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Background: The nuclear energy density functional method at finite temperature is a useful tool for studies
of nuclear structure at high excitation, and also for researches of nuclear matter involved in explosive stellar
phenomena and neutron stars. However, its unrestricted calculation requires large computational costs for the
three-dimensional coordinate-space solvers, especially for the Hamiltonian matrix diagonalization and (or) the
Gram-Schmidt orthonormalization of the single-particle wave functions.

Purpose: I test numerical performance of a numerical method, that requires neither the diagonalization
nor the Gram-Schmidt orthonormalization, for finite nuclei and inhomogeneous nuclear matter. I examine its
advantageous features in future applications.

Methods: The Fermi operator expansion method, which approximates the Fermi-Dirac distribution in terms
of the Chebyshev polynomials, is used to construct the one-body density matrix for the energy density functional
calculations at finite temperature. The modified Broyden’s mixing method is adopted for the self-consistent
iteration process.

Results: The method is applied to isolated finite N = Z nuclei and to nonuniform symmetric nuclear matter at
finite temperature, and it turns out be very effective with the three-dimensional coordinate-space representation,
especially at high temperature. The liquid-gas transition is clearly observed in the calculations.

Conclusions: The Fermi operator expansion method is a useful tool for studies of various nuclear phases at
finite temperature with the energy density functional calculations. The method is suitable for massively parallel
computing with distributed memory. Furthermore, when the space size is large, the calculation may benefit from
its order-N scaling property.
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I. INTRODUCTION

It is of significant importance to calculate nuclear matter
in a variety of phases at different temperatures, utilized in
simulation studies of supernovae and neutron stars. The nu-
clear energy density functional method at finite temperature
[1,2] is a desirable choice for studying the inhomogeneous
neutron-star matter in outer and inner crusts. Especially,
near the boundary between the inner crust and the core,
various exotic phases, “nuclear pasta,” are expected to
appear.

In order to properly treat thermally dripped nucleons and
to study the transition from inhomogeneous to uniform nu-
clear matter, the coordinate-space representation is preferable.
Furthermore, to find a new exotic structure at finite tem-
perature, it is desired to perform the calculation without
assuming any spatial symmetry of the configuration, using
the three-dimensional (3D) coordinate-space representation.
Since the 3D coordinate-space solution is computationally
demanding, most of the finite-temperature mean-field calcu-
lations for nuclei either adopt the harmonic-oscillator-basis

(shell-model-basis) representation [3–6], or are restricted to
spherical systems1 [8,9].

To reduce the computational cost, the finite-temperature
Thomas-Fermi approximation has been often adopted
[10–13]. The molecular dynamics simulations can be per-
formed with even smaller computational time, thus they
have been extensively utilized with larger simulation volumes
[14–16]. A major drawback of these semiclassical approxima-
tion is a lack of shell effects. In the inner crust, the shell effects
play a role not only in protons but also in the band effect for
unbound neutrons scattered by the periodic potentials [17,18].
An alternative quantum approach to the inner crust is to use
the Wigner-Seitz approximation, pioneered by Negele and
Vautherin [19]. The structure is optimized in a Wigner-Seitz

1An exception can be found in a paper by Newton and Stone [7] in
which they solve the finite-temperature Hartree-Fock equations with
the BCS treatment on the pairing correlation in the 3D coordinate
space. To reduce the computational time, the states with occupation
smaller than 10−6 are neglected.
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sphere of radius Rws using different boundary conditions de-
pending on the parity of the single-particle orbitals. For the
inner crust, this trick for the boundary condition produces a
roughly constant neutron density at the spherical boundary
r = Rws. However, some spurious density fluctuations still
remain near the edge of the boundary. Furthermore, the nu-
merical results suffer from ambiguity caused by the choice
of the boundary conditions [20]. It should be noted that a
combination of the Thomas-Fermi and Wigner-Seitz approx-
imations is frequently used for nonuniform matter at finite
temperature based on the microscopic results for uniform mat-
ter [13,21,22]. Another disadvantage of these approximations
is that one loses information on the transport properties which
may be crucial for understanding dynamics of neutrons in the
inner crust of neutron stars [23].

In this paper, I perform a feasibility study for the fully
quantum energy density functional (mean-field) calculations
without the Wigner-Seitz approximation for nonuniform nu-
clear matter at finite temperature. A conventional solution
of the finite-temperature mean-field theory can be summa-
rized as follows: (1) Construct the mean-field Hamiltonian
H which depends on one-body densities. (2) Diagonalize
the Hamiltonian to obtain the eigenvalues and the eigenvec-
tors, H |i〉 = εi|i〉. (3) Calculate the densities, then go back
to (1) to reach self-consistency. In step (3), the Fermi-Dirac
distribution function f (x) is used to calculate the densities,
ρ = ∑

i f (εi )|i〉〈i|. The truncation with respect to the eigen-
vector |i〉 may be possible at low temperature, while, at high
temperature, one needs to compute all the eigenvalues and
eigenvectors. Since this diagonalization is needed every itera-
tion, it requires a large amount of numerical resources.

Recently, the shifted Krylov method for the Hartree-Fock-
Bogoliubov (HFB) theory was proposed [24]. Then, it was
extended to the finite-temperature HFB theory [25]. The
method uses the shifted Krylov subspace method for solution
of the linear algebraic equation (z − H )G(z) = 0, where H
is the HFB Hamiltonian and G(z) is the Green’s function.
The densities are obtained from the Green’s function G(z)
integrated over complex energy z. Thus, the diagonalization
procedure is unnecessary. This feature is favorable for large
systems since the matrix diagonalization needs the operation
of O(N3), where N is the dimension of the matrix. It is shown
to be numerically feasible and efficient in the parallel com-
putation [24,25]. However, its performance depends on the
required number of iterations of the shifted Krylov algorithm
whose convergence is not guaranteed.

The purposes of the present paper are to study an alterna-
tive method for the finite-temperature mean-field calculation
and to examine its performance for nuclear systems. The
methodology is known as the Fermi operator expansion (FOE)
method in condensed matter physics [26,27]. It is also known
as one of the order-N [O(N )] methods [28], thus the number of
computational operations linearly scales with respect to either
the particle number or the dimension of the one-particle space.
In the O(N ) methods, the “nearsightedness” of many electron
systems plays a crucial role [29]. Since the nearsightedness is
due to destructive interference effect in quantum mechanical
many-particle systems, I expect that it is applicable to nuclear
systems as well. However, since the size of a nucleus is

roughly 10 fm at most, the nearsightedness principle has been
assumed to be not so beneficial in practice. The situation may
be different for hot nuclei and macroscopic neutron-star mat-
ter. It is worth examining the O(N ) methods for calculations
of nuclei at finite temperature and inhomogeneous nuclear
matter.

The paper is organized as follows: The finite-temperature
mean-field theory is recapitulated in Sec. II A. In Secs. II B
and II C, the Fermi operator expansion method is summarized.
In Sec. II D, I propose an efficient method of computing
the entropy without calculating single-particle energies. The
nearsightedness and the O(N ) method are briefly reviewed
in Sec. II E. Details of the numerical calculations, examina-
tion of the validity of the Chebyshev polynomial expansion,
and numerical results for finite nuclei and nonuniform mat-
ter are shown in Sec. III. Concluding remarks are given
in Sec. IV.

