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Background: The fundamental question is how the hyperon plays a role in the nuclear structure. It is of particular
importance, especially in the light mass region, to verify the structure change when � particle(s) is added to
normal nuclei.
Purpose: The ground state of 8Be has been known to have a well-developed α-α cluster structure, whereas 12C
has a mixed structure of three α clusters and j j-coupling shell model, where α clusters are partially broken.
Adding � particle(s) could induce the structure change. We compare the Be and C cases.
Methods: Using the antisymmetrized quasicluster model (AQCM), the α-cluster states and j j-coupling shell-
model states of 8Be and 12C are prepared on the same footing, and we add � particles. The cluster-shell
competition in the ground state can be well described with this model. Using AQCM, we calculate 8Be, 9

�Be,
10
��Be, 12C, 13

� C, and 14
��C.

Results: By adding one or two � particle(s), the ground state of 12C approaches the j j-coupling shell model
side. On the other hand, in the Be case, although the � particle(s) shrinks the α-α distance, the breaking effect
of the cluster structure is rather limited.
Conclusions: The spin-orbit interaction is the driving force of breaking the α clusters, and whether the glue-like
effect of � particle(s) attracts the cluster inside the range of this interaction is crucial. In 14

��C, the breaking of α

clusters in 12C is much enhanced by the addition of the � particles than the case of free 12C. We also found that
breaking α clusters in the ground state of 14

��C affects the excited state with the pure cluster structure.

DOI: 10.1103/PhysRevC.107.024309

I. INTRODUCTION

One of the most intriguing phenomena of nuclear structure
physics is the competition of the shell and cluster structures
[1]. This is attributed to the effect of the spin-orbit inter-
action, which strengthens the symmetry of the j j-coupling
shell model. It is well known that this interaction is vital in
explaining the observed magic numbers of 28, 50, 82, and 126
[2]. The spin-orbit interaction also has the effect of breaking
clusters [1], where some of the strongly correlated nucleons
are spatially localized.

Nevertheless, the α cluster structure is known to be im-
portant in the light mass region. The Be isotopes are known
to have the α-α cluster structure; 8Be decays into two α

clusters, and the molecular-orbital structure of valence neu-
trons appears in the neutron-rich Be isotopes [3–5], which
is confirmed by the recent ab initio shell-model calculation
[6]. This persistence of the α-α cluster structure is owing to
the α-α distance, which is about 3–4 fm and large enough
compared with the range of the spin-orbit interaction.

In light nuclei, it is considered that these two different
pictures (shell and cluster) coexist, and they compete with
each other. Although the α-α cluster structure may persist in
8Be, when one more α cluster is added, in 12C, the interaction
among α clusters gets stronger, and the system has a shorter
α-α distance [7,8]. In this case, the α clusters are trapped in

the interaction range of the spin-orbit interaction. Although
the traditional α cluster model (Brink model) [9] is incapable
of treating the spin-orbit interaction, its effect is significant
if we allow the breaking of the α clusters. The ground state
of 12C is found to have a mixed nature of shell and cluster
components [10–12]. On the other hand, the second 0+ state
of 12C is the well-known α clustering state called the Hoyle
state. Since this state is nearby the three-α breakup threshold,
the wave function is dilute, and this state has a well-developed
α clustering structure.

It is interesting to investigate how clustering structure is
changed when a hyperon such as a � particle is injected into
8Be and 12C. Here, it should be noted that there is no Pauli
principle between nucleons and a �, and the �N interac-
tion is attractive, but weaker than the NN interaction. Using
this property, some authors studied the structure of 9

�Be and
13
� C from the viewpoint of the dynamical change of the core
nuclei, 8Be and 12C, due to the addition of � particle. For
instance, Motoba et al. [13], pointed out that the α-α distance
in 9

�Be was shrunk by about 20% in comparison with that in
the 8Be core nucleus by � injection. In the carbon isotope,
one of the present authors (E.H.) pointed out that dynamical
change due to the addition of a � particle is dependent on
the states in the core nucleus of 12C within the framework
of 3α and 3α + � three- and four-body OCM (orthogonal
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condition model) [14]. The ground state of 12C, 0+
1 , is a

mixture of shell and cluster structures; the α-α distance does
not change due to the addition of a � particle. On the other
hand, the α-α distance is dramatically contracted in the Hoyle
state of 13

