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The bulk properties of nuclear matter and neutron stars with the newly generated relativistic interaction Dev
Bhoomi Himachal Pradesh (DBHP) are investigated, which provides an opportunity to modify the coupling
parameters keeping in view the finite nuclei, nuclear matter, PREX-II data for neutron skin thickness in 208Pb,
and astrophysical constraints. The relativistic interaction has been generated by including all possible self and
mixed interactions among σ , ω, and ρ mesons up to the quartic order satisfying the naturalness behavior of
parameters. A covariance analysis is performed to assess the statistical uncertainties of the model parameters
and observables of interest along with correlations amongst them. We obtained a value of neutron skin thickness
for the 208Pb nucleus of �rnp = 0.24 ± 0.02 fm. The maximum gravitational mass of a neutron star and the radius
corresponding to the canonical mass (R1.4) come out to be 2.03 ± 0.04 M� and 13.39 ± 0.41 km, respectively.
The dimensionless tidal deformability � for a neutron star is also analyzed.
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I. INTRODUCTION

Neutron stars (NSs) are highly dense and asymmetric nu-
clear systems having a central density about 5-6 times the
nuclear saturation density [1]. The studies of the NSs proclaim
that their internal structures are quite complex as new degrees
of freedom like hyperons and quarks may appear in the core.
The NS properties like mass, radius, and tidal deformability
can be estimated using equations of state (EOSs) obtained
within various theoretical models [2–4]. One of such models
is based on the relativistic interaction, which describes the
interaction between nucleons through σ , ω, and ρ mesons.
There are several models of relativistic mean-field (RMF)
effective Lagrangian density consisting of nonlinear σ , ω, and
ρ terms and cross terms that have been analyzed for nucleonic
and hyperonic matter and confronted with the constraints of
nuclear matter properties and astrophysical observations of
NS masses [5–9].

The nuclear theory studies [10–12] are mainly focusing
on understanding the dense matter in NS. The constraints
on EOS at high density are imposed with currently available
lower bounds on a neutron star’s maximum mass and radius
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[13–15]. The precise measurement of masses of millisecond
pulsars such as PSR J1614-2230 [16] and PSR J0348 + 0432
[17] show that the maximum mass of a NS should be around
2 M�. The recent observations with LIGO and Virgo of
GW170817 event [18,19] of Binary Neutron Stars merger and
the discovery of NS with masses around 2 M� [16,17,20–
23] have intensified the interest in these intriguing objects.
The analysis of GW170817 has demonstrated the potential
of gravitational wave (GW) observations to yield new infor-
mation relating to the limits on NS tidal deformability. The
Lead Radius Experiment (PREX-II) has recently provided a
model-independent extraction of neutron skin thickness of
208Pb as �rnp = 0.283 ± 0.071 fm [24]. The �rnp has been
identified as an ideal probe for the density dependence of
symmetry energy—a key but poorly known quantity that de-
scribes the isospin dependence of the EOS of asymmetric
nuclear matter and plays a critical role in various issues in
nuclear physics and astrophysics. The neutron skin thickness
of the lead nucleus exhibits a strong positive linear correla-
tion with the slope of the symmetry energy parameter (L) at
saturation density. The parameter L that determines the den-
sity dependence of the symmetry energy strongly affects the
mass-radius relation and tidal deformability (�) of a neutron
star and provides a unique bridge between atomic nuclei and
neutron stars [25]. The large value of �rnp = 0.283 ± 0.071
fm suggests a large value of L, which yields a very stiff EOS.
This generally gives rise to a large value of neutron star radius
and the tidal deformability [3]. The upper limit on �1.4 � 580
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for GW170817 requires softer EOSs and hence softer sym-
metry energy coefficients [18]. The heaviest observed neutron
star Mmax = 2.35 ± 0.17 M� for the black-widow pulsar PSR
J0952-0607 [26] may place stringent constraints on the sym-
metry energy at high densities, since the EOS of symmetric
nuclear matter from heavy-ion collision flow data [27] that is
relatively soft and limits the NS maximum mass.

