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We perform an extensive study of the correlations between the neutrino-nucleon inverse mean free paths
(IMFPs) and the underlying equation of states (EoSs). Strong interaction uncertainties in the neutrino mean free
path are investigated in different density regimes. The nucleon effective mass, the nucleon chemical potentials,
and the residual interactions in the medium play an important role in determining neutrino-nucleon interactions
in a density-dependent manner. We study how the above quantities are constrained by an EoS consistent with
(i) nuclear mass measurements, (ii) proton-proton scattering phase shifts, and (iii) neutron star observations. We
then study the uncertainties of both the charged current and the neutral current neutrino-nucleon inverse mean
free paths due to the variation of these quantities, using the Hartree-Fock+random phase approximation method.
Finally, we calculate the Pearson correlation coefficients between (i) the EoS-based quantities and the EoS-based
quantities; (ii) the EoS-based quantities and the IMFPs; (iii) the IMFPs and the IMFPs. We find a strong impact
of residual interactions on neutrino opacity in the spin and spin-isospin channels, which are not well constrained
by current nuclear modelings.
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I. INTRODUCTION

More than 98% of the gravitational binding energy of pro-
toneutron stars (PNSs) is emitted in the form of neutrinos and
antineutrinos issued from electron captures and proton decays
during the explosion of core-collapse supernovae (CCSNe).
The neutrino opacity of hot and dense matter plays an im-
portant role in the CCSNe explosion mechanism, particularly
because the kinetic energy of the explosion is small compared
with the total energy released [1–3]. It also heavily influ-
ences the nucleosynthesis process in the neutrino driven wind
(NDW) [4–6].

The neutrino reactions in CCSNe matter can be mainly
classified into two types: (1) the neutral current (NC) neu-
trino interactions and (2) the charged current (CC) neutrino
interactions. NC interactions are flavor-blind. Consequently,
the NC neutrino opacities are similar for different flavors of
neutrinos. On the other hand, the major source of CC neutrino
opacities in CCSNe matter is the νe/ν̄e absorption/emission
reactions. The CC reactions involving νμ, ντ , ν̄μ, and ν̄τ are
suppressed by the mass of the heavy leptons μ and τ . The
NC neutrino scattering reactions may have an influence on the
neutrino cooling rate, the protoneutron star contraction speed
in CCSNe, and the neutrino reheating in the external layers of
CCSNe [7]. The CC neutrino absorption/emission reactions
determine the νe/ν̄e spectrum and thus the electron fraction in
NDW [4–6,8].

Neutrino interaction rates in CCSNe matter are sensitive to
the many-body correlations in dense and hot matter as well
as in finite nuclei, which still exist in the external layers of
the CCSNe close to the neutrino sphere [9]. Close to the
neutrino sphere, the neutrino mean free path is comparable
to the size of protoneutron star and the neutrino transport
properties outside of this region can be well described by
free streaming. Pioneering works on neutrino opacities in
dense and hot matter use Hartree-Fock (HF) or HF+random
phase approximations (HF+RPA) to estimate the many-body
corrections on neutrino-nucleon interactions, in both the non-
relativistic limit, see Refs. [10–15], and the relativistic limit,
see Refs. [6,11,12].

In the long-wavelength limit [16], the many-body cor-
rections on NC neutrino-nucleon interactions are solely
determined by its equation of state (EoS). Recent progress
on the description of NC neutrino-nucleon scattering rates
include works using a virial eEoS to calculate the inverse
mean free path (IMPF) near the CCSNe neutrino sphere
model-independently [16,17]. As density increases, the virial
expansion method gradually loses its predictive power be-
cause of our lack of understanding of the higher order virial
coefficients. Early efforts in calculating NC neutrino-nucleon
interactions in the high-density regime include works using
HF or HF+RPA approximations [11,12,14–17]. Additionally,
recent works based on lattice effective field theory (EFT)
provide an ab-initio calculation of the static structure factor
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of neutron matter over a wide range of densities at finite
temperatures [18,19]. The results from lattice EFT calcula-
tions agree with the those based on the virial method in
the low density regime and may give insight into the many-
body corrections to NC neutrino interactions in high density
regime.

In CC neutrino-nucleon reactions, the transferred neutrino
energy and momentum can be much larger than those in
the NC reactions, since they are governed by the in-medium
single-particle energy difference between the neutrons and
the protons. This difference is determined by the symme-
try energy, which is expected to be larger than 30 MeV in
dense matter above saturation density [20]. Consequently,
both the static and the dynamic responses of the many-nucleon
system are important for understanding the many-body cor-
rections to CC neutrino interactions. To our knowledge, no
model-independent description of CC reactions have been
performed in the context of CCSNe. Early efforts calculating
CC reactions include [9,11,12,21], where HF or HF+RPA
approximations were applied.

As discussed in the pioneering works, see Refs. [10,12,13],
on neutrino-dense matter interactions based on HF+RPA
calculations, the main source of neutrino reaction rates uncer-
tainties is the poorly constrained density-dependent nuclear
interactions. Indeed, the density dependency of nuclear resid-
ual interactions were ignored in some early endeavors using
HF+RPA to calculate neutrino-nucleon interaction rates, and
the uncertainties of neutrino-nucleon interactions due to the
uncertainties of nuclear interactions have not been systemati-
cally studied.

In this work, we apply HF+RPA to calculate the dynamic
and the static responses of nucleons to neutrinos in CC and
NC reactions. We improve the description of the density-
dependent residual interactions by deriving them from the
virial model at low densities and from the Skyrme models
at higher densities, where they are expected to be con-
strained by astrophysical observations, nuclear experiments,
and guided from fundamental theory. Note that we limit the
densities explored in this study, and consider the high-density
limit to be 0.2 fm−3. In our approach, the uncertainties of
the EoS-based quantities at high densities are captured by
the Skyrme models and propagate into the calculation of
neutrino-nucleon reaction rates. In this work, we quantita-
tively study the uncertainties of neutrino opacities due to
EoSs uncertainties at different densities, in the framework of
the HF+RPA approach. As pointed out by several CCSNe
numerical simulations, neutrino opacities in different density
regimes are sensitive to different CCSNe physics. By studying
the density-dependent correlations between neutrino opacities
and the underlying EoSs, the critical EoS-based quantities de-
termining the neutrino opacities may be unveiled at different
densities.

In Sec. II, we introduced the formalism for both CC and
NC neutrino-nucleon reaction rates. In Sec. III, we present the
IMFPs, the dynamic responses of both CC and NC reactions.
We also present the Pearson correlations between (1) two
different EoS-based quantities; (2) EoS-based quantities and
IMFPs; and (3) two IMFPs taken at different densities. Finally,
we conclude this analysis in Sec. IV.

II. FORMALISM AT FINITE TEMPERATURE

The differential cross section of neutrino-nucleon reactions
l1 + N2 → l3 + N4 is given by

1

V

d2σ

dE3dμ13

= G2
F

4π2
P3E3FPauli[V2(1+μ13)SV +A2(3 − μ13)SA)], (1)

where l1/3 are the incoming/outgoing leptons, and N2/4 are
the initial/final state nucleons. The vector and axial couplings
V and A, in the NC reactions, stand for CV /2 = −0.50 and
CA/2 = −0.615, respectively. In the CC reactions, they stand
for gV = 1 and gA = 1.23, respectively. The Pauli blocking
factor is FPauli = [1 − f (E3)] in CC reactions, where f (E3)
is the Fermi distribution of final state leptons. In NC reac-
tions, we take FPauli = 1. In mean field approximations, the
response function SV and SA associated with the Fermi and
Gamow-Teller operators are indistinguishable and we have
SA = SV = S0. We first discuss the response functions S0 for
neutrino-nucleon neutral current (NC) and charged current
(CC) reactions.

A. Mean field approximation for the response functions

We start from the Hartree-Fock residual propagator Gττ ′
0 at

finite temperature defined as [22]

Gττ ′
0 (�k, q0, �q) = f τ (�k) − f τ ′

(�k + �q)

q0 + ετ (�k) − ετ ′ (�k + �q) + iη
, (2)

where the neutrons and protons Fermi-Dirac distributions are

f τ (�k) = {1 + exp[(ετ (�k) − μτ )/T ]}−1 (3)

with τ and τ ′ both refer to either neutrons or protons. The
quantities ετ are the mean-field single particle energies, see
Eq. (6), and μτ are the chemical potentials. Given the prop-
agator, the imaginary part of the polarization function �0, in
the mean field approximation [11,22] is

Im �0 = 2

(2π )3

∫
d3k G0(�k)

= {1 − exp[(−q0 − μτ + μτ ′
)/T ]}

4π2

×
∫

d3k δ(ετ − ετ ′ − q0) f τ (�k)[1 − f τ ′
(�k + �q)].