� C, which is a well-developed clustering state [14].
However, it should be noted that this calculation was done
without taking into account the breaking effect of α clusters
in 12C. In addition, in Ref. [15], they discussed the similarity
and difference in several states of 12C and 13

� C. In this way,
there are some discussions on the change of the α-α distance
when the � particle is added. However, there remain never
discussed effects of the clustering in such Be and C isotopes
due to the addition of � particles. The question is how the
clustering is broken when � particles shrink the α-α distance.
The traditional cluster model is incapable of describing such
a breaking situation and we must extend the model space to
incorporate the spin-orbit contribution, which is the driving
force of breaking clusters.

Thus, in this work, we focus on how the clustering is
changed and broken due to the addition of a � particle(s)
in 8Be, 9

�Be, 10
��Be, 12C, 13

� C, and 14
��C. In the case of Be

isotopes, as mentioned, the � particle(s) shrinks the α-α rel-
ative distance [14,16], but the resultant distance might still
be outside the range of the spin-orbit interaction, and the
α cluster structure could persist. On the contrary, when �

particle(s) is added to 12C, the distances between clusters
get even shorter. Since the spin-orbit interaction works in the
inner regions of the nuclear systems, the breaking of α clusters
is expected to be enhanced. Therefore, the ground state would
approach a more j j-coupling shell-model side. Indeed, as
shown in the study of antisymmetrized molecular dynamics
[17], the slightly deformed ground state of 12C is changed into
a spherical shape in 13

� C. It is worthwhile to check this point
in terms of the cluster-shell competition.

In most of the conventional α cluster models, the contri-
bution of the noncentral interactions (spin-orbit and tensor
interactions) vanishes. To include the spin-orbit effect, we
have developed the antisymmetrized quasicluster model
(AQCM) [10,18–31]. This method allows us to smoothly
transform α-cluster model wave functions to j j-coupling shell
model ones, and we call the clusters that feel the effect of
the spin-orbit interaction quasiclusters. We have previously
introduced AQCM to 12C and discussed the competition be-
tween the cluster states and j j-coupling shell model state [10].
The consistent description of 12C and 16O, which has been a
longstanding problem of microscopic cluster models, has been
achieved. Also, not only the competition between the cluster
states and the lowest shell-model configuration, but also the
effect of single-particle excitation was further included in the
description of the ground state [30].

This paper is organized as follows. The framework is de-
scribed in Sec. II. The results are shown in Sec. III. The
conclusions are presented in Sec. IV.

II. FRAMEWORK

The wave function is fully antisymmetrized, and different
basis states are superposed based on the generator coordinate

method (GCM) after the angular momentum projection, and
the amplitude for each basis state is determined by diagonal-
izing the norm and Hamiltonian matrices.

A. Single-particle wave function

In our framework, every single particle is described in a
Gaussian form as in many traditional cluster models, includ-
ing the Brink model [9],

φτ,σ (r) =
(

2ν

π

) 3
4

exp[−ν(r − ζ)2]χτ,σ , (1)

where the Gaussian center parameter ζ is related to the ex-
pectation value of the position of the nucleon, and χτ,σ is
the spin-isospin part of the wave function. The α cluster is
expressed by four nucleons with different spin and isospin
sharing the same ζ value. For the size parameter ν, here,
we use ν = 1/2b2 and b = 1.46 fm. The Slater determinant
is constructed from these single-particle wave functions by
antisymmetrizing them. Each � particle is represented by the
same local Gaussian-type wave function; the size parameter
ν is assumed to be the same as nucleons. However, we su-
perpose many wave functions with different positions of the
Gaussian center parameters for the � particle(s) based on the
GCM, and thus, the motion of � particle(s) can be solved with
enough accuracy.

This traditional α cluster wave function cannot take into
account the effect of noncentral interactions including the
spin-orbit interaction. We can extend the model based on the
AQCM, by which the contribution of the spin-orbit interaction
due to the breaking of α clusters is included. Here, the ζ

values in Eq. (1) are changed to complex numbers. When the
original value of the Gaussian center parameter ζ is R, which
is real and related to the spatial position of this nucleon, it is
transformed by adding the imaginary part as

ζ = R + iλespin × R, (2)

where espin is a unit vector for the intrinsic-spin orientation
of this nucleon. The control parameter λ is associated with
the breaking of the cluster. After this transformation, the α

clusters are called quasiclusters. The two nucleons in the same
quasicluster with opposite spin orientation have ζ values that
are complex conjugate to each other. This situation corre-
sponds to the time-reversal motion of two nucleons.