The motivation of the present work is to generate a new
parametrization of the RMF model that can accommodate
the properties of NSs within the astrophysical observations
without compromising the finite nuclei properties. The RMF
model used in the present work includes all possible self
and mixed-coupling terms for the σ , ω, and ρ mesons up
to the quartic order so that the parameters should obey the
naturalness behavior as imposed by the effective field theory
[28]. In this work, the new parameter set is searched in view
of PREX-II data and the model EOS satisfies the observed
astrophysical constraints imposed by NSs.

The paper is organized as follows, in Sec. II, the theoretical
framework that is used to construct the EOS for neutron stars
has been discussed. In Sec. III, the procedure for optimization
and covariance analysis of the parameters is discussed. In
Sec. IV, we present our results. Finally, we summarize the
results of the present work in Sec. V.

II. THEORETICAL MODEL

The effective Lagrangian density for the RMF model
generally describes the interaction of the baryons via the ex-
change of σ , ω, and ρ mesons up to the quartic order. The
Lagrangian density [5,7,29] is given by

L =
∑

B
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The equations of motion for baryons, mesons, and photons
can be derived from the Lagrangian density defined in Eq. (1).
The equation of motion for baryons can be given as[
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tion values of the meson fields are
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where the baryon vector density ρB, scalar density ρsB, and
charge density ρp are, respectively,
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with γ being the spin-isospin degeneracy. Here M∗
B = MB −

gσBσ is the effective mass of the baryon species B, kB is its
Fermi momentum, and τ3B denotes the isospin projections of
baryon B. The energy density of the uniform matter within the
framework of the RMF model is given by
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The pressure of the uniform matter is given by
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∑
j=B,�

1

3π2

∫ k j

0

k4dk√
k2 + M∗2

j

− 1

2
m2

σ σ 2

− κ

6
g3

σNσ 3 − λ

24
g4

σNσ 4 + ζ

24
g4

ωNω4

+ ξ

24
g4

ρNρ4 + 1

2
m2

ωω2 + 1

2
m2

ρρ
2

+ a1gσN g2
ωNσω2 + 1

2
a2g2

σN g2
ωNσ 2ω2

+ b1gσN g2
ρNσρ2 + 1

2
b2g2

σN g2
ρNσ 2ρ2

+ 1

2
c1g2

ωN g2
ρNω2ρ2. (11)

Here, the sum is taken over nucleons and leptons.

III. OPTIMIZATION AND COVARIANCE ANALYSIS

The optimization of the parameters (p) appearing in the La-
grangian [Eq. (1)] has been performed by using the simulated
annealing method [30,31] by following the χ2 minimization
procedure, which is given as

χ2(p) = 1

Nd − Np

Nd∑
i=1

(
Mexp

i − M th
i

σi

)2

, (12)

where Nd is the number of experimental data points and Np

is the number of fitted parameters. The σi denotes adopted
errors [32] and Mexp

i and M th
i are the experimental and the

corresponding theoretical values, respectively, for a given
observable. The minimum value of χ2

0 corresponds to the op-
timal values p0 of the parameters. Following the optimization
of the energy density functional, it is important to explore
the richness of the covariance analysis. It enables one to
calculate the statistical uncertainties on model parameters or
any calculated physical observables. The covariance analysis
also provides additional information about the sensitivity of
the parameters to the physical observables and about inter-
dependence among the parameters [32–35]. Having obtained
the parameter set, the correlation coefficient between the two
quantities Y and Z can be calculated by covariance analysis
[32,34–37] as
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The standard deviation, �Y 2, in Y can be computed using
Eq. (14) by substituting Z = Y . The prediction of the maxi-
mum mass around 2 M� for the nonrotating neutron star and
the constraints on EOSs of symmetric nuclear matter (SNM)
and pure neutron matter (PNM) as extracted from the analysis
of particle flow in heavy-ion collisions [27] require relatively
softer EOSs as demanded by the GW170817 event.

