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Complex eigenenergy of the giant dipole resonance for 16O by the Jost function
within the random-phase approximation framework
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The Jost function method is extended within the framework of the random phase approximation (RPA) theory
to find poles on the complex energy plane that exhibit complex RPA eigenenergies. Poles corresponding to the
RPA excited states such as the giant resonance of 16O electric dipole excitations were successfully found on the
complex energy plane. Although the giant resonance has been known as a single resonance with large strength
and width, it is found that, at least within the RPA framework, the 16O electric dipole giant resonance is formed
by multiple poles, each of which is an independent pole with different widths, origins, response properties to
residual interactions, and components structures of the density fluctuation.
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I. INTRODUCTION

In nuclear physics, the giant resonance is known as a reso-
nance with a very broad and large strength that appears in the
relatively higher continuum energy region above threshold in
the cross section or strength function expressed as a function
of the excitation energy [1–4]. The random-phase approxima-
tion (RPA) [5] is a powerful tool for the description of the
collective excitation of nuclei, such as a giant resonance [6,7].
Based onI the understanding of the schematic model of RPA
[8], the RPA solution that is formed by the superposition of a
large number of p-h excited configurations and gives a large
strength due to the effect of residual interactions is interpreted
as a collective excitation mode, and the giant resonance is
considered to be such a collective excitation mode.

There are two main methods for solving the equation in
RPA theory: one that uses a discrete basis and diagonalizes the
RPA Hamiltonian to obtain a solution, and the continuum RPA
(cRPA) [9] that takes into account the boundary conditions
of the continuum. In the former method, all RPA solutions
are obtained as discrete energy eigenstates, with giant reso-
nances appearing either as solutions giving large strength at
the resonance energy or as many spread discrete solutions near
the resonance energy. The width is often evaluated from the
empirical reproducibility of the experimental data using the
Lorentz distribution function, assuming that the giant reso-
nance has a peak structure with a single width. Since the latter
method (the cRPA method) takes into account the boundary
conditions of the continuum, it can represent the behavior of
the strength function as a smooth function of energy above
threshold. Without the assumption of a Lorentz distribution,
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as a result of numerical calculations, the giant resonance is
also represented as a smooth function of energy, which has a
peak structure with a width. However, the cRPA method is not
able to calculate the width itself.

There is a phenomenological model that describes the
width of the giant resonance in terms of mass number and
dissipative term. It is well known that theI mass number
dependence of experimental values of the giant resonance
width estimated by the Lorenz distribution function roughly
follows this phenomenological model [10,11]. This phe-
nomenological model is derived from the Euler equations plus
a dissipation term representing viscosity, assuming that the
giant resonance is a harmonic oscillation with damping due to
viscosity. In calculations such as the second RPA, which in-
clude higher-order effects, the discrete strength (of resonances
such as the giant resonance) obtained from calculations us-
ing a discrete basis is fragmented and spread in energy by
the higher-order effects. This spreading of the strength is
interpreted as the broadening of the width of the resonance
due to higher-order effects (spreading width), however, this
is not an argument made by directly calculating the width
[4]. Despite the fact that width is one of the most important
characters in the giant resonance, there is still no method that
can calculate the width of resonances obtained as the com-
plex eigenenergy states of the nucleus within the microscopic
theoretical framework such as the RPA theory.

The Jost function is a function that gives the energy eigen-
values of the fundamental differential equations of a quantum
system based on the Hamiltonian of a system such as the
Schrödinger equation as zeros on the complex energy plane.
The Jost function is given in differential and integral forms,
and its differential form is equivalent to the Wronskian. The
energy eigenvalues given by the zeros on the complex energy
plane give not only bound states but also resonance states.
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The imaginary part of the zeros on the complex energy plane
of the Jost function gives the width of the resonance. How-
ever, the original Jost function [12] did not take into account
channel coupling (note that the term “channel coupling” here
includes a wide range of meanings, such as the coupling be-
tween p-h configurations). In order to apply the Jost function
to solve various physics problems, it is necessary to extend
the Jost function to be able to consider coupled channels.
As a first step, we have extended the Jost function to the
Hartree-Fock-Bogoliubov theory framework in Refs. [13–15].

In this paper, we extend the Jost function method within
the framework of RPA theory in order to enable the Jost
function method to find the complex eigenenergies of the RPA
solutions on the complex energy plane. The electric dipole
excitation of 16O is then chosen as the first application of the
Jost-RPA method and analyzed by calculating the poles of the
RPA strength function on the complex energy plane, adopt-
ing the Woods-Saxon potential for the mean field, and the
simple density dependent contact interaction for the residual
interaction.

II. FORMALISM OF JOST FUNCTION FOR RPA

Since the Jost function is defined as a coefficient func-
tion relating regular and irregular solutions of second-order
differential equations such as the Schrödinger equation, it is
necessary to represent the RPA equation in the form of a
second-order differential equation in order to define and cal-
culate the Jost function within the framework of RPA theory.

In this section, we present the derivation of the Jost func-
tion within the framework of RPA theory and the perturbed
Green’s function, RPA response function, and strength func-
tion using the Jost function.

A. Derivation of the Jost function

Defining the functions Xh(r) and Yh(r) as

Xh(r; ω) =
∑

p

Xph(ω)ϕp(r), (1)

Yh(r; ω) =
∑

p

Yph(ω)ϕ∗
p(r), (2)

using the X and Y amplitudes in the ordinary
RPA equation known to be expressed in the form
(A B
B A)(X

Y ) = h̄ω(1 0
0 −1)(X

Y ) and the single particle wave
function ϕp, the differential equation for the partial wave
component of Xh(r) and Yh(r) in a spherically symmetric
system is given by(

h(q)
l j − ε

(q)
h − ω 0

0 h(q)
l j − ε

(q)
h + ω

)⎛
⎝X L(q)

l j;h

Y L(q)
l j;h

⎞
⎠

+
∑

q′h′l ′ j′

κqq′ (r)

r2

⎛
⎝ϕ̃

L(q)
l j;h ϕ̃

L(q′ )
l ′ j′;h′ ϕ̃

L(q)
l j;h ϕ̃

L(q′ )
l ′ j′;h′

ϕ̃
L(q)
l j;h ϕ̃

L(q′ )
l ′ j′;h′ ϕ̃

L(q)
l j;h ϕ̃

L(q′ )
l ′ j′;h′

⎞
⎠

⎛
⎝X L(q′ )

l ′ j′;h′

Y L(q′ )
l ′ j′;h′

⎞
⎠ = 0,

(3)

where h(q)
l j is the mean field Hamiltonian given by

h(q)
l j = − h̄2

2m

∂2

∂r2
+ U (q)

l j (r). (4)

The centrifugal potential h̄2l (l+1)
2mr2 is included in U (q)

l j (r), κqq′ (r)

is the residual interaction, and ϕ̃
L(q)
l j;h is the function which is

defined by

ϕ̃L
l j;h(r) ≡ 〈l j||YL||lh jh〉√

2L + 1
ϕ

(q)
h (r) (5)

with use of the hole state wave function ϕ
(q)
h (r) satisfies

h(q)
lh jh

ϕ
(q)
h = e(q)

h ϕ
(q)
h . The subscription h describes hole state

quantum numbers as h ∈ (nh, lh, jh), and q denotes the neu-
tron or proton by q = n or p.

