uni-
tary. The spin representation of O(2d ) is irreducible but splits
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upon restriction to SO(2d ) into two inequivalent irreducible
components carried by the subspaces K± of K with even and
odd particle numbers, respectively [20].

The Lie algebra of a continuous linear group is the an-
ticommutative algebra (the definition of a Lie algebra) of
infinitesimal deviations of group elements from the identity
1 with the commutator product [19]. I denote by o(2d ) the Lie
algebra of O(2d ) and identify it with its realization on F . The
Lie algebra o(2d ) then consists of the linear transformations
α �→ xα of F that obey {xα, β} + {α, xβ} = 0. In the basis
of field operators αis, the matrices X of its coordinate rep-
resentation x �→ X are skew symmetric. Upon restriction to
o(2d, R) they are also real. In the basis a1, . . . , ad , a†

1, . . . , a†
d ,

they obey

X

(
0 1
1 0

)
= −

(
0 1
1 0

)
X T , (5)

in terms of block matrices with d × d blocks, and X is
anti-Hermitian upon restriction to o(2d, R). The spin repre-
sentation of O(2d ) gives rise in the infinitesimal limit to two
inequivalent irreducible (single-valued) spin representations
of o(2d ) carried by the same subspaces of K as those of
SO(2d ) [20]. These representations were discovered in their
abstract forms by Cartan before the work of Brauer and Weyl
[23].

Let x denote an element of o(2d ), let X be the correspond-
ing matrix in the coordinate representation pertaining to some
basis for F , and let x̄ be the spin representation image of x.
Inserting g = 1 + x in (1) and linearizing in x gives

xα− = α−X = [x̄, α−]. (6)

Since in a neighborhood of 1 the transformation g belongs
to SO(2d ), the operator x̄ belongs to Cl+(2d ), and, in order
that [x̄, α−] be linear in the field operators, it must then be
given by a quadratic polynomial in field operators. In the
basis a1, . . . , ad , a†

1, . . . , a†
d , the complete solution of the last

equation in (6) is then

x̄ = 1

2
α−X

(
0 1
1 0

)
α| + γ (7)

with an arbitrary numeric constant γ . The normalization (2)
gives γ = 0, so

x̄ = 1

2
α−X

(
0 1
1 0

)
α|. (8)

Note that the matrix sandwiched here between α− and α| is
skew symmetric due to (5). Given the representation x �→ x̄,
one can determine ḡ for g ∈ SO(2d ) by integrating the differ-
ential equation ḡ′(t ) = x̄(t )ḡ(t ) along a path g(t ), 0 � t � 1,

such that g(0) = 1, g(1) = g, and g′(t ) = x(t )g(t ). Choosing
different paths gives the two solutions for ḡ with opposite
signs.

Now assume g ∈ SO(2d, R). I the basis of field operators
αis, the matrix G is then real orthogonal, and |G| = 1, so G
is real-orthogonal equivalent to a block diagonal matrix with

diagonal blocks of the form(
cos φ sin φ

− sin φ cos φ

)
= exp

(
0 φ

−φ 0

)
, (9)

where φ is real. It follows that G = exp X , where X is real
and skew symmetric and thus represents an element x of
o(2d, R). The relation G = exp X translates to g = exp x. Be-
cause g(t ) = exp tx, 0 � t � 1, defines a path from 1 to g
with g′(t ) = xg(t ), this translates, in turn, to ḡ = exp x̄, where
ḡ is one of the two spin-representation images of g. In the basis
a1, . . . , ad , a†

1, . . . , a†
d , the expression (8) gives

ḡ = exp
1

2
α−X

(
0 1
1 0

)
α|. (10)

This is essentially (2.11) in [15], where X is written as log G.
The angles φ in (9) are not unique; the same G results when
an arbitrary integral multiple of 2π is added to each φ. In (10),
this gives rise, exactly, to the sign ambiguity of ḡ. In fact, when
just one of the angles φ varies continuously from 0 to 2π while
the rest are kept at 0, the transformation g goes from 1 back
to itself, but ḡ goes from 1 to −1. Since this path runs within
O(2d, R), the double-valuedness persists upon restriction to
this subgroup [20].

Adding an integral multiple of 2π to each φ corresponds
in the basis a1, . . . , ad , a†

1, . . . , a†
d to adding an arbitrary inte-

gral multiple of 2π i to each eigenvalue of the anti-Hermitian
matrix X . Bally and Duguet propose to choose for these eigen-
values always the principal logarithms of those of G [12]. This
renders ḡ discontinuous at the branch cuts of the logarithms,
and the map g �→ ḡ will not preserve the group relations.

