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We show that the Hartree-Fock-Bogoliubov (HFB) method is able to describe experimental values of α

decay widths by including a residual nucleon-nucleon surface Gaussian interaction (SGI) within the standard
procedure used to calculate the nuclear mean field. We call this method the cluster HFB (CHFB) approach.
In this way we correct the deficient asymptotic behavior of the corresponding single-particle wave functions
generated by the standard mean field. The corrected mean field becomes a sum between the standard mean
Woods-Saxon–like field and a cluster Gaussian component centered at the same radius as the SGI. Thus, we
give a confirmation of the mean field plus cluster potential structure, which was assumed in our previous
work on α-decay widths. Systematic calculations evidence the linear correlation between the SGI strength and
fragmentation potential, allowing for reliable predictions concerning the half-lives of superheavy emitters.
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I. INTRODUCTION

From the very first theories of α-emission published by
Gamow [1] and independently by Condon and Gurney [2],
almost a century passed until α particles were experimentally
observed on the surface of nuclei [3]. However, describing
the formation of α particles on the surface of an atomic
nucleus from two protons and two neutrons still remains a
considerable theoretical challenge within the microscopic the-
ory of α decay from heavy nuclei. This radioactive process
is fundamental in explaining the dynamics of various exotic
physical systems, like superheavy and highly unstable nuclei
[4]. The estimations of absolute α-decay widths, where only
one shell model configuration was considered, were smaller
than the experimental data by several orders of magnitude
[5,6]. The typical example is the decay process 212Po →
208Pb +α, where two proton and two neutron orbitals were
considered above the doubly magic 208Pb. It was soon realized
that by increasing the number of single-particle (sp) configu-
rations the value of the decay width substantially increases
[7,8]. But even if a very large number of shells was included
in order to simulate the continuum part of the spectrum, the
absolute decay width still deviated by more than one order of
magnitude [9,10]. The reason why the absolute decay width
increases with the number of configurations is due to the
clustering of the nucleons forming α particles, implying the
inclusion of high lying configurations in the formation pro-
cess [11]. Even so, the calculated absolute decay widths still
differed from experimental observations by at least one order
of magnitude [12–15].

The phenomenological model used to solve this problem
consists of representing the emission process through a cluster

moving in an attractive pocket-like potential located at the
nuclear surface. Under the assumptions of the R-matrix the-
ory [16], this model predicts an analytic linear dependence
between the logarithm of the reduced width and the frag-
mentation potential, defined by the difference between the
Coulomb barrier and Q value [17]. It remains valid for many
strong emission processes, including proton radioactivity and
heavy cluster decay [18]. This indicates that the representation
we are seeking must be provided by an attractive potential
like that “pocket” potential in addition to the standard Woods-
Saxon plus spin-orbit mean field. Furthermore, it is interesting
to point out the existence of an alternative description of
clustering phenomena employing the nonlinear Schrödinger
equation and solutions on quantum droplets [19].

The idea of extending the description of nuclear interac-
tions beyond the mean field is not new, but in this work
we show that the proposed potential is a consequence of
the Hartree-Fock-Bogoliubov (HFB) approach, provided the
usual nucleon-nucleon interaction is enhanced on the nuclear
surface where the nuclear density decreases. The microscopic
formalism to estimate the α-particle formation probability
has been developed previously (see Refs. [12,20]), but for
the completeness of the overall presentation we will briefly
describe those features which are of interest for the present
work.

II. THEORETICAL BACKGROUND

A. Surface Gaussian interaction (SGI)

The α-decay process

P(parent) → D(daughter) + α (2.1)
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is allowed when the energy release (Q value) is positive. This
surplus is transformed into the relative kinetic energy of the α-
core system Q = μαv2/2, where μα is the reduced mass of the
daughter-α system. α decay between ground states (g.s.) takes
place for select few very light elements (for example, 5He, 5Li,
8Be) and becomes much more prevalent in the region of the
nuclear chart with Z > 50. The basic requirement to properly
describe emission processes is that the basis wave functions
follow a correct asymptotic behavior. It turns out that the
asymptotic value of sp orbitals provided by the standard
Woods-Saxon potential is too small to reproduce the exper-
imental value of the α-decay width. A successful solution to
this problem was proposed in Ref. [21], where the decaying
state was described by a combination of a shell-model wave
function plus a cluster component � = �SM + �clus. The
cluster component is expected to contain the high-lying shell
model configurations, and the shell model component �SM is
evaluated within a major shell only. The cluster component
�clus is expanded in terms of shifted Gaussians and is used
to diagonalize the residual two-body interaction. A similar
method was recently applied to describe anomalous large
B(E1), B(E2) values, and α-decay half-lives corresponding
to transitions from states of 212Po [22].