IV. RESULTS AND DISCUSSION

The parameters of the model are searched by fit to
the available experimental data of total binding energies
and charge rms radii [38–40] for some closed/open shell
nuclei 16,24O, 40,48,54Ca, 56,68,78Ni, 88Sr, 90Zr, 100,116,132,138Sn,
144Sm, and 208Pb. We have also included the maximum mass
of the neutron star [41] in our fit data. Recently, the parity-
violating electron scattering experiment (PREX-II) put a limit
on the neutron skin thickness of 208Pb of �rnp = 0.283 ±
0.071 fm [24]. We included the recently measured �rnp in
our fit data to constrain the linear density dependence of
the symmetry energy coefficient. For the open shell nuclei,
the pairing has been included by using BCS formalism with
constant pairing gaps that have been taken from the particle
separation energies of neighboring nuclei [42–44]. In Table I,
we display the values of relativistic parametrization DBHP
generated for the Lagrangian given by Eq. (1) along with
theoretical uncertainties. The values of parameter sets for NL3
[45], FSUGarnet [33], IOPB-1 [46], and Big Apple [35] are
also shown.

The effective field theory imposes the condition of nat-
uralness [28] on the parameters or expansion coefficients
appearing in the effective Lagrangian density equation (1).
According to naturalness, the coefficients of various terms in
the Lagrangian density functional should be of the same size
when expressed in an appropriate dimensionless ratio. The
dimensionless ratios are obtained by dividing Eq. (1) by M4

and expressing each term in powers of gσ σ

M , gωω

M , and 2 gρρ

M .
This means that the dimensionless ratios 1

2C2
σ M2 ,

1
2C2

ωM2 , 1
8C2

ρM2 ,
κ

6M , λ
24 , ζ

24 , a1
M , a2

2 , b1
4M , b2

8 , and c1
8 should be roughly of the

same size, where ci
2 = gi

2

Mi
2 , i denotes σ , ω, and ρ mesons.

In Table II, we present the overall naturalness behavior of
DBHP parametrization, i.e., the value of these parameters
when expressed in dimensionless ratios as shown just above.
We also display the corresponding values for NL3, FSUG-
arnet, IOPB-1, and Big Apple parameter sets. It is obvious
from the table that DBHP parametrization closely favors the
naturalness behavior. This may be attributed to the fact that
this parametrization includes all possible self and crossed
interaction terms of σ , ω, and ρ mesons up to the quartic
order.

The small value of parameter c1 for the DBHP model that
gives rise to better naturalness behavior of the parameters
might be attributed to the fact that the coupling parameter c1

has strong correlation with b1 and also has good correlation
with a2 and b2 (see Fig. 1). It is evident from Table I that
the value of the coupling parameter c1 (crossed interaction
term of ω2 and ρ2) appearing in Eq. (1) is large for IOPB-I,
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TABLE I. New parameter set for the DBHP model of the RMF Lagrangian given in Eq. (1) along with theoretical uncertainties. The
parameters κ , a1, and b1 are in fm−1. The masses mσ , mω, and mρ are in MeV. The mass for the nucleon is taken as MN = 939 MeV. The values
of κ , λ, a1, a2, b1, b2, and c1 are multiplied by 102. Parameters for NL3, FSUGarnet, IOPB-1, and Big Apple are also shown for comparison.

Parameters DBHP NL3 FSUGarnet IOPB-1 Big Apple

gσ 10.34155 ± 0.06660 10.21743 10.50315 10.41851 9.67810
gω 13.30826 ± 0.10044 12.86762 13.69695 13.38412 12.33541
gρ 11.25845 ± 1.31969 8.94800 13.87880 11.11560 14.14256
κ 1.82166 ± 0.05101 1.95734 1.65229 1.85581 2.61776
λ 0.24446 ± 0.17154 −1.59137 −0.03533 −0.07552 −2.16586
ζ 0.02156 ± 0.00401 0.00000 0.23486 0.01744 0.00070
a1 0.01172 ± 0.00383 0.00000 0.00000 0.00000 0.00000
a2 0.05281 ± 0.03677 0.00000 0.00000 0.00000 0.00000
b1 0.39811 ± 0.40926 0.00000 0.00000 0.00000 0.00000
b2 0.09412 ± 1.85465 0.00000 0.00000 0.00000 0.00000
c1 0.79914 ± 3.15145 0.00000 8.60000 4.80000 9.40000
mσ 501.04834 ± 1.34831 508.19400 496.73100 500.48700 492.97500
mω 782.50000 782.50100 782.18700 782.18700 782.18700
mρ 770.00000 763.00000 762.46800 762.46800 762.46800