III. QUASIFERMION VACUA AND THEIR OVERLAPS

In the structure calculations, one is specifically interested
in the quasifermion vacuum states |g〉, which are states annihi-
lated by the transformed annihilation operators gai. It follows
from (1) that |g〉 ∝ ḡ|〉, where |〉 denotes a “reference” state
annihilated by the field operators ai. The latter need not be
thought of as representing the physical vacuum. As pointed
out by Bally and Duguet [12], every state proportional to
some ḡ|〉 may serve as a reference state. This follows from
the Bogolyubov transformations forming a group. When |〉
is fixed, the double-valuedness of the map g �→ ḡ implies
double-valuedness of the map g �→ ḡ|〉. An argument as in
Sec. II shows that the double-valuedness persists if ḡ|〉 is
multiplied by a g-dependent numeric factor, as done, for ex-
ample, in the theory of Bally and Duguet. Therefore the entire
Bogolyubov group (or its unitary subgroup) cannot be mapped
continuously and single-valuedly into the Fock space in such
a way that this map g �→ |g〉 obeys (gai )|g〉 = 0 for every g
and i. Since any g-dependent numeric factor is well defined
in a given formalism, it is interesting to analyze the bare
expression |g〉 = ±ḡ|〉, which implies |g1g2〉 = ±ḡ1|g2〉. So
from now on, this is the definition of |g〉.

As noted in the Introduction, overlap amplitudes 〈g1|g2〉
are central in many types of calculations. I limit my discussion
of such amplitudes to unitary Bogolyubov transformations.
Then every ḡ is unitary, whence follows ḡ−1 = ḡ−1 = ḡ†. I
also assume 〈|〉 = 1, which then implies 〈g|g〉 = 1 for every
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g. The relation 〈g1|g2〉 = 〈|ḡ†
1ḡ2|〉 = 〈|ḡ−1

1 ḡ2|〉 = 〈| ¯g−1
1 g2|〉 re-

duces the calculation of 〈g1|g2〉 to the calculation of some
〈|ḡ|〉 [16]. One can assume g ∈ SO(2d, R) because otherwise
ḡ ∈ Cl−(2d ), whose elements connect the subspaces K± of
K, whence 〈|ḡ|〉 = 0 because |〉 ∈ K+. When also d is even, as
usual in nuclear structure calculations, a formula for 〈|ḡ|〉 can
then be derived from the Bloch-Messiah decomposition [24]
of the matrix G representing g in the coordinate representation
pertaining to the basis a1, . . . , ad , a†

1, . . . , a†
d . In the notation

of Beck, Mang, and Ring [25], this decomposition reads

G =
(

D∗ 0
0 D

)(
U V
V U

)(
C∗ 0
0 C

)
, (11)

where D and C are unitary and U and V are block diagonal
with 2 × 2 diagonal blocks(

u 0
0 u

)
and

(
0 v

−v 0

)
. (12)

Here, u and v are non-negative and obey u2 + v2 = 1. Each of
the three factors 	 in (11) is unitary and has unit determinant.
Further, each of them obeys the condition of orthogonality

	

(
0 1
1 0

)
	T =

(
0 1
1 0

)
, (13)

which for a unitary 	 is equivalent to

	

(
0 1
1 0

)
=

(
0 1
1 0

)
	∗. (14)

Thus each of them represents a proper unitary Bogolyubov
transformation, which I denote by gD, gW , and gC , respec-
tively. I set out to analyze the action of each of these three
factors of the product g = gDgW gC .

To calculate the action of gC , let the basic single-fermion
states |i〉 be chosen such that C is diagonal. Since C is unitary,
one can set C = expY , where Y is diagonal and imaginary. I
denote by yi the diagonal entries in Y . The rightmost matrix
in (11) becomes exp X , where X is block diagonal with −Y in
the upper diagonal block and Y in the lower diagonal block.
Then (8) gives

x̄ = 1

2

∑
i

yi(a
†
i ai − aia

†
i ) =

∑
i

yi

(
a†

i ai − 1

2

)
, (15)

whence

ḡC |〉 = exp x̄ |〉 = exp

(
−1

2

∑
yi

)
|〉 =

√
|C∗| |〉. (16)

