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We calculate the β spectrum in the decay of 6He using quantum Monte Carlo methods with nuclear interactions
derived from chiral effective field theory and consistent weak vector and axial currents. We work at second order
in the multipole expansion, retaining terms suppressed by O(q2/m2

π ), where q denotes low-energy scales such as
the reaction’s Q value or the electron energy, and mπ is the pion mass. We go beyond the impulse approximation
by including the effects of two-body vector and axial currents. We estimate the theoretical error on the spectrum
by using four potential models in the Norfolk family of local two- and three-nucleon interactions, which have
different cutoffs, fit two-nucleon data up to different energies, and use different observables to determine the
couplings in the three-body force. We find the theoretical uncertainty on the β spectrum, normalized by the
total rate, to be well below the permille level, and to receive contributions of comparable size from first- and
second-order corrections in the multipole expansion. We consider corrections to the β decay spectrum induced
by beyond-standard-model charged-current interactions in the standard model effective field theory, with and
without sterile neutrinos, and discuss the sensitivity of the next generation of experiments to these interactions.
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I. INTRODUCTION

Nuclear β decays have been instrumental in establishing
the standard model (SM) as the theory of the electroweak
interactions [1–3]. In the era of the Large Hadron Col-
lider, β decays still provide very sensitive probes of physics
beyond the standard model (BSM), and are highly compet-
itive and complementary to searches at the energy frontier
[4–15]. Superallowed 0+ → 0+ transitions, combined with
theoretical progress in the evaluation of radiative corrections
[16–21], allow for the extraction of the Vud element of the
Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix
with uncertainty at the level δVud ≈ 3 × 10−4 [16–18,22],
probing BSM scales up to 10 TeV. Improved measurements of
the neutron lifetime and β asymmetry [23–26] and the percent
determination of the nucleon axial charge gA from lattice QCD
[10,27–29] test right-handed charged currents at subpercent
level. Global analyses of superallowed transitions, neutron
decay, and mirror β decays limit the strength of nonstandard
vector, axial, scalar and tensor charged-current interactions to
be less than a thousandth of the weak interactions [12,15]. At
the same time charged- and neutral-current Drell-Yan produc-
tion at the Large Hadron Collider is starting to directly access
scales of a few TeV [30–33], and the good agreement between
precise theoretical predictions and Drell-Yan data allow for
the exclusion of interactions at the effective scale � = 4–5
TeV [5,10,11,13,14].

β decay spectra provide sensitive probes of charged
currents with different chiral structure from the SM. The
interference of BSM currents with the V -A SM interactions
induces a distinctive me/Ee—where me and Ee are the elec-
tron’s mass and energy, respectively—dependence in the β

spectrum, the so called “Fierz interference term” [34], usually
denoted by b. The first direct neutron measurements constrain
the Fierz interference term to be −0.018 < b < 0.052 at the
90% confidence level [35,36]. The Fierz interference term
induced by scalar currents is tested in Fermi transitions, with
the most recent analysis of superallowed β decays yielding
b < 3.3 × 10−3 (90% confidence level) [22]. Measurements
of spectra of purely Gamow-Teller transitions, such as the
decay of 6He to 6Li, aim to push the constraint on the Fierz
interference term induced by tensor and pseudoscalar currents
to the level b < 10−3 [37,38], probing tensor currents at the
10 TeV mass scale. In addition, modifications to the shape of
the β spectrum can reveal the existence of sterile neutrinos,
with minimal or nonminimal interactions [39–44].

With experimental sensitivity approaching the permille
level, it is crucial to provide comparably accurate theoretical
predictions of the β spectrum in the SM, including small cor-
rections from the momentum dependence of nuclear matrix
elements, electromagnetic corrections, and isospin breaking
effects. For light to medium mass nuclei, accurate calculations
of low-energy nuclear observables are currently feasible using
the microscopic or ab initio description of nuclei. Within
this approach nuclei and their properties emerge from the
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underlying nucleonic dynamics and ensuing many-nucleon
correlations and electroweak currents. The first ab initio cal-
culation of the 6He → 6Li β decay spectrum was performed
in Ref. [45], using the variational Monte Carlo method with
the Argonne v18 two-nucleon potential, supplemented by the
Urbana-IX three-nucleon interaction. References [46,47] re-
peated the calculation in the no-core shell model. In this paper,
we compute both SM and BSM nuclear matrix elements for
the 6He → 6Li decay using quantum Monte Carlo (QMC)
methods [48] to solve for the structure and dynamics of
the strongly correlated many-body problem for nuclei. QMC
methods allow one to retain the complexity of many-nucleon
dynamics whose effects are essential to explain electroweak
data in a wide range of energy and momentum transfer
[48–68]. Here, we base our calculations on the Norfolk two-
and three-nucleon chiral effective field theory potentials and
consistent electroweak currents [50–52,56,59,60,62,63,69].

