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Bohr-Weisskopf effect in the potassium isotopes

Yu. A. Demidov ,1,2,3 M. G. Kozlov ,1,2 A. E. Barzakh ,1 and V. A. Yerokhin 3

1Petersburg Nuclear Physics Institute NRC “Kurchatov Institute”, Gatchina 188300, Russia
2St. Petersburg Electrotechnical University “LETI”, St. Petersburg 197376, Russia

3Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia

(Received 23 November 2022; accepted 25 January 2023; published 13 February 2023)

The magnetic hyperfine structure constants have been calculated for low-lying levels in aneutral potassium
atoms taking into account the Bohr-Weisskopf (BW) and Breit–Rosenthal (BR) effects. According to our results
the 4p1/2 state of K I is free from both BR and BW corrections on the level of the current theoretical uncertainties.
Using this finding and the measured values of the A(4p1/2) constants, we corrected the nuclear magnetic moments
for several short-lived potassium isotopes. The BW correction is represented as a product of atomic and nuclear
factors. We calculated the atomic factor for the ground state of K I, which allowed us to extract nuclear factors for
potassium Iπ = 3/2+ isotopes from the experimental data. In this way the application range of the single-particle
nuclear model for nuclear-factor calculation in these isotopes has been clarified.
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I. INTRODUCTION

The magnetic-dipole hyperfine structure (HFS) constants
are highly sensitive to the changes of charge and magnetiza-
tion distributions inside the nucleus because these constants
are defined by the behavior of the electron wave function
in this region. High experimental accuracy is achieved in
the spectroscopic measurement of HFS constants for atoms,
which allows one to study the nuclear effects in isotope
sequences. These experimental data are very useful for un-
derstanding of properties of the atomic nuclei.

The HFS constant A for the finite nucleus can be written in
the following form [1]:

A = gIA0(1 − δ)(1 − ε), (1)

where gI = μ

μN I is the nuclear g factor, μ and I are magnetic
moment and spin of the nucleus, respectively; μN is the nu-
clear magneton. gIA0 is the HFS constant for the pointlike
nucleus. The finite size of the nucleus leads to the deviation of
the A constant from the pointlike value due to the distribution
of charge and magnetization over the nuclear volume. The
charge δ and magnetic ε corrections to the HFS constant
are called Breit-Rosenthal [2,3] (BR) and Bohr-Weisskopf [4]
(BW) ones, respectively.

For stable or long-lived isotopes, measurements of the
nuclear g factor and the HFS constant can be carried out
independently. These experimental data enable one to evaluate
a relative hyperfine anomaly 1�2 (RHFA) values through the
relation

1�2 ≡ g(2)
I A(1)

g(1)
I A(2)

− 1 ≈ ε(2) − ε(1) + δ(2) − δ(1)

=1 �2
BW + 1�2

BR. (2)

Here, nuclear g factors, A-constant values, and BR and BW
corrections for isotopes (1) and (2) are marked by the corre-
sponding superscript.

The dependence of BR correction on the nuclear radius R
is defined by the asymptotic behavior of the electron wave
function near a point nucleus [5]. Then, the BR correction for
s1/2 and p1/2 atomic states can be written as [5,6]

δ(R) = bN (R/λ̄C )κ, κ = 2
√

1 − (αZ )2 − 1. (3)

Here λ̄C is the reduced Compton wavelength of the elec-
tron (λ̄C = h̄

mec ), α is the fine structure constant, Z is nuclear
charge, and dimensionless parameter bN depends on the elec-
tron state. Taking into account that the charge density is
almost homogeneous inside the nucleus [7] we use R =√

5/3 rrms, where rrms = 〈r2〉1/2 is a root-mean-square nuclear
charge radius.

Assuming the atomic-nuclear factorization, the BW correc-
tion takes the form [8,9]

ε(dnuc, R) = dnuc εat (R), εat (R) = bM (R/λ̄C )κ . (4)

The accuracy of such separation had been found to be very
high [9,10]. In the case of the pointlike magnetic dipole dnuc =
0, whereas the homogeneously magnetized sphere of radius R
corresponds to dnuc = 1.