Analogously, 〈| ḡD = √|D∗| 〈|.
One can set (

U V
V U

)
= exp X, (17)

where

X =
(

0 Y
Y 0

)
, (18)

and Y is block diagonal with 2 × 2 diagonal blocks(
0 y

−y 0

)
(19)

such that cos y = u and sin y = v. With yi denoting the entry
of Y with indices i, i + 1, where i is odd, one gets from (8)
that

x̄ =
∑
odd i

yi(aiai+1 + a†
i a†

i+1). (20)

By

(aiai+1 + a†
i a†

i+1)2|〉
= (aiai+1a†

i a†
i+1 + a†

i a†
i+1aiai+1)|〉 = −|〉 (21)

it follows that

〈|ḡW |〉 = 〈| exp x̄|〉 =
∏
odd i

cos yi =
∏
odd i

ui =
√

|U |, (22)

where ui are the diagonal entries of U , and the non-negative
square root is taken in the last expression.

Combining these results gives

〈|ḡ|〉 =
√

|D∗UC∗| =
√

|A∗| (23)

in the notation of [25], where

G =
(

A∗ B
B∗ A

)
. (24)

The appearance of a square root in (23) reflects the sign
ambiguity of ḡ. In the derivation above, it stems from the mul-
tivaluedness of Y as a solution of C = expY or D = expY . In
[16], the identity 〈g|〉 = √|A|, which is equivalent to (23), is
derived in the case D = C = 1, which may be generalized by
a change of basis for S to the case when A is Hermitian and
positive semidefinite. In that case, |A∗| = |A| � 0.

From (23) and (24), one gets immediately

〈g1|g2〉 = 〈∣∣ḡ−1
1 ḡ2

∣∣〉 =
√∣∣AT

1 A∗
2 + BT

1 B∗
2

∣∣ =
√

|A†
2A1 + B†

2B1|.
(25)

The last expression is (2.14a) in [25], where it is derived from
(32) with a specific choice of D1, C1, D2, and C2. In [16], it is
derived from 〈g|〉 = √|A|.

In quantum number projection, one needs matrix elements
〈g1|ū|g2〉, where ū is the unitary transformation of K gen-
erated by a unitary transformation u of S . Explicitly, ū =
exp a†

− Y a|, where u = exp y and y|i〉− = |i〉−Y with |i〉− de-
noting the row of states |i〉, and a†

− is the row of operators a†
i ,

and a| the column of operators ai. The operator

a†
− Y a| = 1

2

[
α−

(
0 −Y T

Y 0

)
α| + trY

]
(26)

with α− and α| as in (8) is, except for the last term in the
brackets, the spin representation image x̄ of the element x of
o(2d, R) with

X =
(−Y T 0

0 Y

)
=

(
Y ∗ 0
0 Y

)
, (27)

where the last transformation stems from X being anti-
Hermitian. Therefore ū exp − 1

2 trY = ū/
√|U |, with U =

expY , is the spin representation image of the element g of

024315-4



FOCK SPACE REPRESENTATIONS OF BOGOLYUBOV … PHYSICAL REVIEW C 107, 024315 (2023)

SO(2d, R) determined by

G =
(

U ∗ 0
0 U

)
. (28)

Using |U | = |U T |, one arrives at

〈g1|ū|g2〉 = 〈∣∣ḡ−1
1 ḡ ḡ2

∣∣〉√|U T |

=
√∣∣(AT

1 U ∗A∗
2 + BT

1 UB∗
2

)
U T

∣∣. (29)

This is (2.13) in [15] (with missing equation number), whence
the first expression in (25) is a special case. For g1 = g2 it is
(34) in [26] except that there the factor

√
|U T | gets lost in the

derivation from the preceding equation (33).

IV. FORMULA OF ONISHI AND YOSHIDA

Ring and Schuck call 〈g|〉 = √|A| or the second expression
in (25) the “Onishi formula” [16], referring to the paper [14]
by Onishi and Yoshida. As noted in the Introduction, the for-
mula actually written by Onishi and Yoshida is quite different.
First of all, these authors consider not the state |g〉 but the state

|g̃〉 = |g〉
〈|g〉 . (30)

This state has no sign ambiguity; the arbitrary sign in |g〉
cancels out in the division. The state |g̃〉 can be defined
alternatively by (gai )|g̃〉 = 0 and the normalization 〈|g̃〉 = 1
(which implies that generally 〈g̃|g̃〉 > 1). The uniqueness of
|g̃〉 comes at the cost of a lack of generality; |g̃〉 is unde-
fined when 〈|g〉 = 0. From another point of view, when G
is written as in (11), the maximal neighborhood of 1 where
〈|g〉 �= 0 is described by yi < π/2 for every yi in (22), and
this set is simply connected. Bally and Duguet introduce in
their formalism [12] a similar limitation by demanding that,
for all Bogolyubov transformations g to be considered, the
amplitudes 〈|vac(g)〉 have equal phases, where |vac(g)〉 is
the quasifermion vacuum state assigned to g. This condition
clearly fails when 〈|vac(g)〉 = 0.