FSU-Garnet, and Big Apple, which shows deviation from
the naturalness behavior in the absence of all other possible
mixed interaction terms of σ , ω, and ρ mesons. Keeping in
view the naturalness behavior of the parameters as imposed
by the effective field theory [28] and as observed in the case
of the DBHP model, it is important to incorporate the con-
tributions of the higher-order mixed interactions of mesons
in the Lagrangian. The naturalness behavior of parameters
can be further improved by considering the next higher-order
terms containing the gradient of fields [28]. As far as NL3
parametrization is concerned, the naturalness behavior is fa-
vored very well but it does not include any cross interaction
terms of σ , ω, and ρ mesons, which are very important for
constraining the symmetry energy and its density dependence.

In Fig. 1, the correlation coefficients between the DBHP
model parameter appearing in the Lagrangian [Eq. (1)] are
shown in graphical form. A strong correlation is found be-
tween the pairs of model parameters gσ and gω (0.95), c1 and

b1 (0.80), and a2 and κ (0.72). The strong correlation is also
found for gρ with b1 and b2. Mild correlations exist between
the pairs of model parameters gσ and κ , gσ and a1, and gσ

and a2. A strong correlation between the model parameters
implies a strong interdependence; i.e., if one parameter is
fixed at a certain value then the other must attain the precise
value as suggested by their correlation.

A. Properties of finite nuclei and nuclear matter

The newly generated DBHP parametrization gives a good
fit to the properties of finite nuclei. In Fig. 2, we display the
value of the relative error in the total binding energies δE =
Bexp−Bth

Bexp calculated for DBHP parametrization. We also display
similar results for other parameter sets considered. It is evident
that binding energies obtained using DBHP parametrization
are in good agreement with the available experimental data
[38]. The rms error in total binding energy for all the nuclei

TABLE II. The values of parameters are expressed as dimensionless ratios corresponding to naturalness
behavior. All values have been multiplied by 103.

Parameters DBHP NL3 FSUGarnet IOPB-1 Big Apple

1
2C2

σ M2 1.3311 1.4028 1.2690 1.3086 1.4698
1

2C2
ωM2 1.9604 2.0970 1.8508 1.9383 2.2819
1

8C2
ρ M2 0.6631 1.0306 0.4278 0.6670 0.4121

κ

6M 0.6380 0.6855 0.5787 0.6499 0.9168
λ

24 0.1018 −0.6630 −0.1472 −0.3146 −0.9024
ζ

24 0.8982 – 0.9785 0.7267 0.0291
a1
M 0.1172 – – – –
a2
2 0.2641 – – – –
b1
4M 0.9953 – – – –
b2
8 0.1177 – – – –

c1
8 0.9989 – 10.7500 6.0000 11.7500
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FIG. 1. Correlation coefficients among the model parameters for
DBHP parametrization of the Lagrangian given by Eq. (1).

considered in our fit data is found to be 2.1 MeV. In Fig. 3, we
present our results for the relative error δRch for charge rms
radii and also compare them with other parameter sets. The
rms error in charge radii for all nuclei taken in our fit is 0.02
fm. The neutron skin thickness of 208Pb for the DBHP model
comes out to be 0.24 ± 0.02 fm. In Table III, we present
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FIG. 2. Relative error in the total binding energy (δE ) plotted
against the mass number (A) for the newly generated parameter set
DBHP. For comparison, the values of δE obtained with parameters
NL3, IOPB-1, FSUGarnet, and Big Apple are also displayed.
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FIG. 3. Relative error in the charge root mean square (δRch) plot-
ted against the mass number (A) for the newly generated parameter
set DBHP For comparison, the values obtained with parameters NL3,
IOPB-1, FSUGarnet, and Big Apple are also displayed.

