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Time-reversal-invariance violation in the Nd system and large NC
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A minimal set of five low energy constants (LECs) for time-reversal and parity violating (�T �P) nucleon-nucleon
(NN) interactions at low energies (E < m2

π/MN ) is given. Using a large-NC (number of colors in quantum
chromodynamics) analysis we show that one linear combination of LECs is O(NC ), three LECs are O(N0

C ),
and one linear combination of LECs is O(N−1

C ). We also calculate the �T �P observables of neutron spin rotation
through a polarized deuteron target and a spin correlation coefficient in nucleon-deuteron scattering using
pionless effective field theory. Using the large-NC analysis we show that the spin correlation coefficient and
the neutron spin rotation are predominantly determined by the same two LECs in the large-NC basis.

DOI: 10.1103/PhysRevC.107.024001

I. INTRODUCTION

Time-reversal (T ) symmetry is an invariance of the laws
of physics under the transformation t → −t . In the standard
model (SM) the only known source of T violation (�T ) that
manifests in nucleon-nucleon (NN) interactions comes from
a complex phase in the Cabibbo-Kobayashi-Maskawa (CKM)
matrix [1]. In quantum chromodynamics (QCD) the θ̄ term [2]
also gives rise to T violating NN interactions but is currently
consistent with zero. The unnatural smallness of the θ̄ term
is known as the “strong CP problem”. One possible solution
is provided by the Peccei-Quinn mechanism [3], which leads
to the creation of axions a possible dark matter candidate
[4,5]. By the CPT theorem�T is equivalent to the violation of
the product of charge-symmetry (C) (symmetric under inter-
change of particle and antiparticle) and parity (P) (symmetric
under change in sign of coordinates). CP-violation (��CP) is a
necessary condition to obtain a matter antimatter asymmetry
in the universe [6]. However, the amount of ��CP in the SM
is not enough to account for the observed matter antimatter
asymmetry in the universe [7]. Thus, it is expected beyond the
SM (BSM) physics must have further sources of��CP.

BSM physics can be encoded in an effective field theory
(EFT) that respects SM symmetries known as SM EFT. BSM
theories should reduce to the SM at low energies and can be
matched to the SM EFT by integrating out heavy degrees of
freedom. Different BSM theories will give different values
for the low energy constants (LECs) of higher dimension
(d > 4) nonrenormalizable operators in SM EFT. The d =
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6 ��CP SM EFT operators have been delineated in Ref. [8].
By using renormalization group (RG) and EFT techniques the
d = 6 ��CP operators can be run down to �QCD ∼ 1 GeV and
matched to relevant QCD operators. This has been done at
tree level [9]. Below �QCD the matching of QCD operators
to chiral EFT (χEFT) is nontrivial due to the nonperturbative
nature of QCD, but can in principle be done through lattice
QCD [10]. Despite not being able to directly match the d = 6
SM EFT ��CP operators to ��CP operators in χEFT they have
been related to each other by using the pattern in which the
operators break chiral symmetry [9,11].

At low energies (E < m2
π/MN ) interactions between nuclei

can be described in a series of contact interactions between
nuclei known as pionless EFT (EFT(�π )). EFT(�π ) has been
used to great success to describe the static properties of few
nucleon systems and interactions between light nuclei at low
energies (see Refs. [12] and [13] for reviews). In EFT(�π )
T and P violating (�T�P) NN interactions are described by
five independent LECs [14], which can be matched to χEFT
providing a connection to BSM physics where the only weak
link in the chain is the matching of χEFT to QCD. These five
LECs must be determined from experiment or fundamental in-
teractions through lattice QCD. Experiments involving heavy
nuclei offer the possibility of an enhanced T -violating signal
due to closely spaced nuclear levels that behave oppositely
under T symmetry and seem ideal candidates to determine
the five LECs [15]. However, calculating properties of heavy
nuclei is difficult and to cleanly extract the LECs from ex-
periment it is preferable to do experiments on few-nucleon
systems as is being carried out for P-violating (PV) NN in-
teractions [16]. Given that there are five LECs it would be
desirable to further distinguish the relative size of these LECs.
Such a scheme is provided by a large-NC analysis in QCD
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[17,18] in which the number of colors (NC) in QCD is used
as an expansion parameter. This analysis has been carried out
for all T -violating NN operators to order N−1

C [19]. Below we
show how this general analysis reduces to five LECs and find
the large-NC scaling of these LECs in analogy to what has
been done in the PV sector [20].

Electric dipole moments (EDMs) of nuclei and neutral
atoms violate both T and P and are currently of great interest
in searches for�T . The neutron (proton) EDM has been mea-
sured to |dn| < 2.9 × 10−13e fm [21] (|dp| < 7.9 × 10−12e
fm), while the SM prediction is estimated at |dn| ∼ |dp| ∼
10−19e fm [22]. The current best bounds for the proton EDM
come from the EDM bounds on 199Hg [23]. Future experi-
ments expect to bring neutron EDM measurements down two
orders of magnitude [24–26]. Proposed charge storage ring
experiments could in principle measure the proton, deuteron,
and 3He EDMs to a precision of ∼10−16e fm [27,28]. χEFT
has been used to calculate the light A < 4 nuclear EDMs
[9,29–33], as well as phenomenological and hybrid models
[34,35], and EFT(�π ) [36]. Measurements from several light
nuclear EDMs would allow for the disentanglement of contri-
butions from different d = 4 and d = 6 SM EFT��CP operators
and make clearer the picture of BSM physics in the��CP sector.