Onishi and Yoshida consider the case when every g is
unitary and proper, and express |g̃〉 by its Thouless expansion
[27]

|g̃〉 = exp 1
2 a†

−Fa†
| |〉, (31)

where the skew symmetric matrix F is related to the matrices
A and B in (24) by F = (BA−1)∗ [28] (which shows once more
way that |g̃〉 is undefined when |A| = 0). They hence derive

〈g̃1|g̃2〉 = exp 1
2 tr log(1 + F †

1 F2). (32)

(To be accurate, in their formula, the second term in the ar-
gument of the logarithm is F2F †

1 , but this makes no difference
due to the trace.) Notably, Onishi and Yoshida do not show
their derivation. The short derivation below makes repeated
use of the relation[

a|, exp 1
2 a†

−Fa†
|
] = Fa†

| exp 1
2 a†

−Fa†
| , (33)

which is mentioned in their paper.

What must be proven is that, for any two skew symmetric
matrices P and Q, the identity

ω := 〈∣∣ exp 1
2 a−Pa| exp 1

2 a†
−Qa†

|
∣∣〉

= exp 1
2 tr log(1 + PQ) (34)

holds. With

f (z) := 〈∣∣ exp 1
2 za−Pa| exp 1

2 a†
−Qa†

|
∣∣〉, (35)

one gets

f ′(z) = 1

2

〈∣∣∣∣
(

exp
1

2
za−Pa|

)
a−Pa| exp

1

2
a†

−Qa†
|

∣∣∣∣
〉

= 1

2

〈∣∣∣∣
(

exp
1

2
za−Pa|

)
a−PQa†

| exp
1

2
a†

−Qa†
|

∣∣∣∣
〉

= 1

2

〈∣∣∣∣
(

exp
1

2
za−Pa|

)

× (tr PQ − a†
−QPa|) exp

1

2
a†

−Qa†
|

∣∣∣∣
〉

= 1

2

〈∣∣∣∣
(

exp
1

2
za−Pa|

)

× (tr PQ − za−PQPa|) exp
1

2
a†

−Qa†
|

∣∣∣∣
〉

= 1

2

〈∣∣∣∣
(

exp
1

2
za−Pa|

)

× (tr PQ − za−PQPQa†
| ) exp

1

2
a†

−Qa†
|

∣∣∣∣
〉

= 1

2

〈∣∣∣∣
(

exp
1

2
za−Pa|

)

× (tr(PQ − zPQPQ) + za†
−QPQPa|)

× exp
1

2
a†

−Qa†
|

∣∣∣∣
〉

= · · ·

= 1

2
tr(PQ − zPQPQ + z2PQPQPQ − · · · )

×
〈∣∣∣∣ exp

1

2
za−Pa| exp

1

2
a†

−Qa†
|

∣∣∣∣
〉

= 1

2
tr PQ(1 + zPQ)−1 f (z)

=
(

d

dz

1

2
tr log(1 + zPQ)

)
f (z). (36)

Since f (0) = 1, there follows

f (z) = exp 1
2 tr log(1 + zPQ) (37)

and (34), in particular, provided one takes log 1 = 0.
This argument requires that the Taylor expansion of (1 +

zPQ)−1 converges. This holds when z is numerically less than
the reciprocal of every nonzero characteristic root of PQ.
However, because the expansion of exp 1

2 za−Pa| on powers
zn terminates when 2n > d , the function f is a polynomial.
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Therefore, by analytic continuation, despite its nominal multi-
valuedness, the right-hand side of (37) is single-valued outside
the singularities of the logarithm, which occur when z equals
minus the reciprocal of a characteristic root, and it can be
extended to the singularities so as to be defined for every z
as a continuous function of z. It follows by a similar argument
that the right-hand side of (34) is well defined as a continuous
function of the entries of P and Q.