II. THEORY AND NUMERICAL METHODS

A. Mean-field theory at finite temperature

I recapitulate here the Hartree-Fock (HF) theory at finite
temperature [1]. The partition function and the statistical den-
sity matrix at the temperature β−1 = kBT are in the forms
Z = tr[e−βĤ ′

] and D̂ = e−βĤ ′
/Z , respectively, where Ĥ ′ ≡

Ĥ − μN̂ with the one-body HF Hamiltonian Ĥ , the particle
number operator N̂ , and the chemical potential μ. The one-
body density matrix is given as

ρi j = tr[D̂ĉ†
j ĉi] =

∑
α

〈i|α〉 fβμ(εα )〈α| j〉 (1)

where fβμ is the Fermi-Dirac function fβμ(x) = {1 +
eβ(x−μ)}−1. Here, the subscripts i and j denote the indices for
an arbitrary single-particle basis, while α denotes the single-
particle states to diagonalize H (and H ′), Ĥ |α〉 = εα|α〉. ĉi

(ĉ†
i ) is an annihilation (creation) operator for a particle in the

state |i〉. Since the HF Hamiltonian Ĥ [ρ] is a functional of
the one-body density, the states |α〉 and energies εα depend
on ρi j . Thus, Eq. (1) should be iteratively calculated until
self-consistency is achieved. It is straightforward to extend the
theory to the HFB theory at finite temperature [1,25].

It should be worth mentioning that the finite-temperature
HF theory can be derived by the principle of maximum en-
tropy, with an assumption that the partition function is given
in a form Z = tr[e−βK̂ ] with a one-body operator K̂ . Con-
straining the energy and the particle number with Lagrange
multipliers (associated with β and μ), it is equivalent to the
minimization of the thermodynamic potential [1]:

J = E − T S − μN (2)

= E [ρ] + kBT tr[D̂ ln D̂] − μtr[D̂N̂] (3)

= E ′[ρ] − tr[D̂K̂] − kBT ln Z, (4)

where E [ρ] is the energy density functional and E ′ ≡ E −
μN . Taking the variation with respect to the one-body
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operator δK̂ , it leads to

δJ = δE ′

δρ
· δρ − tr[D̂δK̂] − tr[K̂δD̂] − δ ln Z

β
(5)

= tr[Ĥ ′δD̂] − tr[K̂δD̂], (6)

where Ĥ ′ ≡ ∑
i j H ′

i j ĉ
†
i ĉ j with H ′

i j = δE ′/δρ ji. Therefore, the
principle of maximum entropy gives K̂ = Ĥ ′.

B. Fermi operator expansion method

According to Eq. (1), the one-body density can be calcu-
lated by diagonalizing H ′ to obtain the eigenstates and the
eigenenergies, |α〉 and εα . However, since one needs to per-
form the diagonalization every iteration until self-consistency
is achieved, it is prohibitively difficult for large systems. In
order to reduce the computational cost, one must avoid the
matrix diagonalization which numerically costs O(N3). In
this paper, I explore one such approach, the Fermi operator
expansion (FOE) method.

The idea of the FOE method can be easily understood by
rewriting Eq. (1) as ρi j = 〈i|ρ̂| j〉, where

ρ̂ =
∑

α

|α〉 fβμ(εα )〈α| = fβμ(Ĥ ). (7)

Thus, the one-body density is nothing but the Fermi-Dirac
function whose argument is replaced by the Hamiltonian. In
addition, the FOE is based on the polynomial approximation
of the Fermi-Dirac distribution function,

fβμ(x) ≈
M∑

n=0

anTn(x), (8)

where Tn(x) is a polynomial function of the nth degree, and the
summation is truncated at the maximum degree M. The poly-
nomial approximation should be better at large T , because the
Fermi-Dirac function is smoother at higher temperature. In
contrast, at the zero temperature limit, the function becomes
the Heaviside step function, for which the approximation is
not so precise. Nevertheless, in the case where there is a
gap �E at the Fermi surface, such as the shell gap and the
pairing gap, the result of the finite temperature calculation
with kBT � �E is practically identical to the one at zero
temperature.

Inserting Eqs. (7) and (8) into ρi j = 〈i|ρ̂| j〉, one has

ρi j = 〈i| fβμ(Ĥ )| j〉 =
M∑

n=0

an〈i| jn〉, (9)

where | jn〉 ≡ Tn(Ĥ )| j〉. If the polynomial function Tn(x) is
simply given by Tn(x) = xn, the state | jn〉 can be calculated
starting from | j0〉 ≡ | j〉 as

| jn〉 = Ĥ | jn−1〉, n = 0, . . . , M. (10)

Thus, multiplying the basis state | j〉 by Ĥ M times, the one-
body density ρi j can be constructed. This is the basic idea of
the FOE method.

In practice, the simple choice of Tn(x) = xn often leads to
a numerical instability, because the functions xn are diverging

functions at |x| > 1 for large n. In order to avoid this numer-
ical problem, a careful choice of the polynomial functions is
required for Tn(x).

C. Chebyshev polynomials

In the present work, I adopt the Chebyshev polynomials for
Tn(x). The Chebyshev polynomials of the first kind are given
by Tn(x) = cos nt with x = cos t , thus both x and Tn(x) are
bound between −1 and 1. They are orthogonal with respect to
the weight of 1/

√
1 − x2:∫ 1

−1
Tn(x)Tm(x)

dx√
1 − x2

= Nnδnm, (11)

with the normalization constants N0 = π and Nn = π/2
(n 	= 0).

First, I change the energy scale by transforming Ĥ
into Ĥ ≡ Ĥ−ec

er
, where ec ≡ (emax + emin)/2 and er ≡ (emax −

emin)/2. When the eigenvalues of Ĥ satisfy emin � eα � emax

in the adopted model space, those of Ĥ are in the interval
[−1, 1]. Instead of expanding fβμ(x) as Eq. (8), I expand a
scaled Fermi-Dirac function f̃ (x) as

f̃ (x) ≡ fβμ(erx + ec) ≈ a0

2
+

M∑
n=1

anTn(x), (12)

where the coefficients an are given by

an = 2

π

∫ 1

−1
Tn(x) f̃ (x)

dx√
1 − x2

. (13)

It is worth noting that f̃ (x) and an depend on both β and μ,
for which I omit these subscripts for simplicity.

Instead of Eq. (10), the recursive relations of the Cheby-
shev polynomials,

Tn+1(x) = 2xTn(x) − Tn−1(x), n � 1, (14)

lead to a recursive formula for | jn〉 ≡ Tn(Ĥ)| j〉,
| jn+1〉 = 2Ĥ| jn〉 − | jn−1〉, n = 1, . . . , M − 1. (15)

Starting with | j0〉 = | j〉 and | j1〉 = Ĥ| j〉, all the states | jn〉
up to n = M are obtained, then the one-body density is
calculated as

ρi j = 〈i| f̃ (Ĥ)| j〉 = a0

2
〈i| j〉 +

M∑
n=1

an〈i| jn〉. (16)

Let us summarize the numerical procedure to reach the
self-consistent solution of the HF problem at a given temper-
ature T .

(0) The maximum and minimum energies, emax and emin,
are determined according to a problem of interest. See
Sec. III A for those values. The initial density distribu-
tion ρ(r) and the initial chemical potential μ are given
by hand. For a given T , calculate the coefficients an

(n = 0, . . . , M) according to Eq. (13). Set up the initial
Hamiltonian Ĥ .

(1) Calculate | jn〉 (n = 0, . . . , M) according to Eq. (15).
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(2) Construct the one-body density according to Eq. (16).
Adjust the chemical potential μ if necessary.

(3) Construct the HF Hamiltonian Ĥ [ρ] using the calcu-
lated density ρi j .

(4) Check the self-consistency between the density and the
Hamiltonian. If it is self-consistent, end the iteration.
Otherwise, go to step 1 and iterate the procedure.

In the present formulation, the function fβμ(x) depends
on T and μ. Thus, when I change the chemical potential
μ, I have to recalculate the coefficients an in Eq. (12). You
may think that it is better to expand the function (1 + eβx )−1

instead of {1 + eβ(x−μ)}−1 and to use Ĥ − μ instead of Ĥ.
However, in this case, I need to reevaluate the states | jn〉 using
the recursion relation (15), because | jn〉 depend on T and μ.
Since the calculation of | jn〉 requires the major portion of
the computation, I adopt the expansion of fβμ(x). If I adjust
the chemical potential in step 2 of every iteration to fix the
particle number (average density), only the coefficients an in
Eq. (13) need to be recalculated. The additional computation
is negligibly small compared to the calculation of | jn〉.