Another avenue to find �T in nuclei complementary to
EDM searches is through neutron spin rotation experiments
on polarized nuclear targets and spin-correlation experiments
with nucleon-nucleus scattering. These observables have been
previously investigated in the neutron-deuteron (nd) system
with a EFT(�π ) �T�P NN potential [37]. However, these cal-
culations used the so called hybrid method in which strong
interactions were given by the phenomenological potentials
of AV18+UIX [38,39], while�T�P NN interactions were given
by EFT(�π ). In this work we calculate these observables in a
completely consistent EFT(�π ) framework in which EFT(�π ) is
used both for the strong and�T�P NN interactions. A consistent
EFT(�π ) calculation allows for the full machinery of error
estimation in EFT to be properly utilized. We only calculate
to leading-order (LO) in EFT(�π ) since a next-to-leading order
(NLO) calculation will likely require the inclusion of a �T�P
three-body force as this is the case for the analogous PV NN
interactions [40]. In addition we analyze the constraints on
these observables placed by large-NC .

This paper is organized as follows. In Sec. II the LO strong
and �T�P EFT(�π ) Lagrangian in the two and three-nucleon
sector is given. Section III derives the large-NC counting of
the five�T�P LECs in EFT(�π ). The calculation of the nucleon-
deuteron (Nd) scattering amplitude including�T�P interactions
is discussed in Sec. IV. Section V gives the�T�P observables in
the Nd system in terms of partial wave amplitudes and Sec. VI
discusses the results of the calculated observables. Finally, we
conclude in Sec. VII.

II. LAGRANGIAN

The LO Lagrangian in EFT(�π ) is given by

L = N̂†

(
i∂0 + �∇2

2MN

)
N̂ + t̂†

i �t t̂i + ŝ†
a�sŝa (1)

− y
[
t̂†
i N̂T PiN̂ + ŝ†

aN̂T P̄aN̂ + H.c.
]

+ y2MN HLO(�)

3�2

[
t̂i(σiN̂ ) − ŝa(τaN̂ )

]†[
t̂i(σiN̂ ) − ŝa(τaN̂ )

]
,

where N̂ , t̂i, and ŝa are the nucleon, spin-triplet (deuteron), and
spin-singlet dibaryon field, respectively. Pi = 1√

8
σ2σiτ2 (P̄a =

1√
8
σ2τ2τa) projects out the spin-triplet isosinglet (spin-singlet

isotriplet) combination of nuclei. The two-body parameters
are fit to the deuteron binding momentum γt = 45.7025 MeV
and the 1S0 virtual bound state momentum γs = −7.890 MeV
yielding [41]

�t = γt − μ, �s = γs − μ, y2 = 4π

MN
. (2)

μ is a scale that comes from using dimensional regularization
with power divergence subtraction [42,43] and physical ob-
servables are independent of μ. HLO(�), the LO three-body
force [44], is fit to the 2S 1

2
nd scattering length and = 0.65 fm

[45]. The scale � comes from regulating momentum integrals
with a hard cutoff. For details of fitting the three-body force
see Ref. [46]. The LO NN scattering amplitude is given by
an infinite sum of diagrams and is related to the dibaryon
propagator [41]

D{t,s}(E , p) = 1√
3
4 p2 − MN E − iε − γ{t,s}

, (3)

where t (s) is the spin-triplet (spin-singlet) dibaryon propaga-
tor. Taking the residue of the spin-triplet dibaryon propagator
about the bound state pole gives the LO deuteron wave func-
tion renormalization

ZLO = 2γt

MN
. (4)

The LO Lagrangian for two-body�T�P violating interactions in
EFT(�π ) is given by

L
�T�P

= −[
ḡ

3S1 − 1P1 t̂†
i

(
N̂T σ2τ2

↔
∇ i N̂

)
+ ḡ

1S0 − 3P0
(�I=0) ŝ†

a

(
N̂T σ2�σ · τ2τa

↔
∇ N̂

)
+ ḡ

1S0 − 3P0
(�I=1) ε3abŝ†

a

(
N̂T σ2�σ · τ2τbi

↔
∇ N̂

)
+ ḡ

1S0 − 3P0
(�I=2) Iabŝ†

a

(
N̂T σ2�σ · τ2τb

↔
∇ N̂

)
+ ḡ

3S1 − 3P1εi jkt̂†
i

(
N̂T σ2σ

kτ2τ3i
↔
∇ j N̂

)] + H.c.,
(5)

where Iab = diag(1, 1,−2) projects out an isotensor. This
is analogous to the Lagrangian for PV interactions but with

additional factors of i or −i [47]. The operator
↔
∇ is defined

via b
↔
∇ a = b(∇a) − (∇b)a. To distinguish �T�P LECs from

similar PV LECs we place a bar over them.

III. LARGE-NC

The values of the five�T�P LECs are entirely unconstrained
by experiment. However, the large-NC expansion of QCD
allows for the discernment of the relative size of these LECs.