A different proposal was presented in Ref. [23], namely
the use of a sum between a Woods-Saxon mean field and
a Gaussian potential centered beyond the nuclear surface at
Rcl = 1.3 (A1/3

D + 41/3) with a length parameter bcl = 1 fm.
This was used to generate sp orbitals able to properly de-
scribe the absolute value of α-decay widths from even-even
emitters. A similar potential, but with a Woods-Saxon form
factor multiplied by a Gaussian clustering correction was used
in Ref. [24] to describe α clustering in some emitters above
doubly magic nuclei.

Various nuclear collective states are described within a
microscopic formalism by a residual interaction peaked on the
nuclear surface. In particular, in this work we will describe
two-particle (pp, nn) collective states formed by a nucleon-
nucleon residual interaction enhanced on the nuclear surface.
In doing this, we generalize the well-known surface delta in-
teraction (SDI) in the form of the surface Gaussian interaction
(SGI)

vSGI (rτ , Rτ ) = vrel(rτ )vc.m.(Rτ )

= −v0 exp

(
−|rτ |2

b2
rel

)
exp

(
− (|Rτ | − R0)2

b2
c.m.

)
(2.2)

given here in terms of the the relative and c.m. coordinates r =
r1τ − r2τ , Rτ = (r1τ + r2τ )/2. We will add this component to
the standard nucleon-nucleon interaction vrel(rτ ), given by the
usual Gaussian shape

v(rτ , Rτ ) = − v0 exp

(
− r2

τ

b2
rel

)
×

[
1 + xc exp

(
− (Rτ − R0)2

b2
c.m.

)]
, (2.3)

where rτ = |rτ |, Rτ = |Rτ |, and xc plays the role of the mix-
ing residual strength, common for protons and neutrons.

B. Cluster Hartree-Fock-Bogoliubov approach

The mean field can be generated by diagonalizing the HFB
equations [25][

− h̄2

2μ
∇2 + �(dir)(r)

]
ψam(r)

+
∫

dr′�(exc)(r, r′)ψam(r′) = εaψam(r), (2.4)

depending upon direct and exchange potentials

�(dir)(rτ ) =
∫

dr′
τv(rτ , r′

τ )ρ(r′
τ ),

�(exc)(rτ , r′
τ ) = −v(rτ , r′

τ )ρ(rτ , r′
τ ),

τ = p, n (2.5)

in terms of densities

ρ(rτ ) =
nτ∑

a=1

V 2
τa

ja∑
m=− ja

|ψam(rτ )|2,

ρ(rτ r′
τ ) =

nτ∑
a=1

V 2
τa

ja∑
m=− ja

ψ∗
am(r′

τ )ψam(rτ ). (2.6)

We use the standard plus surface residual potential (2.3) and
we call this procedure the cluster HFB (CHFB) approach. This
clustered mean field describes the dynamics of proton and
neutron quasiparticle pairs. The amplitudes Uτa, Vτa are given
by the quasiparticle creation operator written in terms of the
particle operators

α†
ama

= Uac†
ama

+ Vaca−ma , (2.7)

where a = (τaεala ja). They satisfy the standard system of gap
equations

	a =
nτ∑

b=1

G0(ab)
bUbVb = v0

nτ∑
b=1

G(0)
0 (ab)


b	b

2Eb
,

a = 1, 2, . . . , nτ , (2.8)

where nτ is the number of considered sp levels and


b = 1

2
ĵb

2 = jb + 1

2
. (2.9)

The monopole pairing interaction is given by

G0(ab) = − 4

ĵa ĵb
〈aa; 0|v|bb; 0〉 = v0G(0)

0 (ab). (2.10)

In Appendix A we estimate the matrix elements of this inter-
action for the wave functions provided by the diagonalization
of the mean field. The amplitudes(

Ua

Va

)
= 1√

2

(
1 ± εa − λτ

Ea

) 1
2

, τ = p, n (2.11)

are defined in terms of the quasiparticle energy

Ea =
√

(εa − λτ )2 + 	2
a, τ = p, n, (2.12)

where λτ are Lagrange multipliers accounting for the conser-
vation of the number of particles. We solve the system (2.8) by
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looking for an effective strength of the pairing interaction v0

required to obtain the experimental value of the gap parameter
at the Fermi level. It can be approximated by the well-known
ansatz

	aF = 	exp ∼ 12√
A

MeV. (2.13)

In Appendix B we show that the CHFB procedure predicts a
mean field potential of the form

VMF (rτ ) = V0(rτ ) + Vcl (rτ ), τ = p, n. (2.14)

V0 describes the standard mean field close to the Woods-Saxon
shape. It has a somewhat involved expression following from
computational details that are not crucial for the physics of
this discussion. These details are described in Appendix B
and the expression for the potential is given in Eq. (B12) in
terms of other quantities defined and computed there. Vcl is
also described in detail in the same Appendix, but it can be
written in Gaussian form

Vcl (rτ ) = Acl exp

[
−

(
rτ − Rcl

bcl

)2
]
. (2.15)