By introducing a subscript α which expresses the particle-
hole transition configuration (as shown in Table II), and the
momentum k(q)

1,α and k(q)
2,α which are defined by

k(q)
1,α (ω) =

√
2m

h̄2

(
e(q)
α + ω

)
, (6)

k(q)
2,α (ω) =

√
2m

h̄2

(
e(q)
α − ω

)
, (7)

Eq. (3) can be rewritten as

∑
q′α′

[
h̄2

2m

(
k(q)2

1,α 0
0 k(q)2

2,α

)
δqq′δαα′ −

{
− h̄2

2m

∂2

∂r2

(
1 0
0 1

)
δqq′δαα′ + U (q)

α

(
1 0
0 1

)
δqq′δαα′ + κqq′ (r)

r2

(
ϕ̃

(q)
α ϕ̃

(q′ )
α′ ϕ̃

(q)
α ϕ̃

(q′ )
α′

ϕ̃
(q)
α ϕ̃

(q′ )
α′ ϕ̃

(q)
α ϕ̃

(q′ )
α′

)}]

×
(

X (q′ )
α′

Y (q′ )
α′

)
= 0. (8)

Since α is defined for each multipolarity L (i.e., the multipolarity L is fixed when α is defined), thereafter we will not explicitly
show L in the formula.

Furthermore, Eq. (8) can be represented in the matrix form as

[
h̄2

2m
K2 −

{
− h̄2

2m

∂2

∂r2
1 + U + V

}]
	φ = 0, (9)
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where K and U are defined as the Nn + Np dimensional diagonal matrix defined as

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K(n)
1 0 · · · 0
0 K(n)

2 · · · 0
...

...
. . .

...

0 0 · · · K(n)
Nn

0

0

K(p)
1 0 · · · 0
0 K(p)

2 · · · 0
...

...
. . .

...

0 0 · · · K(p)
Np

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

and

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U (n)
1 0 · · · 0
0 U (n)

2 · · · 0
...

...
. . .

...

0 0 · · · U (n)
Nn

0

0

U (p)
1 0 · · · 0
0 U (p)

2 · · · 0
...

...
. . .

...

0 0 · · · U (p)
Np

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

by using the 2×2 matrices

K(q)
α =

(
k(q)

1,α 0
0 k(q)

2,α

)
(12)

and

U (q)
α = U (q)

α

(
1 0
0 1

)
, (13)

therefore K and U are totally 2(Nn + Np)×2(Nn + Np) dimensional diagonal matrix. Nq(for q = n and p) is the number of the
p-h configurations. (For example, Nn = Np = 7 in the case of the electric dipole excitation of 16O as shown in Table II).

V is the 2(Nn + Np)×2(Nn + Np) matrix for the residual interaction which is represented as

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V (nn)
11 V (nn)

12 · · · V (nn)
1Nn

V (nn)
21 V (nn)

22 · · · V (nn)
2Nn

...
...

. . .
...

V (nn)
Nn1 V (nn)

Nn2 · · · V (nn)
NnNn

V (np)
11 V (np)

12 · · · V (np)
1Np

V (np)
21 V (np)

22 · · · V (np)
2Np

...
...

. . .
...

V (np)
Nn1 V (np)

Nn2 · · · V (np)
NnNp

V (pn)
11 V (pn)

12 · · · V (pn)
1Nn

V (pn)
21 V (pn)

22 · · · V (pn)
2Nn

...
...

. . .
...

V (pn)
Np1 V (pn)

Np2 · · · V (pn)
NpNn

V (pp)
11 V (pp)

12 · · · V (pp)
1Np

V (pp)
21 V (pp)

22 · · · V (pp)
2Np

...
...

. . .
...

V (pp)
Np1 V (pp)

Np2 · · · V (pp)
NpNp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)

with

V (qq′ )
αα′ = κqq′ (r)

r2

(
ϕ̃

(q)
α ϕ̃

(q′ )
α′ ϕ̃

(q)
α ϕ̃

(q′ )
α′

ϕ̃
(q)
α ϕ̃

(q′ )
α′ ϕ̃

(q)
α ϕ̃

(q′ )
α′

)
. (15)
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Note that V is a symmetric matrix. If we define the
2(Nn + Np)-dimensional vector for the hole state wave func-
tions ϕ̃

(q)
α as

	̃ϕn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
ϕ̃

(n)
1

ϕ̃
(n)
1

)
(

ϕ̃
(n)
2

ϕ̃
(n)
2

)
...(

ϕ̃
(n)
Nn

ϕ̃
(n)
Nn

)
(

0

0

)
(

0

0

)
...(
0

0

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and 	̃ϕp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
0

0

)
(

0

0

)
...(
0

0

)
(

ϕ̃
(p)
1

ϕ̃
(p)
1

)
(

ϕ̃
(p)
2

ϕ̃
(p)
2

)
...(

ϕ̃
(p)
Np

ϕ̃
(p)
Np

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

Eq. (14) can be represented as

V =
∑
q,q′

	̃ϕq
κqq′ (r)

r2
	̃ϕT

q′ . (17)

	φ is the RPA wave function which is defined by

	φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ
(n)
1

φ
(n)
2
...

φ
(n)
Nn

φ
(p)
1

φ
(p)
2
...

φ
(p)
Np

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

as a 2(Nn + Np)-dimensional vector using

φ(q)
α =

(
X (q)

α

Y (q)
α

)
. (19)

Equation (9) is a 2(Nn + Np)-dimensional simultaneous
second-order differential equation, which can be easily solved
numerically by providing appropriate boundary conditions for
the given energy using the Numerov or Runge-Kutta meth-
ods (the Numerov method is used in this paper). Since the
2(Nn + Np)-dimensional simultaneous second-order differen-
tial equations have 2(Nn + Np) types of regular and nonregular
solutions, the boundary conditions for each are given as
follows.

The regular solutions 	φ(r1;qα)
(for α ∈ (1 · · · Nq) and q = n

and p) are given as the solution satisfying the boundary con-

ditions at r = 0 given by

lim
r→0

	φ(r1;qα) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0

φ
(q)
α →

(
r jlα

(
k(q)

1,αr
)

0

)
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

The boundary conditions for the regular solutions 	φ(r2;qα)
(for

α ∈ (1 · · · Nq) and q = n and p) are given by

lim
r→0

	φ(r2;qα) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0

φ
(q)
α →

(
0

r jlα
(
k(q)

2,αr
))

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

	φ(r2;qα)
corresponds to the negative energy solution of 	φ(r1;qα)

because there is a relation between k(q)
1,α and k(q)

2,α as k(q)
2,α (ω) =

k(q)
1,α (−ω).