024001-2



TIME-REVERSAL-INVARIANCE VIOLATION IN THE … PHYSICAL REVIEW C 107, 024001 (2023)

The most general �T�P NN potential with a single power of
momentum is given by

V nonmin = Ā−
1 p− · i(�σ1 − �σ2) + Ā+

1 p+ · (�σ1 × �σ2)

+ Ā−
2 p− · i(�σ1τ

3
1 − �σ2τ

3
2 ) + 1

2 Ā
+
2 p+ · (�σ1 × �σ2)

× (τ1 + τ2)3 + Ā−
3 p− · i(�σ1 − �σ2)�τ1 · �τ2

+ Ā+
3 p+ · (�σ1 × �σ2)�τ1 · �τ2 + Ā−

4 p− · i
(
�σ1τ

3
2 − �σ2τ

3
1

)
+ Ā−

5 p− · i(�σ1− �σ2)Iabτ
a
1 τ b

2 +Ā+
5 p+ · (�σ1×�σ2)

× Iabτ
a
1 τ b

2 − 1
2 Ā

+
6 p+ · i(�σ1 + �σ2)i(τ1 × τ2)3, (6)

where

p± = p′ ± p (7)

and

p′ = p′
1 − p′

2, p = p1 − p2. (8)

p1 (p′
1) and p2 (p′

2) are the momenta of the incoming (outgo-
ing) nucleons. The large-NC scaling of the coefficients derived
in Ref. [19] is

Ā+
1 ∼ N−2

C , Ā−
1 ∼ N0

C,

Ā+
2 ∼ N−1

C , Ā−
2 ∼ NC,

Ā+
3 ∼ N0

C, Ā−
3 ∼ N0

C,

Ā−
4 ∼ N−1

C ,

Ā+
5 ∼ N0

C, Ā−
5 ∼ N0

C,

Ā+
6 ∼ N−1

C . (9)

Many of the operators in Eq. (6) are interrelated via Fierz
transformations and can be simplified to a set of five indepen-
dent operators. This reduction has been carried out previously
by Girlanda for PV operators and obtained a Lagrangian with
five LECs [48]. The�T�P Lagrangian can be obtained from the
Girlanda Lagrangian for PV operators by simply interchang-

ing p+ and p− and adding factors of i or −i giving

Lmin

�T�P
= Ḡ1(N̂† �σ N̂ · ∇(N̂†N̂ ) − N̂†N̂∇ · (N̂† �σ N̂ ))

− ˜̄G1εi jkN̂†σ iN̂ N̂†σ ki
↔
∇ j N̂

− Ḡ2εi jk[N̂†τ 3σ iN̂ N̂†σ ki
↔
∇ j N̂ + N̂†σ iN̂ N̂†τ 3σ k

× i
↔
∇ j N̂] − Ḡ5Iabεi jkN̂†τ aσ iN̂ N̂†τ bσ ki

↔
∇ j N̂

+ Ḡ6εab3N̂†τ ai
↔
∇ N̂ · (N̂†τ b �σ N̂ ). (10)

The resulting potential from this set of operators is

V min = − Ḡ1p− · i(�σ1 − �σ2) − ˜̄G1p+ · (�σ1 × �σ2)

− Ḡ2p+ · (�σ1 × �σ2)(τ1 + τ2)3−Ḡ5p+ · (�σ1 × �σ2)

× Iabτ
a
1 τ b

2 + 1
2 Ḡ6p+ · (�σ1 + �σ2)(τ1 × τ2)3. (11)

Using Fierz rearrangements the coefficients of the over com-
plete potential Eq. (6) can be related to the coefficients of the
minimal Girlanda potential yielding

Ḡ1 = −Ā−
1 + Ā−

3 + 2Ā+
3 ,

˜̄G1 = −Ā+
1 + 2Ā−

3 + Ā+
3 ,

Ḡ2 = − 1
2 (Ā+

2 − Ā−
2 − Ā−

4 ),

Ḡ5 = −(Ā+
5 − Ā−

5 ),

Ḡ6 = −Ā+
6 − Ā−

2 + Ā−
4 , (12)

which gives the large-NC scaling

Ḡ2 ∼ Ḡ6 ∼ NC,

Ḡ1 ∼ ˜̄G1 ∼ Ḡ5 ∼ N0
c , (13)

and the relation

Ḡ2 = − 1
2 Ḡ6, (14)

which holds to order O(N−1
C ). An alternative basis for the

five independent LECs is the partial wave basis in which
the incoming and outgoing partial waves of the nucleons are
manifest. The Lagrangian in the partial wave basis is

L
�T�P

= − [
C̄ ( 3S1 − 1P1 )(N̂T σ 2 �στ 2N̂ )† · (N̂T σ 2τ 2 ↔

∇ N̂ ) + C̄ ( 1S0 − 3P0 )
(�I=0) (N̂T σ 2τ 2�τ N̂ )†(N̂T σ 2 �σ · τ 2�τ

↔
∇ N̂ )

+ C̄ ( 1S0 − 3P0 )
(�I=1) ε3ab(N̂T σ 2τ 2τ aN̂ )†(N̂T σ 2 �σ · τ 2τ bi

↔
∇ N̂ ) + C̄ ( 1S0 − 3P0 )

(�I=2) Iab(N̂T σ 2τ 2τ aN̂ )†(N̂T σ 2 �σ · τ 2τ b ↔
∇ N̂ )

+ C̄ ( 3S1 − 3P1 ) εi jk (N̂T σ 2σ iτ 2N̂ )†(N̂T σ 2σ kτ 2τ 3i
↔
∇ j N̂ )

] + H.c. , (15)

which is nearly identical to the Lagrangian for the PV NN
interaction [47] except for additional factors of i or −i. LECs
in the partial wave basis can be related to LECs in the Girlanda
basis using Fierz rearrangements [49] or techniques described
in Ref. [47] yielding