This paper is structured as follows: In Sec. II, we introduce
the multipole expansion of the SM weak vector and axial
currents and express the differential decay rate with respect
to the electron energy including terms up to second order in
the multipole expansion. Section III A reports on the QMC
calculations of the multipoles entering the decay rate, and
in Sec. IV we discuss the uncertainties of the leading and
subleading multipoles and the ensuing theoretical uncertainty
in the SM decay rate, which limits the sensitivity to beyond the
SM physics. We then discuss BSM signatures. In Sec. V we
introduce the effective Lagrangians that mediate β decays in
the presence of BSM interactions and discuss their corrections
to the β spectrum. In Sec. VI we examine the implications of
controlling the uncertainty on the spectrum at better than the
permille level on nonstandard charged-current interactions.
We conclude in Sec. VII. The appendices contain some tech-
nical details. In Appendix A we provide a list of standard
and nonstandard Lagrangians which mediate β decays in the
standard model EFT (SMEFT), while a sketch of the deriva-
tion of the multipole expansion for these currents is carried
out in Appendix B. Formal expressions of the many-body
chiral EFT current operators are given in Appendix C. The
expression of the fully differential unpolarized decay rate is
given in Appendix D. Appendix E is devoted to higher-order
electroweak and recoil corrections.

II. DIFFERENTIAL DECAY RATE IN
THE STANDARD MODEL

β decays are sensitive to a variety of physics scales,
namely, the Q value of the reaction—typically a few MeV—
which determines the momentum of the outgoing electron and
neutrino; the nuclear binding momentum γ = √

mN B ≈ mπ ,
where B is the binding energy, which is the relevant scale
in the nuclear matrix elements; and �χ , the scale at which
chiral EFT breaks down. We can take advantage of the scale
separation Q � γ � �χ by organizing the nuclear matrix
elements in a double expansion in Q/γ and γ /�χ , combining
chiral EFT with a multipole expansion of the weak matrix
elements [70,71]. After performing the multipole expansion,
the differential cross section in the SM can be expressed in

terms of few matrix elements of the axial and vector charge
and current densities, which are generalized to include scalar,
pseudoscalar, and tensor currents in the SMEFT.

In the SM, β decays are mediated by the exchange of a
W boson between purely left-handed quarks, electrons and
neutrinos. At scales much smaller than the electroweak, and
focusing on the first generation of quarks, the effective La-
grangian can be expressed in terms of the local four-fermion
interaction:,

LSM = −4GF√
2

Vud ēLγ μνLūLγμdL + H.c., (1)

where GF = (
√

2v2)−1 = 1.166 × 10−5 GeV−2 is the Fermi
constant extracted from muon decay, v = 246 GeV is the
Higgs vacuum expectation value, and Vud is the u-d element
of the Cabibbo-Kobayashi-Maskawa mixing matrix, Vud =
0.973 73(31) [22,72]. The Lagrangian (1) receives weak and
electromagnetic corrections, which we will discuss in the fol-
lowing sections.

At the nuclear level, Eq. (1) leads to the weak Hamiltonian

Hw = GF√
2

Vud

∫
d3x j lept

μ (x)J μ
V −A(x), (2)

where

jlept
μ = 2ēLγμνL. (3)

and J μ
V −A denotes the hadronic realization of the quark cur-

rent ūγ μ(1 − γ5)d . The derivation only assumes that such a
realization exists, and we give its explicit representation in
chiral EFT in Appendix C. The weak Hamiltonian can be
expanded in infinite sum of multipole operators with defi-
nite total angular momentum J and parity π . The transition
6He(0+) → 6Li(1+) only receives contributions from opera-
tors with Jπ = 1+. The general expression for the differential
decay rate, derived, for example, in Ref. [71] and reported in
Eq. (D2), then contains the multipoles C1, L1, E1, and M1.
These are defined in terms of the coordinate space charge
and current densities in Eqs. (B15)–(B18). In chiral EFT, a
momentum space representation is more convenient, and C1,
L1, E1, and M1 can be expressed in terms of the axial charge,
ρ(q; A), and the vector and axial currents, j(q;V ) and j(q; A)
[45]:

C1(q; A) = i√
4π

〈 6Li, 10|ρ†
+(qẑ; A)| 6He, 00〉, (4)

L1(q; A) = i√
4π

〈 6Li, 10|ẑ · j†
+(qẑ; A)| 6He, 00〉, (5)

E1(q; A) = i√
2π

〈 6Li, 10|ẑ · j†
+(qx̂; A)| 6He, 00〉, (6)

M1(q;V ) = − 1√
2π

〈 6Li, 10|ŷ · j†
+(qx̂;V )| 6He, 00〉, (7)

where the momentum carried by the current is q = pe + pν ,
with pe and pν the electron and antineutrino momenta, and
q = |q|. The subscript + denotes the charge-changing oper-
ators ρ

†
+ = ρ†

x + i ρ†
y and j†

+ = j†
x + i j†

y , where the subscripts
x and y refer to the isospin space [73]. In Eqs. (4)–(7), the
states are characterized by the quantum numbers J and MJ ,
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denoting the total angular momentum and the projection along
the z axis of the initial and final nuclear states. ẑ and x̂ denote
versors in the z and x direction, respectively.