The cluster parameters can be derived analytically for a step-
function density in terms of original sp interaction parameters
(2.3), with a proof being outlined in Appendix B leading
to Eq. (B15). R0 is parametrized in Eq. (B14). The length
parameters brel, bc.m., and bcl characterize the corresponding
Gaussians found in the structure of the potential (2.14). Their
values are once again discussed in Appendix B and shown to
be those in Eq. (B15):

Rcl = R0, bcl =
√

2bc.m. = brel/
√

2. (2.16)

Our numerical analysis has shown that the realistic sp den-
sities (2.6) provide results that are very close to the above
analytic approximations. The inclusion of the SGI residual
interaction in simultaneously solving the mean field (2.4) and
pairing equations (2.8) is a procedure going beyond the mean
field approach [26]. In our case it describes collective pp
and nn pair states entering the structure of the α particle. pn
pairing generally has a very small contribution to α decay
from heavy nuclei [27] and is therefore neglected here. Thus,
we can justify on microscopic grounds the use of a similar
potential in Ref. [23].

C. Decay width for deformed nuclei

A very good approximation of the total decay width con-
necting the g.s. of deformed even-even nuclei is given by the
following factorization [16,20,28]:

� = �0D(β2) (2.17)

between the monopole decay width

�0 = h̄v

[
RF0(R)

G0(χ, ρ)

]2

, (2.18)

where R is the α-core center of mass (c.m.) radius, and the
deformation factor

D(β2) =
∑

L

exp

[
−2

L(L + 1)

χ

√
χ

ρ
− 1

]
K2

L0(β2)

(2.19)

induced by the Coulomb field characterized by the quadrupole
deformation β2. Here, G0(χ, ρ) is the monopole irregular
Coulomb function depending upon the Coulomb parameter
χ = 4ZDe2/(h̄v) and reduced radius ρ = κR, where h̄κ =
μαv is the linear momentum and

KLL′ (β2) =
∫ 1

−1
YL0(x)eβ2BP2(x)YL′0(x)dx,

B ≡ 2

5
χβ2

(
2 − ρ

χ

)√
5

4π

ρ

χ

(
1 − ρ

χ

)
(2.20)

defines the Fröman propagator matrix [20,29]. Higher or-
der multipoles of the nuclear shape are important in the
description of the α-emission spectrum, particularly when
transitions to excited states are involved. However, one can
still obtain good results when restricting the analysis only
to the quadrupole moment. For a more detailed discussion
and comparison of these methods, one can see Ref. [18], and
references indicated therein.

D. Formation amplitude

In the framework outlined above, the α-particle formation
amplitude can be calculated within a spherical approach. It is
given by the following overlap integral [20]:

F0(R) = 〈�P|�D�α〉, (2.21)

where �P, �D, and �α are the wave functions of the parent,
daughter, and α particle, respectively. The above relation is
a good approximation beyond the geometrical touching con-
figuration, where the α-core antisymmetrization becomes less
important. It is convenient to write the formation amplitude
by using a harmonic oscillator (ho) representation since then
all integrals can be performed analytically. Thus, the wave
function diagonalizing the mean field (MF) can be written

ψτεl jm(x) = 〈x|ψτεl jm〉 = Rτεl j (r)Y (l 1
2 )

jm (̂r, s), (2.22)

where x = (r, s), in terms of the radial MF wave function and
spin-orbit harmonics, respectively,

Rτεl j (r) =
∑

n

dn
τεl jR(β )

nl (r),

Y (l 1
2 )

jm (̂r, s) = [
ilYl (̂r) ⊗ χ 1

2
(s)

]
. (2.23)

Here, R(β )
nl (r) denotes the spherical ho wave function depend-

ing upon the ho size parameter β = MNω/h̄. The formation
amplitude becomes [20]

F0(R) =
∑
Nα

WNα
R(4β )

Nα0 (R) ≡
∑
Nα

FNα0(R), (2.24)

where Nα is the ho radial quantum number corresponding to
the α-particle motion with angular momentum Lα = 0. The
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W coefficients are given by the following superposition:

WNα
= 8

∑
nαNpNn

GNpGNn

× 〈nα, 0; Nα, 0; 0|Np, 0; Nn, 0; 0〉I (ββα )
nα0 , (2.25)

where the bra-ket product is the standard Talmi-Moshinky
(TM) recoupling coefficient connecting the pp and nn pairs to
α-particle coordinates. Here, I is the overlap integral between
the ho sp components R(β )

nα0 and the α-particle wave function

R(βα )
00 . The quantity GNp (GNn ) contains only proton (neutron)

degrees of freedom

GNτ
=

∑
n1n2l j

Bτ (n1l jn2l j; 0)

×
〈
(ll )0

(
1

2

1

2

)
0; 0

∣∣∣∣(l
1

2

)
j

(
l
1

2

)
j; 0

〉
×

∑
nτ

〈nτ 0Nτ 0; 0n1ln2l; 0〉I (ββα )
nτ 0 , (2.26)

where the bra-ket in the second line denotes the j j–LS re-
coupling coefficient and the B coefficient contains the nuclear
structure information

Bτ (n1l jn2l j; 0) = ĵ√
2

Uτεl jVτεl jd
n1
τεl jd

n2
τεl j . (2.27)

Equation (2.25) contains products of quantities which depend
only on proton or neutron degrees of freedom.