C̄ ( 3S1 − 1P1 ) = − 1
4 (Ḡ1 + ˜̄G1),

C̄ ( 1S0 − 3P0 )
(�I=0) = − 1

4 (Ḡ1 − ˜̄G1),

C̄ ( 1S0 − 3P0 )
(�I=1) = − 1

2 Ḡ2,

C̄ ( 1S0 − 3P0 )
(�I=2) = − 1

2 Ḡ5,

C̄ ( 3S1 − 3P1 ) = − 1
4 Ḡ6. (16)

From the matching and the large-NC scaling of the Girlanda
LECs the large-NC scaling of the LECs in the partial wave
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basis is

C̄ ( 3S1 − 3P1 ) ∼ C̄ ( 1S0 − 3P0 )
(�I=1) ∼ NC,

C̄ ( 3S1 − 1P1 ) ∼ C̄ ( 1S0 − 3P0 )
(�I=0) ∼ C̄ ( 1S0 − 3P0 )

(�I=2) ∼ N0
c , (17)

where

C̄ ( 1S0 − 3P0 )
(�I=1) = −C̄ ( 3S1 − 3P1 ), (18)

to order O(N−1
C ). Finally, we match the partial wave basis

LECs to the dibaryon formalism LECs in Eq. (5). This can
be done by either a simple matching calculation or a Gaussian
integration over the dibaryon fields. The matching yields the
relation [50]

ḡ(X−Y )

y
=

√
8
C̄ (X−Y )

C (X )
0

, (19)

where X (Y ) is 1S0 or 3S1 (1P0, 3P0, or 3P1) and subscripts
of �I = 0, 1, or 2 not shown are understood to be the same
on both sides. Partial wave basis LECs C(X )

0 are given by the
Lagrangian

L2 = −C (1S0 )
0 (N̂T P̄aN̂ )†N̂T P̄aN̂ − C (3S1 )

0 (N̂T PiN̂ )†N̂T PiN̂ .

(20)
Large-NC shows that at O(NC )

C (3S1 )
0 = C (1S0 )

0 (21)

and this holds to O(N−1
C ) [51]. Following Ref. [52] we define

the coefficients

ḡ1 = ḡ
3S1 − 1P1

y
, ḡ2 = ḡ

3S1 − 3P1

y
, ḡ3 = ḡ

1S0 − 3P0
(�I=0)

y
,

ḡ4 = ḡ
1S0 − 3P0
(�I=1)

y
, ḡ5 = ḡ

1S0 − 3P0
(�I=2)

y
. (22)

Using Eq. (19) and the large NC scaling of the LECs in the
partial wave basis we define the large-NC basis of dibaryon
LECs as

ḡ(NC )
1 = 1

2 (ḡ2 − ḡ4), LO(O(NC )),

ḡ(N0
C )

2 = ḡ1, ḡ(N0
C )

3 = ḡ3, ḡ(N0
C )

4 = ḡ5, NLO(O(N0
C )),

ḡ
(N−1

C )
5 = 1

2 (ḡ2 + ḡ4), NNLO(O(N−1
C )), (23)

where ḡ
(N−1

C )
5 is the next-to-next-to leading-order (NNLO)

O(N−1
C ) in large-NC LEC. The O(NC ) and O(N−1

C ) combi-
nation of LECs come from the use of Eq. (18).

One subtlety of a combined EFT and large-NC analysis is
that as NC → ∞ nucleons and � baryons become degenerate.
However, in EFT(�π ) and versions of χEFT the � is integrated
out of the theory. Also in the large-NC limit it is found for
some values of NC , as NC → ∞, there is no deuteron bound

FIG. 1. Diagrammatic representation of integral equations for
the parity and time-reversal conserving LO Nd scattering amplitude.
The single line is a nucleon, solid double line a spin-triplet dibaryon,
dashed double line a spin-singlet dibaryon, solid square the LO
three-body force, and the red oval with solid double lines is the LO
Nd scattering amplitude.

state within the range of EFT(�π ) [53]. Despite these issues,
previous large-NC analyses of the PC NN potential [51,54,55],
that also ignored the � by projecting onto only nucleon states,
found good agreement with phenomenological models of NN
interactions. The role of � for Nc = 3 has been considered
in Ref. [56]. Future work should include the � dibaryon in
large-NC analyses.

IV. THREE-BODY SYSTEM

The LO Nd scattering amplitude is given by an infinite
sum of diagrams in EFT(�π ). Ignoring Coulomb interactions,
this sum of diagrams is solved via the integral equation rep-
resented diagrammatically in Fig. 1. Projecting this integral
equation in the total angular momentum basis yields the LO
time-reversal and parity conserving (TP) integral equation

tJ
L′S′,LS (k, p, E ) = KJ

L′S′,LS (k, p, E )vp

+
∑
L′′,S′′

KJ
L′S′,L′′S′′ (q, p, E )D(E , q)

⊗q tJ
L′′S′′,LS (q, p, E ), (24)

where L (L′) is the incoming (outgoing) orbital angular mo-
mentum between the nucleon and deuteron, S (S′) is the
total incoming (outgoing) spin angular momentum in the Nd
system, and J is the total angular momentum. k (p) is the
magnitude of the incoming (outgoing) on-shell (off-shell) mo-
mentum of the nucleon in the center-of-mass (c.m.) frame,
where the on-shell condition is E = 3k2

4MN
− γ 2

t
MN

, with E being
the total energy of the Nd system. The kernel KJ

L′S′,LS (k, p, E )
is a matrix in cluster-configuration (c.c.) space [41] defined by
[40]