the results for the SNM properties such as the binding energy
per nucleon (E/A), the incompressibility (K), the effective nu-
cleon mass (M∗) at the saturation density (ρ0), the symmetry
energy coefficient (J), the slope of the symmetry energy (L),
and the curvature parameter Ksym along with the theoretical
uncertainties. It is observed that the isoscalar properties (E/A,
K , M∗, ρ0) are well constrained for DBHP parametrization
(at the �3.3% level). However, in the isovector sector, the
error on the density dependence of the symmetry energy is
relatively larger for L (≈23%). The value of Ksym is deter-
mined only poorly [47–49]. The experimental data on finite
nuclei are not enough to constrain Ksym. Only the accu-
rate knowledge of the symmetry energy at higher densities
(ρ > 2ρ0) may constrain the Ksym in tighter bounds. This may
be attributed to the large experimental error on the neutron
skin thickness for 208Pb (0.283 ± 0.071 fm), which leads us
to choose the large adopted error during the optimization pro-
cedure. The values of neutron skin thickness (�rnp) for 208Pb
and 48Ca nuclei are also presented. The DBHP parameter sig-
nificantly overestimates the value of neutron skin thickness for
48Ca in comparison to that of �rnp(48Ca) = 0.121 ± 0.026 fm
as reported recently by CREX [50]. Other parametrizations
considered in Table III also do not satisfy simultaneously the
experimental data for the neutron skin for the 208Pb and 48Ca
nuclei. Similar trends have been observed in recent investiga-
tions based on the relativistic and nonrelativistic mean-field
models, which call for further experimental studies [51–53].

The results are also compared with the NL3 [45], FSUG-
arnet [33], IOPB-1 [46], and Big Apple [35] parameter sets.
These SNM properties are very important for constructing
the EOS for nuclear matter. E/A is −16.1 MeV for the
DBHP parametrization. The values of J and L obtained
by DBHP parametrization are consistent with the values
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TABLE III. The bulk nuclear matter properties (NMPs) at saturation density along with calculated theoretical errors for DBHP parametriza-
tion compared with that of other parameter sets. ρ0, E/A, K , M∗/M, J , L, and Ksym denote the saturation density, the binding energy per nucleon,
the nuclear matter incompressibility coefficient, the ratio of the effective nucleon mass to the nucleon mass, the symmetry energy, the slope of
the symmetry energy, and the curvature of the symmetry energy, respectively. The value of ρ0 is in fm−3 and the rest of the quantities are in
MeV. The values of the neutron skin thickness �rnp for 208Pb and 48Ca nuclei in units of fm are also listed.

NMPs DBHP NL3 FSUGarnet IOPB-1 Big Apple

ρ0 0.148 ± 0.003 0.148 0.153 0.149 0.155
E/A −16.11 ± 0.05 −16.25 −16.23 −16.09 −16.34
K 229.5 ± 5.6 271.6 229.6 222.6 227.1
M∗/M 0.615 ± 0.007 0.595 0.578 0.595 0.608
J 34.7 ± 1.5 37.4 30.9 33.3 31.4
L 83.9 ± 19.2 118.6 50.9 63.8 40.3
Ksym −33.2 ± 64.1 100.7 57.9 −38.4 88.8
�rnp (208Pb) 0.24 ± 0.02 0.28 0.16 0.22 0.15
�rnp (48Ca) 0.21 ± 0.02 0.23 0.17 0.17 0.17

J = 38.1 ± 4.7 MeV and L = 106 ± 37 MeV as inferred by
Reed et al. [3]. The value of K is 225 MeV, which is in
agreement with the value of K = 240 ± 20 MeV determined
from isoscalar giant monopole resonance for 90Zr and 208Pb
nuclei [54,55].

In Fig. 4, we plot the EOS, i.e., pressure as a function of the
baryon density for SNM (upper panel) and PNM (lower panel)
using the DBHP parametrization that agrees reasonably well
and lies in the allowed region with the EOSs extracted from
the analysis of the particle flow in heavy-ion collision [27].
It is evident from Fig. 4 that the EOSs for SNM and PNM
calculated with the NL3 parametrization are very stiff and
ruled out by the heavy-ion collision data. The EOS calculated
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FIG. 4. Variation of pressure as a function of baryon density for
SNM (upper panel) and PNM (lower panel) computed with DBHP
parametrization along with NL3, IOPB-1, FSUGarnet, and Big Ap-
ple models. The shaded region represents the experimental data taken
from Ref. [27].

by using the DBHP parametrization is relatively softer, which
is a requirement to constrain the recent astrophysical observa-
tions [41,56–58]. In Fig. 5, we plot the symmetry energy as a
function of baryon density for the DBHP model. The results
for other parametrizations are also shown for comparison. It
can be observed that the symmetry energy increases with the
baryon density and it is found to be softer than that of NL3
but stiffer than that of IOPB-1, FSUGarnet, and Big Apple
models.