(4)

The detailed balance theorem and 1/(w + iη) = P (1/w) −
iπδ(w) is used to derive the second line of Eq. (4). In the
linear response theory, the dynamic structure factor S0(q0, q)
at finite temperature is defined as [5,13,22]

S0(q0, q) = 2 Im�0

1 − exp[(−q0 − μτ + μτ ′ )/T ]

= 1

2π2

∫
d3k δ(ετ − ετ ′ − q0) f τ (�k)

× [1 − f τ ′
(�k + �q)]. (5)

015804-2



UNCERTAINTY QUANTIFICATION FOR NEUTRINO … PHYSICAL REVIEW C 107, 015804 (2023)

In nonrelativistic limit of the mean field approximation, the
nucleon energy spectrum ετ is given as the sum of an
effective-kinetic and mean-field terms

ετ (�k) = k2

2m∗
τ

+ Uτ , (6)

where m∗
τ is the Landau effective mass of nucleon with isospin

τ , and Uτ is the nucleon potential. Note that the energy δ

function in S(q0, q) can be written in terms of the angle θ

between �q and �k:

δ(q0 + ετ − ετ ′ ) = M∗
τ ′

kq
δ(cos θ − cos θ0)

×�
(
ετ

K − e−
)
�

(
e+ − ετ

K

)
, (7)

where

cos θ0 = M∗
τ ′

kq

(
c − χk2

2M∗
τ ′

)
, ετ

K = k2

2m∗
τ

, (8)

and

e± = 2q2

2χ2M∗
τ

⎡
⎣(

1 + χM∗
τ ′c

q2

)
±

√
1 + 2χM∗

τ ′c

q2

⎤
⎦ (9)

with χ = 1 − M∗
τ ′/M∗

τ and c = q0 + Uτ − Uτ ′ − q2/(2M∗
τ ′ ).

For charged current (CC) reactions, τ �= τ ′ and we focus
in this work on νe + n → p + e− with τ = n and τ ′ = p.
By using the δ function (7), the S(q0, q) in the CC channel
becomes

SCC (q0, q) = M∗
τ M∗

τ ′T

πq

ξ− − ξ+
1 − exp[−(q0 − μτ + μτ ′ )/T ]

,

(10)
where

ξ± = ln

{
1 + exp[(e± − μτ + Uτ )/T ]

1 + exp[(e± + q0 − μτ ′ + Uτ )/T ]

}
. (11)

For neutral current (NC) reactions τ = τ ′, the NC S(q0, q)
reduces to

SNC (q0, q) = M∗2
τ T

πq

[
q0/T

1 − exp(−q0/T )

(
1 + T ξ−

q0

)]
. (12)

Note that in NC reactions χ → 0. By performing a Taylor
expansion of the second term in Eq. (9), e− reduces to [11]

e− = M∗
τ

2q2

(
q0 − q2

2M∗
τ

)2

. (13)

B. HF+RPA response functions at finite temperature

To go beyond the Hartree-Fock approximation by includ-
ing the long-range correlations, we calculate the HF+RPA
residual propagator and solve the Bethe-Salpeter integral
equation [22–26]

Gα
RPA(�k, q0, �q) = G0(�k, q0, �q) + G0(�k, q0, �q)

∑
α′

∫
d3k′

(2π )3

× V α,α′
ph (�k, �k′, q)Gα′

RPA(k′, q0, q). (14)

In this equation, α and α′ are quantum numbers of residual
pairs, e.g., in spin-isospin channels α = (S, T ), �k and �k′ are
hole momenta, and V α,α′

ph (�k, �k′, q) is the residual interaction
matrix element which describes the RPA collective excitations
of the system built on a mean field (Hartree-Fock) ground
state.

Neglecting the possible mixing between spin/isospin chan-
nels, V α,α′

ph = δ(α, α′)V α
ph, and we get the RPA polarization

function as

�α
RPA = �0

1 − V α
ph�0

. (15)

In the next step, we discuss the residual interactions
relevant more specifically to NC and CC neutrino-nucleon
reactions.

In the monopolar Landau approximation, where only the
low-energy � = 0 interaction is considered and the momenta
are taken at the Fermi surface, V α

ph(�k, �k′, q) = W α
1 + W α

1R +
W α

2 (�k2
F + �k′2

F ), where W α
1(2) and W α

1R are the strength functions

of the residual interactions. Note that W α,α′
1R is the contribution

from the rearrangement term, i.e., the term which derives from
the density dependence of the effective nuclear interaction.
For Skyrme force, since the density dependent term implies
only the isoscalar density ρ, the rearrangement term does not
contribute to the spin-density channel. The W α

1 , W α
1R, and W α

2
are strength functions, see Appendix B, which can be written
in terms of the Skyrme parameters as well as of the isoscalar
density ρ [24]. The density and spin-density dependent resid-
ual interactions in (pp−1, pp−1), (nn−1, nn−1), (pp−1, nn−1),
and (nn−1, pp−1) transitions are then given by

f ττ
0 = 1

2

(
W ττ,0

1 + W ττ,0
1R

) + W ττ,0
2 kF (τ )2, (16)

f τ−τ
0 = 1

2

(
W τ−τ,0

1 + W τ−τ,0
1R

) + 1
2W τ−τ,0

2

[
k2

F (τ ) + k2
F (−τ )

]
,

(17)

gττ
0 = 1

2W ττ,1
1 + W ττ,1

2 kF (τ )2, (18)

gτ−τ
0 = 1

2W τ−τ,1
1 + 1

2W τ−τ,1
2

[
k2

F (τ ) + k2
F (−τ )

]
. (19)

The strength functions W α
i (i = 1, 1R, 2) in symmetric

nuclear matter (SNM) can be obtained from the general ex-
pression in (τ, τ ′) channel W ττ ′,S

i as [21]

W 0,S
i = W ττ,S

i + W τ−τ,S
i , (20)

W 1,S
i = W ττ,S

i − W τ−τ,S
i , (21)

from which the Landau parameters in SNM are obtained:

f0 = 1
2

(
f ττ
0 + f τ−τ

0

)
, f ′

0 = 1
2

(
f ττ
0 − f τ−τ

0

)
, (22)

g0 = 1
2

(
gττ

0 + gτ−τ
0

)
, g′

0 = 1
2

(
gττ

0 − gτ−τ
0

)
. (23)

We now focus on the NC processes, e.g., ν + n → ν + n,
where the residual interaction Vph can be expressed in terms of
the Landau parameters (16)–(19). The polarization functions
for Fermi (vector) and Gamow-Teller (axial) operators are

�NC
V = �NC

0

1 − f nn
0 �NC

0

(24)
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and

�NC
A = �NC

0

1 − gnn
0 �NC

0

. (25)

In the (n.p.e) β equilibrium condition, residual interactions
corresponding to (nn−1, pp−1) are also involved for the NC
RPA calculation. The vector and the axial vector residual
interactions in matrix form are written as

V V
ph =

[
fnn fnp

fpn fpp

]
, V A

ph =
[

gnn gnp

gpn gpp

]
. (26)

Furthermore, the Hartree-Fork polarization function may
be written as a 2 × 2 diagonal matrix. We then get [12][

�nn
V(A) �

np
V(A)

�
pn
V(A) �

pp
V(A)

]

=
[
�n

0 0

0 �
p
0

]
+

[
�nn

V(A) �
np
V(A)

�
pn
V(A) �

pp
V(A)

]
V V (A)

ph

[
�n

0 0

0 �
p
0

]
.

(27)

A compact form of RPA polarization functions including cou-
pling constants is

CT �NC
V(A)C = c2

n,V (A)�
nn,V (A)
V(A) + c2

p,V (A)�
pp,V (A)
V(A)

+ 2cn,V (A)cp,V (A)�
np,V (A)
V(A) , (28)

where

C =
[

cn,V (A)

cp,V (A)

]
(29)

are the coupling constants. When calculating NC vector cur-
rent neutrino-proton interactions, we drop the second and the
third terms in the right-hande side of Eq. (28), which are
proportional to the vector current neutrino-proton coupling
constant cp,V ≈ 0. The RPA polarization function in NC vec-
tor current channel is

�NC
V =

(
1 − fpp�

p
0

)
�n

0

�V
. (30)

For the neutral current vector polarization functions, we have

�V = 1 − fnn�
n
0 − fpp�

p
0 + fpp�

p
0 fnn�

n
0 − f 2

np�
p
0�

n
0.

(31)
Note that the effect of Coulomb force in the NC vector polar-
ization functions has been considered, by replacing fpp with
fpp + 4πe2(q2 + q2

T F )−1, where qT F = 4e2π1/3(3np)2/3.
The axial vector polarization function is given by

�NC
A =

(
1 − gnn�

n
0

)
�

p
0 + (

1 − gpp�
p
0

)
�n

0 − 2gnp�
n
0�

p
0

�A
,

(32)
where

�A = 1 − gnn�
n
0 − gpp�

p
0 + gpp�

p
0gnn�

n
0 − g2

np�
p
0�

n
0.