D. Calculation of entropy

It is of significant importance to calculate the entropy of
systems at finite temperature. The calculation of the free en-
ergy requires the evaluation of the entropy as well. For the
product wave functions, the entropy S is given by

S = −kB

∑
α

[ fα ln fα + (1 − fα ) ln (1 − fα )], (17)

where fα = fβμ(εα ). In order to calculate this, normally one
needs all the eigenvalues of the Hamiltonian, εα , which re-
quires an additional computation, namely the diagonalization
of the Hamiltonian. It demands a large computational cost of
O(N3).

In this paper, I propose another manner to approximate a
function

g̃(x) ≡ − f̃ (x) ln f̃ (x) − {1 − f̃ (x)} ln{1 − f̃ (x)}, (18)

with the polynomial expansion as

g̃(x) ≈ b0

2
+

M ′∑
n=1

bnTn(x), (19)

analogous to Eq. (12). The coefficients bn are determined
in the same manner as Eq. (13). Then, the entropy can be
calculated as

S = kBtr[g̃(Ĥ)] (20)

≈
∑

j

⎡
⎣b0

2
+

M ′∑
n=1

bn〈 j| jn〉
⎤
⎦. (21)

Since the states | jn〉 = Tn(Ĥ)| j〉 are calculated in Eq. (15) in
order to construct the density, almost no extra cost is needed
for evaluation of the entropy provided that M ′ � M. In fact, I
find that the condition M ′ � M is well satisfied in practice (see
Sec. III B). At small temperature, g̃(x) has a sharp peak at x =
(μ − ec)/er , which demands a large value of M ′. However, in

this case, M must be also large, because f̃ (x) also produces
a sharp transition from 1 to 0. At T = 0, f̃ (x) becomes a
discontinuous Heaviside function, f̃ (x) = θ (x), while g̃(x) is
a constant function, g̃(x) = 0.

In the FOE method, one ends up with the vectors | jn〉,
which contains the information of the Chebyshev polynomi-
als of the Hamiltonian, | jn〉 = Tn(Ĥ)| j〉. Therefore, quantities
that are continuous functions of the single-particle energies,
including the density and the entropy, can be evaluated in
principle from | jn〉. The number of vectors | jn〉 is N × M,
where N is the dimension of the single-particle space (system
size). Since M is inversely proportional to the temperature
T as Eq. (22) below, the FOE is more efficient at higher
temperature.

E. Nearsightedness and order-N method

The FOE method is regarded as one of the linear system-
size scaling methods, namely, an order-N [O(N )] method.
According to Ref. [30], the degree of polynomial necessary
for an accuracy of 10−D (D > 1) is estimated as

M = 2
3 (D − 1)erβ. (22)

Assuming a Gaussian basis functions of range σ centered
at mesh points whose spacing comparable to σ , the matrix
elements for Ĥ at a large separation have the same width
σ , and the long-range matrix elements for ĤM are estimated
as

√
Mσ [30]. Therefore, the range of the density matrix of

Eq. (16) is approximately given as

rN ∼
√

Mσ ∼
√

h̄2

3m
(D − 1)β, (23)

where I use Eq. (22) and er ∼ emax ∼ h̄2σ−2/(2m) at a small
value of σ . In other words, the density matrices ρ(r, r′) are
localized, namely, ρ(r, r′) ≈ 0 at |r − r′| > rN . It becomes
more “nearsighted” (rN → 0) for higher temperature β → 0.

At the zero temperature limit, rN can stay finite if there is a
gap δe at the Fermi surface, although Eq. (23) diverges. Taking
the chemical potential μ as the mid value of the gap, the
condition that discrepancies between the Heaviside function
and the Fermi-Dirac function are smaller than 10−D except
for the gap interval leads to

β > (2 ln 10)
D

δe
. (24)

For instance, when there is a shell gap of δe = 2 MeV at
the Fermi surface and the accuracy of D = 3 (error smaller
than 10−3) is required, the calculation at T = 100 keV is
practically identical to that at T = 0.

The nearsightedness of the density enables us to perform
the O(N ) calculation. The calculation of | jn〉 (n = 1, . . . , M)
in Eq. (15) can be performed in a truncated space whose
dimension does not depend on the system size. Since the
nonlocal (off-diagonal) densities ρi j with Ri j > rN vanish,
the matrix-vector product in Eq. (15) can be performed in
the restricted active subspace. Here, Ri j means the spa-
tial distance between two basis states |i〉 and | j〉. For the
coordinate-space basis, it is trivially Ri j = |ri − r j |. For the
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single-center harmonic-oscillator basis, which is common and
efficient in calculation of finite nuclei, it is difficult to find
a pair of states with Ri j > rN . Thus, the applicability of the
O(N ) method also relies on the choice of the basis.

Before finishing this section, I emphasize the following ad-
vantageous features of the method in numerical computation.
First, in order to construct the one-body density ρi j , only the
matrix-vector product, the operation of the Hamiltonian on a
state, is necessary in Eq. (15). Although the self-consistency
between the density ρ and the Hamiltonian H[ρ] requires
the iteration, neither the matrix diagonalization nor the linear
algebraic equations are involved to achieve the mean-field
solution at the temperature T . Second, the calculations of ρi j

in Eqs. (15) and (16) for different j can be independently
performed. It is suitable for massively parallel computing for
large systems. Last, but not the least, the method may receive
benefits from its nearsightedness, and the computational cost
could linearly scale with the system size (Sec. III E).

III. NUMERICAL RESULTS

A. Energy density functional and numerical details

I use the BKN energy density functional [31], which is
a functional of the isoscalar kinetic and local densities and
assumes the spin-isospin symmetry without the spin-orbit in-
teraction. The pairing correlation is neglected. Since the BKN
functional is not suitable for the description of neutron-rich
matter, I study only symmetric nuclear matter and finite nuclei
with N = Z . Nevertheless, it serves for the purposes of the
present paper, namely, to examine applicability and perfor-
mance of the FOE method for the mean-field (energy-density)
calculation for nuclei and nuclear matter at finite temperature.

I adopt the 3D Cartesian grid representation [32] of
a square box with periodic boundary condition. The 3D
grid size is set to be h3 = (1.0 fm)3. The differentiation is
evaluated with the nine-point finite difference method. For
calculation of isolated finite nuclei, the center-of-mass correc-
tion is taken into account by modifying the nucleon’s mass
as m → m ∗ A/(A − 1). For the nonuniform nuclear matter
calculation (A → ∞), I use the bare nucleon’s mass. The fast
Fourier transform, which is well suited for periodic systems,
is utilized for calculation of the Coulomb potential. For the
calculation of the isolated finite nucleus, I use the method
same as Ref. [33] following the idea given in Ref. [34].

In order to make the Chebyshev polynomial expansion, I
need to set the maximum and the minimum single-particle
energies. The minimum energy is taken as emin = −50 MeV,
which is safe enough in the cases of N = Z nuclei and sym-
metric nuclear matter. The maximum energy is set as

emax = 3 × h̄2

2m

(
π

h

)2

, (25)

according to the maximum kinetic energy for the 3D grid
of h3.

For the self-consistent iteration of the finite-temperature
HF calculation, I use the modified Broyden’s method [35,36].
I use the HF potential v(r) as the Broyden’s vector to
update [36].
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FIG. 1. (a) Fermi-Dirac distribution function fβμ(ε) as a function
of the single-particle energy, calculated with the Chebyshev polyno-
mial expansion. The degrees of polynomials are M = 90, 900, 9000
for T = 10, 1, and 0.1 MeV, respectively. (b) Error in the polynomial
approximation, Eq. (26).