The HFS constants for p3/2 and other electronic states
with angular momentum j � 3/2 are sensitive to the nuclear
charge and magnetization distributions only due to the ad-
mixture of s1/2 and p1/2 partial waves (see Refs. [11,12]).
Therefore the BR and BW corrections for all electron states
are described by Eqs. (3) and (4), respectively.

The parametrization of HFS constants by Eqs. (1)–(4)
involves three nuclear (gI , dnuc, and R) and three atomic
(A0, bN , and bM) characteristics. In order to perform an
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atomic-structure calculation of the A constants we need to fix
the nuclear parameters,

A = A(gI , dnuc, R) = gI A(1, dnuc, R). (5)

The atomic parameters are the same for different isotopes and
obtained numerically. The bM parameter can be found from
Eqs. (1) and (4):

bM = λ̄κ

C

Rκ

(
1 − A(gI , 1, R)

A(gI , 0, R)

)
. (6)

To find parameter bN we performed calculations for two dif-
ferent nuclear radii:

bN = (A(gI , 0, R2) − A(gI , 0, R1))λ̄κ

C

A(gI , 0, R2)Rκ

1 − A(gI , 0, R1)Rκ

2

. (7)

The atomic parameter A0 was found from the relation

A0 = A(1, 0, R)

1 − bN (R/λ̄C )κ
. (8)

The independent measurements of the HFS constants and
nuclear magnetic moments allow one to determine RHFA for
several K isotopes [13]. At the same time the electronic struc-
ture of the potassium atom is relatively simple and consists
of a single valence electron above the filled atomic core. Ad-
vanced atomic methods allow one to calculate HFS constants
of potassium isotopes with high accuracy [14–16]. The BW
effect should no longer be ignored at the level of accuracy
of modern experiments and theoretical atomic-structure
calculations.

In Refs. [17,18] the HFS measurements for potassium iso-
topes were extended up to 51K, enabling one to assess the
nuclear magnetic moments. In the present work we recalculate
these nuclear magnetic moments taking into account hyperfine
anomaly corrections.

II. HYPERFINE ANOMALY

In Sec. IV we will show that for all potassium isotopes
considered here �BR is three orders of magnitude smaller than
�BW. Correspondingly, we can neglect the BR contribution to
RHFA and assume � ≈ �BW. Then one can determine d (2)

nuc
for the isotope in question provided the nuclear factor d (1)

nuc for
the reference isotope, RHFA value 1�2, and the atomic part
of BW correction εat are known:

d (2)
nuc = d (1)

nuc +
1�2

εat
. (9)

These factors can be compared with that calculated within a
framework of the single-particle nuclear model [4,19]. One
can expect that this model works fairly well for 39K with one
proton hole (πd−1

3/2) with respect to the doubly magic 40Ca. At
the same time, it was shown [20] that BW correction (i.e., the
dnuc factor) for the πd3/2 state is anomalously large and sen-
sitive to small perturbations, for example in the case of gold
Iπ = 3/2+ isotopes [21–23]. Thus, the study of Iπ = 3/2+
potassium isotopes with one hole in the closed proton shell
can give additional insight into this single-particle nuclear
structure.

III. SINGLE-PARTICLE NUCLEAR MODEL

The nuclear magnetization mainly arises due to the spin
polarization and the orbital motion of the valence nucleon.
The nuclear g factor is given by the famous Landé formula,

gI =
[

1

2
− L(L + 1) − 3/4

2I (I + 1)

]
gS +

[
1

2
+ L(L + 1) − 3/4

2I (I + 1)

]
gL.

(10)

Introducing σ (the average odd-particle spin component in the
direction of I) in accordance with the relation

gI = σ

I
gS + (I − σ )

I
gL, (11)

we obtain,

σ =
{

1
2 , I = L + 1

2 ,

− I
2(I+1) , I = L − 1

2 .