In terms of the characteristic roots ri of PQ, the expression
(37) can be written

f (z) = exp
1

2

∑
i

log(1 + zri) =
√∏

i

(1 + zri ), (38)

where one must take
√

1 = 1 and for z �= 0 choose the sign
of the square root that makes it continuous in z. Since f is
a polynomial, the square root is a polynomial in z, so the
characteristic roots have even multiplicities [15]. The only
assumption was that P and Q be skew symmetric, so this
property of the spectrum of characteristic roots must hold,
in fact, for every product of two skew symmetric complex
matrices. This can be shown more directly as follows. Cayley
proved that the determinant of a skew symmetric matrix S can
be written as the square of a polynomial in its entries which
he called its Pfaffian, and which is denoted usually by pf S
[29,30]. Hence, when P and Q are skew symmetric, one has

|1 + zPQ| =
∣∣∣∣1 + zPQ −zP

0 1

∣∣∣∣ =
∣∣∣∣ zP 1
−1 Q

∣∣∣∣
∣∣∣∣Q −1
1 0

∣∣∣∣
=

∣∣∣∣ zP 1
−1 Q

∣∣∣∣ =
[

pf

(
zP 1
−1 Q

)]2

, (39)

which implies that the nonzero characteristic roots of PQ have
even multiplicities. Yet another proof of this result was given
by Oi, Mizusaki, Shimizu, and Sun under some restricting
assumptions [31]. Using it, one can express the right-hand side
of (34) as

∏′
i
(1 + ri ), (40)

where one out of every pair of equal characteristic roots of
PQ, counted with multiplicity, is included in the product. This
reduces the calculation of 〈g̃1|g̃2〉 to the determination of the
characteristic roots of F †

1 F2 [15].
In [26,28], the expression (32) is written

〈g̃1|g̃2〉 =
√

|1 + F †
1 F2|. (41)

In part of the literature, (32) or variants such as (41), where the
right-hand side is well defined by continuity, but whose scope
was seen to be limited to a neighborhood of 1, are called the
“Onishi formula” [8–13]. Mizusaki, Oi, and Shimizu derived
(41) from the linked cluster theorem [11], and Porro and
Duguet obtained (32) by a diagrammatic method [13].

V. ROBLEDO FORMULA

The definition of the Pfaffian of a 2d-dimensional skew
symmetric matrix S with entries si j can be written

pf S =
∑
π

sgn

(
1 2 . . . 2d
i1 i2 . . . i2d

) ∏
odd ν < 2d

siν iν+1 , (42)

where the sum runs over partitions π =
{{i1, i2}, . . . , {i2d−1, i2d}} of {1, 2, . . . , 2d} [29]. Hence,

pf

(
0 1

−1 Q

)
= (−1)d (d−1)/2 (43)

because in this case the product in (42) is different from 0
only when π = {{1, d + 1}, {2, d + 2}, . . . , {d, 2d}}. Writing
the right-hand side of (37) as in (41), one gets from (39) that

f (z) =
√

|1 + zPQ| = (−)d (d−1)/2 pf

(
zP 1
−1 Q

)
(44)

with the correct sign due to (43). For z = 1, this becomes

ω = (−)d (d−1)/2 pf

(
P 1
−1 Q

)
, (45)

where ω is defined in (34). In a slightly different but equiva-
lent form, this identity was proved by Robledo [7] by means
of Berezin integration [32]. Pfaffians can be calculated by
Householder transformation [33], which may be numerically
more stable than determining the characteristic roots of an
arbitrary complex matrix [7]. The matrix in (45) is seen to
have twice the dimension of that PQ. Other derivations of (45)
are given by Mizusaki, Oi, and Shimizu [11] and Porro and
Duguet [13]. I give yet another, combinatoric, proof.

Denoting the entries of P and Q by pi j and qi j , one can
write

exp
1

2
a−Pa| =

∑
π1

sgn

(
k1 k2 . . . k2m1

i1 i2 . . . i2m1

)

×
∏

odd ν < 2m1

piν iν+1 aiν aiν+1,

exp
1

2
a†

−Qa†
| =

∑
π2

sgn

(
l1 l2 . . . l2m2

j1 j2 . . . j2m2

)

×
∏

odd ν < 2m2

q jν jν+1 a†
jν

a†
jν+1, (46)

where the sums run over partitions π1 = {{i1, i2}, . . . ,
{i2m1−1, i2m1}} and π2 = {{ j1, j2}, . . . , { j2m2−1, j2m2}} of
even subsets {k1, k2, . . . , k2m1} and {l1, l2, . . . , l2m2} of
{1, 2, . . . , d}, and k1 < k2 < · · · < k2m1 and l1 < l2 < · · · <

l2m2 . Inserting these expressions into the definition of ω in
(34) gives

ω =
∑

π1∼π2

sgn

(
i1 i2 . . . i2m

j1 j2 . . . j2m

)