(33)
The NC polarization functions have the form similar to those
derived in Ref. [12]. Additionally, note that in SNM, we have
fnn = fpp = f0 + f ′

0 and gnn = gpp = g0 + g′
0. By replacing

fnn and fpp with f0 + f ′
0, Eq. (30) reproduces the vector RPA

polarization function in [13]. And by assuming gnn = gpp =
−gnp, Eq. (32) reproduces the axial RPA polarization function
in Ref. [13].

For CC, the residual interactions for charge exchange (CE)
process are given by [21]

V CE ;S
ph =

∑
S

W CE ;S
i PS, (34)

and we get the residual interactions in vector and axial vector
channel

Vf = 1
2W CE ;0

1 + W CE ;0
2 k2

F , (35)

Vgt = 1
2W CE ;1

1 + W CE ;1
2 k2

F (36)

corresponding to (pn−1, pn−1) transitions, where kF is the
Fermi momentum of holes states. The functions W CE ;S for
S = 0 and 1 are given in terms of the Skyrme parameters

W CE ;0
1 (q = 0) = −t0(1 + 2x0) − 1

6 t3ρ
γ (1 + 2x3), (37)

W CE ;0
2 (q = 0) = − 1

4 [t1(1 + 2x1) − t2(1 + 2x2)], (38)

W CE ;1
1 (q = 0) = −t0 − 1

6 t3ρ
γ , (39)

W CE ;1
2 (q = 0) = − 1

4 (t1 − t2). (40)

In SNM, f CE
0 = 2 f ′

0 and gCE
0 = 2g′

0, which is consistent
with the CC residual interactions used in [12]. The relation-
ship between CC and NC residual interactions is discussed
in more details in Appendix A. The Landau parameters in
Eqs. (35) and (36) are relevant to Vph in the CC process. In-
deed, in νe + n → e− + p, the polarization function for Fermi
and Gammow-Teller operators are

�CC
V = �CC

0

1 − Vf�
CC
0

(41)

and

�CC
A = �CC

0

1 − Vgt�
CC
0

. (42)

In the low density region where the nucleon gas is hot
and dilute, we use the virial EoS [16] to deduce the residual
interactions. In the virial EoS, we have nucleon densities and
pressures written in terms of spin and isospin dependent fu-
gacities zi = eμi/T , where zi could be zn↑, zn↓, zp↑, or zp↓. The
thermal wavelength λ = (2π/(mT ))1/2, the spin-like virial
coefficients are b1, and the spin-opposite virial coefficients are
b0. The pressure in virial expansion reads

P = T

λ3
(zn↑ + zn↓ + zp↑ + zp↓

+ bn,1
(
z2

n↑ + z2
n↓ + z2

p↑ + z2
p↓

) + 2bn,0(zn↑zn↓ + zp↑zp↓)

+ 2bpn,1(zn↑zp↑ + zn↓zp↓) + 2bpn,0(zn↑zp↓ + zn↓zp↑)).
(43)

Given the pressure, the nucleon density of specified spin and
isospin can be derived using

ni = 1

T

∂P

∂zi
zi. (44)
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We further write down the free energy in terms of the virial
coefficients bi and the fugacities zi:

f = nnμn + npμp − P

= T

2
(nn↑ ln zn↑ + nn↓ ln zn↓ + nn↑ ln zn↓ + nn↓ ln zn↑

+ np↑ ln zp↑ + np↓ ln zp↓ + np↑ ln zp↓ + np↓ ln zp↑) − P,

(45)

where the second line was derived by using the fact that
nn(p) = nn↑(p↑) + nn↑(p↑) and zn(p) = √

zn↑(p↑)zn↓(p↓). Note
that the free energy in the noninteracting nucleon gas f 0 in
virial expansion can be easily calculated by replacing the
virial coefficients: bn,1 → bfree

n,1 = −1/4
√

2, bn,0 → bfree
n,0 = 0,

bpn,1 → bfree
pn,1 = 0, and bpn,0 → bfree

pn,0 = 0. Finally, we have
the nucleon potential energy Ui in virial expansion,

Ui = ∂ ( f − f 0)

∂ni
, (46)

which is defined similarly as in Ref. [9]. Given the poten-
tial density E = f − f0 and the single nucleon potential Ui,
in principle we can derive the spin and isospin dependent
residual interactions by finding the double density functional
derivative of potential energy density E :

vph(i, j) = δ2E

δniδn j
= δUi

δn j
, (47)

where the index i indicate the spin and isospin of the nucleon
states. In SNM, the monopolar Landau parameters are defined
as [15]

f0 = ∂2E

∂n∂n
, (48)

f ′
0 = ∂2E

∂n3,0∂n3,0
, (49)

g0 = ∂2E

∂n0,3∂n0,3
, (50)

and

g′
0 = ∂2E

∂n3,3∂n3,3
, (51)

where n3,0 = np − nn, n0,3 = np↑ − np↓ + nn↑ − nn↓, and
n3,3 = np↑ − np↓ − nn↑ + nn↓. Following Ref. [9], we invert
Eq. (44) to second order in densities. In this way, the free
energy is a function of densities up to the second order:

f = −T (nn↑ + nn↓ + np↑ + np↓) − 2bpn,0T λ3(np↑nn↓

+ np↓nn↑) − 2bpn,1T λ3(np↑nn↑ + np↓nn↓) − 2bn,0T λ3

× (nn↑nn↓ + np↑np↓) − bn,1T λ3
(
n2

n↑ + n2
p↑ + n2

n↓ + n2
p↓

)
+ T

2
(nn↑ ln[λ3nn↑] + nn↓ ln[λ3nn↓] + nn↑ ln[λ3nn↓]

+ nn↓ ln[λ3nn↑] + np↑ ln[λ3np↑] + np↓ ln[λ3np↓]

+ np↑ ln[λ3np↓] + np↓ ln[λ3np↑]). (52)

Note that the nucleon potential Ui in Eq. (46) reproduces the
nucleon potentials in spin-symmetric matter in [9]. Since the
virial EoS include virial coefficients up to the second order,
f is a function of ni up to O(n2). Consequently, the residual
interactions based on low-density virial expansion are density
and isospin-density independent. They are given by

f0,virial = −λ3T

2

(
bn,0 − bfree

n,0 + bn,1 − bfree
n,1 + bpn,0

− bfree
pn,0 + bpn,1 − bfree

pn,1

)
, (53)

f ′
0,virial = −λ3T

2

(
bn,0 − bfree

n,0 + bn,1 − bfree
n,1 − bpn,0

+ bfree
pn,0 − bpn,1 + bfree

pn,1

)
, (54)

g0,virial = λ3T

2

(
bn,0 − bfree

n,0 − bn,1 + bfree
n,1 + bpn,0

− bfree
pn,0 − bpn,1 + bfree

pn,1

)
, (55)

g′
0,virial = λ3T

2

(
bn,0 − bfree

n,0 − bn,1 + bfree
n,1 − bpn,0

+ bfree
pn,0 + bpn,1 − bfree

pn,1

)
. (56)

Here, the b0,1 are virial coefficients for spin-opposite and spin-
like particles, bfree are virial coefficients for the noninteracting
nucleon gas, and the length parameter λ = (2π/(MT ))1/2.
The residual interactions based on virial coefficients at T =
10 MeV are

f0,virial = −2.03 × 10−4 MeV−2, (57)

f ′
0,virial = 1.19 × 10−4 MeV−2, (58)

g0,virial = 2.88 × 10−6 MeV−2, (59)

g′
0,virial = 7.31 × 10−5 MeV−2. (60)

Correspondingly, the virial coefficients at T = 10 MeV are
bn,0 = 0.463, bn,1 = −0.152, bpn,0 = 0.725, bpn,1 = 1.130,
bfree

n,0 = 0, bfree
n,1 = −1/(4

√
2), bfree

pn,0 = bfree
pn,1 = 0. Because the

residual interactions are density and isospin-density indepen-
dent in low density regimes where the viral approximation
applies, Eqs. (22) and (23) are inverted to find fnn, fnp, gnn,
and gnp in NC vector and axial vector RPA polarization func-
tions in asymmetric matter here.

Furthermore,

Vf,virial = 2 f ′
0,virial (61)

and

Vgt,virial = 2g′
0,virial (62)

are residual interactions in CC vector and axial vector RPA
polarization functions in low density region where virial EoS
is valid. Similarly, these residual interactions follow the form
of Vf and Vgt in SNM, since the residual interactions are
approximately density and isospin-density independent in low
density regimes where the viral approximation applies.