B. Validity check for the polynomial expansion

Let us first examine the accuracy of the expansion with the
Chebyshev polynomials. According to Eq. (22), the maximum
degrees of the polynomials M are adopted as M = 1.5 × erβ,
which corresponds to the accuracy of 10−5.5. In Fig. 1, I show
the approximated Fermi-Dirac distribution function fβμ(ε)
with the chemical potential μ = −10 MeV [panel (a)], and
the deviation from the exact values [panel (b)],

df (ε) = a0

2
+

M∑
n=1

anTn

(
ε − ec

er

)
− fβμ(ε). (26)

I assume that the maximum and minimum single-particle
energies are εmax = 500 MeV and εmin = −100 MeV, respec-
tively, which leads to M = 900β (β in units of MeV−1). The
largest deviation appears around ε = μ and its value is order
of 10−6, which is consistent with the estimation of Eq. (22).
One can clearly see the importance of the temperature-
dependent maximum degrees M.

I perform the same analysis on the function

g(ε) = − fβμ(ε) ln fβμ(ε) − {1 − fβμ(ε)} ln{1 − fβμ(ε)},
(27)

which is used for calculation of the entropy, Eq. (17), and
show the result in Fig. 2. The maximum degrees M ′ are taken
as M ′ = M = 900β. The Chebyshev expansion for g(ε) is
well approximated, with the deviations being smaller than
10−5 for any temperature. They are well controlled as long
as the maximum degrees M are adjusted in proportion to β.
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FIG. 2. Same as Fig. 1, but for the entropy function g(ε) of
Eq. (27) instead of fβμ(ε).

If I increase M at fixed temperature, the accuracy is signif-
icantly improved, as shown in Fig. 3. One finds an agreement
with Eq. (22); M = 100 (M = 120) corresponds to D = 6
(D = 7) in Eq. (22).

In order to check the accuracy in the final results, I perform
the FOE calculation using M = k × erβ with different values
of k. I use the Woods-Saxon potential, Vws(r) = Vws/[1 +
exp(r − Rws)/aws], with Vws = −50 MeV, Rws = 3 fm, and
aws = 0.5 fm. The adopted space size is (13 fm)3 and the
chemical potential is fixed at μ = −15 MeV. The calculated
quantities with T = 1 MeV and 10 MeV are shown in Table I.

-2x10-6

-1x10-6

0

1x10-6

2x10
-6

-100 -50 0 50 100

df
(ε  

)

ε [MeV ]

M=90
M=100
M=120

FIG. 3. Error in the Fermi-Dirac function at T = 10 MeV with
different values of the maximum degrees M. The magenta line is
calculated with M = 90, the same as that in Fig. 1(b). Those with
M = 100 and M = 120 are shown by orange and light blue lines,
respectively.

TABLE I. Calculated values of nucleon number A, the total ki-
netic energy Ekin, the Woods-Saxon energy Ews, and the entropy S/kB,
using different values of k. The temperature is T = 1 MeV for the
upper three rows, while T = 10 MeV for the rest. See text for details.

k A Ekin (MeV) Ews (MeV) S/kB

T = 1 MeV
1.0 9.8125 159.5155 −183.8843 8.3121
1.5 9.8125 159.5157 −183.8843 8.3121
2.0 9.8125 159.5157 −183.8843 8.3121

T = 10 MeV
1.0 27.3152 532.9096 −248.7950 78.6638
1.5 27.3152 532.9055 −248.7954 78.6634
2.0 27.3152 532.9055 −248.7954 78.6634

The nucleon number is calculated as the integration of density
over the adopted space. The “Woods-Saxon energy” is de-
fined as Ews = (1/2)

∫
Vws(r)ρ(r)dr. The difference between

k = 1.5 and k = 2.0 is negligible, less than 100 eV in energy.
In this paper, I use the temperature-dependent maximum de-
grees, M = 1.5 × erβ, which provides a reasonable accuracy.

With the same chemical potential, the nucleon number A
increases approximately threefold from T = 1 to 10 MeV. On
the other hand, difference in the Woods-Saxon energy is only
about 30%. This can be understood from the nucleon density
profile shown in Fig. 4. A significant portion of nucleons is
dripped from the Woods-Saxon potential at T = 10 MeV. The
particles far out of the potential range Rws = 3 fm do not
contribute to Ews.

C. Isolated nuclei at finite temperature

1. Modified Broyden’s method

In the HF calculations, self-consistency between the densi-
ties and the potentials (Hamiltonian) is required. For a given
HF Hamiltonian Ĥ (n)

in at the nth iteration, the one-body density
ρi j is obtained using the FOE calculation of Eq. (16), which
produces a new HF Hamiltonian Ĥ (n)

out . The self-consistency

0

0.1

0.18

0 2 4 6 8

ρ
(r

)[
fm

-3
]

r [ fm ]

T=1 MeV
T=10 MeV

FIG. 4. Calculated density profiles at T = 1 and 10 MeV as a
function of the radial coordinate. Symbols indicate calculated values
at the square mesh points and lines are obtained by spline interpola-
tion. See text for details.
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FIG. 5. Comparison of convergence between the linear mixing
(black lines) and the modified Broyden’s method (red symbols) for
16O calculated at T = 1 MeV. The space size is (13 fm)3. See text
for details.

is achieved when one reaches the fixed point for the Hamil-
tonian, Hin = Hout, which is equivalent to the density fixed
point. Since naive iteration with the total replacement of the
Hamiltonian as Ĥ (n+1)

in = Ĥ (n)
out does not converge in many

cases, the linear mixing is often adopted as Ĥ (n+1)
in = (1 −

α)Ĥ (n)
in + αĤ (n)

out with a mixing parameter α. Although the
divergence can be avoided if I choose the parameter α small
(0 < α � 1), the convergence can be very slow.

In this paper, I use the modified Broyden’s method [35]. In
Ref. [36], its performance was examined for finite nuclei with
Skyrme-HFB calculations at zero temperature using matrix
diagonalization. I perform a similar study for the FOE calcu-
lation at finite temperature. In Fig. 5, I show the convergence
behaviors of the modified Broyden’s method, compared to the
linear mixing method. Here, I show the difference in diagonal
density ρ(r) between the current (n) and the previous (n − 1)
iteration steps:

|�Fn| ≡ A−1
∫

dr|ρ (n)(r) − ρ (n−1)(r)|. (28)

Since the chemical potential is adjusted every iteration to re-
produce either the average nucleon density ρav, or the nucleon
number, the baryon (nucleon) number A is fixed during the
iteration.

In the linear mixing, the result depends on the magnitude
of the mixing parameter α. Figure 5 shows the case of 16O
at T = 1 MeV. In this case, the calculation with α = 1 does
not converge, while that with α = 0.5 gives the fastest con-
vergence among α = 1, 0.8, 0.5, and 0.2. The optimum value
of α varies and is difficult to predict. For instance, in the case
of T = 10 MeV, the calculation with α = 1 converges faster
than that with α = 0.5. In order to guarantee the convergence,
I need to choose a small value of α, typically α < 0.2, which
leads to a slow convergence of the iterative procedure.

The modified Broyden’s method provides a faster and a
stable convergence. The modified Broyden’s algorithm [35]
also contains two parameters I need to choose, namely, the
mixing parameter α and the maximum number of stored vec-
tors, m. It turns out that the result does not strongly depend

-138

-130

-120

0 10 20

E
or

F
[M

eV
]

Iteration number

E (T=1 MeV)
F (T=1 MeV)

E (T=10 MeV)
F (T=10 MeV)

FIG. 6. Total energy E (solid lines) and free energy F (dashed) of
16O at T = 1 MeV (blue) and T = 10 MeV (red) as functions of self-
consistent iteration number with the modified Broyden’s method.
The lines for T = 10 MeV are shifted by −330 MeV for E and by
+300 MeV for F . See text for details.

on the choice of α and m. For the mixing parameter α, one
can safely choose α ≈ 1. Larger values of m give slightly
better convergence, but only a few iteration number differ-
ence between m = 10 and 100. In the present paper, I adopt
α = 0.8 and m = 100. Although storing m Broyden’s vectors
may require large memory resources when the system size is
large, the computational time for the Broyden’s procedure is
negligible.