KJ
L′S′,LS (k, p, E ) = δLL′δSS′ (−1)L

⎧⎪⎨
⎪⎩

2π
kp QL

(
k2+p2−MN E−iε

kp

)(
1 −3

−3 1

)
+ 4πHLO(�)

�2 δL0

(
1 −1

−1 1

)
, S = 1

2

− 4π
kp QL

(
k2+p2−MN E−iε

kp

)(
1 0
0 0

)
, S = 3

2

, (25)
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T V

T V

T V

T V

T V

T V

FIG. 2. Diagrammatic representation of integral equation for the

�T �P LO Nd scattering amplitude. The light yellow square is an
insertion of a �T �P NN LEC, the oval with TV in it and solid double
lines is the �T �P LO Nd scattering amplitude, and everything else is
the same as in Fig. 1.

where QL(a) is a Legendre function of the second kind defined
by

QL(a) = 1

2

∫ 1

−1

PL(x)

x − a
(26)

and PL(x) are the standard Legendre polynomials. D(E , q) is
a matrix in c.c. space given by

D(E , q) =
(

Dt (E , q) 0
0 Ds(E , q)

)
, (27)

and tJ
L′S′,LS (k, p, E ) is a vector in c.c. space defined by

tJ
L′S′,LS (k, p, E ) =

(
t J;Nt→Nt
L′S′,LS (k, p, E )

t J;Nt→Ns
L′S′,LS (k, p, E )

)
, (28)

where t J;Nt→Nt
L′S′,LS (k, p, E ) is the Nd scattering amplitude and

t J;Nt→Ns
L′S′,LS (k, p, E ) is the unphysical scattering amplitude for

a nucleon and deuteron going to a nucleon and spin singlet
dibaryon. The ⊗q notation is defined by

A(q) ⊗q B(q) = 1

2π2

∫ �

0
dqq2A(q)B(q). (29)

Finally, vp is a vector in c.c. space that picks out spin-triplet
dibaryons for the outgoing dibaryon legs and is given by

vp =
(

1
0

)
. (30)

The �T�P Nd scattering amplitude is given by the integral
equation in Fig. 2. Projecting out the integral equation in a
total angular momentum basis yields

t
�T�P

J
L′S′,LS

(k, p, E ) = K
�T�P

J
L′S′,LS

(k, p, E )vp

+
∑
L′′,S′′

K
�T�P

J
L′S′,L′′S′′ (q, p, E )

(a) (b)

FIG. 3. Diagrammatic representation of tree level contributions
to the �T �P LO Nd scattering amplitude. The yellow square is an
insertion of a �T �P NN interaction.

⊗q D(E , q)tJ
L′′S′′,LS (q, p, E )

+
∑
L′′,S′′

KJ
L′S′,L′′S′′ (q, p, E )

⊗q D(E , q)t
�T�P

J
L′′S′′,LS

(q, p, E ), (31)

where t
�T�P

J
L′′S′′,LS

(k, p, E ) is a c.c. space vector defined by

t
�T�P

J
L′S′,LS

(k, p, E ) =
⎛
⎝t

�T�P
J;Nt→Nt
L′S′,LS

(k, p, E )

t
�T�P

J;Nt→Ns
L′S′,LS

(k, p, E )

⎞
⎠. (32)

t
�T�P

J;Nt→Nt
L′S′,LS

(k, p, E ) is the �T�P Nd scattering amplitude and

t
�T�P

J;Nt→Ns
L′S′,LS

(k, p, E ) is an unphysical�T�P scattering amplitude

for a nucleon and deuteron going to a nucleon and spin-singlet
dibaryon. The�T�P kernel is given by the sum of diagrams in
Fig. 3 giving

K
�T�P

J
L′S′,LS

(k, p, E ) = K(a)

�T�P
J

L′S′,LS
(k, p, E )

+ K(b)

�T�P
J

L′S′,LS
(k, p, E ), (33)

where K(a)

�T�P
J

L′S′,LS
(k, p, E ) [K(b)

�T�P
J

L′S′,LS
(k, p, E )] is the contribu-

tion from diagram (a) [diagram (b)]. Diagram (a) and (b) are
related by

K(b)

�T�P
J

L′S′,LS
(k, p, E ) =

[
K(a)

�T�P
J

LS,L′S′ (p, k, E )
]†

, (34)

where the superscript † is a conjugate transpose of the c.c.
space matrix. Since the�T�P Lagrangian essentially has an ex-
tra factor of i as compared to the PV Lagrangian the complex
conjugate results in a sign change as expected for a T -odd
interaction. The kernels for diagram (a) and (b) have been
calculated previously for PV [52,57]. The only difference
between PV and�T�P calculations is a factor −i for diagram (a)
and i for diagram (b) as well as an overall sign for the ḡ

3S1 − 3P1

and ḡ
1S0 − 3P0
(�I=1) LEC terms. When calculating the�T�P kernel it is

convenient to use a basis of LECs that can be used for both
nd and proton-deuteron (pd) interactions, such a notation was
provided in [57], giving

S̄1 = 3ḡ
3S1 − 3P1 − 2τ3ḡ

3S1 − 3P1 ,

S̄2 = 3ḡ
3S1 − 3P1 + τ3ḡ

3S1 − 3P1 ,

T̄ = 3ḡ
1S0 − 3P0
(�I=1) − 2τ3ḡ

1S0 − 3P0
(�I=1) . (35)
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Using this notation the�T�P kernel for each partial wave channel of interest is

K
�T�P

1
2

1 1
2 ,0 1

2

(k, p, E ) = −4π i
√

2

3kp

{
pQ0(a)