Finally, following Ref. [27], a thermodynamically consis-
tent approach is employed to connect the residual interactions
calculated by the virial approach with the ones calculated
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using Skyrme models. We discuss this method in more details
in Appendix A.

C. EoS and its constraints

Concerning the EoS, we use a similar approach to that used
in Refs. [27,28]. In particular, the benefit of this EoS is that
it reproduces exactly the virial approximation in the nonde-
generate limit, and in the high-density limit, it reproduces the
Skyrme interaction. The low-density behavior is important for
the neutrinosphere in core-collapse supernovae [9] where the
Skyrme interaction fails to accurately describe the EoS. Our
free energy is defined as

f (nB, xp, T )

= fvirial(nB, xp, T )η + fSk(nB, xp, T )(1 − η), (63)

where the function η(zn, zp) is given by

η(zn, zp) = 1/
(
1 + 10

(
z2

n + z2
p

))
, (64)

and zn and zp are the neutron and proton fugacities in the
virial expansion. Note that, in Ref. [27], slightly different
coefficients were used in the denominator of η but these have
been modified to ensure the entropy is positive everywhere.
The Skyrme free energy, fSk, is taken from the UNEDF poste-
rior distribution from Refs. [29,30]. The posterior distribution
from Ref. [30] takes the form of a table of 1000 Skyrme mod-
els, each selected from a likelihood function based on nuclear
masses, charge radii, fission barriers, and other nuclear data.
In Ref. [27] and in this work, we randomly select from that ta-
ble of 1000 Skyrme models in order to obtain our results. The
Skyrme parameters which we select are thus not uncorrelated,
they retain the correlations which were obtained in Ref. [30]
as a result of the matching to the experimental data. These
correlations are discussed below and displayed in Fig. 8. In
some cases, we replace this Skyrme model with an alternate
parametrization to test the variation beyond that obtained in
this posterior. We use NRAPR [31] because it has been shown
to be a good model for high-density matter [32] and is often
used in EoS for core-collapse supernovae [33]. We use SGII
because it was explicitly constructed to fix the spin instability
encountered in Skyrme models [34]. We also use the UNEDF0
[35] and UNEDF2 [29] EoS to compare with the original
posterior distribution used in Refs. [27,28]. As in Ref. [27],
we also randomly select Skyrme models from the posterior
distribution generated in Ref. [30]. All of these models give
a reasonable description of the binding energies, charge radii,
and other experimental nuclear properties. The symmetry en-
ergy S and its derivative L are not taken from the posterior but
used as additional parameters. Results obtained from EoS se-
lected in this way are referred to as “MC” hereafter. In order to
focus on the uncertainty of the neutrino opacities, we approx-
imate the electron fraction in β equilibrium to be the same for
all models, Ye ≈ 0.05 + 0.28 exp[−126 − 31.49 log10(nB)].

Given an EoS, the residual interactions, the nucleon
chemical potentials, and the nucleon effective mass were
derived and then were applied in the neutrino opacity calcu-
lations. Note that, the effective mass is defined differently in
relativistic (the “Dirac mass”) and in nonrelativistic models

(the “Landau mass”). Consequently, one cannot directly use
the nonrelativistic type effective mass derived from Skyrme
EoSs in relativistic neutrino opacity calculations.

In the present study, the uncertainties in the neutrino opac-
ities are directly resulting from the uncertainties in the EoS.
The aforementioned Skyrme-type EoSs are different from
each other mainly because they are constrained by differ-
ent experimental measurements/astronomical observations. In
this way, we evaluate the impact on the neutrino opacities
due to changing the Skyrme interaction, e.g., NRAPR, SGII,
UNEDF0, UNEDF2, and SVmin. Similarly, the impact of
the MC EoSs on the neutrino opacities are also evaluated.
Since the MC EoSs are constrained differently from the other
Skyrme interactions previously mentioned, one could estimate
the contribution of the nuclear and astrophysical uncertainties
on the prediction of the neutrino opacities. This will be done
in the discussion of our results in the following.

D. Correlations and uncertainties

In the following we discuss uncertainties of the neutrino
IMFPs, in the framework of HF+RPA. As shown in Eqs. (42),
(41), (25), and (24), the input for the calculation of IMFPs
based on HF+RPA are EoS-based quantities such as M∗

τ , M∗
τ ′ ,

μτ , μτ ′ , and Vph. We first investigate the Pearson correlations
between (1) two different EoS-based quantities; (2) EoS-
based quantities and IMFPs; and (3) two IMFPs at different
densities. The Pearson coefficient is given by

ρ(A, B) =
∑N

M=1(AM − Ā)(BM − B̄)√∑N
M=1(AM − Ā)2

√∑N
M=1(BM − B̄)2

, (65)

where A and B are (1) EoS-based quantities and EoS-based
quantities; (2) EoS-based quantities and IMFPs; and (3)
IMFPs and IMFPs of a specific model M. In this work the
EoS-based quantities are from N hybrid EoSs, which were
introduced with more details in Ref. [28]. Given EoS-based
quantities from N models we define the covariance matrix Ci j

[36],

Ci j = 1

N

N∑
M=1

xi,Mxj,M , (66)

where xi,M = (Pi,M − P̄i )/P̄i and Pi,M is the ith EoS-based
quantity (e.g., nucleon effective mass, residual interaction,
etc.) predicted in EoS model M. The variance of IMFP is

σ 2
A =

F∑
i, j=1

∂A

∂xi
Ci j

∂A

∂x j
, (67)

where A is the IMFP.
From Eqs. (66) and (67), it is clear that the IMFP uncertain-

ties are not only determined by the diagonal matrix elements
of Ci j , but also by its off-diagonal matrix elements. Thus, the
density-dependent correlations between EoS-based quantities
may induce nontrivial density-dependent IMFPs uncertain-
ties and nontrivial correlations between IMFPs in different
channels.
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FIG. 1. Residual interactions as function of density. In the left column, residual interactions in vector current channel are shown. In the right
column, residual interactions in axial vector current channel are shown. The colored solid curves stand for residual interactions derived from
Skyrme-type interactions. The black dashed curves stand for residual interactions derived from MC EoSs, see Sec. II for detailed description of
the underlying EoSs used to derive the residual interactions. The detailed formula expressions of the residual interactions in NC(CC) channel
are provided in the Appendices [see Eqs. (A35), (A38), (A42), and (A43) for NC residual interaction, and Eqs. (A45) and (A46) for CC residual
interactions].

III. RESULTS

In this section we show our results for the IMFP, as well
as the residual interactions which have been used in our
study.

A. Neutrino response from the low-density
to high-density region

In this subsection, we present the density-dependent resid-
ual interactions based on a set of EoSs previously introduced
(the full derivation of EoS-based residual interactions is

015804-7



LIN, STEINER, AND MARGUERON PHYSICAL REVIEW C 107, 015804 (2023)

FIG. 2. CC [(a) and (b)] and NC [(c) and (d)] IMFPs in vector current [(a) and (c)] and axial-vector current [(b) and (d)] channel at
T = 10 MeV. The colored solid curves stand for IMFPs derived from Skyrme-type interactions. The black dashed curves stand for IMFPs
derived from MC EoSs, see Sec. II for detailed description of the underlying EoSs used to derive the residual interactions.

presented in Appendix A), the IMFPs from low to high densi-
ties, and the dynamic responses at different densities.

In Fig. 1, the density-dependent residual interactions are
shown. To illustrate the impact of EoSs on residual interac-
tions, two groups of residual interactions are shown. The first
group of residual interactions are based on various Skyrme
models from the low-density to high-density regime. The
second group of residual interactions denoted as ”MC” are
Monte Carlo realizations based on the hybrid EoS model
first introduced in [27], which reproduces the virial EoS in
the low-density regime [16,17]. In the high-density regime,
the residual interactions based on the hybrid EoSs sample
the uncertainties in the parameter distribution originating
from the UNEDF2 model. More details about the density-,
temperature-, and isospin-dependent residual interactions are
introduced in Appendix A. Note that we do not consider the
uncertainties in the virial EoS resulting from the contribution
from higher order virial coefficients since they are not well-
constrained by experiments and observations. They contribute
only as the density increases. At low densities, the residual in-
teractions from all of the MC EoSs converge because they are
based on the same second order virial coefficients. In our ap-
proach, the residual interactions in the low-density regime are
constrained, for the first time, by a model-independent virial
EoS. The density-dependent residual interactions beyond this
low-density regime is however still poorly constrained by
data.