III. NUMERICAL APPLICATION

The formation of an α cluster is a collective process, less
sensitive to specific details connected to the sp level structure.
It turns out that the essential part of the sp mean field for
decay processes is given by distances beyond the geometrical
touching radius

Rc = 1.2
(
A1/3

D + A1/3
α

)
. (3.1)

A. Mean field shape

In Fig. 1 we plotted the proton CHFB potential of
Eq. (2.14) calculated for 242Pu (dashed line) and Woods-
Saxon potential with universal parametrization [30–32] plus
SGI residual interaction (solid line), satisfying the conditions
(2.16). The residual strength xc has the value of 19 MeV which
reproduces the observed α-decay width. The overall effect
obtained is the formation of pocket-like potential structures
centered on the nuclear surface which favor nucleon cluster-
ing. One notices that both versions give practically the same
results concerning the estimate of the decay width beyond the
geometrical touching radius Rc = 9.38 fm.

For this reason we performed our analysis by using a
Woods-Saxon sp potential with universal parametrization plus
a residual SGI, satisfying the conditions (2.16) predicted by
the CHFB formalism. We considered the standard value of
the nucleon-nucleon radius brel = 2 fm and a slightly larger
radius than the touching radius R0 = 1.275(A1/3

D + A1/3
α ), cor-

responding to a small percent of the equilibrium nuclear

FIG. 1. Proton HFB mean field plus SGI interaction (dashed line)
and WS plus SGI potential (solid line) in the case of 242Pu.

density, as predicted by the nuclear matter calculations of the
α-clustering transition. This value is known as the Mott den-
sity for the α formation [33,34]. Thus, the only free parameter
of the model is the strength xc of the SGI and it was adjusted
to reproduce experimental decay widths.

B. Pairing strength systematics

We analyzed superfluid even-even α emitters ranging from
rare earths to actinides and superheavy nuclei with experimen-
tal data available at the ENSDF [35].

The main nuclear structure ingredients enter the B coef-
ficients (2.27). They are given by the expansion coefficients
of the sp orbitals in terms of ho components and Bardeen–
Cooper–Schrieffer (BCS) amplitudes depending upon the
strength of the pairing interaction. Therefore, we began with
the analysis of this strength v0 by using the systematics of the
pairing gap. Panel (a) of Fig. 2 shows the pairing interaction
strength versus the mass number across the nuclear chart for
the case of no residual interaction (xc = 0). Similarly, panel
(b) shows the same plot compared with the case of α emitters
having their values of xc taken from the decay systematics.
What is observed in the first case is a significant increase of
the pairing strength for small mass numbers. This behavior is
consistent with a recent microscopic description of two-proton
emitters [36], where a value v0 ∼ 45 MeV was obtained in
free space in order to reproduce the experimental value of a
simultaneous two–proton decay width. Notice that the mean
value for α emitters with A > 150 is of ≈9 MeV for the pp
and nn pairing strengths, respectively. Turning on the residual
interaction, these values go to roughly ≈10 MeV, so they do
not change significantly.

C. Analysis of the plateau condition

As we already mentioned, the clustering process takes
place on the nuclear surface, where the low density favors
the formation of α particles. According to Eq. (2.24) the
formation amplitude is a coherent superposition of four-body
radial ho functions multiplied by W coefficients, plotted in
panel (a) of Fig. 3 for the decay of 242Pu. By a dot-dashed
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FIG. 2. (a) shows the pairing interaction strength versus mass
number across the nuclear chart for xc = 0. (b) compares the case
above (circles) with that of α emitters (squares) having xc taken from
the decay systematics.
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FIG. 3. (a) W coefficients (2.25) versus the quartet radial quan-
tum number Nα in the absence of SGI interaction (dot-dashed line)
and for xc = 19 MeV (solid line) corresponding to the decay of 242Pu.
(b) The radial components of the α-formation amplitude (2.24) (thin
solid lines) and the total value (thick solid line).
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FIG. 4. Radius corresponding to the peak of the α-particle wave
function versus parent mass number to the power 1

3 .

line the W-coefficients are given corresponding to the absence
of the residual SGI interaction (xc = 0), while the solid line
denotes the case reproducing the experimental decay width,
namely xc = 19 MeV. One notices the occurrence of large
components with Nα > 10 in the latter case. In spite of the
staggered character of these coefficients, the products with
ho functions FNα0(R) plotted in panel (b) have a coherent
behavior. They give the maximum of the summed formation
amplitude F0(R), plotted in the same panel by a thicker line.
Its maximal value corresponds to the largest component with
the c.m. radial quantum number Nα = 12.

Figure 4 shows the systematics for the radius correspond-
ing to the maximal value of the α-particle formation amplitude
versus the parent mass number to the power 1

3 . One ob-
serves three regions of linear correlations, corresponding to
the neutron numbers N < 126 (empty circles), 130 � N �
136 (filled circles), and N � 138 (empty triangles).