(
S̄1 −2T̄ − S̄1

T̄ + 2S̄1 −T̄

)
− kQ1(a)

(
S̄1 T̄ + 2S̄1

−2T̄ − S̄1 −T̄

)}
, (36)

K
�T�P

1
2

1 3
2 ,0 1

2

(k, p, E ) = 8π i

3kp

{
pQ0(a)

(
4S̄1−7S̄2

3 4T̄ − S̄2

0 0

)
− 2kQ1(a)

(
4S̄2−S̄1

3 S̄2 − T̄
0 0

)}
, (37)

K
�T�P

3
2

1 1
2 ,0 3

2

(k, p, E ) = −4
√

2π i

3kp

{
2pQ0(a)

(
4S̄2−S̄1

3 0
S̄2 − T̄ 0

)
− kQ1(a)

(
4S̄1−7S̄2

3 0
4T̄ − S̄2 0

)}
, (38)

and

K
�T�P

3
2

1 3
2 ,0 3

2

(k, p, E ) = 8
√

10π i

3kp
(pQ0(a) − kQ1(a))

( S̄1−S̄2
3 0
0 0

)
. (39)

Using the fact that our interactions are T -odd the time reversed version of these kernels is given by

K
�T�P

J
L′S′,LS

(k, p, E ) = [K
�T�P

J
LS,L′S′ (p, k, E )]†, (40)

where the † takes the conjugate transpose of the c.c. space matrix. The value of a is

a = k2 + p2 − MN E − iε

kp
. (41)

V. OBSERVABLES

The relation between the Nd scattering amplitude in the spin basis and partial wave basis is given by

Mm′
1m′

2,m1m2 =
√

4π
∑

β

√
2L + 1C0,mS ;M

L,S;J Cm′
L,m′

S ;M
L′,S′;J Cm1,m2;mS

1, 1
2 ;S

C
m′

1,m
′
2;m′

S

1, 1
2 ;S′ Y m′

L
L′

∗
( p̂)MJ

L′S′,LS, (42)

where m1 (m2) is the initial spin of the deuteron (nucleon) and m′
1 (m′

2) is the final spin of the deuteron (nucleon). The sum β is
over all indices other than m1, m2, m′

1, and m′
2. At low energies it is sufficient to truncate the sum to values of L = 0 or 1 and

L′ = 0 or 1. In the partial wave basis the Nd scattering amplitude is given by

MJ
L′S′,LS = ZLOt J;Nt→Nt

L′S′,LS (k, k, E ), (43)

where t J;Nt→Nt
L′S′,LS (k, k, E ) is understood to be either T P or�T�P. One set of�T�P observables is given by the correlation �σN · (�k × �εd ),

where �σN is the spin of the nucleon, �k is the momentum of the incoming nucleon beam, and �εd is the polarization of the deuteron.
Choosing �k to be along the z axis and the deuteron polarization to be along the y axis, the difference in cross sections for the
nucleon polarized along and opposite the �k × �εd axis is given by1

�σ =
(

MN

3π

)2 ∑
m′

1,m
′
2

∫
d�

1

8

⎧⎪⎨
⎪⎩
∣∣∣∣∣∣
∑

m1,m2

f (m1)(−1)
1
2 −m2 Mm′

1m′
2,m1,m2

∣∣∣∣∣∣
2

−
∣∣∣∣∣∣
∑

m1,m2

f (m1)Mm′
1m′

2,m1m2

∣∣∣∣∣∣
2
⎫⎪⎬
⎪⎭, (44)

while the sum of the cross sections is given by

σ =
(

MN

3π

)2 ∑
m′

1,m
′
2

∫
d�

1

8

⎧⎪⎨
⎪⎩
∣∣∣∣∣∣
∑

m1,m2

f (m1)(−1)
1
2 −m2 Mm′

1m′
2,m1,m2

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
∑

m1,m2

f (m1)Mm′
1m′

2,m1m2

∣∣∣∣∣∣
2
⎫⎪⎬
⎪⎭, (45)

where

f (m1) =
⎧⎨
⎩

1, if m1 = 1
i
√

2, if m1 = 0
−1, if m1 = −1

. (46)

1Note, although using the polarization conventions of Song et al. [37] our expressions for the observables seem to differ from Song et al. by
an overall sign. Their phase seems to coincide with using the density matrix method [58,59].
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Using the expression for Mm′
1m′

2,m1m2 in the partial wave basis the spin correlation coefficient �σ/(σ ) is given by

Axy =3

2
Im

[√
2M

1
2

0 1
2 ,0 1

2

(
M

1
2

0 1
2 ,1 3

2

)∗
+

√
2M

1
2

1 3
2 ,0 1

2

(
M

1
2

1 3
2 ,1 3

2

)∗
+ 2M

3
2

0 3
2 ,0 3

2

(
M

3
2

0 3
2 ,1 1

2

)∗
+ 2M

3
2

1 1
2 ,0 3

2

(
M

3
2

1 1
2 ,1 1

2

)∗ ]/
(∣∣∣M 1

2

0 1
2 ,0 1

2

∣∣∣2 + 2
∣∣∣M 3

2

0 3
2 ,0 3

2

∣∣∣2 + 3
∣∣∣M 1

2

1 1
2 ,1 1

2

∣∣∣2 + 6
∣∣∣M 1

2

1 3
2 ,1 3

2

∣∣∣2). (47)

Below the deuteron breakup threshold this observable can also be calculated using the optical theorem which gives