2. Isolated doubly magic nuclei at finite temperature

First, I show results of 16O at finite temperature. I use a
space size of (13 fm)3 with a 3D cubic grid of (1 fm)3. In
Fig. 6, the total energy E and the free energy F at every
iteration are plotted. At T = 1 MeV, as the iteration number
increases, both E and F decrease to the final values, E =
−132.6 MeV and F = −132.9 MeV. The calculated entropy
is very small, about 0.3kB. This is due to the doubly closed-
shell nature of 16O. At T = 10 MeV, in contrast, the total
energy E increases to reach the converged value, E = 210.0
MeV. Note that the line in Fig. 6 is shifted downwards by 330
MeV to be presented in the same panel as T = 1 MeV. Nev-
ertheless, the free energy F decreases, because the entropy
gradually increases as the iteration proceeds. The entropy is
calculated as S = 64.6kB.

The calculated nucleon density distributions are presented
in Fig. 7. The center of mass of 16O is located at the center
of the cubic box of (13 fm)3. The density values at the cal-
culated grid points are shown by circles for T = 0.5 and 8
MeV. Spline interpolation is used to show the smooth lines
in Fig. 7. At low temperature, such as T = 0.5 and 1 MeV,
one finds a signature of the shell effect as a dip at the center
of the nucleus. This is due to the full occupation of the 0p
orbitals. The higher the temperature is, the more fractional is
the occupation, leading to weakening of the shell effect. At
T = 7 MeV, the density hole at the center disappears.

The phase transition to the uniformed nuclear matter takes
place at the critical temperature Tc = 7.47 MeV. More pre-
cisely, it is 7.46 < Tc � 7.47 MeV. A discontinuous change
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FIG. 7. Nucleon density distribution of 16O at different temper-
atures. The horizontal axis is the distance from the center of mass.
Since values calculated at T = 0.5 and 8 MeV are indistinguishable
from those at T = 1 and 7.47 MeV, respectively, they are shown as
symbols. The space size is (13 fm)3. Inset: Density distribution in the
outer region of r > 4 fm is shown, but values at T = 0.5 and 8 MeV
are omitted. See text for details.

in the density profile suddenly occurs at T = Tc. This is a
consequence of the self-consistent evolution of the mean-field
potential, which gives a striking contrast to the density change
in the fixed potential (Fig. 4). The 16O nucleus is in a liquid
phase at T = 0. Since there are some dripped nucleons at
T 	= 0, it is a coexistence phase of liquid and vapor at 0 <

T < Tc. Then, it is transformed to the gas phase at T > Tc. I
should note here that the critical temperature Tc depends on
the adopted volume V that is (13 fm)3 in the present calcula-
tion. Tc for the isolated nucleus should be given as the value
at V → ∞. See Sec. III D 2 for more details.

The dripped nucleons at different temperature can be seen
in the inset of Fig. 7. In the gas phase, the density should be
ρgas = 16/(13 fm)3 = 7.28 × 10−3 fm−3. The uniform den-
sity obtained at T > Tc is very close to ρgas; however, the
calculated density is not perfectly constant. It has a minimum
value at the center and slightly increases as r increases. This
strange behavior is an artifact due to the finiteness of the box
size. Following the idea of Ref. [34], the Coulomb potential
for the isolated system is calculated by assuming that there
exists no charge outside of the adopted space [(13 fm)3 in
the present case]. Therefore, the charged particles (protons)
tend to move toward the edge of the box, in order to reduce
the Coulomb repulsive energy. I have also confirmed that
the density is perfectly constant if the Coulomb potential is
neglected.

Figure 8 shows the density profiles for 40Ca. The model
space is taken as (17 fm)3 with the cubic grids of (1 fm)3.
The shell effect opposite to 16O is seen at low temperature,
namely a bump at the center of the nucleus. This is due
to the full occupation of the 1s orbital. The shell effect be-
comes invisible at T = 7 MeV. The critical temperature of the
liquid-gas transition is located in 8.5 < Tc � 8.6 MeV. The
discontinuous density change is seen at T = Tc. The density
of the uniform matter in the present calculation should be
ρgas = 40/(17 fm)3 = 8.14 × 10−3 fm−3.

ρ(
r)

 [ 
fm

-3
 ]

r [ fm ]

T=1.0 MeV
T=3.0 MeV
T=7.0 MeV
T=8.5 MeV
T=8.6 MeV

FIG. 8. Nucleon density distribution of 40Ca at different temper-
atures. The horizontal axis is the distance from the center of mass.
The space size is (17 fm)3.

In Fig. 9, the energy E and the free energy F are shown
as functions of T . At T = Tc ≈ 8.6 MeV, the total energy E
shows a kink because of the abrupt density change. However,
this kink is almost canceled by an opposite kink behavior in
the entropy, and F = E − ST behaves rather smoothly. E is a
monotonic increasing function of T , while F is a decreasing
function. The zero temperature limit is easily achieved in this
case, because the 40Ca nucleus is doubly magic with large
shell gaps at the Fermi surface. In the inset panel of Fig. 9,
E = F holds in very high accuracy at T = 0.1 MeV. The
difference is within 0.1 eV. Even at T = 0.5 MeV, it is within
50 keV. Note that the upper (lower) limit of the total energy at
T = 0 is given by E (F ) at T > 0.

It is worth mentioning that the coordinate-space repre-
sentation is essential to describe the dripped nucleons and
the liquid-gas phase transition. Most of the finite-temperature
mean-field calculations in the past were performed with the
harmonic oscillator basis [3,4,6]. Those studies are focused
on the shape change and the pairing properties at finite
temperature; however, it is difficult to describe the uniform

E 
[ M

eV
 ]

T[ MeV ]

E
Ekin

-ST+600MeV
F

FIG. 9. Total energy E (red solid) and free energy F (blue solid)
are shown as functions of T , together with kinetic energy Ekin (black
dotted) and −ST (purple dash-dotted) for 40Ca. Note that the line
of −ST is shifted upward by 600 MeV. Inset: E and F in the zero
temperature region are magnified.
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FIG. 10. Calculated intrinsic quadrupole moments (Q2 and |Q22|)
for 24Mg at finite temperature. At low temperature (T � 0.5 MeV),
the self-consistent iterations starting from different initial states
result in different solutions, labeled by “axial” and “triaxial,” respec-
tively. See text for details.

matter and the dripped nucleons. In Refs. [8,9], adopting the
spherical Wigner-Seitz approximation, the finite-temperature
Skyrme Hartree-Fock calculation was performed in the radial
coordinate representation. My results on properties of the
liquid-gas phase transition turn out to be substantially differ-
ent from Refs. [8,9]. For instance, they showed that ignoring
the Coulomb potential for 208Pb leads to a significant increase
in Tc (about 5 MeV) and a smooth continuous transition
from the liquid to the gas phase. In my calculation, properties
of the liquid-gas transition is almost invariant, even if I neglect
the Coulomb potential: One finds a slight increase by only
a few hundred keV with a discontinuous transitions of the
density profile into the uniform matter. Although the results in
this paper are on N = Z nuclei only, it would be important to
perform the detailed comparison in future to identify origins
of the discrepancies.

3. Isolated deformed nuclei at finite temperature

I calculate an isolated 24Mg nucleus at finite temperature,
which is known to be deformed in the ground state. In Fig. 10,
I present the calculated quadrupole moment, which is defined
as

Q2 ≡
√√√√ 2∑

μ=−2

|Q2μ|2, Q2μ ≡
∫

dr r2Y2μρ(r). (29)

At low temperature, when I start the self-consistent iteration
with a Hamiltonian corresponding to an axially symmetric
deformed density distribution, the calculation converges to
an axially symmetric prolate nucleus (Q2μ = 0 except for
μ = 0). However, near the zero temperature, this does not
correspond to the state with the minimum free energy. If I

E 
[ M
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 ]

T[ MeV ]

E
Ekin

F

triaxial

axial

FIG. 11. Total energy E (red solid line) and free energy F (blue
solid) are shown as functions of T , together with kinetic energy Ekin

(black dotted) for 24Mg. Inset: E and F near the zero temperature are
magnified.

start with a triaxial shape, it ends up with a triaxially deformed
nucleus, characterized by Q22 	= 0. The shape transition from
triaxial to axial shapes takes place at temperature T = Ttri with
0.5 < Ttri < 0.6 MeV. The axial prolate shape persists till the
second shape transition to the spherical shapes, which takes
place at temperature T = Tdef with 2.7 < Tdef < 2.8 MeV.
This is shown in Fig. 10 as two lines.