(12a)

(12b)

The spin g factor gS is chosen from the condition that Eqs. (10)
and (11) reproduce the experimental g-factor value by setting
gL = 1 for the proton and gL = 0 for the neutron [6]. Such
a choice of gL gives gS within the range from 0.84gfree

p to
0.95gfree

p (the free-proton g factor gfree
p = 5.586) for the con-

sidered potassium Iπ = 3/2+ isotopes.
Then the BW correction ε can be represented as a linear

combination of the spin and orbital contributions, εS and εL,
with the weights determined by Eq. (11):

ε = σgS

IgI
εS +

(
I − σ

I

)
gL

gI
εL. (13)

One can represent εS and εL according to Bohr and Weis-
skopf [4] in the following form:

εS = (1 − kζ )εat, εL = (1 + k)εat. (14)

Here, k ≈ −0.38 [4], and ζ is the so-called spin asymmetry
parameter [19,24]. If the valence nucleon is in the L �= 0 state,
then the spin density is asymmetric and additional contribu-
tion to the spin part of BW correction appears. Expressions
for ζ were suggested by Bohr [19]:

ζ =
{

2I−1
4(I+1) , I = L + 1

2 ,

2I+3
4I , I = L − 1

2 .

(15a)

(15b)

The nuclear factor can be found from Eqs. (11)–(15) as

dnuc = 1 + k

[
1 − (1 + ζ )

σgS

IgI

]
. (16)

When the nuclear factor is large, a more accurate estimate
of the parameter k given by Eq. (15) than that of [4] is needed.
This parameter can be calculated directly by solving the
Schrödinger equation with the Woods-Saxon potential [26]
for the valence nucleon. After that the radial wave function
of the valence nucleon is used to compute the ratio εL/εat

as proposed in Refs. [27,28]. The ratio εL/εat = 0.621(2),
corresponding to the parameter k = −0.379(2), is quite stable
for all considered potassium isotopes. Deviations between the
numerical results determine the uncertainty of k.
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TABLE I. The binding energies (in a.u.) of the low-lying elec-
tron states of potassium atom relative to the K+ core. The rows
DHF, MBPT, and LCC correspond to the Dirac-Hartree-Fock,
Dirac-Hartree-Fock plus MBPT, and Dirac-Hartree-Fock plus LCC
methods, respectively. We take into account Breit corrections at DHF
stage of the calculations. The experimental data and the LCC errors
(in %) are listed in the last two rows.

Method 4s1/2 4p1/2 4p3/2

DHF 0.1475 0.0957 0.0955
MBPT 0.1609 0.1007 0.1004
LCC 0.1601 0.1006 0.1003
Expt. [25] 0.1595 0.1004 0.1001
Diff. LCC with expt. 0.36% 0.21% 0.21%

IV. CALCULATION RESULTS

We consider the ground and valence-excited configurations
of the potassium atom, which can be represented as as a single
valence electron above the 3s23p6 electron shells included
in the atomic core. The core-valence and core-core correla-
tions are treated perturbatively. All calculations are performed
using Dirac-Coulomb-Breit Hamiltonian. Breit corrections in-
cluding both the magnetic term and the retardation term in the
zero-frequency limit are taken into account in accordance with
Refs. [29,30].

We start by solving Dirac-Hartree-Fock (DHF) equa-
tions for the core and valence orbitals up to 5p3/2. After that
we merge these orbitals with B-splines of order 8 as described
in Ref. [31] to form a basis set for calculating the correlation
corrections. The basis set 22spdf gh includes 230 orbitals for
partial waves with orbital angular momentum l from 0 to 5.