The outgoing boundary conditions at the limit r → ∞ for

the irregular solutions 	φ(±1;qα)
and 	φ(±2;qα)

are given by

lim
r→∞

	φ(±1;qα) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0

φ
(q)
α →

(
rh(±)

lα

(
k(q)

1,αr
)

0

)
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(22)

and

lim
r→∞

	φ(±2;qα) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0

φ
(q)
α →

(
0

rh(±)
lα

(
k(q)

2,αr
))

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (23)

respectively, where h(±)
l is the spherical Hankel function de-

fined by h(±)
l (kr) = jl (kr) ± inl (kr).

We can define the regular and irregular solution matrix �(r)

and �(±) using the regular and irregular solutions as

�(r) = (	φ(r1;n1)
, 	φ(r2;n1)

, . . . , 	φ(r1;pNp)
, 	φ(r2;pNp)

)

(24)
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and

�(±) = (	φ(±1;n1)
, 	φ(±2;n1)

, . . . , 	φ(±1;pNp)
, 	φ(±2;pNp)

).

(25)

These matrices are given as the 2(Nn + Np)×2(Nn + Np) ma-
trix which satisfy[

h̄2

2m
K2 −

{
− h̄2

2m

∂2

∂r2
1 + U + V

}]
�(r) = 0 (26)

and [
h̄2

2m
K2 −

{
− h̄2

2m

∂2

∂r2
1 + U + V

}]
�(±) = 0, (27)

respectively.
The Jost function J (±) is defined as the coefficient matrix

which connects �(r) and �(±) as

�(r)T = 1

2
[J (+)�(−)T + J (−)�(+)T]. (28)

The Wronskian W (±) is defined by

W (±) = h̄2

2m

[
�(r)T

(
∂

∂r
�(±)

)
−

(
∂

∂r
�(r)T

)
�(±)

]
, (29)

and it is very easy to confirm that this definition of Wronskian
is constant for the radial coordinate r, i.e., ∂

∂rW (±) = 0.
By inserting Eq. (28) into Eq. (29) and taking the limit r →

∞, it is very easy to obtain the relation formula between the
Jost function and Wronskian given by

J (±) = ±2m

ih̄2 W (±)K. (30)

Applying the Green’s theorem to Eq. (26), we can obtain[
χ(±)T(r)

∂

∂r
�(r)(r) −

(
∂

∂r
χ(±)T(r)

)
�(r)(r)

]
± iK−1

= 2m

h̄2

∫ r

0
dr′χ(±)T(r′)[U (r′) + V (r′)]�(r)(r′), (31)

where χ(±) is the free particle wave function matrix which
satisfies [

h̄2

2m
K2 + h̄2

2m

∂2

∂r2
1

]
χ(±) = 0 (32)

and the components are represented by the spherical Hankel
function.

By inserting Eq. (28) into Eq. (31) and taking the limit
r → ∞, we can obtain the integral form of the Jost function

J (±)T = 1 ∓ 2m

h̄2

1

i
K

∫ ∞

0
dr′χ(±)T(r′)

× [U (r′) + V (r′)]�(r)(r′). (33)

B. Perturbed Green function and RPA response function

The Green’s function is defined as a function which
satisfies[

h̄2

2m
K2 −

{
− h̄2

2m

∂2

∂r2
1 + U + V

}]
G (±)(r, r′)

= 1δ(r − r′) (34)

can be represented as

G (±)(r, r′) = θ (r − r′)�(±)(r)(W (±)−1)�(r)T(r′)

+ θ (r′ − r)�(r)(r)(W (±)−1)T�(±)T(r′) (35)

by using the Wronskian. Note that this Green function is also
given in the form of 2(Nn + Np)×2(Nn + Np) matrix [The
proof of Eq. (35) is shown in the Appendix].

The RPA equation when the external field exists is given
by [

h̄2

2m
K2 −

{
− h̄2

2m

∂2

∂r2
1 + U + V

}]
	φF = 	F, (36)

where 	F is the external field which is expressed as

	F(r) =
∑

q=n,p

	̃ϕq fq(r) (37)

in the form of the 2(Nn + Np)-dimensional vector. The solu-
tion of the RPA equation with the external field Eq. (36) 	φF is
given by using the Green function G (±)(r, r′) as

	φF (r) =
∫ ∞

0
dr′G (+)(r, r′) 	F(r′) (38)

and the strength function is given by

SF (ω) = − 1

π
Im

∫
dr 	FT

(r)	φF (r) (39)

= − 1

π
Im

∫∫
drdr′ 	FT

(r)G (+)(r, r′) 	F(r′). (40)

Since the inverse of the Wronskian is included in the Green
function as shown in Eq. (35) and the Wronskian is related to
the Jost function as shown by Eq. (30), the pole of the strength
function may be found on the complex energy ω plane as a
solution of

det J (+)(ω) = 0. (41)

The strength function can also be expressed as

SF (ω) = − 1

π

∫
dr

∑
q=n,p

fq(r) Im δρF,q(r) (42)

= − 1

π

∑
qq′

∫∫
drdr′ fq(r) Im Rqq′ (r, r′) fq′ (r′) (43)

by using the density fluctuation δρF,q(r) and RPA response
function Rqq′ (r, r′) which were defined by

δρF,q(r) = 	̃ϕT
q
	φF (r) (44)

Rqq′ (r, r′) = 	̃ϕT
qG (+)(r, r′) 	̃ϕq′ . (45)
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Since 	φF (r) is 2(Nn + Np)-dimensional vector which is repre-
sented by

	φF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ
(n)
F,1

φ
(n)
F,2
...

φ
(n)
F,Nn

φ
(p)
F,1

φ
(p)
F,2
...

φ
(p)
F,Np

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with φ
(q)
F,α =

(
X (q)

F,α

Y (q)
F,α

)
, (46)

the density fluctuation δρF,q(r) can be decomposed by each
transition component α as

δρF,q(r) =
∑

α=1,Nq

ϕ̃(q)
α

(
X (q)

F,α (r) + Y (q)
F,α (r)

)
(47)

=
∑

α=1,Nq

δρ
(α)
F,q(r). (48)

Note that the capability of such a transition component de-
composition is one of the features of our RPA method using
the Jost function. This is because the existing cRPA method
cannot perform a transition component decomposition of
density fluctuations because the density fluctuations or RPA
response functions are directly obtained.