The first and third regions are in fact quite similar in be-
havior, with the second region bridging them. The separation
between the second and third regions becomes unambiguous
if one looks at Fig. 6 to be discussed in Sec. III D. It is inter-
esting to observe that the second region is comprised of Rn,
Ra, Th, and U isotopes, the lightest one being 216Rn while the
heaviest nucleus is 228U. These two configurations of nucleons
can be imagined as a 208Pb core coupled to a number of α par-
ticles of 2 and 5, respectively, with all other nuclei in between
having a number of nucleons compatible with arrangements
consisting of a 208Pb core, a number of 2–4 α particles and an
additional number of 1–3 pp or nn pairs. We are not stating
that this is indeed an accurate physical picture, but it does
tie further into the discussion of Sec. III D and Fig. 7, where
the data pertaining to this region suggest enhanced clustering
features due to the small number of nucleons found above the
closed shells of 208Pb. In any case, the slope, intercept, and
standard deviation following for a basic linear fit of the data
for each region are given in Table I.

The calculated decay width (2.17) should not depend
upon the radius beyond the nuclear surface, thus satisfying
the so-called plateau condition, due to the fact that in a
phenomenological approach both internal RF0 and external
G0(R) functions satisfy the same Schrödinger equation. Our
case is that of a semimicroscopic approach. The internal
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TABLE I. Systematics of peak radius versus mass number to the
power 1

3 .

region a b σ

N < 126 1.503 1.102 0.052
130 � N � 136 3.850 −13.082 0.060
N � 138 0.932 4.845 0.072

formation amplitude in Eq. (2.18) is provided by a micro-
scopic method, while the external wave function satisfies the
Coulomb equation and therefore the plateau condition is not
automatically satisfied.

In order to check to what extent the plateau condition is
satisfied we analyzed the behavior of the calculated decay
width for different values of the residual strength. The result is
shown in Fig. 5 as a function of radius in the case of the parent
nucleus 242Pu. The results are shown for two different types of
calculations. Panel (a) is for the computation without the Frö-
man correction, while panel (b) shows the results corrected for
the nuclear deformation within the Fröman approximation. xc

ranges between 5–19 MeV with smaller values corresponding
to broader plateaus in the logarithm of the decay widths ratio.
One observes that the theoretical calculations converge to the
observed value with increasing values of xc. Furthermore, the
calculations corrected for nuclear deformation make a better
estimate of the decay width by a factor of roughly 5 over
the spherical calculation for a given value of the residual
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FIG. 5. Logarithm of the ratio between the theoretical and exper-
imental decay width versus radius in the case of spherical (a) and
deformed (b) calculations. The nucleus is 242Pu and xc ranges be-
tween 5–19 MeV, with the smaller values corresponding to a wider
plateau.
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FIG. 6. Residual interaction strength (a) and α-decay spectro-
scopic factor (b) versus the fragmentation potential.

strength. This underlines once again the importance of nuclear
deformation in the barrier penetration process. The approx-
imate plateau condition is established at a little over 10 fm,
that is about 1 fm beyond the geometrical contact radius. It is
important to stress that we determined the strength xc repro-
ducing the experimental decay width by using the following
condition: 〈

log10

�
de f
th (R)

�exp

〉
= 0, (3.2)

where the mean value is considered in the interval of ±1 fm
around the radius Rmax where the maximal value is reached.

D. Decay width systematics

Systematic calculations of α-decay widths are presented
in Fig. 6, namely the dependence of the residual interaction
strength (panel a) and spectroscopic factor (panel b)

sα =
∫ ∞

0
|RF0(R)|2dR, (3.3)

on the fragmentation potential as suggested by the phe-
nomenological systematics of Ref. [18]. One observes once
again two major trends with a transition region in the same
neutron ranges as found in the systematics of Fig. 4. For
the first and third regions, the slope, intercept and standard
deviation are given in Table II.

It is interesting to note that this phenomenon is reminiscent
of a very similar feature found in proton emission. There, the
proton-decay spectroscopic factor exhibits two trends around
the charge number Z = 68 where both shape-coexistence
phenomena and an abrupt change from oblate to prolate
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TABLE II. Systematics of the residual interaction strength versus
fragmentation potential.

region a b σ

N < 126 −2.248 54.351 2.070
N � 138 0.804 1.919 1.762

deformations are observed [18,37]. However, as noted previ-
ously, in the case of α-decay clustering phenomena play a very
important role in the dynamics of this particular transition.
This is seen in Fig. 7 where the residual interaction strength
(panel a) and spectroscopic factor (panel b) are plotted versus
the neutron number. One observes the typical behavior of
large clustering near closed shells followed by a decreasing
trend.

In phenomenological studies of the α-spectrum fine struc-
ture using a monopole plus quadrupole-quadrupole (QQ)
interaction, the coupling strength of the QQ component be-
haves in an analogous manner and is proportional to the
reduced width, thereby acting as a measure of clustering on
the nuclear surface [38].