Correlation corrections to the HFS include ones to the
hyperfine operator and to the many-electron wave functions.
To account for the leading terms of the vertex correction
in the calculation of the HFS constants we use the random
phase approximation (RPA) with structural radiation correc-
tion [32,33]. These corrections include in particular the spin
polarization of the core shells, down to 1s. We use second-
order many-body perturbation theory (MBPT) [34,35] and
the linearized single double coupled-clusters method (LCC)
[36,37] to take into account correlation corrections to the
wave function. In both cases these corrections are included
in self-energy contribution to the effective Hamiltonian for a
single valence electron [38]. The energy dependence of the
effective Hamiltonian is taken into account as discussed in
Refs. [34,37]. As seen from Tables I and II, the LCC results
agree with the experimental data better than the MBPT ones.
We have already seen the same preference for LCC results in
our previous calculations [21].

A comparison of theoretical binding energies of the 4s1/2,
4p1/2, and 4p3/2 states with experiment is given in Table I. The
experimental data used in this comparison are from Ref. [25].
Our final theoretical uncertainty ranges from 130 cm−1 for 4s
to 50 cm−1 for 4p states of K I. The theoretical result for the
fine-structure 4p1/2–4p3/2 interval of 58.2 cm−1 is in excellent
agreement with the experimental value, 57.7 cm−1 [25].

TABLE II. The atomic parameters A0, bN , bM , and HFS con-
stants for the lower levels of K I. We compare HFS constants for 39K
(gI = 0.260 977 5(2) [39] and single-particle factor dnuc = −2.1)
with available experimental data [40,41].

Method A0 (MHz) bN bM A (MHz)

4s1/2

DHF 564.4 0.218 0.079 147.2
RPA 697.9 0.216 0.078 182.0
RPA+MBPT 915.5 0.206 0.078 238.8
RPA+LCC 888.1 0.206 0.078 231.6
Experiment (39K) 230.859 860 1(3)
Relative error 0.3%

4p1/2

DHF 63.6 0.002 0.001 16.6
RPA 82.4 −0.010 −0.003 21.5
RPA+MBPT 110.1 −0.004 −0.001 28.7
RPA+LCC 107.7 −0.004 −0.001 28.1
Experiment (39K) 27.793(71)
Relative error 1.2%

4p3/2

DHF 12.4 0.000 0.000 3.2
RPA 20.7 0.050 0.016 5.4
RPA+MBPT 24.0 0.029 0.008 6.3
RPA+LCC 23.4 0.030 0.008 6.1
Experiment (39K) 6.084(17)
Relative error 1.0%

The calculated HFS atomic parameters for 4s1/2, 4p1/2, and
4p3/2 states of potassium are given in Table II. The parameter
A0 is highly sensitive to the electronic correlations treatment.
The uncertainty of A0 calculations can be reliably estimated
for the 4p states. The changes in A(4p1/2) and A(4p3/2) con-
stants due to BR corrections are only 0.005% and 0.04%,
respectively. The contributions of BW corrections are of the
same order of magnitude. Both BR and BW corrections can
be neglected for these states in present consideration. Thus,
the deviation of the theoretical A(4p) constants from the ex-
perimental values stems exclusively from the incompleteness
of A0 calculations. Our LCC results agree with experimen-
tal data for 39K within 1.2% for the A(4p1/2) constant and
1.0% for the A(4p3/2) one. It should be noted that taking
into account partial triple excitations within the LCC method
significantly reduces calculation uncertainty of the A(4p1/2)
constant [16]. We conservatively estimate the possible uncer-
tainty of the A0 (4s1/2) calculation for K I within the LCC
method as 1.2%. Relative correlation contributions in A0 for
4s1/2 and 4p1/2 states are close to each other (≈60%, see
Table II), therefore, one can expect that the accuracy of the
ground-state calculation is not worse than that for the excited
state.