III. NUMERICAL SETUP AND CHECK

The first Riemann sheet on which the bound state exists is
analytically connected to the Riemann sheet on which the pole
of resonance exists by a branch cut line extending from the
branching point given by the threshold energy on the real axis
of complex energy. As will be discussed in more detail later
in Sec. III C, there are as many Riemann sheets as there are
sign combinations of the imaginary part of the complex mo-
mentum defining the complex energy plane, and the number
of types of complex momentum is determined by the number
of transition configurations (see Table II for E1 dipole of 16O),
so the heavier the nucleus, the more Riemann sheets that are
defined. Therefore, in this paper the electric dipole excitations
of 16O (known as relatively light spherical nuclei) are calcu-
lated and analyzed using the Woods-Saxon potential for the
mean field U (q)

l j (r) and simple density-dependent interactions
for the residual interactions κqq′ .

In this section, the model and parameters used in this
paper and the results of a comparison with the cRPA
method as a numerical check will be presented in Secs. III A
and III B, respectively. In Sec. III C, an explanation of the
definition of the Riemann sheet in 16O electric dipole exci-
tations and a numerical check of the analytic continuation is
presented.

A. Model and parameters

The Woods-Saxon potential model and the parameters are
given by

U (n)
l j (r) = V (n)

0 fW S (r) + V (n)
1 ls

1

r

dfW S (r)

dr
+ h̄2l (l + 1)

2mr2
,

(49)

V (n)
0 = −60

(
1 − 0.67

N − Z

A

)
, (50)

V (n)
1 = 15

(
1 − 0.67

N − Z

A

)
, (51)

U (p)
l j (r) = V (p)

0 fW S (r) + V (p)
1 ls

1

r

dfW S (r)

dr

+ h̄2l (l + 1)

2mr2
+ VC (r), (52)

V (p)
0 = −60

(
1 + 0.67

N − Z

A

)
, (53)

V (p)
1 = 15

(
1 + 0.67

N − Z

A

)
, (54)

fW S (r) = 1

1 + exp((r − R)/a)
, (55)

R = r0(A − 1)
1
3 , (56)

r0 = 1.2, a = 0.65, (57)

VC (r) =
{

Ze2

2R

(
3 − (

r
R

)2
)

(r < R)
Ze2

r (r � R)
. (58)

We adopt and use the following residual interaction model and
parameters:

κqq = 1

2
t0(1 − x0) + t3

12
((5 + x3)ρ − (2 + 4x3)ρq), (59)

κnp = κpn

= t0

(
1 + 1

2
x0

)
+ t3

12
(5 + x3)ρ (60)

with t0 = −1100 MeV fm3, t3 = 16000 MeV fm6, x0 = 0.5,
and x3 = 1.0.

For the external field fq(r) in Eq. (37), we adopt

fn(r) = e
Z

A
r, (61)

fp(r) = −e
N

A
r, (62)

as an E1 dipole operator where A = N + Z , with N = Z = 8
for 16O.

In this paper, we solved the simultaneous second-order
differential equation (9) by taking into account the boundary
condition of continuum in the coordinate space up to r � 20
fm with an equidistant interval r = 0.2 fm.

The single particle levels of neutron and proton for both
hole and particle bound states which are obtained by using the
Woods-Saxon potential are shown in Table I. The number as-
signed to the combination of angular momentum that couples
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TABLE I. The bound single-particle levels for neutron and pro-
ton obtained by using the Woods-Saxon potential model. The unit is
MeV.

Neutron Proton

s1/2 −36.17 −31.16
p3/2 −21.31 −16.84
p1/2 −16.38 −11.95
d5/2 −6.81 −2.95
s1/2 −4.90 −1.43

with the angular momentum of the hole state to make L = 1
is the subscrip α shown in Table II.

B. Comparison with cRPA method

The cRPA method and the Jost function method extended
within the framework of the RPA theory developed in this
paper (henceforth referred to as the Jost-RPA method) are
the same method in the sense that the RPA calculation is
performed by taking into account the boundary conditions of
continuum. However, the cRPA and Jost-RPA methods are
completely different in the sense that the equations to be
solved are different.

The cRPA method calculates the unperturbed one-particle
Green’s function that satisfies the boundary conditions of the
continuum and then calculates the unperturbed response func-
tion using it. The unperturbed response function is substituted
into the Bethe-Salpeter equation, which is an integral equa-
tion equivalent to the RPA equation, and the RPA response
function is obtained using the inverse matrix method in co-
ordinate space. In contrast, the Jost-RPA method calculates
the perturbed one-particle Green’s function Eq. (35) using the

TABLE II. The combination of angular momenta for L = 1 asso-
ciated with the configurations of the particle-hole excitations in the
dipole excitations of 16O and the subscript α that designates it for
neutron and proton, respectively.

q α [l j](q)
α [lh jh](q)

α e(q)
α

(= n, p) [MeV]

(neutron part)
1 s1/2 p1/2 −16.38
2 d3/2 p1/2 −16.38
3 d5/2 p3/2 −21.31

n 4 s1/2 p3/2 −21.31
5 d3/2 p3/2 −21.31
6 p3/2 s1/2 −36.17
7 p1/2 s1/2 −36.17

(proton part)
1 s1/2 p1/2 −11.95
2 d3/2 p1/2 −11.95
3 d5/2 p3/2 −16.84

p 4 s1/2 p3/2 −16.84
5 d3/2 p3/2 −16.84
6 p3/2 s1/2 −31.16
7 p1/2 s1/2 −31.16
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FIG. 1. Comparison of the cRPA method (dotted curve) with the
method we developed in this paper (Jost-RPA, solid curve) by the
E1 dipole excitation strength of 16O. The strength function SF given
as a function of complex energy ω is plotted as a function of the
real part ωr of complex energy. Note that in the upper and lower
panels, the imaginary part of complex energy ωi = 0 and 0.02 MeV,
respectively.

regular and nonregular solutions obtained by directly solving
the RPA equation given in the form of a differential equa-
tion (9), taking into account the boundary conditions of the
continuum, and the Jost function (which is calculated using
them). It is then used to calculate the RPA response function,
Eq. (45).

Since the two methods are thus different, we compared
the two methods in the E1 strength function. Both the cRPA
and Jost-RPA methods allow the RPA response function to be
calculated as a function of continuous complex energy. The
strength function can be calculated using the RPA response
function, as shown in Eq. (43). Figure 1 shows the E1 strength
function for 16O as a function of the real part of the complex
energy (ωr) using the cRPA and Jost-RPA methods. In the
upper and lower panels, the imaginary part of the complex
energy is set to ωi = 0 and 0.02 MeV, respectively. The com-
parison of the cRPA and Jost-RPA methods in the figure shows
that the results of the cRPA and Jost-RPA methods are in
perfect agreement.