In the following, we briefly summarize the qualitative fea-
tures of residual interactions in various channels. At around
saturation density, CCSNe matter is very neutron-rich. In
neutron-rich matter, the residual interactions fnn and gnn play
a major role in NC interactions, while the influence from fpp

(which is dominated by the Coulomb interaction) is weak.
Indeed, in pure neutron matter, fnn = f0 and gnn = g0. As
densities increase, fnn increases and becomes positive, which
is a feature expected on general grounds and originating from
the dominant contribution of the repulsive vector meson. The
density dependence of gnn is not well constrained by nuclear
experiments probing collective modes, even at saturation den-
sity. In Skyrme models, we observe that gnn decreases as the
density increases, and may become negative at high densities.
In CC reactions, Vf and Vgt are residual interactions relevant
to vector and axial vector neutrino-nucleon reactions. These
residual interactions are calculated consistently from low-
density to high-density regimes, and their detailed derivation
are shown in Appendix A [see Eqs. (A45) and (A46)]. All
the Skyrme models that we have tested in our study predict
consistent values for Vf , which decreases as the density in-
creases. In the axial channel however, the dispersion among
the Skyrme predictions is larger than in the vector channel.

FIG. 3. Ferromagnetic instability density ncrit as a function of Yp

in different EoSs.
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FIG. 4. CC [(a) and (b)] and NC [(c) and (d)] IMFPs with and without RPA corrections in vector [(a) and (c)] and axial vector [(b) and (d)]
channel at T = 10 MeV. The colored solid curves stand for IMFPs derived from Skyrme and MC EoSs without RPA corrections. The colored
dashed curves stand for IMFPs derived from Skyrme and MC EoSs with RPA corrections. The small peaks observed in a few MC curves are
due to the numerical noise.

As shown in the upper left panel of Fig. 1, the values of
Vgt based on Skyrme models diverge in high-density regime.
Overall, we observe that the uncertainties of residual inter-
actions in spin-dependent channels are obviously larger than
the uncertainties in spin-independent channels, which reflects
the lack of experimental constraints for the time-odd terms in
Skyrme EDFs and thus the phenomenological spin-dependent
forces.

In Fig. 2, vector (left panels) and axial vector (right panels)
IMFPs of neutrino-nucleon reactions are plotted. Since the
calculation of neutrino opacities are consistent with the un-
derlying EoSs, we observe that the uncertainties of EoS-based
quantities (e.g., residual interactions, effective mass, nucleon
chemical potentials) result in variations of IMFPs. In the
high-density regime, the uncertainties of axial vector IMFPs
in both CC (upper right panel) and NC (lower right panel)
are larger than the uncertainties of vector IMFPs (upper left
and lower left panels). This is because the axial vector IMFPs
are sensitive to the residual interactions Vgt, gnn, gnp, and gpp,
which are derived from the poorly constrained time-odd part
of the Skyrme EDF.

In Eqs. (41), (42), (30), and (32), we observe that the
polarization functions containing the real parts have poles,
and these poles may result in collective excitations [13,23].
For both the vector and the axial vector channels, the col-
lective excitations in the medium appear if the reaction has
a (q, q0) pair that satisfies the mode’s dispersion relation. The
resonances may enhance the IMFPs for the neutrino-nucleon

reactions, similarly to the effect of giant-dipole resonance
and the Gamow-Teller resonance on finite nuclei scattering.
As shown in the right lower panel of Fig. 2, a significant
increase is observed in those IMFPs based on UNEDF and
MC EoSs in high-density regime. In this region, the gnn values
decrease and become negative, representing an attractive po-
tential enhancing the IMFP. The increase of IMFPs observed
in axial NC panel may be due to the Gamow-Teller collec-
tive mode. However, we stress that the collective modes are
sensitive to the strength of the related residual interactions
which are not well constrained, and may result in the cre-
ation of a ferromagnetic unstable region. There are no clear
experimental observations to support the existence of ferro-
magnetic instability in neutron stars and CCSNe. We show
in Fig. 2 that if the ferromagnetic unstable region appears at
(sub)saturation density, the NC neutrino opacity increases by
several orders and such an increase may be associated with
observable modulations on late-time neutrino signals from
a future galactic CCSNe. We include the NC axial IMFPs
with high peaks at high densities in Fig. 2 to maintain the
consistency between the underlying EoSs and the neutrino
IMFPs. In future work, we will construct new EoSs which
allow us to quantify the uncertainties near the saturation den-
sity without a spin instability while still matching laboratory
experiments.

The ferromagnetic instability could be obtained from the
long wavelength limit of the HF+RPA response. In this
limit, the density at which matter undergoes a ferromagnetic
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FIG. 5. This figure shows the CC [(a) and (b)] and NC [(c) and (d)] uncertainties of IMFPs in vector [(a) and (c)] and axial vector [(b) and
(d)]. The points labeled “mb” show the uncertainty due to many-body methods by showing the difference between the RPA and mean-field
estimates for pure Skyrme models. The points labeled “EOS-Skyrme” show the uncertainty due to the constraints used in obtaining the
Skyrme-type EOSs. This was computed by comparing the variation across pure Skyrme models which were generated with fits to different
sets of nuclear data. Finally, the points labeled “EOS-MC” show just the uncertainties in the mean free path across the Monte Carlo EOSs,
which shows the variation due to the inability of the Skyrme model to precisely reproduce the experimental data from McDonnell et al. [30].
See Sec. III for detailed discussion of the classification of IMFP uncertainties.

FIG. 6. CC dynamic response based on MC EoSs in axial-vector current channel at T = 10 MeV, with q = 3T = 30 MeV. (a), (b), and
(c) are the dynamic response functions at n = 0.15, 0.005, 10−4 fm−3, respectively.
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FIG. 7. NC dynamic response based on MC EoSs in axial-vector current channel at T = 10 MeV, with q = 3T = 30 MeV. (a), (b), and
(c) are the dynamic response functions at n = 0.15, 0.005, 10−4 fm−3, respectively.

instability is denoted ncrit , which is defined from the zero of
the matrix(

Gnn(n,Yp) + 1 Gnp(n,Yp)

Gpn(n,Yp) Gpp(n,Yp) + 1

)
= 0,

where Gnn, Gpp, Gnp, and Gpn are dimensionless Landau
parameters. The values for ncrit as function of the pro-
ton fraction Yp is shown in Fig. 3 for different EoSs. The
ferromagnetic unstable region in UNEDF0 and UNEDF2 ex-
tends from n ≈ 0.05 fm−3 to higher densities. The UNEDF
EoSs were constructed to describe the bulk ground state
and collective excited state properties of various spherical
atomic nuclei. However, in most atomic nuclei, the ground

FIG. 8. Pearson coefficients between Skyrme parameters ti, xi,
and γ .

state and collective excited state properties are not sensitive
to the spin-dependent interactions. Consequently, the spin-
dependent residual interactions in the UNEDF approach may
be poorly constrained.

In Fig. 4, the IMFPs with and without the RPA correlations
are shown in four different channels (CC vector, CC axial,
NC vector, NC axial). In CC vector and CC axial channel, the
RPA correlations lead to a decrease of the neutrino opacity. In
NC axial channel, the RPA correlations reduce (increase) the
neutrino opacity in the high-density regime for NRAPR and
SGII (UNEDF) EoSs, where the increase is due to the collec-
tive modes. However, as mentioned above, the spin-dependent
residual interactions in UNEDF may be poorly constrained
and the RPA-amplified IMFPs may reside in ferromagnetic
unstable region. In NC vector channel, the many-body ef-
fect manifested by the RPA correlations increase the neutrino
opacity, which quantitatively agrees with the results of NC
vector neutrino-nucleon scattering opacity based on model-
independent virial expansion. Indeed, as shown in Fig. 1, the
residual interactions fnn that mainly controls the behavior of
the RPA correlations in the NC vector channel were derived
density-dependently, and in the low-density regime fnn repro-
duces the virial predictions.

By comparing IMFPs with and without RPA correlations,
the variations of neutrino opacity resulting from two differ-
ent basic many-body methods (HF and HF+RPA) can be
evaluated. The variation between the HF and the HF+RPA
predictions is denoted as �(1/λ)mb in the following. By
comparing IMFPs with RPA corrections but with different
underlying EoSs, the variations of neutrino opacity resulting
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FIG. 9. Pearson coefficients between residual interactions at n = 0.15 fm−3 (a), n = 0.005 fm−3 (b), and n = 10−4 fm−3 (c).

from the choice of Skyrme EoS constraints can be evaluated.
This type of variation will be denoted �(1/λ)EOS-Skyrme in the
following. By comparing IMFPs consistent with MC EoSs,
we estimate the variations of neutrino opacity due to the
uncertainties across the Monte Carlo EOSs, which show the
variation due to the inability of the Skyrme model to precisely
reproduce the experimental data. This type of variation will be
denoted as �(1/λ)EOS-MC in the following. Based on Figs. 2
and 4, an estimate for the hierarchy of these three types of
neutrino opacity variations can be constructed in a wide range
of densities. We find that, approximately, �(1/λ)EOS-MC �
�1/(λ)EOS-Skyrme < �(1/λ)mb. However, in the axial vector
channel, where the spin-dependent residual interactions are
poorly constrained, the �(1/λ)EOS-MC may be comparable
with or even larger than the �λmb. The hierarchy of relative
neutrino opacity uncertainties as a function of density are
shown in Fig. 5.