The calculation of the parameter bN requires a variation
of the nuclear radius, which leads to a change in the inte-
gration grid within the framework of our software package
[35]. Therefore, the parameter bN is more sensitive than bM

to the size of the basis set. As a final bN value for 4s1/2

state in potassium we adopted the LCC result with the un-
certainty covering the deviations of the results obtained in the
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frameworks of the different approximations (see column 3 of
Table II): bN (4s1/2) = 0.206(12). Then the BR correction for
the ground state of 39K is 0.26(2)%. Using the nuclear radii
from Ref. [42] we found that 39�47

BR = 4 × 10−6.
The bM parameter for the 4s1/2 state of potassium is stable

at each stage of the correlation effects treatment. Conserva-
tively assuming the same relative error for parameters bM and
bN , one can obtain εat = 0.098(4)% for the ground state of K
I. The atomic part of the BW correction is weakly dependent
on the principal number of the electron state [43]. Because of
that the εat corrections calculated for s states of an H-like ion
and a neutral atom should be comparable. Our result coincides
with εat = 0.098% obtained for the ground state of H-like
potassium ions [6]. Note, following Bohr [19] in Refs. [17,18]
we used the overestimated value εat = 0.125%. A comparison
of atomic parameters for HFS constants of H-like ions calcu-
lated by us with results of Shabaev [6] and Bohr [19] is given
in Ref. [44].

V. EVALUATION OF THE NUCLEAR
MAGNETIC MOMENTS

Previously the nuclear g factors of potassium isotopes far
from stability were extracted from the A(4s1/2) constants [18]
neglecting the RHFA. The additional uncertainties of 0.3%
and 0.5% were added for odd-even and odd-odd isotopes,
respectively, to account for RHFA. Note that this estimation
of the RHFA contribution is based on the experimental data
with uncertainties ≈50–100% and theoretical calculations
with unknown accuracy, therefore, the conservative estimation
of the additional uncertainties due to RHFA should be 0.5%
and 0.8% in odd-even and odd-odd cases, respectively (see
Table II in [18]). However, the A(4p1/2) constants are more
convenient for the nuclear magnetic moments extraction. Due
to negligible magnitudes of both BR and BW corrections the
A(4p1/2)/gI values should be the same for different potassium
isotopes. In order to estimate this value from experimental
data we use independently measured HFS constants and nu-
clear g factors of 37,39–42K isotopes (see Fig. 1).

The weighted mean value Amean
0 (4p1/2) = 106.44(8) MHz

was used to extract the nuclear g factor: gI = A(4p1/2 )
Amean

0 (4p1/2 ) .
The comparison of our results to the literature values from
Ref. [18], with uncertainties due to RHFA increased in ac-
cordance with the more conservative prescription outlined
above, is presented in Table III. New results yield smaller
uncertainties than the literature data [18], except for 51K due
to the large relative error of the experimental HFS constant.

VI. EVALUATION OF NUCLEAR FACTORS

For a number of potassium isotopes the relative hyper-
fine anomalies are known with sufficient accuracy [13]. For
the reference isotope, 39K, the single-particle nuclear model
[Eq. (16)] gives d (39)

nuc = −2.1. This factor corresponds to BW
correction ε(39) = −0.205%.

Nuclear factors for 37,41K calculated by the single-particle
nuclear model (see column 6 in Table IV) happen to be lower
than corresponding experimental values (see column 5 in
Table IV). Note that magnetic moment of 39K (0.39μN )

FIG. 1. The A(4p1/2)/gI values for potassium isotopes when the
g factors were measured independently. Dots with error bars are ex-
perimentally measured A(4p1/2) constants from Refs. [18,41,45,46]
divided by the nuclear g factors from Refs. [39,47–49]. The dotted
line is the weighted mean value for these isotopes.

is nearly twice as large as magnetic moments of 37,41K
(≈0.20μN ) with the same spin (Iπ = 3/2+) and leading nu-
clear configuration πd3/2. Correspondingly, dnuc(37,41K) ≈
2 × dnuc(39K) and single-particle evaluations underestimate
dnuc for 37,41K. Keeping in mind the strong single-particle
nature of the 39K ground state, this disagreement indicates
mixing of the nuclear configurations in 37,41K.