�σ = 4MN

3k

1

8
Im

⎧⎨
⎩
∑

m1,m2

∑
m′

1,m
′
2

f (m1) f ∗(m′
1)((−1)1−m2−m′

2 − 1)Mm′
1m′

2,m1m2

∣∣∣
θ=0

⎫⎬
⎭, (48)

for �σ and

σ = 4MN

3k

1

8
Im

⎧⎨
⎩
∑

m1,m2

∑
m′

1,m
′
2

f (m1) f ∗(m′
1)((−1)1−m2−m′

2 + 1)Mm′
1m′

2,m1m2

∣∣∣
θ=0

⎫⎬
⎭, (49)

for σ , where θ = 0 means only the forward scattering amplitude is taken. Using these relationships from the optical theorem and
plugging in the expression for the amplitudes in the partial wave basis gives

Axy = 3

4

Re
[√

2M
1
2

0 1
2 ,1 3

2

− √
2M

1
2

1 3
2 ,0 1

2

+ 2M
3
2

0 3
2 ,1 1

2

− 2M
3
2

1 1
2 ,0 3

2

]
Im

[
M

1
2

0 1
2 ,0 1

2

+ 2M
3
2

0 3
2 ,0 3

2

+ 3M
1
2

1 1
2 ,1 1

2

+ 6M
1
2

1 3
2 ,1 3

2

] (50)

for the spin correlation coefficient �σ/σ . If T symmetry is not violated then it can be seen that this asymmetry is zero as
expected. This expression is only valid for energies below the deuteron breakup threshold and at these energies is found to be
equivalent to results from Eq. (47), which serves as a check on our results.

Another possible�T�P observable is the spin rotation of the neutron through a polarized deuteron target, with rotation angle φ,
about the axis �k × �εd given by the expression [60]

dφ

dz
= −2MN N

3k

1

8

∑
m′

1,m
′
2

∑
m1,m2

Re{ f (m1) f ∗(m′
1)((−1)

1
2 −m2−m′

2 − 1)Mm′
1,m

′
2,m1,m2 |θ=0}. (51)

N is the number of atoms per unit volume, z is the length of the target through which the neutron travels, and k is the momentum
of the neutron in the c.m. frame. Plugging in Eq. (42) the spin rotation per unit length in the partial wave basis is

dφ

dz
= MN N

3k
Im

[√
2M

1
2

0 1
2 ,1 3

2

−
√

2M
1
2

1 3
2 ,0 1

2

+ 2M
3
2

0 3
2 ,1 1

2

− 2M
3
2

1 1
2 ,0 3

2

]
. (52)

VI. RESULTS

The spin correlation coefficient Axy for Nd scattering in the large-NC basis of LECs is

Axy = τ3ḡ(NC )
1 A(1)

xy + ḡ(N0
C )

2 A(2)
xy + ḡ(N0

C )
3 A(3)

xy + τ3ḡ
(N−1

C )
5 A(5)

xy . (53)

For pd (nd) scattering τ3 = 1 (τ3 = −1). The values of A(i)
xy

for each LEC at various nucleon laboratory energies are given
in Table I. To factor out the large-NC dependence of each
LEC we divide A(i)

xy by the appropriate large-NC scaling and
normalize by the largest value of |A(i)

xy | scaled by large-NC

to compare the respective contributions to Axy on an equal
footing.2 This procedure gives the results in Table II. It is

2After rescaling by factors of NC, A(1)
xy gives the largest contribution

for the nucleon laboratory energies considered.

apparent that the contribution from the LO(O(NC )) in large-

NC LEC ḡ(NC )
1 dominates Axy. The NLO(O(N0

C )) g(N0
C )

2 also
gives a significant contribution, about half as much as ḡ(NC )

1
at lower energies and at higher energies is comparable to the
contribution from ḡ(NC )

1 . Meanwhile the NNLO(O(N−1
C )) in

large-NC LEC ḡ
(N−1

C )
5 and the NLO(O(N−1

C )) in large-NC LEC

ḡ(N0
C )

3 each contribute ≈20% of the leading contribution from
ḡ(NC )

1 at higher energies. Thus, using large-NC counting we
find that Axy to LO in EFT(�π ) is predominantly determined

by g(NC )
1 and g(N0

C )
2 .
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TABLE I. Coefficients A(i)
xy in front of each LEC for spin cor-

relation coefficient [see Eq. (53)] for various nucleon laboratory
energies.

Elab [MeV] 0.225 1 2 3 5

A(1)
xy [MeV] 39.7 64.5 71.0 72.5 79.6

A(2)
xy [MeV] 64.7 118 152 179 238

A(3)
xy [MeV] −10.2 −22.4 −36.6 −50.5 −75.9

A(5)
xy [MeV] 53.4 94.4 120 140 181

The spin rotation of the neutron through a polarized
deuteron target in EFT(/π ) is given by

1

N

dφ

dz
=
(

− 2.22
rad

MeV

)[
0.407ḡ(NC )

1 − 0.804ḡ(N0
C )

2

+ 0.445ḡ(N0
C )

3 + ḡ
(N−1

C )
5

]
. (54)

To obtain this we calculated the spin rotation observable for
small c.m. momentum approaching zero momentum until it
was found to converge. This value comes from a c.m. mo-
mentum of kcm = 0.1 keV. Normalizing the spin rotation such
that all LECs have the same large-NC scaling gives

1

N

dφ

dz
=
(

− 0.904
rad

MeV

)[
ḡ(NC )