×
∏

odd ν < 2m

piν iν+1 q jν+1 jν
, (47)

where π1 ∼ π2 is shorthand for {i1, i2, . . . , i2m1} =
{ j1, j2, . . . , j2m2}, which implies m1 = m2 := m. Next
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notice that (−)d (d−1)/2 is the signature of the simultaneous
permutation of the rows and the columns that transforms the
matrix in (45) into the d × d block matrix S with diagonal
blocks (

0 1
−1 0

)
(48)

and off-diagonal blocks (
pi j 0
0 qi j

)
, (49)

so, by (42), the identity (45) can be written

ω = pf S. (50)

I set out to calculate pf S.
The pairs {iν, iν+1} in (42) can be so chosen that always

iν < iν+1. Then, when a factor siν iν+1 stems from a submatrix
(48), it equals 1, so one can omit these factors from the product
and the corresponding columns from the permutation symbol,
which does not alter the signature. When siν iν+1 is pi j , then iν
and iν+1 are odd, and when siν iν+1 is qi j , then iν and iν+1 are
even. Since equally many odd and even indices remain after
the factors from the diagonal submatrices were removed, the
product has equally many factors pi j and qi j . I denote by m
this number, which takes the values of the variable m in (47),
the integral values from 0 to 
d/2�. The general term in (42)
now is

sgn

(
2k1 − 1 2k1 2k2 − 1 . . . 2k2m

i1 i2 i3 . . . i4m

) ∏
odd ν < 4m

siν iν+1 ,

(51)

where 1 � k1 < k2 < · · · < k2m � d , and for every ν the in-
dices iν and iν+1 are either both odd or both even. For a given
m, the sum runs over all such ordered sets (ki | i = 1 . . . 2m)
and all partitions of {2k1 − 1, 2k1, 2k2 − 1, . . . , 2k2m} into
such pairs {iν, iν+1}.

A sequence of cyclic permutations of odd length changes
the sequence in the upper row of the permutation symbol in
(51) into 2k1 − 1, 2k2 − 1, . . . , 2k2m − 1, 2k2m, . . . , 2k2, 2k1.
This leaves the signature unaltered. Also without changing
the signature, one can reorder the pairs {iν, iν+1} in the lower
row so that all the pairs with odd iν and iν+1 appear before

the pairs with even iν and iν+1. Flipping iν and iν+1 in the
latter pairs is equivalent to replacing every qi j by q ji. After
these permutations, one can write the entries in the first half
of the lower row of the permutation symbol in the form
2i1 − 1, 2i2 − 1, . . . , 2im − 1 and the entries in the second
half of that row in the form 2 jm, . . . , 2 j2, 2 j1. The signature
in (51) thus becomes

sgn

(
k1 k2 · · · k2m

i1 i2 · · · i2m

)
sgn

(
k1 k2 · · · k2m

j1 j2 · · · j2m

)

= sgn

(
i1 i2 · · · i2m

j1 j2 · · · j2m

)
, (52)

and the product becomes∏
odd ν < 2m

piν iν+1 q jν+1 jν
. (53)

Since both sets {{i1, i2}, {i3, i4}, . . . , {i2m−1, i2m}} and
{{ j1, j2}{ j3, j4}, . . . , { j2m−1, j2m}} take the values of all
partitions of a common even subset of {1, 2, . . . , d} into
pairs, by comparison with (47), one arrives at (50).

VI. SUMMARY

The representation of a Bogolyubov transformation of
fermion annihilation and creation operators on the Fock space
related to a finite-dimensional space of single-fermion states
was discussed from the point of view of its equivalence to
a spin representation of an orthogonal group. It was shown,
in particular, that a much discussed “sign problem of the
Onishi formula” can be traced back to the double-valuedness
of spin representations. The sign ambiguity referred to by this
language affects a formula for the overlap amplitude between
two quasifermion vacua in the much cited book by Ring and
Schuck and some related formulas but not the original formula
of Onishi and Yoshida, whose is scope is, however, more
limited. Derivations based on the interpretation of the Fock
space representation as a spin representation were shown for
the formula of Ring and Schuck and some related formulas.
In some cases, these derivations are more complete than those
in the literature. I gave a short proof of the formula of Onishi
and Yoshida, whose derivation is missing in their paper, based
on a relation written there, and a new, combinatoric proof of
an equivalent formula recently derived by Robledo.
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