Surprisingly, similar jumplike behavior was found for gold
nuclei with Iπ = 3/2+ (πd3/2): μ(199Au) = 0.27μN whereas
μ(191,193,195,197Au) ≈ 0.15μN and dnuc(191,...,197Au) ≈ 2 ×
dnuc(199Au) [21]. Besides, the single-particle model does not
describe well the dnuc parameter in light Au isotopes [21].
Similarly, this model fails to reproduce the experimental dnuc

value for 37,41K. This similarity supports the assumption of
Ref. [21] that, in contrast to a rather pure ground state of
199Au, the ground state of 197Au (and lighter odd Au isotopes
with Iπ = 3/2+) has a noticeable admixture of other configu-
rations.

TABLE III. The nuclear magnetic moments of potassium iso-
topes extracted from experimentally measured A(4p1/2) constants
[18]. The results are compared to the literature data.

A(4p1/2) (MHz)
μ (μN )

Isotope Iπ Ref. [18] This work Ref. [18]

38 3+ 48.9(2) 1.378(6) 1.371(12)
44 2− −45.8(2) −0.861(4) −0.857(8)
46 2− −55.9(2) −1.050(4) −1.046(9)
47 1/2+ 411.8(2) 1.934(2) 1.929(10)
48 1− −96.3(3) −0.905(3) −0.900(7)
49 1/2+ 285.6(7) 1.342(3) 1.339(7)
51 3/2+ 36.6(9) 0.516(13) 0.513(5)
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TABLE IV. The dnuc factors determined from RHFA values [13,18] by Eq. (9) with 39K as the reference isotope. For comparison the dnuc

factors calculated within the single-particle nuclear model are given in the last column.

dnuc

Isotope Iπ g factor 39�∗(%) Eq. (2) Eq. (9) Eq. (16)

37 3/2+ 0.13547(4) [47] −0.249(35) −4.6(4) −5.3
39 3/2+ 0.2609775(2) [39] 0.0 −2.1
40 4− 0.324493(8) [48] 0.466(19) 2.7(2)
41 3/2+ 0.143248(3) [48] −0.22936(14) −4.4(1) −5.0
42 2− −0.57125(3) [49] 0.336(38) 1.3(4)
47 1/2+ 3.869(3) 0.272(90) 0.7(9) 1.0

VII. CONCLUSIONS

We calculate the hyperfine structure constants of low-lying
states of the potassium atom taking into account the Bohr-
Weisskopf and Breit-Rosenthal effects. In order to separate
these effects we use two cases of nuclear magnetization dis-
tribution and the same homogeneously distributed charge. The
first case describes the pointlike magnetic dipole in the center
of the nucleus, whereas the second assumes a homogeneously
magnetized sphere of nuclear radius. We extract atomic pa-
rameters bN , bM , and A0 for each considered state. To estimate
the BW correction we assume the atomic-nuclear factorization
and use the dnuc factor.

According to our calculations the 4p1/2 state of K I
is almost free from both BR and BW corrections. Us-
ing this fact, we obtain the mean value Amean

0 (4p1/2) =
106.41(8) MHz from experimental data. The result of our
LCC calculations agrees with this value within 1.2%.
We use the Amean

0 value to extract the nuclear magnetic

moments of short-lived potassium isotopes from A(4p1/2)
constants.

Experimentally measured relative hyperfine anomalies
provide the relation between the dnuc factors of different iso-
topes. One can consider the configuration of the 39K nuclear
ground state as a single-proton hole with respect to the doubly
magic 40Ca. This justifies our choice to use the single-particle
d (39)

nuc = −2.1 as a reference to restore the nuclear factors for
other isotopes from RHFA values. The striking similarity of
the jumplike behavior of magnetic moments and dnuc parame-
ters in K and Au isotopes supports the assumption of a config-
uration mixing in light odd Au isotopes with Iπ = 3/2+ [21].
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