1 − 0.659
(
NCḡ(N0

C )
2

)
+ 0.364

(
NCḡ(N0

C )
3

) + 0.273
(
N2

Cḡ
(N−1

C )
5

)]
, (55)

where NC = 3 is used. It is apparent that the LO(O(NC )) in
large-NC LEC ḡ(NC )

1 gives the largest contribution to the spin

rotation, while the NLO(O(N0
C )) in large-NC LEC ḡ(N0

C )
2 gives a

smaller but significant contribution of ≈70% the leading con-

tribution. The NNLO(O(N−1
C )) in large-NC LEC ḡ

(N−1
C )

5 and the

NLO(O(N0
C )) in large-NC LEC ḡ(N0

C )
3 each contribute ≈30% of

the leading contribution. Note, the spin rotation is sensitive to
the same LECs as the spin correlation coefficient. None of the

observables depend on the LEC ḡ(N0
C )

4 since it corresponds to
a �I = 2 operator which cannot connect an isospin- 1

2 state to
itself without isospin violation, which occurs beyond LO in
EFT(�π ) and its contribution is thus suppressed.

VII. CONCLUSION

At low energies�T�P interactions can be described in terms
of NN contact interactions by five LECs. Building on the

TABLE II. Coefficients A(i)
xy for various nucleon laboratory ener-

gies normalized by factors of NC (NC = 3) and by |A(1)
xy |.

Elab [MeV] 0.225 1 2 3 5

A(1)
xy /|A(1)

xy | 1.00 1.00 1.00 1.00 1.00

A(2)
xy /(NC |A(1)

xy |) 0.543 0.611 0.712 0.823 0.996

A(3)
xy /(NC |A(1)

xy |) -0.0860 −0.116 −0.172 −0.232 −0.318

A(5)
xy /(N2

C |A(1)
xy |) 0.149 0.163 0.187 0.214 0.252

large-NC analyses of Refs. [19,20], we showed that a linear
combination of the isovector LECs is O(NC ), the two isoscalar
LECs and one isotensor LEC are O(N0

C ), and a linear com-
bination of the isovector LECs is O(N−1

C ). Isoscalar LECs
receive contributions from both the θ̄ term of QCD and d =
6 ��CP SM EFT operators, while the isovector and isotensor
terms only receive contributions from d = 6 ��CP SM EFT
operators [14]. Thus the pattern predicted by large-NC consid-
erations could be broken if the contributions from the θ̄ term
and d = 6 ��CP SM EFT operators are sufficiently disparate.
This also means that measuring each invidual LEC can help
to disentangle contributions from the θ̄ term and d = 6 ��CP
SM EFT operators to CP violating nuclear observables.

We did not consider �T P-conserving interactions in this
work as they contain an extra power of momentum and are
thus even more suppressed as compared to�T�P interactions at
low energies. However, plans are underway for an experiment
using pd scattering at the cooler synchrotron COSY facility,
with both polarized beam and target, to investigate�T P inter-
actions [61–63]. Results from this experiment would warrant
future investigations of�T P interactions in EFT(�π ).

�T�P NN interactions in the Nd system at low energies are
sufficiently described by three-nucleon S- to P-wave tran-
sition amplitudes. Calculating all such transition amplitudes
we investigated the �T�P observables of neutron spin rotation
through a polarized deuteron target and a spin correlation
coefficient in Nd scattering. Both observables are related to
the correlation �σN · (�k × �εd ). At LO in EFT(�π ) these observ-

ables depend on four of the five LECs since ḡ(N0
C )

4 requires
isospin violation, which occurs at higher orders in EFT(�π ).
Putting these observables in the large-NC basis we find that
both the spin-rotation and spin correlation coefficient are pre-
dominantly determined by the LO(O(NC )) in large-NC LEC

ḡ(NC )
1 and NLO(O(N0

C )) in large-NC LEC ḡ(N0
C )

2 with the spin
rotation being more sensitive to ḡ(NC )

1 . At the neutron labora-
tory energies considered in this work contributions from P-
to D-wave transition amplitudes should not be significant as
was found in the PV case [40]. In addition our calculations
did not consider Coulomb interactions. However, at higher
energies Coulomb interactions give perturbative corrections
of the size αMN/p. At nucleon laboratory energies of Elab = 1
MeV Coulomb corrections give a ≈24% correction, while
at Elab = 5 MeV they give a ≈11% correction. The latter
correction is roughly on par with the size of NLO correc-
tions in EFT(�π ). A NLO calculation of these �T�P violating
observables will likely require the inclusion of a�T�P violating
three-body force. As shown by Vanasse [40] in contradiction
to the work of Grießhammer and Schindler [64] a NLO PV
three-body force is required by RG arguments. The similarity
of the PV NN interactions to the�T�P NN interactions suggests
that the necessity for a NLO PV three-body force implies the
need for a NLO�T�P three-body force.

EFT(�π ) has also been used to investigate the deuteron,
triton, and 3He EDMs, associated radii, and form factors [36].
These calculations required the nucleon EDMs which cannot
be directly calculated in EFT(�π ), but must be included as
input either from experiment or χEFT [14]. Matching EFT(�π )
to χEFT, predictions for light nuclei can be made using the
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simpler formalism of EFT(�π ) in terms of χEFT parameters.
This also avoids the complication of RG noninvariance in
χEFT [65], which does not exist in EFT(�π ). Few nucleon
EDMs and the observables of this work offer a suite of
possible nuclear observables to measure the five LECs that
describe low energy��CP nuclear interactions and can be used
to understand contributions from BSM physics.
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