In Figs. 6 and 7, the dynamic responses are plotted for var-
ious densities. Since for most regions of the phase space the
axial response dominates the neutrino-nucleon IMFPs, only
the SA(q, q0)CC and SA(q, q0)NC are shown here. As density
increases, we observe that the transferred energy q0, favored
by CC dynamic responses, deviates from q0 = 0 MeV and
becomes negative, due to the modifications from nucleon po-
tential shifts in CC reactions [11]. For NC dynamic response
functions, the difference between neutron and proton single-
particle energies do not have any influence on these reactions
that conserve nucleon isospins. Consequently, the SNC (q, q0)
centers at q0 ≈ 0 MeV at any densities. Finally, we observe
that the uncertainties in the dynamical response functions
increase as density increases, due to the increasing uncertain-
ties of EoS-based quantities (e.g., the residual interactions,
the nucleon effective mass, and nucleon single-particle
energies).

FIG. 10. Pearson coefficients between EoS-based quantities and CC IMFPs in vector channel (a) and in axial vector channel (b).
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FIG. 11. Pearson coefficients between EoS-based quantities and NC IMFPs in vector channel (a) and in axial vector channel (b).

B. Correlations between EoSs and neutrino response

In this section we present the Pearson correlations ρ

between (1) the EoS-based quantities and the EoS-based
quantities; (2) the EoS-based quantities and the IMFPs; (3)
the IMFPs and the IMFPs, using Eq. (65). The Pearson cor-
relation coefficients quantitatively describes the connection
between two quantities, and allows us to estimate the de-
grees of correlations between different quantities, whether
they may be or not be measured or observed. In particular,
a value of ρ(A, B) = ±1 implies that the two observables are
fully correlated/anticorrelated, whereas a value of ρ(A, B) =
0 means that the observables are totally uncorrelated.

In Fig. 8, the correlation coefficients among Skyrme pa-
rameters are plotted. In Fig. 9, the correlation coefficients
among the residual interactions are plotted for n = 10−4,
0.005, 0.15 fm−3. Only off-diagonal correlations are of inter-
est in these two figures. Note that several residual interactions
in off-diagonal blocks are highly correlated/anticorrelated.
For example, at n = 10−4 fm−3 we observe that ρ( fnn, fpp) ≈

1 and ρ(gnn, gpp) ≈ 1. Indeed, in low-density regime where
the residual interactions are calculated based on the virial ap-
proximation, we have fnn = fpp and gnn = gpp. Interestingly,
the correlation coefficients between the residual interactions
are density dependent. As shown in Fig. 9, as density in-
creases ρ( fnn, fpp) decreases. For the three different densities
explored in Fig. 9, the correlations among gnn, gnp, and gpp

remains high. The density dependence of correlations between
EoS-based quantities may result in (1) nontrivial correlations
between IMFPs and EoS-based quantities; and (2) nontrivial
correlations between IMFPs and IMFPs.

In Figs. 10 and 11, the correlations between EoS-based
quantities and IMFPs are plotted. Correlations between
IMFPs and EoS-based quantities reveal the sensitivity of a
particular type of IMFP to EoS-based quantities. In Fig. 10,
the correlations between the EoS-based quantities and the CC
IMFPs in both vector and axial vector channels are shown.
We observe that (1) the sensitivity of M∗

n (M∗
p ) to CC vector

IMFPs are higher than that to CC axial vector IMFPs; (2) the

FIG. 12. Pearson coefficients between IMFPs at n = 0.15 fm−3 (a), n = 0.005 fm−3 (b), and n = 10−4 fm−3 (c).
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density dependence of sensitivity of Un − Up to CC IMFPs is
different in vector and in axial vector channels; and (3) the
density dependence of sensitivity of residual interactions to
CC IMFPs is different in vector and in axial vector channels.
In Fig. 11, the correlations between the EoS-based quantities
and the NC IMFPs in both vector and axial vector channels are
shown. We observe that (1) the sensitivity of M∗

n (M∗
p ) to NC

IMFPs is moderate in both vector and axial vector channels;
(2) the sensitivity of Un − Up to NC IMFPs ≈ 0, reflecting
the fact that NC IMFPs are not modified by nucleon potential
shifts; and (3) the density dependence of sensitivity of residual
interactions to NC IMFPs is different in vector and in axial
vector channels.

In Fig. 12, the correlations between IMFPs and IMFPs
are plotted. A strong correlation between a theoretically
(or experimentally) well-determined IMFP and an IMFP
not accessible either experimentally or observationally may
provide a clear path for the determination of the latter.
As expected, the correlations in diagonal blocks ≈1 at all
three different densities. At n = 0.15 fm−3, we observe
that ρ(IMFPax

CC, IMFPax
NC ) ≈ 0.8. And this high correlation

at n = 0.15 fm−3 may result from a relatively high corre-
lation between gnn and Vgt at this density (see the upper
left panel of Fig. 9). At n = 0.005 fm−3, we observe rela-
tively high ρ(IMFPax

NC, IMFPvec
NC ), ρ(IMFPax

NC, IMFPvec
CC ), and

ρ(IMFPvec
NC, IMFPvec

CC ). Again, these strong correlations at
off-diagonal blocks may be due to the correlations be-
tween EoS-based quantities and EoS-based quantities at n =
0.005 fm−3.

IV. CONCLUSION

Strong interactions between nucleons could significantly
modify neutrino-nucleon cross sections via many-body effects
at densities and temperature of relevance to CCSNe. The main
difficulty in improving the description of neutrino opacities
may come from the poorly constrained density-dependent
nucleon-nucleon interactions. The nucleon-nucleon interac-
tions, also play an important role in determining the properties
of EoSs. In this way, the uncertainty of EoS-based quantities
propagate to the uncertainty of neutrino opacities.

In this work we calculate the neutrino-nucleon interac-
tions in both vector and axial vector coupling channels, in
the framework of the HF+RPA approximation. In the low
density regime, the neutrino opacity based on HF+RPA cal-
culations are consistent with a virial EoS, which generates a
model-independent nucleon-nucleon interaction (in both spin-
independent and spin-dependent channels). The low-density
virial EoS used in this work naturally evolve to a series
of Skyrme EoSs as density increases, as in Ref. [28]. Note
that in our framework the neutrino opacity calculations are
always consistent with the underlying EoSs at any densities.
Although spin-dependent interactions play an important role
in determining the dominant axial-vector neutrino-nucleon in-
teractions, they only slightly influence the properties of nuclei,
which are mostly spin-saturated or close to, and which are
employed to fit Skyrme forces. Consequently, we observe that
the EoS-based quantities in spin-dependent channels are not
well constrained and have big uncertainties at high densities,

which further induce big uncertainties of neutrino opacities in
axial-vector channel in our self-consistent calculations.

In the last several decades, our understanding of nuclear
EoSs increases thanks to the progress made in experimental
measurements of nuclei properties and in astronomy observa-
tions of neutron star properties. These measurements and ob-
servations, provide valuable constraints on spin-independent
nucleon-nucleon interactions. However, compared to the for-
mer, spin-dependent nucleon-nucleon interactions are still
poorly constrained. While they play a crucial role in neutrino-
nucleon interactions at high densities, in electron capture
reactions and in pion condensation. In the future, we will
construct: (1) EoSs with extended terms stabilizing spin-
dependent functional at high densities [37]; (2) EoSs that are
constrained by recent measurements of Gamow-Teller giant
resonance in various finite nuclei [38]; and (3) improved con-
nection between the low-density and the high density models,
where not only the energy but also the first and second deriva-
tives will be accurately described.

The descriptions of correlations between (1) EoS-based
quantities and EoS-based quantities; (2) EoS-based quantities
and IMFPs, and (3) IMFPs and IMFPs may not be affected by
the large uncertainties of EoS-based quantities and IMFPs at
high densities. In this work, for the first time we study these
correlations in the framework of RPA at different densities.
How big are the influence of uncertainties of the EoS-based
quantities on neutrino-nucleon IMFPs at different densities?
The study of density-dependent correlations may help to an-
swer this question and motivate an accurate determination of
EoS-based quantities to better determine neutrino opacities at
interested densities in the future.

In the future, it could be interesting to study the impact of
neutrino opacity uncertainties on the CCSNe explosion mech-
anism, on the CCSNe neutrino signals, and on the CCSNe
light curves.