Note that the peaks appearing in the energy region below
threshold in the lower panel are bound states, but these are
not seen in the upper panel. This is because the poles of the
bound states appear on the real axis of the complex energy
(i.e., they have no width) and cannot be plotted as a function
of ωr with ωi = 0. In contrast, the strength as background is
due to the contribution of the continuum, and the resonance
peaks when the width of the resonance (imaginary part of the
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pole) is very large compared to ωi are less affected by ωi and
the shape of the strength function is almost unchanged. These
are relatively well-known properties of cRPA, and one can
clearly and easily distinguish between the bound states and the
others.

Thus, the cRPA method can calculate the strength above
the threshold, including the width, but it cannot quantitatively
calculate the individual width of each resonance peak. In
contrast, our Jost-RPA method can find the corresponding
pole (real part is the resonance energy, imaginary part is
the resonance width) for each resonance peak individually
as the zeros of the Jost function on the complex energy
Riemann sheet. The results are shown in the next section
(Sec. IV).

C. Riemann sheets of the complex energy planes

The complex energy ω can be defined as a function of
the complex momentum k(q)

1,α and k(q)
2,α [Eqs. (6) and (7)]. Ac-

cording to the basics of complex analysis, the types on the
complex energy plane (Riemann sheets) are determined by
the sign of the imaginary part of the complex momentum and
its combinations. In the case of 16O, three-momentum can be
defined for each of k(q)

1,α and k(q)
2,α for the proton and neutron,

respectively, which means that 4096 types of Riemann sheets
can be defined mathematically. However, Riemann sheets in
which the imaginary parts of k(q)

1,α and k(q)
2,α are simultaneously

negative are unphysical. Therefore, there are a total of 128
types of physically meaningful Riemann sheets, 64 types
each corresponding to the regions Re ω > 0 and Re ω < 0.
Furthermore, there are only 12 types of Riemann sheets in
total, six each in the regions Re ω > 0 and Re ω < 0, that are
analytically connected on the real axis of ω with the first Rie-
mann sheet (ω0), where the imaginary part of all momentum
is defined as positive. The definitions of ω0 and the 12 types
of Riemann sheets are shown below:

ω0 = ω
(
Im k(q)

1,α > 0, Im k(q)
2,α > 0

)
for all α and q, (63)

ω
(s)
1 = ω

(
Im k(q)

s,α < 0 for e(q)
α = −11.95

)
other Im k(q)

1,α and Im k(q)
2,α are positive, (64)

ω
(s)
2 = ω

(
Im k(q)

s,α < 0 for e(q)
α � −16.38

)
other Im k(q)

1,α and Im k(q)
2,α are positive, (65)

ω
(s)
3 = ω

(
Im k(q)

s,α < 0 for e(q)
α � −16.84

)
other Im k(q)

1,α and Im k(q)
2,α are positive, (66)

ω
(s)
4 = ω

(
Im k(q)

s,α < 0 for e(q)
α � −21.31

)
other Im k(q)

1,α and Im k(q)
2,α are positive, (67)

ω
(s)
5 = ω

(
Im k(q)

s,α < 0 for e(q)
α � −31.16

)
other Im k(q)

1,α and Im k(q)
2,α are positive, (68)

ω
(s)
6 = ω

(
Im k(q)

s,α < 0 for e(q)
α � −36.17

)
other Im k(q)

1,α and Im k(q)
2,α are positive, (69)

FIG. 2. | det J | plotted as a function of the complex energy ω.
The values of | det J | with the complex energy defined as the first
Riemann sheet (ω0) is shown in the Im ωi > 0 region. | det J | with
ω

(1)
1 , ω

(1)
3 , and ω

(1)
4 are shown in the Im ωi < 0 region, and they are

connected at the branch-cut lines which are existing on the real axis
continuously. The sky-blue solid, red dotted, and blue dashed curves
are the branch-cut lines which connect ω0 with ω

(1)
1 , ω

(1)
3 , and ω

(1)
4 ,

respectively.

where s = 1, 2. Riemann sheets ω
(1)
1−6 are expected to be

connected with ω0 at 11.95 � Re ω � 16.38 MeV, 16.38 �
Re ω � 16.84 MeV, 16.84 � Re ω � 21.31 MeV, 21.31 �
Re ω � 31.16 MeV, and 31.16 � Re ω � 36.17 MeV, re-

spectively. And ω
(2)
1−6 are expected to be connected with ω0

in the negative energy region. We confirmed these analytical
continuation numerically in Fig. 2.

In Fig. 2 we show | det J | calculated using ω0 in the region
ωi > 0, and in the region ωi < 0 we show | det J | calcu-
lated using the Riemann sheets (ω(1)

1 , ω
(1)
3 , and ω

(1)
4 planes)

connected to ω0 in the region ωr < 30 MeV (ω(1)
2 is also con-

nected with ω0 in a very narrow region 16.38 < ωr < 16.84
MeV but is not shown in this figure for ease of seeing the
figure).

IV. ANALYSIS

A. Poles of E1 strength of 16O on the complex energy plane

The solution of Eq. (9) is given at the zero point of the
Jost function [i.e., the value of complex energy ω that satisfies
Eq. (41)] and the bound states appear on the real axis of
complex energy below the threshold. It is believed that the
poles of the resonance state exist on the Riemann sheet that
is analytically connected to the first Riemann sheet (ω0 plane)
on the real axis above threshold. The real part of the resonance
pole gives the resonance energy, and the imaginary part the
half-width of the resonance. However, the poles exhibited by
| det J | = 0 also include unphysical ones due to hole-hole
excited configurations, which are known to cancel at the level
of the unperturbed response function and do not contribute
to the strength function, and they appear on the real axis of
the complex energy. In Fig. 2, such unphysical poles appear
at ωr = 19.21 MeV and 19.79 MeV. The presence of such
unphysical poles makes it difficult to see the physical poles
that exist near the real axis when | det J | is plotted on the
complex energy plane. Considering the property that the poles
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FIG. 3. The E1 strength function of 16O plotted as a
function of ωr with ωi = 0 MeV in the upper panel, and
| det J (ω(1)

i )|/| det J (ω0)| for i ∈ 1, 3, and 4 in the lower three
panels. The poles labeled (a)–(g) are poles which can contribute to
the strength function. The sky-blue solid, red dotted, and blue dashed
lines (with both side arrows) denote the branch cut lines for three
Riemann sheets (ω(1)

1 , ω
(1)
3 , and ω

(1)
4 ) which connect with the first

Riemann sheet (ω0).

of resonances which have widths existing above the threshold

do not appear on the real axis, | detJ (ω(1)
i )|

| detJ (ω0 )| (for i ∈ 1, 3, 4) is

plotted instead of | det J | in Fig. 3 in order to find the poles
corresponding to the resonances.