In Fig. 11, I show the temperature dependence of the
energy E and the free energy F . A kink of the energy E
is caused by the liquid-gas phase transition. The calculated
critical temperature is 6.5 < Tc < 6.6 MeV. Again, this kink
is almost canceled by an opposite kink behavior in the en-
tropy, and a kink in the free energy F is much smaller. The
effect of the shape transition at T ≈ 2.7 MeV is invisible in
the temperature dependence of E and F , while that of the
axial-triaxial transition at T ≈ 0.5 MeV can be seen in the
inset of Fig. 11. An extrapolation to T = 0 using calculations
at T > 0.5 MeV may lead to a wrong answer. The zero tem-
perature limit should be carefully examined when a structure
change is expected at very low temperature.

Another interesting feature is a property of the kinetic
energy. At T = 0.1 MeV, the kinetic energy for the triaxial
solution is smaller than that of the axial one by about 6.3 MeV,
while the difference in the total energy is about 2.4 MeV. This
clearly indicates that the triaxial shape in 24Mg is realized by
significant decrease in the kinetic energy, although it is un-
favored by the potential energy. As the deformation decreases
with increasing temperature, the kinetic energy monotonically
increases up to T = Tdef . This also suggests that the defor-
mation reduces the kinetic energy, while the potential energy
favors the sphericity. This is consistent with the fact that
the Thomas-Fermi method cannot produce the deformation.
When there are more nucleons moving along z direction than
x and y directions, according to the uncertainty principle, the
kinetic energy can be reduced by elongating a potential in the
z direction. This effect is completely lost in the local density
approximation.

At T > Tdef , the nucleus is spherical and the kinetic energy
decreases as increasing T . At T = Tc, since the nucleus sud-
denly breaks up into a gas phase, the kinetic energy shows
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FIG. 12. Density distributions at ρ = 6.51 × 10−3 fm−3 in a cu-
bic configuration at finite temperature. The cell size is (17 fm)3, and
the horizontal axis represents the distance from the center of the cell.

a discontinuous drop. This is because number of dripped
nucleons increases as a function of T up to T = Tc, and
their momenta are smaller than those of nucleons confined
inside the nucleus, which is also due to the uncertainty
principle.

D. Nonuniform periodic nuclear matter at finite temperature

Next, I apply the method to the nonuniform symmetric
nuclear matter. The only difference from the calculations in
Sec. III C is the treatment of the Coulomb potential. For peri-
odic nonuniform nuclear matter, I assume uniform distribution
of electrons, to guarantee charge neutrality. This results in the
vanishing k = 0 Fourier component of the Coulomb potential.
In the present calculations, the electron energy does not affect
the structure of nuclear matter, since I calculate the nuclear
matter at given baryon density ρ and proton ratio (Yp = 0.5).

1. A = 32 in a cell of (17 fm)3

First, I calculate for symmetric nuclear matter at average
baryon density ρ = 6.51 × 10−3 fm−3 with a simple cubic
initial configuration in which a 32S nucleus is located at the
center of a cubic box of (17 fm)3. At low temperature, I find
the 32S nucleus in a self-consistent solution. The 32S nucleus is
deformed at low temperature T < Tdef . The deformation dis-
appears at T = Tdef with 1.6 < Tdef < 1.7 MeV. The dripped
nucleons increase with temperature, then the liquid-gas phase
transition takes place at T = Tc with 7.7 < Tc < 7.8 MeV. See
Fig. 12 for evolution of the density distribution as a function
of temperature.

In addition to the simple cubic configuration, I also
perform calculations with the body-centered-cubic (bcc) con-
figuration as the initial state. This leads to two 16O nuclei in
the same cell (17 fm)3. At low temperature, the self-consistent
calculation converges to the bcc phase. Since the (free) energy
is larger than that of the cubic configuration, the bcc state
exists as a metastable equilibrium. Panels (a) and (b) in Fig. 13
show the density distributions at T = 0.1 MeV in the xy plane
at z = 8 fm and at z = 0. In contrast, panels (c) and (d) in
Fig. 13 show those at T = 5 MeV, indicating that the bcc

FIG. 13. Density distributions in the xy plane at ρ = 6.51 × 10−3

fm−3 with a cell of (17 fm)3, calculated with the bcc initial state. (a)
T = 0.1 MeV and z = 8 fm, (b) T = 0.1 MeV and z = 0, (c) T = 5
MeV and z = 8 fm, (d) T = 5 MeV and z = 0.

state is no longer stable at higher temperature. During the
self-consistent iterations starting from the bcc state, the 16O
nucleus at the center disappears, leading to the cubic config-
uration, namely, a single 32S nucleus in the cell of (17 fm)3.
The stability of the bcc state seems to be lost around T =
4 MeV.

Another calculation with the initial configuration of a
40Ca nucleus located at the center of the cell of (17 fm)3 is
performed. This corresponds to the average density of ρ =
8.14 × 10−3 fm−3. The variation of the density distribution
as a function of temperature is similar to the one for the
isolated 40Ca nucleus in Fig. 8. However, the critical tempera-
ture for the liquid-gas transition slightly increases, 8.6 < Tc <

8.7 MeV.
In the present calculation, the number of particles is ir-

relevant to the computational cost. Thus, as long as the cell
and the grid sizes are invariant, the computing time is roughly
the same for any density and particle numbers in the cell. It
should be noted that there is no spurious effect in dripped
nucleons, namely a rise of the density near the boundary ob-
served in cases of isolated nuclei (Sec. III C 2), such as Fig. 7.
The Coulomb potential in the periodic systems is influenced
by the periodic presence of other nuclei outside of the cell
(17 fm)3. The dripped nucleons produce perfectly flat density
distribution outside of the nucleus.

2. A = 32 in a cell of (23 fm)3

Enlarging the cell size into (23 fm)3 keeping the baryon
number A = 32 in the cell, I perform the same calculations
with the cubic and bcc initial configurations. The average
density is ρ = 2.63 × 10−3 fm−3. Both the cubic and bcc
configurations exist at low temperature at T � 3.7 MeV. The
solution with a single 32S nucleus in the cell has lower energy

015802-10



FERMI OPERATOR EXPANSION METHOD FOR NUCLEI … PHYSICAL REVIEW C 107, 015802 (2023)

FIG. 14. Density distributions in the xy plane at ρ = 2.63 × 10−3

fm−3 with a cell of (23 fm)3, calculated with the bcc initial state. (a)
T = 2 MeV and z = 11 fm, (b) T = 2 MeV and z = 0, (c) T = 5
MeV and z = 11 fm, (d) T = 5 MeV and z = 0. Note that the color
map is given in logarithmic scale.

than the bcc solution. In the calculation with T � 3.8 MeV,
the bcc metastable solution seems to disappear, since I end
up with the single 32S nucleus in the cell even if I start
with the bcc configuration with two 16O nuclei. The density
profiles obtained with calculations starting from the bcc initial
configuration are shown in Fig. 14 at T = 2 MeV [panels (a)
and (b)] and at T = 5 MeV [(c) and (d)].