ACKNOWLEDGMENTS

The authors would like to thank J. Navarro and S. Reddy
for very helpful discussions. Z.L. acknowledges funding from
the NSF Grants No. PHY-1554876 and No. PHY 21-16686
and from DOE Scidac Grant No. DE-SC0018232. A.W.S. was
supported by NSF No. AST-1909490 and No. PHY 21-16686.
J.M. is supported by CNRS Grant No. PICS-08294 VIPER
(Nuclear Physics for Violent Phenomena in the Universe), the
CNRS IEA-303083 BEOS project, the CNRS/IN2P3 New-
MAC project, and benefit from the LABEX Lyon Institute
of Origins (ANR-10-LABX-0066) of the Université Claude
Bernard Lyon-1.

APPENDIX A: DENSITY-, TEMPERATURE-, AND
ISOSPIN-DEPENDENT LANDAU PARAMETERS

We express the Skyrme Hamiltonian in the following form:

HSk = k5
Fn

10π2m∗
n

+ k5
F p

10π2m∗
p

+ Hpot (nn, np), (A1)

where the two first terms are the kinetic terms for the neutrons
and the protons with effective mass contribution and Hpot is
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the potential term expressed as

Hpot = 1

2
n2t0

(
1 + x0

2

)
− 1

2

(
n2

n + n2
p

)
t0

(
1

2
+ x0

)

+ 1

12
n2+γ t3

(
1 + x3

2

)
− 1

12
nγ

(
n2

n + n2
p

)
t3

(
1

2
+ x3

)
.

(A2)

Let us rewrite the kinetic energy part of HSk in terms of the
kinetic energy density τi (i = n, p) defined as

τi = 3

5
nik

2
Fi = 2k5

Fi

10π2
. (A3)

So, we have

HSk = τn

2m∗
n

+ τp

2m∗
p

+ Hpot (nn, np)

≡ Hn
k + H p

k + Hpot (nn, np), (A4)

where we have explicitly expressed the Skyrme Hamil-
tonian in terms of the independent densities nn, np,
τn, and τp in isospin asymmetric matter. Note that the
neutron and proton effective masses are functions of
densities as

mn

m∗
n

= 1 + 2mn

{
1

4
n

[
t1

(
1 + 1

2
x1

)
+ t2

(
1 + 1

2
x2

)]

+ 1

4
nn

[
− t1

(
1

2
+ x1

)
+ t2

(
1

2
+ x2

)]}
(A5)

and

mp

m∗
p

= 1 + 2mp

{
1

4
n[t1(1 + 1/2x1) + t2(1 + 1/2x2)]

+ 1

4
np[−t1(1/2 + x1) + t2(1/2 + x2)]

}
. (A6)

Given the energy density HSk from the Skyrme model, the
Landau parameters fnn and fpp are obtained as

fnn = ∂2Hpot

∂2nn
+ 2

∂2Hn
k

∂τn∂nn
k2

Fn

≡ 1

2

(
W (nn,0)

1 + W (nn,0)
1R

) + W (nn,0)
2 k2

Fn (A7)

and

fpp = ∂2Hpot

∂2np
+ 2

∂2H p
k

∂τp∂np
k2

F p

≡ 1

2

(
W (pp,0)

1 + W (pp,0)
1R

) + W (pp,0)
2 k2

F p. (A8)

Finally, we have

fnp = ∂2Hpot

∂nn∂np
+

(
∂2H p

k

∂τp∂nn
k2

F p + ∂2Hn
k

∂τn∂np
k2

Fn

)

≡ 1

2

(
W (np,0)

1 + W (np,0)
1R

) + 1

2
W (np,0)

2

(
k2

Fn + k2
F p

)
. (A9)

The strength function W (τ,τ ′,0)
i agrees with Ref. [24].

We now discuss the spin-density-dependent Landau pa-
rameters in Skyrme model. To begin with, we define the spin
density of neutrons and protons as

nn,3 = nn↑ − nn↓ (A10)

and

np,3 = np↑ − np↓. (A11)

We further define the spin-kinetic energy density as

τn,3 = 3
5 nn,3k2

Fn (A12)

and

τp,3 = 3
5 np,3k2

F p. (A13)

The contribution to the Skyrme Hamiltonian due to the spin
asymmetry is expressed as

Hs
Sk = Hn,3

k + H p,3
k + Hs

pot (nn,3, np,3), (A14)

where the Hn,3
k , H p,3

k and Hs
pot (nn,3, np,3) are defined as fol-

lows:

Hn,3
k = 1

8τn,3{nn,3t1(−1 + x1) + np,3t1x1 + nn,3t2(1 + x2)

+ np,3t2x2}, (A15)

H p,3
k = 1

8τp,3{np,3t1(−1 + x1) + nn,3t1x1 + np,3t2(1 + x2)

+ nn,3t2x2}, (A16)

and

Hs
pot = − 1

8 (nn,3 − np,3)2t0 + 1
8 (nn,3 + np,3)2t0(−1 + 2x0)

− 1
48 nγ (nn,3 − np,3)2t3 + 1

48 nγ (nn,3 + np,3)2

× t3(−1 + 2x3). (A17)

Note that in spin-saturated matter the term Hs
Sk vanishes by

construction and the total Skyrme Hamiltonian reduces to
Eq. (A4). The Landau parameters describing the spin-density
fluctuations are expressed as

gnn = ∂2Hs
pot

∂2nn,3
+ 2

∂2Hn,3
k

∂τn,3∂nn,3
k2

Fn

≡ 1

2
W (nn,1)

1 + W (nn,1)
2 k2

Fn, (A18)

gpp = ∂2Hs
pot

∂2np,3
+ 2

∂2H p,3
k

∂τp,3∂np,3
k2

F p

≡ 1

2
W (pp,1)

1 + W (pp,1)
2 k2

Fn, (A19)

and

gnp = ∂2Hs
pot

∂nn,3∂np,3
+

(
∂2Hn,3

k

∂τn,3∂np,3
k2

Fn + ∂2H p,3
k

∂τp,3∂nn,3
k2

F p

)

≡ 1

2
W (np,1)

1 + 1

2
W (np,1)

2

(
k2

Fn + k2
F p

)
. (A20)

The strength function of the residual interactions W (ττ ′,1)
i

agrees with Ref. [24].
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We then discuss the vector and the axial vector Landau pa-
rameters in CC reactions n + ν̄e → p + e− based on Skyrme
models. For Vf , we have

Vf = 1
2

(
W (nn,0)

1 − W (np,0)
1

) + (
W (nn,0)

2 − W (np,0)
2

)
k2

Fn, (A21)

where W (ττ ′,0)
1 are the strength of Landau parameters. Note the

absence of the rearrangement terms in the CC channel since
the density dependent term of the Skyrme interaction does not
contribute here. Here, the rearrangement term W (ττ ′,0)

1R is

W (nn,0)
1R = 2t3

3
γ nγ−1[n(1 + x3/2) − nn(x3 + 1/2)] (A22)

and

W (np,0)
1R = 1

2γ t3nγ . (A23)

There are no rearrangement contributions to spin-density de-
pendent residual interactions and we have

Vgt = 1
2

(
W (nn,1)

1 − W (np,1)
1

) + (
W (nn,1)

2 − W (np,1)
2

)
k2

Fn. (A24)

In this work Landau parameters in the high density regime are
derived based on Skyrme models, while in the low density
regime they are derived based on model-independent virial
interactions. In the low density region where the virial inter-
action applies, we assume that m∗ ≈ m, and the kinetic energy
density terms in the virial Hamiltonian is density-independent.
In the first-order approximation where only the first order
virial coefficients are involved, the potential energy density
part (including both density and spin-density terms) of the
virial Hamiltonian is

Hvirial
pot = − 1

2 b̂pn,0T λ3[(nn + nn,3)(np − np,3)

+ (nn − nn,3)(np + np,3)]

− 1
2 b̂pn,1T λ3[(nn + nn,3)(np + np,3)

+ (nn + nn,3)(np + np,3)]

− 1
2 b̂n,0T λ3[(nn + nn,3)(nn − nn,3)

+ (np + np,3)(np − np,3)]

− 1
4 b̂n,1T λ3[(nn + nn,3)2 + (nn − nn,3)2

+ (np + np,3)2 + (np − np,3)2], (A25)

where the notation of virial coefficients follows Refs. [9,16].
Since in the virial Hamiltonian the kinetic energy density
is density independent. So, we have Hn,virial

k = τn/(2mn) and
H p,virial

k = τp/(2mp). The Landau parameters in virial model
simplifies to:

f virial
nn = ∂2Hvirial

pot

∂2nn
, (A26)

f virial
pp = ∂2Hvirial

pot

∂2np
, (A27)

f virial
np = ∂2Hvirial

pot

∂nn∂np
, (A28)

gvirial
nn = ∂2Hvirial

pot

∂2nn,3
, (A29)

gvirial
pp = ∂2Hvirial

pot

∂2np,3
, (A30)

gvirial
np = ∂2Hvirial

pot

∂nn,3∂np,3
. (A31)