The top panel of Fig. 3 shows the E1 strength function
of 16O as a function of ωr with ωi = 0 MeV, in order to see
the correspondence between the poles on the complex energy
plane and the peaks of the strength function. Figure 4 is an
enlarged view of the region of −0.01 � ωi � 0.0 MeV and
15.77 � ωr � 15.81 MeV of ω

(1)
1 plane near the low-lying

peak in Fig. 3. The pole that can be moved to the first Riemann
sheet by rotating the branch cut line that analytically connects
the first Riemann sheet (ω0 plane) to the other Riemann sheets
on the complex energy around the branch point, e.g., by com-
plex scaling, is the pole of resonance, which contributes as
a peak to the strength function. The poles shown as (a)–(g)
in Fig. 3 are the poles that are considered to contribute to the
peak of the strength function. Their values of (a)–(g) are given
in the second column of Table III.

Each of these poles found in the complex plane is con-
sidered to be linearly independent, and the giant electric E1
dipole resonance seems to be formed by four independent
poles (d), (e), (f), and (g) from Fig. 3. This result shows that, at
least within the framework of RPA theory, one of the features
of giant resonances, the ‘large width’, is not given by the
imaginary part of a single pole, but is formed by several inde-
pendent poles. In the following subsections, further analysis
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FIG. 4. In Fig. 3, the poles (a), (b), and (c), which are located very close to the real axis of the complex energy plane, are shown enlarged.
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TABLE III. The values of poles [(a)–(g)] on the complex energy planes, which are calculated by the RPA, RPA with κnp = 0, and the
unperturbed response, which correspond to the filled circle (•), square (�), and triangle () symbols shown in the lower panel of Fig. 5.

Pole RPA RPA with κnp = 0 Unperturbed(κqq′ = 0) Riemann surface
[MeV] [MeV] [MeV]

(a) 15.79 − i3.35×10−3 15.48 − i0.15 15.47 − i0.26 ω
(1)
1 plane

(b) 16.03 − i0.07 16.16 − i0.18 15.47 − i0.26

(c) 17.15 − i0.02 16.59 − i1.39×10−3 16.58 − i1.33×10−3 ω
(1)
3 plane

(d) 19.34 − i0.53 17.32 − i3.64×10−2 16.58 − i1.33×10−3

(e) 19.28 − i0.95 19.32 − i0.92 19.32 − i0.92
(f) 20.76 − i0.34 20.41 − i0.27 20.36 − i0.26

(g) 21.71 − i0.63 21.58 − i7.45×10−3 21.50 − i1.33×10−3 ω
(1)
4 plane

will be carried out to investigate the properties of each of the
poles.

B. Trajectories of poles as a response to residual interactions

Multiplying the residual interactions κqq (for both κnn and
κpp) and κnp by constants f1 and f2, respectively, as κqq →
f1×κqq, κnp → f2×κnp, and varying them from 0 to 1, the
trajectories of the poles can be drawn as shown in the bottom
panel of Fig. 5. The top three panels show, in order from top
to bottom, the RPA strength function ( f1 = f2 = 1), the RPA
strength function with f1 = 1 and f2 = 0, i.e. κnp = 0, and
the unperturbed strength function ( f1 = f2 = 0, i.e., κqq′ = 0).
The positions of the poles corresponding to the peaks of
the RPA strength function, the RPA strength function with
κnp = 0, and the unperturbed strength function are shown by
circle (•), square (�), and triangle () symbols, respectively,
in the bottom panel. The specific values of the circle (•),
square (�), and triangle () for the poles in (a)–(g) are given
in columns 2, 3, and 4 of Table III, respectively.

Focusing on poles (d), (e), (f), and (g), which seem to be
related to giant resonances, it can be seen from Fig. 5 that, first
of all, poles (d), (e), (f), and (g) have different origins. Pole (d)
arises from the pole of the unperturbed neutron resonance of
ν[d3/2 ⊗ (p1/2)−1]1 at 16.58 − i1.33×10−3 MeV. This unper-
turbed neutron resonance appears as a very sharp peak in the
unperturbed strength function. Pole (e) is almost unaffected
by residual interactions and no corresponding peak in the
unperturbed strength function. This is thought to be a shape
resonance created by a mean field with a very wide width
and only a small contribution as background of the strength
function. Pole (f) originates from the unperturbed proton
resonance of π [d3/2 ⊗ (p3/2)−1]1 at 20.36 − i0.26 MeV and
appears in the unperturbed strength function as a peak with
a rather broad width. The effect of residual interactions is
small. Pole (g) arises from the pole of the unperturbed neutron
resonance of ν[d3/2 ⊗ (p3/2)−1]1 at 21.50 − i1.3×10−3 MeV.
This unperturbed neutron resonance appears as a very sharp
peak in the unperturbed strength function.

The influence of the residual interactions is remarkable for
poles (d) and (g), both of which originate from the poles of
the neutron unperturbed resonance. As κnp increases, both
the resonance energy (real part of the pole) and the width
(imaginary part of the pole) of pole (d) increase significantly.
The significant shift of the resonance energy of the E1 dipole

resonance to higher energy due to residual interactions is a
typical property of the collective excited state shown by the
schematic model [8]. However, the response property of pole
(d) to the residual interaction is not only the resonance energy
(the real part of the pole) shift to higher energy, but also the
significant increase in the width (the imaginary part of the
pole). In the case of pole (g), the response to the residual
interaction shows almost no energy shift, but a remarkable
increase in the width. This implies that this is mainly due to
the dominance of coupling with the nonresonant continuum.
And this may be related to the fact that only pole (g) lies
on a different Riemann sheet from the other resonances, and
there is no proton-originated pole on the same Riemann sheet
(see Fig. 3).

Poles (d) and (f) originate from the poles of the neu-
tron and proton unperturbed resonances, respectively, so they
originally belong to different Riemann sheets. However, the
κnp effect mixes the neutron and proton components so that
(d) and (f) are finally poles belonging to the same Riemann
sheet. However, pole (f) has a very small energy shift, and
its width does not change much compared to pole (d). This
may be due to the fact that the unperturbed resonance (shape
resonance) character tends to remain stronger at pole (f) due
to the Coulomb barrier.