In our previous analysis on 12C [10], we have introduced
two parameters representing the distances between quasiclus-
ters and their breaking (λ). The subclosure configuration of
(s1/2)4 (p3/2)8 of the j j-coupling shell model can be obtained
at the limit of small relative distances and λ = 1.

B. Angular momentum projection and GCM

Each AQCM Slater determinant is projected to the eigen-
states of parity and angular momentum by using the projection
operator PK

Jπ ,

PK
Jπ = Pπ 2J + 1

8π2

∫
d� DJ

MK
∗
R(�). (3)
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Here, DJ
MK is the Wigner D function and R(�) is the rotation

operator for the spatial and spin parts of the wave function.
This integration over the Euler angle � is numerically per-
formed. The operator Pπ is for the parity projection [Pπ =
(1 + Pr )/

√
2 for the positive-parity states, where Pr is the

parity-inversion operator], which is also performed numeri-
cally.

The AQCM basis states with different distances between
quasiclusters and λ values are superposed based on GCM.
We also generate Gaussian centers for the � particles using
random numbers, and the basis states with different positions
are superposed. The coefficients {cK

i } for the linear combi-
nation of the Slater determinants are obtained together with
the energy eigenvalue E when we diagonalize the norm and
Hamiltonian matrices, namely by solving the Hill-Wheeler
equation

∑
j

(〈�i|
(
PK

Jπ

)†
HPK

Jπ |� j〉 − E〈�i|
(
PK

Jπ

)†
PK

Jπ |� j〉
)
cK

j = 0.

(4)

C. Hamiltonian

The Hamiltonian consists of kinetic energy and potential
energy terms. For the potential part, the interaction consists
of the central, spin-orbit, and Coulomb terms. The nucleon-
nucleon interaction is Volkov No. 2 [32] with the Majorana
exchange parameter of M = 0.6, which has been known to
reproduce the scattering phase shift of 4He–4He [33]. For
the spin-orbit part, we use the spin-orbit term of the G3RS
interaction [34], which is a realistic interaction originally
developed to reproduce the nucleon-nucleon scattering phase
shifts. The strength of the spin-orbit interactions [10] is set to
V 1

ls = V 2
ls = 1450 MeV, which reproduces the binding energy

of 12C from the three-α threshold. For the nucleon-� interac-
tion, we employ only the central part: YNG-ND interaction
[35]. The kF value for 9

�Be and 10
��Be is 0.962 fm−1 as in

Ref. [14] and 1.17 fm−1 for 13
� C and 14

��C as in Ref. [17].
For the �-� interaction, we adopt the one called “NS” in
Ref. [35], which allows the reproduction of the binding energy
of 6

��He.

III. RESULTS

A. Ground states of 8Be, 9
�Be, and 10

��Be

We start the discussion with 8Be. Our Hamiltonian gives
the energy of −27.57 MeV for the α cluster, and thus,
−55.1 MeV is the two-α threshold energy (experimentally
−56.6 MeV, to which our theoretical value does not contra-
dict). Figure 1(a) shows the energy curves of the 0+ state of
8Be as a function of the distance between two 4He clusters.
The solid line is for λ = 0 (pure two α’s), and the dotted
and dashed line are for two quasiclusters with λ = 0.1 and
0.2, respectively. The energy minimum point appears around
the relative distance of ∼3.5 fm. This distance is quite large,
and this is outside of the interaction range of the spin-orbit
interaction. Therefore, the λ value that gives the minimum
energy is zero (solid line), which means that the α clusters
are not broken. The α breaking effect can be seen in more
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FIG. 1. (a) Energy curves of 0+ state of 8Be as a function of the
distance between two 4He clusters. Solid line is for λ = 0 (pure two
α’s) and dotted and dashed lines are for two quasiclusters with λ =
0.1 and 0.2, respectively. (b) Same as (a) but for the 1/2+ state of
9
�Be. (c) Same as (a) but for the 0+ state of 10

��Be.

inner regions, where the energies of dotted and dashed lines
are lower than the solid line. The α clusters are surely broken
there. However, at short relative distances, the energy itself is
high enough, and the spin-orbit interaction only plays a role in
reducing the increase of the excitation energy to some extent
when two clusters get closer.