E. Predictions for superheavy emitters

In order to test the predictive power of the model, we
have used the systematics of Table II to calculate the decay
widths of known even-even superheavy emitters. The results
are shown in Fig. 8, namely the logarithm of the ratio be-
tween the calculated and experimental widths function of the
index number of Table III. In spite of the somewhat large
scattering of data for actinides in the range N � 138, one
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observes an overall good agreement between the calculated
and experimental values for the decay widths of superheavy
emitters, usually within a factor of 3. This is quite reasonable
in the context of the experimental uncertainties involved in
these measurements. The last column of Table III contains the
quantity ε, namely the ratio of the largest recorded uncertainty
in the total measured half-life relative to the recommended
value tabulated in Ref. [35] at the time of this work. In con-
trast, similar experimental uncertainties in the region of the
actinides where the relevant data are fitted tend to be smaller,
of the order of ≈1% or less.

Of particular interest is the case of the parent nucleus
266
106Sg. Not only are the reported uncertainties in the total
half-life quite large, but the α-decay branching ratio itself is
currently recommended only as an estimated lower bound of
%α � 18.0. Perhaps the order of magnitude discrepancy be-
tween the α-decay width following from these reported values
and our calculation is indicative of a measurement that can be
improved.

TABLE III. Predictions for superheavy even-even α emitters.
Deformation parameters are taken from [39]. Uncertainties relative
to the recommended value of the total half-life are taken from the
maximal values tabulated in Ref. [35] at the time of this writing.

Q Vfrag log10 �exp ε

n Nucleus β2 MeV MeV MeV log10
�th
�exp

%

1 266
106Sg 0.230 8.762 51 17.603 −23.420 1.024 95

2 264
108Hs 0.229 10.591 20 16.332 −18.545 0.242 −

3 266
108Hs 0.230 10.335 20 16.537 −18.703 −0.168 5

4 270
108Hs 0.231 9.300 7 17.470 −21.896 0.435 6

5 270
110Ds 0.221 11.200 50 16.075 −17.341 −0.232 35

6 286
114Fl −0.096 10.345 60 17.528 −20.943 −0.003 24

7 288
114Fl 0.053 10.090 70 17.733 −21.244 −0.420 22

8 290
116Lv 0.072 11.000 80 17.270 −19.517 −0.234 4.2

9 292
116Lv −0.070 10.800 70 17.420 −19.597 −0.658 5

10 294
118Og −0.087 11.810 60 16.855 −18.596 0.172 76
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IV. CONCLUSIONS

We have used the HFB mean field plus a residual nucleon-
nucleon SGI in order to describe α clustering in even-even nu-
clei. We call this method the cluster HFB (CHFB) approach.

We have shown that the shape of the resulting mean
field is close to the Woods-Saxon potential with universal
parametrization plus a Gaussian clustering correction with
parameters determined by the residual nucleon-nucleon SGI.
The strength of the residual interaction was chosen to repro-
duce experimentally observed decay widths. We have shown
that the residual strength evaluated in this way is linearly
correlated with the fragmentation potential which is in agree-
ment with the behavior of the α-particle preformation inferred
from phenomenological theories. We have evidenced two such
regions of linear correlation for emitters in the range be-
tween rare earths and actinides, the transition between the
two regimes corresponding to the well-known high clustering
found in the region above 208Pb. The predictive power of the
model was tested by estimating the half-lives of superheavy
α emitters, with good agreement being found with the experi-
mental widths.
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APPENDIX A: MATRIX ELEMENTS OF THE
NUCLEON-NUCLEON INTERACTION

The pairing function is given by

�abJM (x1, x2) = δabδJ0δM0[ψa(x1) ⊗ ψa(x2)]00. (A1)

We first expand each sp wave function in terms of ho compo-
nents

�aa00(x1, x2) =
∑
nan′

a

dna
a dn′

a
a �

nan′
a

aa00(x1, x2),

�
nan′

a
aa00(x1, x2) ≡ [(

φ
(β )
nala

(r1) ⊗ χ 1
2
(s1)

)
ja

⊗(
φ

(β )
n′

ala
(r2) ⊗ χ 1

2
(s2)

)
ja

]
00, (A2)

and then we change from the j j to the LS coupling scheme
where one considers the spin singlet component. Finally we
change the radial part by using the Talmi-Moshinsky transfor-
mation from absolute to relative and cm coordinates through
the notation |�nan′

a
aa00〉 ≡ |nala jan′

ala ja〉,

〈�aa;0(x1, x2)|v(r, R)|�bb;0(x1, x2)〉 ≡ 〈aa; 0|V |bb; 0〉 =
∑

nan′
anbn′

b

dna
a dn′

a
a dnb

b d
n′

b
b 〈nala jan′

ala ja|v(r, R)|nblb jbn′
blb jb〉,

〈nala jan′
ala ja|v(r, R)|nblb jbn′

blb jb〉 ≡
〈
(lala)0

(
1

2

1

2

)
0; 0

∣∣∣∣(la
1

2

)
ja

(
la

1

2

)
ja; 0

〉〈
(lblb)0

(
1

2

1

2

)
0; 0

∣∣∣∣(lb
1

2

)
jb

(
lb

1

2

)
jb; 0

〉
×

∑
lL

∑
N

〈nlNL; 0|nalan′
ala; 0〉

∑
N ′

〈n′lN ′L; 0|nblbn′
blb; 0〉〈R(β/2)

nl (r)
∣∣vrel(r)