Figure 15 presents the free energy per nucleon F/A for
various phases. The cubic configuration of 32S has the lowest
free energy at T < Tc ≈ 5.1 MeV. At T > Tc, the uniform
symmetric matter becomes the lowest. This critical tem-
perature Tc is significantly smaller than Tc for the average
density ρ = 6.51 × 10−3 fm−3 with the cell size (17 fm)3.
This can be understood as follows: For the uniform phase at

uniform
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FIG. 15. Free energy per particle of symmetric nuclear matter at
ρ = 2.63 × 10−3 fm−3 with a cell of (23 fm)3, for cubic, bcc, and
uniform phases. The dashed line is given by shifting the line of the
uniform matter by 0.9T . See text for details.
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FIG. 16. Normalized density matrix ρ(r, 0)/ρ(0, 0) as a function
of r for the simple cubic configuration [(a) and (c)] and for the
uniform matter [(b) and (d)]. Panels (c) and (d) show the absolute
values in logarithmic scale, with the dashed lines indicating the
value of 10−4. The average density is ρ = 8.22 × 10−3 fm−3 which
corresponds to A = 40 (40Ca) in a cell of (23 fm)3.

T > 5 MeV, the system is well approximated by the classical
gas. The entropy of the classical ideal gas has the volume de-
pendence as S ∼ AkB ln(V/A). Thus, the entropy per nucleon
S/A for the cell of (23 fm)3 is larger than that of (17 fm)3,
by δ(S/A) = kB ln(233/173) ≈ 0.9kB. This leads to a shift of
0.9kBT in the free energy of the uniform matter in (17 fm)3,
shown by a dashed line in Fig. 15. Since the entropy in
the localized phases, such as cubic and bcc, is scarcely af-
fected by the volume change, Tc, given by the crossing point
of the uniform and cubic phases, decreases as the volume
increases.

E. Nearsightedness

Finally, let us check properties of the “nearsightedness” in
calculations of nuclear matter at finite temperature, then ex-
amine whether it benefits calculations of neutron star matter.
The O(N ) calculation can be achieved if the one-body density
matrix, ρ(r, r′), is localized in a space considerably smaller
than the cell size. In the present calculation, I can truncate the
Hamiltonian matrix in Eq. (15) into a space only near | jn〉. See
also arguments in Sec. II E.

Figure 16 presents the off-diagonal behaviors of the density
matrix for a 40Ca nucleus located at the center of the cell
(23 fm)3 of the simple cubic lattice. For comparison, those
for the uniform matter are shown in the bottom panels (b) and
(d). I adopt the center of the cell r = 0 as a reference point and
show ρ(r, 0) as a function of the distance r. The magnitude of
the off-diagonal density exponentially decays. For the uniform
matter, the calculated behaviors indicate a decay constant
proportional to the temperature T . This is known in studies
of finite-temperature density matrix for electrons in metals
[37]. In contrast, for nonuniform matter with 40Ca in a cell,
the decay is significantly faster than the uniform matter and is
insensitive to the temperature. This is not entirely attributed
to the finite radius of the nucleus 40Ca. From T = 1 MeV
to T = 5 MeV, the radius of 40Ca is reduced by about 0.5–1
fm (cf. Fig. 8), because more nucleons are dripped to form
low-density matter. However, the effect of this reduction in the
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nuclear radius is not visible in Fig. 16(a) and 16(c). The fast
decay may be, at least partially, due to large density inside the
nucleus. At zero temperature, the uniform matter is expected
to show an oscillating pattern of ρ(r, 0) ∼ kF cos(kF r)/r2

[28], where kF is the Fermi momentum. Thus, at larger den-
sity (larger kF ), the off-diagonal density goes to zero more
quickly.

Eventually, the localization of the density matrix is more
prominent in the nonuniform phase than in the uniform matter.
Adopting the cutoff value for the relative magnitude as 10−4

[the dashed line in Fig. 16(d)], the cutoff distance for the
uniform matter is given by Rc ≈ 13 fm at T = 5 MeV, and
it is considerably larger than 20 fm at T = 1 MeV. In contrast,
for the nonuniform matter, the cutoff distance is Rc ≈ 10 fm
at T = 5 MeV and Rc ≈ 13 fm at T = 1 MeV. When one cal-
culates the ρ(r, r′) with the recursion relation (15), truncating
the space into a local subspace, |r − r′| < Rc, may lead to a
sizable reduction in the computational cost if the cell size is
larger than R3

c .

IV. CONCLUSION

I examine the applicability and the usefulness of the Fermi
operator expansion (FOE) method in nuclear energy density
functional approaches at finite temperature. The one-body
density matrix, which is identical to the Fermi operator, is
expanded in terms of the Chebyshev polynomials up to finite
order. The maximum degree of the polynomials is inversely
proportional to the temperature. Thus, it becomes extremely
efficient for calculations at high temperature. For the self-
consistent iteration procedure, I adopt the modified Broyden’s
mixing method. The same idea of the polynomial expansion
is applied to calculations of the entropy, which enables one to
estimate the free energy without diagonalization of the Hamil-
tonian matrix. The FOE method is applied to calculations of
isolated nuclei and nonuniform nuclear matter, using the 3D
coordinate-space representation.

I investigate thermal properties of isolated nuclei in a
cell of (13 fm)3. For 24Mg, the triaxial shape has the min-
imum energy at zero temperature. The triaxial state exists
as a solution at T � 0.6 MeV; beyond that, the state dis-
appears. The axial deformed solution survives till T ≈ 2.7
MeV, beyond which the nuclear shape is spherical. The
liquid-gas transition takes place around Tc ≈ 6.5 MeV. For
doubly magic spherical nuclei, such as 16O and 40Ca, the
critical temperature of the liquid-gas transition has slightly
higher values, Tc = 7–9 MeV. However, the detailed val-
ues of the critical temperature may not have a significant
meaning for isolated nuclei, because they depend on the vol-
ume of the adopted space. One needs to take the infinite
volume limit. Nevertheless, it is a great advantage of the
coordinate-space representation that it is capable of describ-
ing both the spatially localized nucleus and the extended
matter.

For periodic nonuniform nuclear matter, the calculations
are performed with different cell sizes, (13 fm)3 and (23 fm)3,
with the same nucleon number A = 32. I start the self-
consistent iteration with different initial states, such as the
simple cubic and the bcc configurations. At low temperature,

both the simple cubic and the bcc states exist as self-consistent
solutions. The cubic state is lower in free energy than the bcc
state. The transition to uniform matter takes place at Tc, the
value of which is smaller for a larger cell. This volume effect
on the critical temperature Tc is due to the volume dependence
of the entropy of the uniform matter. For the inner crust
of neutron stars in β equilibrium, the cell size is supposed
to decrease as the density increases [19]. Since the entropy
of the classical gas behaves as S/A ∼ kB ln(V/A) ∼ −kB ln ρ,
Tc may become larger at larger densities. This is somewhat
opposite to the naive expectation, because the density pro-
file becomes flatter at higher density. It may be of interest
to investigate the critical temperature Tc in different density
regions.

Advantageous features of the FOE method from a com-
putational point of view can be summarized as follows: (1)
The matrix diagonalization is not involved in the calculation,
including the calculation of the entropy. (2) The calculation of
the density matrix ρi j is independent with respect to the index
j. Thus, it is suitable for distributed-memory parallel com-
puting. (3) The computational cost could scale linearly with
respect to the space dimension N , when N is large enough.
Here, N is the dimension of the matrix ρi j .

The last point (3) above is numerically investigated by
examining the decay of the density matrix ρ(r, r′) at large
|r − r′|. For the uniform matter, the decay length is shorter at
higher temperature, which has been known for electron sys-
tems [28]. In addition, for nonuniform matter with localized
nuclei, the decay is significantly faster than for the uniform
matter. The decay pattern of the nonuniform matter at T = 1
MeV is close to that of the uniform matter at T ≈ 10 MeV.
The short decay length of the density matrix could lead to the
O(N ) calculation by truncating the space in the matrix opera-
tion. The O(N ) method may be more useful in the nonuniform
matter than in the uniform matter.