B. Neutron star properties

In Fig. 6 we display the variation of pressure with the
energy density for the nucleonic matter in β equilibrium for
the DBHP parametrization. The results are also compared

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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40
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160
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FIG. 5. The density-dependent symmetry energy plotted as a
function of baryon density for the DBHP model. The results are also
displayed for NL3, IOPB-1, FSUGarnet, and Big Apple parameter
sets.
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FIG. 6. Variation of pressure as a function of energy density
for the DBHP parameter set. EOSs computed with NL3, IOPB-1,
FSUGarnet, and Big Apple models are also shown for comparison.
The shaded region represents the observational constraints taken
from Ref. [56].

with those obtained for parameter sets. The shaded region
represents the observational constraints at rph = R with the
2σ uncertainty [56]. Here rph and R are the photospheric and
neutron star radius, respectively. It is clear that the EOSs
computed with our DBHP parameter set are consistent with
the EOSs obtained by Steiner et al. [56].

The EOSs obtained by the DBHP and IOPB-1 parametriza-
tions are softer and lie in the allowed shaded region that
represents the observational constraints taken from Ref. [56].
The EOS obtained with the NL3 parameter set is much stiffer
than those obtained with the DBHP and IOPB-1 parameter
sets and ruled out by the observational constraints [56]. The
stiffness of the EOS for NL3 may be attributed to its very
high value of compressibility (K), its symmetry energy co-
efficient (J), and its slope of symmetry energy (L) as shown
in Table III. The mass and radius of a neutron star are ob-
tained by solving the Tolman-Oppenheimer-Volkoff (TOV)
equations [59,60] given as

dP(r)

dr
= −{ε(r) + P(r)}{4πr3P(r) + m(r)}

r2(1 − 2m(r)/r)
, (16)

dm

dr
= 4πr2ε(r), (17)

m(r) = 4π

∫ r

0
drr2ε(r) (18)

where P(r) is the pressure at radial distance r and m(r) is the
mass of neutron stars enclosed in the sphere of radius r. The
EOS for the crust region is taken from Ref. [61]. In Fig. 7 we
present our results for the gravitational mass of a static neutron
star and its radius for DBHP and other parametrizations.
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FIG. 7. Relationship between neutron star mass and its radius for
DBHP parametrization. The results are compared with NL3, IOPB-1,
FSUGarnet, and Big Apple parameters.

It is observed that the maximum gravitational mass of the
static neutron star for the DBHP parameter set is 2.03 M�,
which is in good agreement with the mass constraints from the
GW170817 event and pulsars PSRJ1614-2230, PSRJ0348 +
0432, and PSRJ0740 + 6620 [16,41,57,58,62]. The radius
(R1.4) of the canonical mass is 13.39 km for the DBHP
parametrization, which satisfies the radius constraints from
NICER [57,58,63]. The value of R1.4 for the NL3 parametriza-
tion is 14.61 km which seems to rule out the constraints for
R1.4 extracted from Ref. [63].

The tidal deformability � rendered by the companion stars
on each other in a binary system can provide remarkable
pieces of information on the EOS of neutron stars [64,65].
The tidal influences of its companion in the BNS system will
deform neutron stars in the binary system, and the resulting
change in the gravitational potential modifies the BNS or-
bital motion and its corresponding gravitational wave (GW)
signal. This effect on GW phasing can be parametrized by
the dimensionless tidal deformability parameter �i = λi/M5

i ,

i = 1 and 2. For each neutron star, its quadrupole moment
Q j,k must be related to the tidal field E j,k caused by its com-
panion as Q j,k = −λE j,k , where j and k are spatial tensor
indices. The dimensionless tidal deformability parameter �

of a static, spherically symmetric compact star depends on the
neutron star compactness parameter C and a dimensionless
quadrupole Love number k2 as, � = 2