∣∣R(β/2)
n′l (r)

〉
× 〈R(2β )

NL (R)
∣∣vc.m.(R)

∣∣R(2β )
N ′L (R)

〉
, (A3)

where

2(na + n′
a + la) = 2(n + N ) + l + L, 2(nb + n′

b + lb) = 2(n′ + N ′) + l + L. (A4)

For a potential depending only on the relative coordinate like the spin singlet gaussian interaction

vrel(r) = −v0 exp

(
− r2

b2
rel

)
, (A5)

the main building block becomes diagonal in N .

APPENDIX B: MEAN FIELD POTENTIAL

We calculate the direct and exchange potentials (2.5) depending on the densities (2.6). As we have already shown, the spherical
approach is accurate enough for the evaluation of the α-particle formation amplitude. Therefore the first density in Eq. (2.6) can
be estimated in terms of the spherical sp wave functions summed on spin projections

|ψa(r)|2 =
j∑

m=−1

|ψam(r)|2 = R2
τεl j (r)

j∑
m=− j

[Y (l 1
2 )

jm (̂r, s)
]†Y (l 1

2 )
jm (̂r, s)

= 1

4π
R2

τεl j (r)

⎡⎣(2 j + 1) +
2 j∑

L>0

(2L + 1)
j∑

m=− j

C jL j
m0mC jL j

1
2 0 1

2

PL (̂r)

⎤⎦ (B1)
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and satisfying the normalization rule ∫
|ψa(r)|2dr = 2 j + 1. (B2)

As such, the density can be expanded as

ρ(r, cos θ ) = ρ0(r) +
2 j∑

L>0

ρL(r)PL(cos θ ), ρ0(r) ≡ 1

4π

∑
a

(2 ja + 1)V 2
a R2

a(r),

ρL(r) ≡ 1

4π

∑
a

V 2
a R2

a(r)
2 ja∑

L>0

(2L + 1)C jaL ja
1
2 0 1

2

ja∑
m=− ja

C jaL ja
m0m . (B3)

Notice that the direct part of the potential with r ≡ rτ is evaluated

�(dir)(r) =
∫

dr′v(r, r′)ρ(r′) = VMF (r, brel,∞, 0) + xcVMF (r, brel, bc.m., R0) (B4)

as a sum of two terms, namely a standard mean field potential given by the relative inter-nucleon interaction and a term given
by the SGI internucleon interaction (2.2). The general expression of the mean field is obtained through the following integral,
where the major contribution is due to the monopole density term:

VMF (r, brel, bc.m., R0) = −v0 exp

[
−

(
r

brel

)2

−
(

r − 2R0

2bc.m.

)2
]

I (r, brel, bc.m., R0),

I (r, brel, bc.m., R0) ≡
∫

dr′ exp

[
− r′2 − 2rr′ cos θ

b2
rel

− r′2 + 2rr′ − 4r′R0

(2bc.m.)2

]
ρ(r′)

= 2π

∫ ∞

0
r′2dr′ exp

[
− r′2

b2
rel

− r′2 + 2rr′ − 4r′R0

(2bc.m.)2

] ∫ 1

−1
d cos θ exp

[
2rr′ cos θ

b2
rel

]
ρ(r′, cos θ )

≈ b2
rel

4r

∫ ∞

0
r′dr′ exp

[
− r′2

b2
rel

− r′2 + 2rr′ − 4r′R0

(2bc.m.)2

]
×

[
exp

(
2rr′

b2
rel

)
− exp

(
−2rr′

b2
rel

)] ∑
a

(2 ja + 1)V 2
a R2

a(r′) ≡
∑

a

(2 ja + 1)Ia(r, brel, bc.m., R0). (B5)

Let us stress on the fact that the above general mean field expression has a Woods-Saxon plus a Gaussian shape centered around
R0 given by the integral I . By replacing the monopole density with its mean value

ρ0(r′) =
∑

a

(2 ja + 1)V 2
a R2

a(r′) → Nτ

Rτ

�(Rτ − r′), (B6)

where Rτ is the equivalent radius of the constant density distribution, one obtains the integral in terms of the erf function

I (r, brel, bc.m., R0) = I (+)(r, brel, bc.m., R0) − I (−)(r, brel, bc.m., R0), (B7)

where

I (±)(r, brel, bc.m., R0) ≡ Nτ

Rτ

b2
rel

4r

∫ Rτ

0
r′dr′ exp

[
− r′2

b2
rel

− r′2 + 2rr′ − 4r′R0

(2bc.m.)2
± 2rr′

b2
rel

]