The situation is slightly different in Fig. 1(b), which is
for the 1/2+ of 9

�Be, where one � particle is added. We
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superpose 50 Slater determinants with different positions for
the � particle and diagonalize the Hamiltonian based on the
GCM for each cluster-cluster distance and λ. This procedure
allows us to accurately solve the motion of the � particle. Ow-
ing to the � particle added, the attractive effect is increased,
and the optimal distance between the two 4He nuclei (lowest
energy point) is around 3 fm, slightly shorter than the 8Be
case. Here, the solid line (λ = 0) and the dotted line (λ = 0.1)
almost degenerate, and thus, the α clusters are slightly broken
due to the spin-orbit effect. The tendency is a bit enhanced
in 10

��Be shown in Fig. 1(c). The optimal cluster-cluster dis-
tance is less than 3 fm, where the dotted line (λ = 0.1) is
slightly lower than the solid line (λ = 0). The number of
Slater determinants with different positions of the Gaussian
center parameters for the � particles is increased to 100 for
each 4He–4He distance and λ. In this way, since the 4He–4He
distances are large in 9

�Be and 10
��Be, we find that the α-cluster

braking effect is rather small.

B. Ground states of 12C, 13
� C, and 14

��C

Next we discuss 12C and 13
� C, and 14

��C. The three-α thresh-
old energy is −82.7 MeV in our calculation compared with
the experimental value of −84.9 MeV. Figure 2(a) shows the
energy curves of 0+ state of 12C with an equilateral triangular
configuration as a function of the distance between two 4He
clusters. The solid line is for λ = 0 (pure three α’s). Since
one 4He is added to 8Be, the energy minimum point appears
around the relative distance of 2.5–3.0 fm, shorter by 1 fm
than the previous 8Be case before allowing the breaking of
α clusters. Therefore, it is considered that the three α clus-
ters step in the interaction range of the spin-orbit interaction.
The dotted line (λ = 0.1) and dashed line (λ = 0.2) almost
degenerate at the region of the lowest energy (the relative
cluster-cluster distance shrinks to 2 fm there).

This tendency is enhanced in Fig. 2(b), which is for
the 1/2+ of 13

� C, where one � particle is added. Owing to
the � particle added, the attractive effect is increased, and
the optimal distance between the 4He nuclei is around 2.5 fm
(solid line) before breaking the α clusters. When we allow
the breaking, the energy curves become almost flat inside
the relative 4He–4He distance of 2 fm. The energy minimum
points of the dotted (λ = 0.1) and dashed (λ = 0.2) lines are
lower than that of the solid line (λ = 0). In this calculation,
to solve the motion of the � particle, we superpose 50 Slater
determinants with different positions of the Gaussian center
parameters for each 4He–4He distance and λ.

The attractive effect of the � particles is much more
enhanced in Fig. 2(c), which is for the 0+ state of 14

��C.
The optimal distance between the 4He nuclei (energy mini-
mum point) is around 2.2 fm before breaking the α clusters
(solid line). When we allow the breaking, the energy mini-
mum point appears at the relative cluster-cluster distance of
∼1.4 fm, where the dashed line (λ = 0.2) gives the lowest
energy, and α clusters are significantly broken. We can con-
firm that the optimal cluster distance gets shorter, and the
breaking of α clusters becomes larger with the increasing
number of � particles added to the system. The number of
Slater determinants superposed with different positions of the
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FIG. 2. (a) Energy curves of 0+ state of 12C as a function of
the distance between three 4He clusters with equilateral triangular
configuration. Solid line is for λ = 0 (pure three α’s) and dotted
and dashed lines are for two quasiclusters with λ = 0.1 and 0.2,
respectively. (b) Same as (a) but for the 1/2+ state of 13

� C. (c) Same
as (a) but for the 0+ state of 14

��C

Gaussian center parameters for the � particles is 100 for each
4He–4He distance and λ.