3 k2C−5. The � critically
parametrizes the deformation of neutron stars under the given
tidal field; therefore, it should depend on the EOS of nuclear
dense matter. To measure the Love number k2 along with
the evaluation of the TOV equations we have to compute
y2 = y(R) with the initial boundary condition y(0) = 2 from
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FIG. 8. Variation of dimensionless tidal deformability (�) with
respect to gravitational mass for DBHP parametrization. The results
for NL3, IOPB-1, FSUGarnet, and Big Apple parameters are also
shown.

the first-order differential equation [64–67] simultaneously:

y′ = 1

r
{−r2Q − yeλ[1 + 4πGr2(P − E )] − y2}, (19)

Q ≡ 4πGeλ

(
5E + 9P + E + P

c2
s

)
− 6

eλ

r2
− ν ′2 , (20)

eλ ≡
(

1 − 2Gm

r

)−1

, (21)

ν ′ ≡ 2Geλ

(
m + 4πPr3

r2

)
. (22)

First, we get the solutions of Eq. (19) with the boundary
condition y2 = y(R), and then the electric tidal Love number

k2 is calculated from the expression as

k2 = 8

5
C5(1 − 2C)2[2C(y2 − 1) − y2 + 2]

×
{

2C[4(y2 + 1)C4 + (6y2 − 4)C3 + (26 − 22y2)C2

+ 3(5y2 − 8)C − 3y2 + 6] − 3(1 − 2C)2

× [2C(y2 − 1) − y2 + 2] log

(
1

1 − 2C

)}−1

. (23)

Figure 8 shows the results of the dimensionless tidal de-
formability � as a function of gravitational mass for neutron
stars for DBHP and other parametrizations. The value of �

decreases with an increase in the gravitational mass of the
neutron star and reduces to a very small value at the maximum
mass. The value of �1.4 obtained for the canonical mass with
DBHP parameters is 682 ± 125, which satisfies the finding
from the GW170817 event [3,68,69] for the EOS of dense
nuclear matter.

It is noteworthy that our analysis of tidal deformabil-
ity (�1.4) lies within the constraint (�1.4 � 800) for the
GW170817 event [68], but the value of �1.4 obtained for
the DBHP model (682) has marginal overlap with the revised
limit �1.4 � 580 within 1σ uncertainty [18]. This is attributed
to the impact of the inclusion of PREX-II data in our fit,
which produces stiff symmetry energy with the density slope
L = 83.9 MeV. We are looking forward to the possibility that
new terrestrial experiments and astrophysical observations
may impose tighter bounds.

In Table IV, we present the results for the various proper-
ties of static stars with DBHP parametrization. The theoretical
uncertainties calculated for the properties using Eqs. (13) and
(14) are also listed. Results obtained with other parameter sets
are also shown for comparison. We obtain very small theo-
retical uncertainties for the maximum mass Mmax (1.9%), the
maximum mass radius Rmax (2.5%), and the radius R1.4 (3%)
of a neutron star. The small uncertainties might be attributed to
the fact that the inclusion of Mmax in the fit data constrain the
high-density regime of the EOS. A relatively large uncertainty
(≈18%) is obtained for �1.4. This is due to the fact that
� ∝ R5, which indicates that precise measurement of tidal

TABLE IV. The properties of nonrotating neutron stars along with theoretical uncertainties obtained for
the DBHP parameter set. Results are also compared with the other parameter sets. Mmax and Rmax denote the
maximum gravitational mass and corresponding radius, respectively. The values for R1.4 and �1.4 denote
the radius and the dimensionless tidal deformability at 1.4 M�

Mmax Rmax R1.4

EOS (M�) (km) (km) �1.4

DBHP 2.03 ± 0.04 11.68 ± 0.29 13.39 ± 0.41 682 ± 125
NL3 2.77 13.27 14.61 1254
IOPB-I 2.15 11.95 13.28 694
FSUGarnet 2.06 11.70 12.86 624
Big Apple 2.6 12.41 12.96 717
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FIG. 9. Correlation coefficients between the model parameters
and a set of neutron star observables as well as the bulk properties
of nuclear matter at the saturation density for DBHP parametrization
(see text for details).

deformability can constrain the NS radius in narrow bounds.
Indeed it is believed that no terrestrial experiment can reliably
constrain the EOS of a neutron star [3].