Note that in Hvirial
pot the density dependent terms include up

to O(n2), which means that the virial Landau parameters are
density independent in the first order of approximation. So,
there are no rearrangement contributions in virial Landau pa-
rameters and the Landau parameters in CC interaction based
on virial method is

Vf ,virial = f virial
nn − f virial

np , (A32)

and

Vgt,virial = gvirial
nn − gvirial

np . (A33)

Finally, we discuss the Landau parameters that apply in the
whole density regime. As described above, we construct a
global Hamiltonian Hg that applies in the whole density
regime

Hη = [1 − η(zn, zp)]HSk + η(zn, zp)Hvirial, (A34)

where η(zn, zp) is given in Eq. (64). For the general density-
dependent Landau parameters in NC reaction, we then have

f η
nn = η f virial

nn + 1
2 (1 − η)

(
W (nn,0)

1 + W (nn,0)
1R

) + W (nn,0)
1,η

+ (1 − η)W (nn,0)
2 × k2

Fn + W (nn,0)
2,η × k2

Fn

≡ 1
2W (nn,0)

1,general + W (nn,0)
2,generalk

2
Fn, (A35)

where

W (nn,0)
1,η = ∂2η

∂2nn

(
Hvirial

pot − Hpot
) + 2

∂η

∂nn

∂
(
Hvirial

pot − Hpot
)

∂nn
(A36)

and

W (nn,0)
2,η = 2

∂η

∂nn

∂
(
Hn,virial

k − Hn
k

)
∂τn

(A37)

are the corrections to Landau parameter strength in vector
channel due to the fact that η is density dependent. Note
that the corrections are proportional to Hvirial − H . So, the
corrections are small when the virial and the Skyrme Hamilto-
nian approximately agree. f η

pp is derived similarly as f η
nn, with

n ↔ p. We also have

f η
np = η f virial

np + 1
2 (1 − η)

(
W (np,0)

1 + W (np,0)
1R

) + W (np,0)
1,η

+ 1
2 (1 − η)W (np,0)

2

(
k2

Fn + k2
F p

)
+ 1

2W (np,0)
2,ηn k2

Fn + 1
2W (np,0)

2,ηp k2
F p

≡ 1
2W (np,0)

1,general + 1
2W (np,0)

2,general

(
k2

Fn + k2
F p

)
, (A38)

where

W (np,0)
1,η = ∂2η

∂nn∂np

(
Hvirial

pot − Hpot
) + ∂η

∂nn

∂
(
Hvirial

pot − Hpot
)

∂np

+ ∂η

∂np

∂
(
Hvirial

pot − Hpot
)

∂nn
, (A39)
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W (np,0)
2,ηn = 2

∂η

∂np

∂
(
Hn,virial

k − Hn
k

)
∂τn

, (A40)

and

W (np,0)
2,ηp = 2

∂η

∂nn

∂
(
H p,virial

k − H p
k

)
∂τp

(A41)

are the corrections to Landau parameter strength in axial
channel due to the fact that η is density dependent. Since the
transition function g is spin-density independent, the global
spin-density dependent Landau parameter simplifies to

gη
nn = ηgvirial

nn + 1
2 (1 − η)W (nn,1)

1 + (1 − η)W (nn,1)
2 × k2

Fn

≡ 1
2W (nn,1)

1,general + W (nn,1)
2,generalk

2
Fn, (A42)

gη
np = ηgvirial

np + 1
2 (1 − η)W (np,1)

1

+ 1
2 (1 − η)W (np,1)

2

(
k2

Fn + k2
F p

)
≡ 1

2W (np,1)
1,general + 1

2W (np,1)
2,general

(
k2

Fn + k2
F p

)
. (A43)

For the CC interaction, again we need to take off terms due
to rearrangement effects in Hamiltonian and single particle
potentials. We derive the rearrangement term in single particle
potential U ≡ ∂Hpot/∂n in Skyrme model being

U Re = αt3
12

nα−1((1 + x3/2)n2 − (x3 + 1/2)
(
n2

n + n2
p

))
.

(A44)
We then have

V η

f = η
(

f virial
nn − f virial

np

) + 1

2
(1 − η)

(
W (nn,0)

1 − W (np,0)
1

)
+

[
W (nn,0)

1,η − W (np,0)
1,η +2

∂η

∂nn
U Re−

(
∂η

∂nn
+ ∂η

∂np

)
U Re

]

+
[

(1 − η)
(
W (nn,0)

2 − W (np,0)
2

) + W (nn,0)
2,η

− W (np,0)
2,ηn

k2
Fn

k2
Fn + k2

F p

− W (np,0)
2,ηp

k2
F p

k2
Fn + k2

F p

]
k2

Fn

≡ 1

2

(
W̃ (nn,0)

1,general − W̃ (np,0)
1,general

) +
[

2
∂η

∂nn
U Re

−
(

∂η

∂nn
+ ∂η

∂np

)
U Re

]
+ (

W (nn,0)
2,η − W (np,0)

2,η

)
k2

Fn,

(A45)

where W̃ (ττ ′,0)
1,general is obtained by replacing W (ττ ′,0)

1 + W (ττ ′,0)
1R →

W (ττ ′,0)
1 in W (ττ ′,0)

1,general. And the second bracket with U Re is due

to the removal of rearrangement contributions in W (τ,τ ′,0)
1,η and

V η
gt = η

(
gvirial

nn − gvirial
np

) + 1
2 (1 − η)

(
W (nn,1)

1 − W (np,1)
1

)

+ (1 − η)
(
W (nn,1)

2 − W (np,1)
2

)
k2

Fn

≡ 1
2

(
W (nn,1)

1,general − W (np,1)
1,general

)
+ (

W (nn,1)
2,general − W (np,1)

2,general

)
k2

Fn. (A46)

The η function was first applied in [27] to construct a
Hamiltonian valid from the low-density regime to the high-
density regime. This η function ensures that in the low-density
regime the EoS in [27] reproduces the features predicted by
a virial EoS and allows the EoS to smoothly transit into a
Skyrme EoS as the density increases. However, the location
of a transition region where the η function smoothly decrease
from ≈1 to ≈0 may be model-dependent, and in principle,
temperature-dependent as well. A precise connection between
the low and the high density regimes shall be performed in the
future, ensuring that this connection does not impact the first
and second derivatives of the energy density. Since this is not
performed in the present study, the functional form of the η

function in this transition region may influence the behavior of
W1,η, W2,ηn, W2,ηp, ∂η

∂nn
U Re, and ∂η

∂np
U Re. In the present study,

we simply neglect the contribution of the derivatives of the η

function to the Landau parameter strengths for simplicity. This
shall however be investigated in more details in the future.

APPENDIX B: LANDAU PARAMETER STRENGTH

Here, we summarized the strength of Landau parameters
W ττ ′,S

i . The form of these Landau parameter strengths agree

with that in Ref. [24]. Note that our W ττ/ττ ′,0
1 + W ττ/ττ ′,0

1R is

equivalent to the W ττ/ττ ′,0
1 terms in Ref. [24], which include

the contribution from rearrangement terms

W ττ,0
1 + W ττ,0

1R = t0(1 − x0) + 1
6 t3ρ

γ (1 − x3)

+ 2
3γ t3ρ

γ−1[(1 + 1
2 x3

)
ρ − (

1
2 + x3

)
ρτ

]
+ 1

6γ (γ − 1)t3ρ
γ−2

[(
1 + 1

2 x3
)
ρ2

− (
1
2 + x3

)(
ρ2

n + ρ2
p

)]
, (B1)

W ττ,0
2 = 1

4 [t1(1 − x1) + 3t2(1 + x2)], (B2)

W ττ,1
1 = t0(x0 − 1) + 1

6ργ t3(x3 − 1), (B3)

W ττ,1
2 = 1

4 [t1(x1 − 1) + t2(1 + x2)], (B4)

W τ−τ,0
1 + W τ−τ,0

1R = t0(2 + x0) + 1
6 t3ρ

γ (2 + x3) + 1
2γ t3ρ

γ

+ 1
6γ (γ − 1)t3ρ

γ−2
[(

1 + 1
2 x3

)
ρ2

− (
1
2 + x3

)(
ρ2

n + ρ2
p

)]
, (B5)

W τ−τ,0
2 = 1

4 [t1(2 + x1) + t2(2 + x2)], (B6)

W τ−τ,1
1 = t0x0 + 1

6 t3ρ
γ x3, (B7)

W τ−τ,1
2 = 1

4 (t1x1 + t2x2). (B8)
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