= Nτ

Rτ

b2
rel

4r

{√
πb(±)

4a
3
2

exp

((
b(±)

)2

4a

)[
erf

(
2aRτ − b(±)

2
√

a

)
+ erf

(
b(±)

2
√

a

)]

− 1

2a
[exp(Rτ (b(±) − aRτ )) − 1]

}
(B8)

with

a = 1

b2
rel

+ 1

(2bc.m.)
2 , b(±) = ± 2r

b2
rel

+ 4R0 − 2r

(2bc.m.)
2 . (B9)

Using the obvious notation

I (r, brel, bc.m., R0) ≡ I0(r, brel, bc.m., R0) + Icl (r, brel, bc.m., R0), (B10)

where the first term contains erf functions and the second one exponentials, we can express the potential (B5) as

VMF (r, brel, bc.m., R0) = V0(r) + Vcl (r), (B11)
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where

V0(r) = −v0 exp

[
−

(
r

brel

)2

−
(

r − 2R0

2bc.m.

)2
]

I0(r, brel, bc.m., R0),

Vcl (r) = −v0 exp

[
−

(
r

brel

)2

−
(

r − 2R0

2bc.m.

)2
]

Icl (r, brel, bc.m., R0)

≡ A(−)
cl exp

⎡⎣−
(

r − R(−)
cl

bcl

)2
⎤⎦ − A(+)

cl exp

⎡⎣−
(

r − R(+)
cl

bcl

)2
⎤⎦ (B12)

with

A(±)
cl = −v0

Nτ

Rτ

b2
rel

2a

1

4r
exp

[
R(±)

cl

2 − R2
τ

b2
cl

− R2
0 − R0Rτ

b2
c.m.

]
,

R(−)
cl = 2R0b2

rel

(2bc.m.)2 + b2
rel

− Rτ = R0

(
2

y + 1
− rτ

)
,

R(+)
cl = 2R0b2

rel

(2bc.m.)2 + b2
rel

+ Rτ

[
(2bc.m.)2 − b2

rel

2bc.m.)2 + b2
rel

]
= R0

(
2

y + 1
+ rτ

y − 1

y + 1

)
,

b2
cl = (2bc.m.)2b2

rel

(2bc.m.)2 + b2
rel

= (2bc.m.)2

y + 1
, y ≡ (2bc.m.)2

b2
rel

, rτ ≡ Rτ

R0
= 0.75. (B13)

We used the systematic rules

Rτ = 1.2A1/3
D , R0 = 1.6A1/3. (B14)

Rτ is the equivalent radius of the constant density distribution used in the approximation of the density found in Eq. (B6). The
simple parametrization given here, equivalent to the usual spherical nuclear saturation radius, was found to be valid for all the
emitters studied in this work. R0 is parametrized here in terms of A, the mass number of the parent nucleus. The resulting value
is slightly beyond that of the geometrical touching radius of Eq. (3.1) and is equivalent with the parametrization given in the
main text at the end of Sec. III A. The value was chosen for its universal validity across the calculations performed in this work.

A special case is given by y = 1, i.e., 2bc.m. = brel, leading to the following values:

R(−)
cl = R0(1 − rτ ) � R0, R(+)

cl = R0, b2
cl = 2b2

c.m.. (B15)

At r = R0, these give

A(+)
cl ≈ −v0

Nτ

Rτ

b4
rel

16R0
exp

[
− (R0 − Rτ )2

2b2
c.m.

]
. (B16)

We can rewrite the direct part of the mean field (B5) as the following summation:

VMF (r, brel, bc.m., R0) =
∑

a

(2 ja + 1)V (a)
MF (r, brel, bc.m., R0), (B17)

in terms of the general function

V (a)
MF (r, brel, bc.m., R0) ≡ −v0 exp

[
−

(
r

brel

)2

−
(

r − 2R0

2bc.m.

)2
]

Ia(r, brel, bc.m., R0). (B18)

Concerning the exchange part one obtains for the first monopole leading term the following expression:∫
dr′�(exc)(r, r′)ψam(r′) = −

∫
dr′v(r, r′)ρ(r, r′)ψam(r′) = −

∫
dr′v(r, r′)

∑
b

V 2
b

jb∑
μ=− jb

ψbμ(r′)ψbμ(r)ψam(r′)

= −
∫

dr′v(r, r′)
∑

b

V 2
b

jb∑
μ=− jb

Rb(r′)Y†
jbμ

(r̂′)Rb(r)Y jbμ (̂r)Ra(r′)Y jam(r̂′)

≈ −
∫

dr′v(r, r′)V 2
a

1

4π
R2

a(r′)Ra(r)Y jam (̂r) = V (a)
MF (r, brel, bc.m., R0)ψa(r), (B19)

where we notice a smaller contribution given by only one ath direct mean field term (B18).
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