C. Component structure analysis of density fluctuations

In the Jost-RPA method, the density fluctuation δρF,q(r)
is defined by Eq. (44) and can be decomposed into compo-
nents with subscription α, as shown in Eq. (48). Figures 6
and 7 show the imaginary part of the RPA density fluctua-
tions and unperturbed density fluctuations for poles (d), (f),
and (g), respectively. The energy of the density fluctuations
is the real part of the poles, i.e., on the real axis of the
complex energy plane (ωi = 0). In each figure, the density
fluctuations for protons and neutrons are shown in the upper
panel by solid curves, while the density fluctuations for the
α = 2, 3, and 6 components added together are shown by
dotted curves. In the middle and lower panels, the main con-
tributing components are shown when the proton and neutron
density fluctuations are decomposed into transition compo-
nents, respectively. Note that the density fluctuations shown
in these figures are normalized by the value of the strength
function SF at a given energy (ωr).
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FIG. 5. The E1 strength function which is calculated by RPA, RPA with κnp = 0, and the unperturbed response shown in the upper three
panels. Trajectories of poles (a)–(g) which show the connection between the RPA and unperturbed response, obtained by varying the constant
parameters f1 and f2 multiplied to the residual interaction are shown in the lower panel. The filled circle (•), square (�), and triangle ()
symbols show the position of poles which are calculated by the RPA (i.e., f1 = 1, f2 = 1), RPA with κnp = 0 ( f1 = 1, f2 = 0) and unperturbed
( f1 = 0, f2 = 0) solutions, respectively. (See text and Table III.)

Looking at the solid curves in the top panels of Fig. 6, the
density fluctuations at poles (d) and (f) both roughly show the
neutron density and proton density oscillating in antiphase,
which is a typical feature of the collective motion of isovector
dipole excitations. The density fluctuations of pole (g) also
show movement of the neutron and proton densities in an-
tiphase, but the proton density is likely to jump out of the
nucleus. In the case of pole (d) (originating from the neutron
unperturbed transition α = 2, i.e., ν[d3/2 ⊗ (p1/2)−1]1), both
proton and neutron components (δρF,p and δρF,n) consist of
a superposition of in-phase α = 2, 3, and 6 components, plus
α = 4 and 5 components with antiphase. In the case of pole
(f) (originating from the proton unperturbed transition α = 5,
i.e., π [d3/2 ⊗ (p3/2)−1]1), the α = 5 component in the proton
component δρF,p is enhanced by the in-phase superposition of
the α = 2, 3, and 6 components, to which the antiphase α = 4
component is added. The neutron components δρF,n) consists
of a superposition of in-phase α = 2, 3, and 6 components,
plus α = 4 and 5 components with antiphase. In the case of
pole (g) (originating from the neutron unperturbed transition

α = 5, i.e., ν[d3/2 ⊗ (p3/2)−1]1), the proton component δρF,p

is in the form that the intranuclear part (r < 3 fm region) of
the amplitude created by the in-phase superposition of the
α = 2, 3, and 6 components is damped by the α = 4 com-
ponent, leaving mainly only the extranuclear component. The
neutron component δρF,n is dominated by the α = 5 compo-
nent and the influence of the other components is relatively
small.

The component structure of the density fluctuations of pole
(d) is roughly antiphase to each other for neutrons and protons,
whereas the density fluctuations of pole (f) have a neutron
component very similar to that of pole (d), but the proton
component does not have the antiphase structure of neutrons.
This may be because the proton component still keeps its
unperturbed resonance (shape resonance) character due to the
Coulomb barrier, although poles (d) and (f) influence each
other by belonging to the same Riemann sheet. Or it could be
that pole (d) and pole (f) overlap each other due to their wide
widths, and the component structure of pole (d) just appears
in the component structure of the density fluctuations of pole
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FIG. 6. The density fluctuations δρF defined by Eq. (44) for the
poles (d), (f), and (g) which are expected to be related with the
giant dipole resonance are shown in the top panels by the red solid
(for proton) and blue solid (for neutron) curves. The dotted curves
show the summation of the α = 2, 3, and 6 components. Component
decomposition of the density fluctuation for proton and neutron are
shown in the middle and bottom panels, respectively.

(f), but actually pole (f) itself is a shape resonance with little
effect from residual interactions.

The component structure of the density fluctuations of pole
(g) is very different from that of poles (d) and (f). This may
be due to the fact that pole (g) belongs to a different Riemann
sheet than (d) and (f). The difference in component structure
between protons and neutrons is assumed to be due to the
fact that only unperturbed resonances (shape resonances) of
neutrons exist in the same Riemann sheet. This may mean
that, when the E1 excitation occurs, in which the neutron and
proton move in opposite phases, the neutron tends to stay in
the nucleus due to the characteristic of shape resonance, while
the proton mainly couples to the nonresonant continuum and
tends to move away from the nucleus.

These are inferences based on the analysis which we have
done in this paper. In order to clarify whether the inferences
are correct, it is necessary to analyze the pole-by-pole con-
tribution to the strength function and density fluctuations,
excluding overlaps from other resonances, etc. However, this
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FIG. 7. The same figure with Fig. 6 but calculated with the
unperturbed response (κqq′ = 0).

requires changing the completeness of the system using the
complex scaling method [16] or Berggren’s method [17], be-
cause the completeness of the system is defined by the first
Riemann sheet [18] (the contribution of resonances is not
explicitly included in the completeness). These issues are for
the future.

For the moment, the analysis at the current stage of this
paper has shown that poles (d), (f), and (g), which may be
related to the E1 giant dipole resonance, basically differ in
their properties (resonance energy, width, response to residual
interactions, component structure of density fluctuations) for
each pole. Especially when a pole belongs to a different Rie-
mann sheet from the others [e.g., pole (g)], the properties are
more markedly different.

V. SUMMARY AND PERSPECTIVE

In this paper, the Jost function method is extended within
the framework of RPA theory to find the complex eigenvalues
of the RPA equation on the complex energy plane (Jost-RPA
method). As a first application of the Jost-RPA method, we
chose 16O electric dipole excitations and performed numerical
calculations using the Woods-Saxon potential as the mean
field and simple density-dependent interactions as the residual
interactions. The cRPA and Jost-RPA methods are identical
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in terms of solving the RPA problem by considering the
boundary conditions of the continuum, but the methods for
solving the equations are completely different. Therefore, we
first compared both methods by calculating the E1 strength
function using the same potentials and residual interactions. It
was found that the result of the Jost-RPA method is in perfect
agreement with the result of the cRPA method.

In the original Jost function method, it is known that the
complex energy eigenvalues of the system are obtained as the
zeros of the Jost function on the complex energy plane that is
analytically connected to the first Riemann sheet on the branch
cut line. In the Jost-RPA method, a very large number of
complex-energy Riemann sheets are defined, even for 16O E1
excitations. However, only a very limited number of Riemann
sheets are analytically connected to the first Riemann sheet
by a branch cut line with a branch point at the threshold of
each configuration on the real axis of complex energy. We
checked numerically whether the Jost functions computed on
those Riemann sheets actually have an analytical connection
with the first Riemann sheet. Then, the poles (complex energy
eigenvalues) corresponding to the peaks of the E1 strength
function were successfully found numerically on the complex
energy plane in analytical connection with the first Riemann
sheet.