C. Superposition of states with different 4He - 4He distance
and breaking parameter λ

To demonstrate the relation between the effect of α break-
ing and spin-orbit interaction, we calculate the ground state
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TABLE I. Ground state energies of 8Be, 9
�Be, and 10

��Be [“en-
ergy (Jπ )”] after performing the GCM calculations. “Brink” is for
the Brink model (λ = 0); two-α clusters without the breaking, and
“AQCM” is for the AQCM calculation, where different λ states are
mixed. “one-body LS” is for the expectation values of the one-body
spin-orbit operator. The values in the parenthesis show the experi-
mental values. B�, B�� are also shown. All energies are in MeV.

8Be energy (0+) one-body LS

Brink −54.75 0.00
AQCM −54.94 (−56.50) 0.12
9
�Be energy (1/2+) B� one-body LS

Brink −60.97 0.00
AQCM −61.53 6.59 (6.71 [17]) 0.29
10
��Be energy (0+) B�� one-body LS

Brink −69.60 0.00
AQCM −70.17 15.23 (14.7 ± 0.4 [37]) 0.44

energies of 8Be, 9
�Be, 10

��Be (Table I) and those of 12C, 13
� C,

14
��C (Table II) with two models: “AQCM”’ which explic-
itly takes account of the breaking effect of α, and “Brink
model” which does not involve the α breaking effect (λ = 0).
We superpose Slater determinants with different positions for
the � particle(s), 4He–4He cluster distances, and α-breaking
parameter λ and diagonalize the Hamiltonian based on the
GCM.

For the Be case (Table I), the energy difference between
Brink and AQCM is less than 0.2 MeV in 8Be, which means
that the spin-orbit interaction does not break the α clusters
since they are separated by a certain distance. The situation is
basically the same when � particle(s) is added. The difference
is about 0.5–0.6 MeV in 9

�Be and 10
��Be. Concerning the

ground state energy of 10
��Be, the binding energy (B��) of

17.5 ± 0.4 MeV from 8Be has been reported in Ref. [36],
which has been revised to 14.7 ± 0.4 MeV in Ref. [37]

TABLE II. Ground state energies of 12C, 13
� C, and 14

��C [“energy
(Jπ )”] after performing the GCM calculations. “Brink” is for the
Brink model (λ = 0); three-α clusters with equilateral triangular
shapes without the breaking, and “AQCM” is for the AQCM calcu-
lation, where different λ states are mixed. “one-body LS” is for the
expectation values of the one-body spin-orbit operator. The values
in the parenthesis show the experimental values. All energies are in
MeV.

12C energy (0+) one-body LS

Brink −86.84 0.00
AQCM −90.12 (−92.16) 1.55
13
� C energy (1/2+) B� one-body LS

Brink −97.77 0.00
AQCM −102.00 11.88 (11.69 [17]) 1.86
14
��C energy (0+) B�� one-body LS

Brink −110.58 0.00
AQCM −115.74 25.62 2.05

(see the discussions in Refs. [38,39]), and the present result
(15.23 MeV) is almost consistent with the latter case.

For the C case (Table II), the energy difference between
Brink and AQCM is about 3.3 MeV in 12C, and this is much
enhanced with the increasing number of the � particles added.
The difference increases to 5.2 MeV in 14

��C. This is because
the spin-orbit interaction works in the inner region of the
nuclear systems; the glue-like effect of � particles shrinks
the system and induces more contribution of the spin-orbit
interaction.

To clarify the mixing of the j j-coupling shell model com-
ponents in each state, we utilize the expectation value of the
one-body spin-orbit operator,

ÔLS =
∑

i

l isi/h̄2, (5)

where l i and si are the orbital angular momentum and the spin
operators for the ith nucleon. The sum runs over the nucleons.
The expectation value is zero for the pure α cluster state owing
to the antisymmetrization effect. Also, the l isi/h̄2 value is 0.5
for one nucleon in the p3/2 orbit, and the eigenvalue is 4 for
the subclosure configuration of the j j-coupling shell model
[(s1/2)4 (p3/2)8] in 12C.

The expectation values of the one-body spin-orbit operator
for the ground states of 8Be, 9

�Be, and 10
��Be are listed in

the column “one-body LS” in Table I. Although the value
increases with the number of � particles added, it is rather
small and cluster structure is considered to be not broken.
However, this is completely different in the C case. The ex-
pectation values of the one-body spin-orbit operator for the
ground states of 12C, 13

� C, and 14
��C are listed in the column

“one-body LS” in Table II. The value is 1.55 for 12C, and we
can reconfirm that the ground state has mixed configurations
of shell and cluster aspects. As the number of the � particles
added increases, we can see that the ground states approach
the j j-coupling shell model side. The values for 13

� C and 14
��C

are 1.86 and 2.05, respectively.