C. Correlations of nuclear matter, neutron star
properties, and model parameters

We now discuss the correlation coefficients, shown in
Fig. 9, between the model parameters and the nuclear matter
properties, the neutron skin thickness of the 208Pb nucleus,
and the NS observables. The isoscalar nuclear matter proper-
ties like E/A, K , and M ∗ /M show strong correlations with
isoscalar parameters gσ , gω, and κ . It can also be observed
from Fig. 9 that the symmetry energy slope parameter (L)
can be constrained by the coupling parameter a2, b1, and b2

along with the coupling parameter gρ as suggested by their
correlations. The value of �rnp is found to be well constrained
by the parameters gρ and b2 because they have strong cor-
relations. This study is quite consistent with results reported
in Refs. [33,35]. Finally, we discuss the correlations between
neutron star observables and Lagrangian model parameters as
shown in Fig. 9. A strong correlation between the maximum
neutron star mass and the ω-meson self-coupling parameter
ζ is missing in the case of the DBHP model parametriza-
tion. The Mmax values display moderate correlations with the
isovector coupling parameters c1 and b1. A large maximum
mass may be generated either by having a stiff EOS for SNM
or a stiff symmetry energy. If the symmetry energy is soft,
then one must stiffen the EOS of SNM, which can be done by
tuning the parameter ζ . However, the symmetry energy of the
DBHP model is stiff as shown by Fig. 5. The symmetry energy

FIG. 10. Correlation coefficients for bulk nuclear matter and
neutron star properties and neutron skin of 208Pb for DBHP
parametrization.

slope parameter at saturation density is found to be 83.9 MeV.
The stiff symmetry energy thereby weakens the correlation
between ζ and Mmax. This suggests that the maximum mass
results from a competition between ζ and L. This further im-
plies that the parameter ζ should be well correlated to c1 and
b1, and this is what is exactly reflected from the correlations
shown in Fig. 1. The values of L and Ksym are found to be
constrained by the parameters c1 and b1.

Finally, in Fig. 10 we display the correlation coefficients
between the properties of nuclear matter, neutron star, and
neutron skin thickness of 208Pb. A strong correlation of the
neutron skin thickness of the 208Pb nucleus with J , L, R1.4,
and �1.4 is observed. As per the expectation, the radius R1.4 is
found to have a strong correlation with J and L. These findings
are quite in harmony with the results reported in Refs. [33,35].
The curvature of the symmetry energy (Ksym) is also found to
have a strong correlation with R1.4 and �1.4.

V. SUMMARY

The newly generated interaction DBHP for the relativistic
mean field model has been generated by keeping in view the
PREX-II data for neutron skin in the 208Pb nucleus, astro-
physical constraints in addition to those usually employed,
like binding energy and charge radii for finite nuclei, and
empirical data on nuclear matter at the saturation density.
We have included all possible self and mixed interactions
between σ , ω, and ρ mesons up to the quartic order so
that the coupling parameters obey the naturalness behavior
as imposed by the effective field theory [28]. The covari-
ance analysis enabled us to assess the statistical uncertainties
in the estimation of the model parameters and observables
of interest as well as the correlations among them. The
DBHP parameter set is obtained such that it reproduces
the ground-state properties of the finite nuclei and the bulk
nuclear matter properties and also satisfies the constraints
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of mass and radius of the neutron star and its dimension-
less deformability � from recent astrophysical observations
[18,19,56,63]. The rms errors in the total binding energies
and charge rms radii for finite nuclei included in our fit for
the DBHP parametrization are 2.1 MeV and 0.02 fm, re-
spectively. The bulk nuclear matter properties obtained are
well consistent with the current empirical data [3,55]. The
maximum gravitational mass and radius (R1.4) of the neutron
star come out to be 2.03 ± 0.04 M� and 13.39 ± 0.41 km
respectively. The value of �1.4 that is equal to 682 ± 125 for
the DBHP parametrization also satisfies the constraints for
the GW170817 event [68] and those reported in Refs. [3,69].
The parametrization generated in consideration of the PREX-
II data produces a stiff symmetry energy coefficient and its
density dependence leads to �1.4 = 682 ± 125, which has

marginal overlap with the revised constraint [18]. We are
looking forward to the possibility that new terrestrial exper-
iments and astrophysical observations may put more stringent
constraints on the density dependence of the symmetry
energy.
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