The calculations in the present paper use the BKN energy
density functional. It is straightforward to extend this to re-
alistic Skyrme functionals, which is in progress. The proper
treatment of the matter in the periodic potential requires the
band calculation. The density should be constructed by av-
eraging the calculated results over different values of Bloch
wave numbers k, which should be relatively easy to perform.
The calculation can be further parallelized with respect to
different k.

The extension of the FOE method to the finite-temperature
HFB calculation is formally straightforward as well. This can
be done by replacing the single-particle Hamiltonian H by the
HFB Hamiltonian,

Hμ =
(

H − μ �

−�∗ −(h − μ)∗

)
, (30)

in Eq. (7) to achieve the generalized density matrix R,

R =
∑
α≷0

|α〉 fβ (Eα )〈α| = fβ (Hμ), (31)

where |α〉 are the quasiparticle eigenstates, Hμ|α〉 = Eα|α〉,
and the summation is taken over both positive and negative
quasiparticle energies. However, there is a practical issue to
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be examined in future, namely, the truncation of the pairing
model space. Since most of the pairing energy functional
has been constructed with a cutoff energy, it is preferable to
develop a prescription to allow the truncation of the pairing
model space.

The FOE method may open a new possibility for studies
of the nonuniform baryonic matter at finite temperature and
neutron-star matter in the crust region.

ACKNOWLEDGMENTS

This work is supported in part by JSPS KAKENHI Grant
No. 18H01209 and by JSPS A3 Foresight Program No.
JPJSA3F20190002. This research in part used computa-
tional resources provided through the HPCI System Research
Project (Project ID hp200069), and by Multidisciplinary Co-
operative Research Program in Center for Computational
Sciences, University of Tsukuba.

[1] J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems
(MIT Press, Cambridge, 1986).

[2] Energy Density Functional Methods for Atomic Nuclei, edited
by N. Schunck (IOP, Bristol, 2019), pp. 2053–2563.

[3] A. L. Goodman, Nucl. Phys. A 352, 30 (1981).
[4] J. L. Egido and P. Ring, J. Phys. G: Nucl. Part. Phys. 19, 1

(1993).
[5] G. Bertsch and J. Mehlhaff, Comput. Phys. Commun. 207, 518

(2016).
[6] W. Zhang and Y. F. Niu, Phys. Rev. C 97, 054302 (2018).
[7] W. G. Newton and J. R. Stone, Phys. Rev. C 79, 055801 (2009).
[8] P. Bonche, S. Levit, and D. Vautherin, Nucl. Phys. A 427, 278

(1984).
[9] P. Bonche, S. Levit, and D. Vautherin, Nucl. Phys. A 436, 265

(1985).
[10] M. Brack, C. Guet, and H.-B. Håkansson, Phys. Rep. 123, 275

(1985).
[11] M. Onsi, H. Przysiezniak, and J. M. Pearson, Phys. Rev. C 55,

3139 (1997).
[12] M. Okamoto, T. Maruyama, K. Yabana, and T. Tatsumi, Phys.

Rev. C 88, 025801 (2013).
[13] C.-J. Xia, T. Maruyama, N. Yasutake, and T. Tatsumi, Phys.

Rev. D 106, 063020 (2022).
[14] G. Watanabe, K. Sato, K. Yasuoka, and T. Ebisuzaki, Phys. Rev.

C 69, 055805 (2004).
[15] C. J. Horowitz, D. K. Berry, C. M. Briggs, M. E. Caplan, A.

Cumming, and A. S. Schneider, Phys. Rev. Lett. 114, 031102
(2015).

[16] M. E. Caplan and C. J. Horowitz, Rev. Mod. Phys. 89, 041002
(2017).

[17] A. Bulgac and P. Magierski, Nucl. Phys. A 683, 695 (2001).
[18] N. Chamel, Nucl. Phys. A 747, 109 (2005).
[19] J. Negele and D. Vautherin, Nucl. Phys. A 207, 298 (1973).
[20] M. Baldo, E. Saperstein, and S. Tolokonnikov, Nucl. Phys. A

775, 235 (2006).
[21] H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, Nucl. Phys.

A 637, 435 (1998).
[22] H. Togashi, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki,

and M. Takano, Nucl. Phys. A 961, 78 (2017).
[23] N. Chamel and P. Haensel, Living Rev. Relativity 11, 10 (2008).
[24] S. Jin, A. Bulgac, K. Roche, and G. Wlazłowski, Phys. Rev. C

95, 044302 (2017).
[25] Y. Kashiwaba and T. Nakatsukasa, Phys. Rev. C 101, 045804

(2020).
[26] S. Goedecker and L. Colombo, Phys. Rev. Lett. 73, 122 (1994).
[27] S. Goedecker and M. Teter, Phys. Rev. B 51, 9455 (1995).
[28] S. Wu and C. Jayanthi, Phys. Rep. 358, 1 (2002).
[29] W. Kohn, Int. J. Quantum Chem. 56, 229 (1995).
[30] R. Baer and M. Head-Gordon, Phys. Rev. Lett. 79, 3962 (1997).
[31] P. Bonche, S. Koonin, and J. W. Negele, Phys. Rev. C 13, 1226

(1976).
[32] T. Nakatsukasa and K. Yabana, Phys. Rev. C 71, 024301 (2005).
[33] J. Maruhn, P.-G. Reinhard, P. Stevenson, and A. Umar, Comput.

Phys. Commun. 185, 2195 (2014).
[34] J. Eastwood and D. Brownrigg, J. Comput. Phys. 32, 24 (1979).
[35] D. D. Johnson, Phys. Rev. B 38, 12807 (1988).
[36] A. Baran, A. Bulgac, M. M. Forbes, G. Hagen, W. Nazarewicz,

N. Schunck, and M. V. Stoitsov, Phys. Rev. C 78, 014318
(2008).

[37] S. Goedecker, Phys. Rev. B 58, 3501 (1998).

015802-13

https://doi.org/10.1016/0375-9474(81)90557-1
https://doi.org/10.1088/0954-3899/19/1/002
https://doi.org/10.1016/j.cpc.2016.06.023
https://doi.org/10.1103/PhysRevC.97.054302
https://doi.org/10.1103/PhysRevC.79.055801
https://doi.org/10.1016/0375-9474(84)90086-1
https://doi.org/10.1016/0375-9474(85)90199-X
https://doi.org/10.1016/0370-1573(86)90078-5
https://doi.org/10.1103/PhysRevC.55.3139
https://doi.org/10.1103/PhysRevC.88.025801
https://doi.org/10.1103/PhysRevD.106.063020
https://doi.org/10.1103/PhysRevC.69.055805
https://doi.org/10.1103/PhysRevLett.114.031102
https://doi.org/10.1103/RevModPhys.89.041002
https://doi.org/10.1016/S0375-9474(00)00450-4
https://doi.org/10.1016/j.nuclphysa.2004.09.011
https://doi.org/10.1016/0375-9474(73)90349-7
https://doi.org/10.1016/j.nuclphysa.2006.07.003
https://doi.org/10.1016/S0375-9474(98)00236-X
https://doi.org/10.1016/j.nuclphysa.2017.02.010
https://doi.org/10.12942/lrr-2008-10
https://doi.org/10.1103/PhysRevC.95.044302
https://doi.org/10.1103/PhysRevC.101.045804
https://doi.org/10.1103/PhysRevLett.73.122
https://doi.org/10.1103/PhysRevB.51.9455
https://doi.org/10.1016/S0370-1573(01)00035-7
https://doi.org/10.1002/qua.560560407
https://doi.org/10.1103/PhysRevLett.79.3962
https://doi.org/10.1103/PhysRevC.13.1226
https://doi.org/10.1103/PhysRevC.71.024301
https://doi.org/10.1016/j.cpc.2014.04.008
https://doi.org/10.1016/0021-9991(79)90139-6
https://doi.org/10.1103/PhysRevB.38.12807
https://doi.org/10.1103/PhysRevC.78.014318
https://doi.org/10.1103/PhysRevB.58.3501