The poles found on the complex energy plane revealed that
the E1 giant dipole resonance of 16O is formed by three inde-
pendent poles with different resonance energies and widths.
Two of these three poles belong to the same Riemann sheet,
and only one belongs to a different Riemann sheet. Trajectory
analysis of the poles in terms of their response to residual
interactions also shows that these three poles originate from
different poles of unperturbed resonance and that the character
of their response to residual interactions is also different for
each pole. It was found that response characteristics to the
residual interaction differed from pole to pole: a pole shifted
towards higher energies with increasing width as the residual
interaction became stronger, another pole was less affected by
the residual interaction, and another pole only increased in
width. The component structure of the density fluctuations is
also characteristic for each pole, but the interpretation is not
clear because of the possibility of overlap due to the width of
the poles (especially for poles belonging to the same Riemann
sheet). Only one thing is clear: the poles belonging to different
Riemann sheets seem to have little influence on each other and
to have quite different properties.

Based on the residue theorem in complex function theory,
it is possible to extract and show the contribution of a specific
pole in the complex plane in terms of physical quantities such
as density fluctuations or strength functions. However, the
completeness of the system is defined by the first Riemann
sheet, and the resonance poles are not explicitly included in
the completeness. Therefore, in order to apply the residue
theorem for more detailed analysis, the completeness must
be modified using the complex scaling method or Berggren’s
method. Further analysis by improving the Jost-RPA method
in this direction is expected to clarify points that were unclear
in the analysis of this paper.

In this paper, RPA calculations for E1 dipole excitations
of 16O have been performed using the Woods-Saxon potential

for the mean field and simple density-dependent interactions
for the residual interactions, but other excitation modes and
other nuclei are naturally of interest. However, for a more
quantitatively reliable analysis, it is also important to per-
form self-consistent calculations [19–21] based on effective
two-body nuclear forces, such as the Skyrme interactions
[22–28]. This is because it is well known that calculations
that break the self-consistency do not satisfy the sum rule
for dipole excitations [29], and there is no phenomenological
potential model for cases such as neutron-rich nuclei. Remov-
ing spurious modes is another important issue [8,30–32]. In
this paper, an approximation to remove the spurious mode
from the external field was used, but this approximation may
not work well in some cases, so it is preferable to remove
it directly from the RPA solution. The cRPA has already
developed a method to remove the spurious mode from the
RPA response function [33]. A method to remove the spurious
mode directly from the solution should also be developed for
the Jost-RPA method.

We are planning to continue our research using the Jost-
RPA method developed in this paper, improving the above-
mentioned issues step by step, in order to further analyze and
understand the excited structure of nuclei in more detail from
the viewpoint of the resonance poles in the near future.
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APPENDIX: PROOF OF EQ. (35)

The Green’s theorem can lead the following equations:

[
�

(r)T
0 (r)

∂

∂r
�(r)(r) −

(
∂

∂r
�

(r)T
0 (r)

)
�(r)(r)

]

= 2m

h̄2

∫ r

0
dr′�(r)T

0 (r′)V (r′)�(r)(r′), (A1)

±iK−1J (±)
0

−
[
�

(r)T
0 (r)

∂

∂r
�(±)(r) −

(
∂

∂r
�

(r)T
0 (r)

)
�(±)(r)

]

= 2m

h̄2

∫ ∞

r
dr′�(r)T

0 (r′)V (r′)�(±)(r′), (A2)

where �
(r)
0 (r) and �

(±)
0 (r) are regular and irregular solution

matrix of

[
h̄2

2m
K2 −

{
− h̄2

2m

∂2

∂r2
1 + U

}]
�

(r)
0 = 0 (A3)
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and [
h̄2

2m
K2 −

{
− h̄2

2m

∂2

∂r2
1 + U

}]
�

(±)
0 = 0, (A4)

respectively. J (±)
0 is the Jost function which is defined by

�
(r)
0 (r) and �

(±)
0 (r). It should be noted that �

(r)
0 (r), �

(±)
0 (r),

and J (±)
0 are given as the 2(Nn + Np)×2(Nn + Np) diagonal

matrix due to the absence of the residual interaction V which
has the off-diagonal components.

Introducing a 2(Nn + Np)×2(Nn + Np) dimensional ma-
trix C and calculating �(±)(r)C× [Eq. (A1)]T + �(r)(r)CT×
[Eq. (A2)]T, we can obtain

± i�(r)(r)CTJ (±)
0 K−1 +

[
�(±)(r)C

(
∂

∂r
�(r)T(r)

)

−�(r)(r)CT
(

∂

∂r
�(±)T(r)

)]
�

(r)
0 (r)

[
�(±)(r)C�(r)T(r)

−�(r)(r)CT�(±)T(r)
]( ∂

∂r
�

(r)
0 (r)

)

= 2m

h̄2 �(r)(r)CT
∫ ∞

r
dr′�(±)T(r′)V (r′)�(r)

0 (r′)

+ 2m

h̄2 �(±)(r)C
∫ r

0
dr′�(r)T(r′)V (r′)�(r)

0 (r′). (A5)

If we require[
�(±)(r)C

(
∂

∂r
�(r)T(r)

)
− �(r)(r)CT

(
∂

∂r
�(±)T(r)

)]
= −1,

(A6)[
�(±)(r)C�(r)T(r) − �(r)(r)CT�(±)T(r)

] = 0,

(A7)

then we can rewrite Eq. (A5) as

±i�(r)(r)CTJ (±)
0 K−1 − �

(r)
0 (r)

= 2m

h̄2 �(r)(r)CT
∫ ∞

r
dr′�(±)T(r′)V (r′)�(r)

0 (r′)

+2m

h̄2 �(±)(r)C
∫ r

0
dr′�(r)T(r′)V (r′)�(r)

0 (r′). (A8)

By taking the “trace” of Eqs. (A6) and (A7), and applying
the following basic properties of the trace of the matrix:

(i) Tr[AB] = Tr[BA],
(ii) Tr[A + B] = Tr[A] + Tr[B],

(iii) Tr[ATB] = Tr[ABT] = Tr[BTA] = Tr[BAT],

we can notice that Eq. (A6) becomes

2m

h̄2 Tr
[CW (±)] = Tr[1], (A9)

and Eq. (A7) is a trivial identity. Therefore we find

C = h̄2

2m
W (±)−1 = ±1

i
KJ (±)−1. (A10)

By inserting Eq. (A10) into Eq. (A8), finally we can derive

�(±)(r) = �
(±)
0 (r) +

∫ ∞

0
dr′G (±)(r, r′)V (r′)�(±)

0 (r′)

(A11)

with use of the definition of the Green’s function Eq. (35),
where �(±)(r) and �

(±)
0 (r) are the RPA and unperturbed

“scattering” wave functions defined by

�(±)(r) = �(r)(r)J (±)−1, (A12)

�
(±)
0 (r) = �

(r)
0 (r)J (±)−1

0 . (A13)

Since Eq. (A11) is the Lippmann-Schwinger equation, it is
proved that the RPA Green function is given by Eq. (35).
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