D. Pure α cluster state orthogonal to the ground state

We have discussed that the ground states shift to the j j-
coupling shell model side by adding � particles, and the final
question is where the “pure” three-α cluster state appears in
14
��C. We can discuss it by preparing the pure three-α cluster
states and orthogonalizing them to the ground state. The shift
of the ground state to the j j-coupling shell-model-side after
allowing the breaking of α clusters is found to play a crucial
role.

The solid line in Fig. 3(a) shows the excited 0+ state with
equilateral triangular configurations of pure three-α clusters
as a function of the relative distances between the α clusters.
At each α-α distance, the wave function is orthogonalized to
the ground state. Here, the ground state is represented by the
optimal AQCM basis state (4He–4He distance of 1.4 fm and
� = 0.2) shown by the solid circle. Therefore, the two-by-
two matrix is diagonalized at every point on the horizontal
axis. It is found that the pure cluster state appears around
the excitation energy of Ex = 15 MeV with the relative α-α
distance of ∼2.5 fm. To simplify the discussion, the positions
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FIG. 3. Excited 0+ state comprised of pure three α clusters in
14
��C as a function of distances between α-α (solid lines). Ground
state is represented by the AQCM basis state with the 4He–4He
distance of 1.4 fm and λ = 0.2 (a) and 4He–4He distance of 2.2 fm
and λ = 0.0 (b), which are shown by the solid circles.

for the Gaussian center parameters for the � particles are set
to origin only in Figs. 3(a) and 3(b).

This situation is quite different if the α cluster is assumed
to be not broken due to the spin-orbit interaction in the ground
state. This is an artificial calculation, but we can clearly see the
influence of the cluster-shell competition in the excited state;
Fig. 3(b) shows the result when the ground state is represented
by the Brink model, which is prepared by changing the λ value
to zero and the 4He–4He distance to 2.2 fm. The excited 0+
state is quite influenced by this change of the ground state.
The energy is pushed up by more than 10 MeV, and the
optimal α-α distance is increased to ∼3 fm. This is because
if the ground state is a pure three-α cluster state, the excited
states need to be more clusterized to satisfy the orthogonal

condition. On the other hand, if the ground state has different
components other than the cluster structure, it is easier for the
pure cluster state to be orthogonal to the ground state. This
effect has been known in 12C and called the “shrink effect”
of the second 0+ state; when the α breaking component is
mixed in the ground state, the second 0+ state orthogonal to
the ground state shrinks. We found that this shrinking effect is
much more enhanced in 14

��C.

IV. CONCLUSIONS

The effect of adding hyperon(s) in nuclear systems is a
fundamental problem in nuclear structure physics. We ana-
lyzed this effect in the context of cluster-shell competition
and discussed the difference between Be and C cases. The
antisymmetrized quasicluster model (AQCM) is a useful tool
to treat the cluster states and shell-model states on the same
footing, and we added � particle(s) to 8Be and 12C.

The cluster breaking effect is negligibly small in 8Be,
where α-α cluster structure keeps enough distance; they stay
out of the interaction range of the spin-orbit interaction, which
breaks the α clusters. The situation holds even after � par-
ticle(s) is added. The glue-like effect of � particles surely
shrinks the cluster-cluster distance, but clusters are not yet
broken.

The situation is completely different in the C case since the
additional α cluster shrinks the cluster-cluster distance, and
clusters are in the interaction range of the spin-orbit interac-
tion. The ground state of 12C contains the component of the
j j-coupling shell model. The energy difference between the
traditional Brink model and AQCM is about 3.3 MeV in 12C,
and this is much enhanced with the increasing number of the
� particles added. The energy difference is about 5.2 MeV in
14
��C. This is because the spin-orbit interaction works in the
inner region of the nuclear systems, and the glue-like effect of
� particles shrinks the system and induces more contribution
of the spin-orbit interaction. In 14

��C, the breaking of α clusters
in 12C is much enhanced by the addition of the � particles.
The energy and structure of the excited 0+ state with a pure
cluster structure are found to be drastically affected by the
transition of the ground state to the j j-coupling shell model
side.
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