At zero momentum, the electric and longitudinal multi-
poles are related by

L(0)
1 (A) = 1√

2
E (0)

1 (A) =
√

3

4π
gA RME, (8)

where the reduced matrix element denotes the standard
Gamow-Teller matrix element,

RME =
√

2 Jf + 1

gA

〈Jf M|ẑ · j±(A)|JiM〉
〈JiM, 10|Jf M〉

= −
√

3 〈Jf M|σzτ
+|JiM〉, (9)

where 〈JiM, 10|Jf M〉 is a Clebsch-Gordan coefficient and, in
our case, Ji = 0 and Jf = 1. M1 encompasses the contribution
from weak magnetism, while C1 receives contributions from
the induced tensor and induced pseudoscalar form factors,
d (q2) and h(q2) in the notation of Ref. [74].

The momentum q = |q| is limited by the reaction’s
Q value, and, because Q � mπ , the matrix elements can
be expanded in powers of q/mπ . From the definitions in
Eqs. (B15)–(B18), it can be proved that L1 and E1 only have
even powers of q, while C1 and M1 only have odd powers [71],

so that Eqs. (4)–(7) can be expanded as

C1(q; A) = −i
qrπ

3

(
C(1)

1 (A)− (qrπ )2

10
C(3)

1 (A)+O[(qrπ )4]

)
,

(10)

L1(q; A) = − i

3

(
L(0)

1 (A) − (qrπ )2

10
L(2)

1 (A) + O[(qrπ )4]

)
,

(11)

M1(q;V ) = −i
qrπ

3

(
M (1)

1 (V )− (qrπ )2

10
M (3)

1 (V )+O[(qrπ )4]

)
,

(12)

E1(q; A) = − i

3

(
E (0)

1 (A) − (qrπ )2

10
E (2)

1 (A) + O
[
(qrπ )4

])
,

(13)

where, in order to have dimensionless coefficients, we in-
troduced rπ = 1/mπ+ = 1.41382 fm. In the equations above,
the C(i)

1 , L(i)
1 , M (i)

1 , and E (i)
1 are simply the coefficients of

the expansion in qrπ , and they will be determined by the
interpolation procedure discussed in Sec. IV. Their operator
definitions in the impulse approximation are given, for ex-
ample, in Ref. [74]. Since for the decay under consideration
qrπ � 0.03, we consider terms up to second order in qrπ to
reach the uncertainty goal of 10−4 in β decay spectra.

After summing over the lepton and nuclear spins, inte-
grating over the neutrino energy and the angle between the
electron and neutrino momentum, the SM decay rate, differ-
ential with respect to the electron energy, is given by

d�

dε
= (1 + �V

R )(1 + δR(Z, ε))
G2

FW 5
0 V 2

ud

2π3

√
1 − μ2

e

ε2
ε2(1 − ε)2F0(Z, ε)L0(Z, ε)S(Z, ε)RN (ε)

4π

2Ji + 1

1

9

×
{

3
∣∣L(0)

1

∣∣2[1 + αZW0R

(
2

35
− 233

630

αZ

W0R
− 1

70

μ2
e

ε
− 4

7
ε

)]
+ 2W0rπ

[(
1 − 2ε + μ2

e

ε

)
Re
(
E (0)

1 M (1)∗
1

)
−
(

1 − μ2
e

ε

)
Re
(
L(0)

1 C(1)∗
1

)]+ (W0rπ )2

3

[(
3 − 4ε(1 − ε) − μ2

e

2 + ε

ε

)∣∣C(1)
1

∣∣2
− 3

5

(
1 − μ2

e

ε
(2 − ε)

)
Re
(
L(0)

1 L(2)∗
1

)+
(

3 − 10ε(1 − ε) + μ2
e

4 − 7ε

ε

)(∣∣M (1)
1

∣∣2 − 1

5
Re
(
E (0)

1 E (2)
1

))]

− 4

7

αZW0r2
π

R
(1 − ε)

(
E (0)

1 E (2)
1

2
− L(0)

1 L(2)
1

)}
, (14)

where we introduced the scaled variables Ee = W0ε and me =
W0μe, with W0 = Mi − M f = 4.016 MeV in the case of the
6He − 6Li transition. Mi and M f denote the masses of the
initial and final state nucleus. Equation (14) is accurate up to
corrections of O((W0rπ )3). In Eq. (14), we kept the effects of
nuclear recoil at leading order in W0/M f . The other effect of
nuclear recoil is that the electron endpoint energy shifts from

Ee = W0 to Ee = W0 − W 2
0 −m2

e

2M f
.

In addition to the leading terms in the multipole expansion,
Eq. (14) includes electromagnetic effects, which are not neg-
ligible at the precision we are working. The most important
contribution is from the Fermi function, given by F0(Z, ε):

F0(Z, ε) = 4(2|pe|R)2(γ0−1) |�(γ0 + iy)|2
|�(2γ0 + 1)|2 eπy,

(15)

γ0 =
√

1 − (αZ )2, y = αZ

|ve| ,
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where R =
√

5/3〈r2
ch〉, and 〈r2

ch〉 is the charge radius of 6Li,√
〈r2

ch〉 = 2.5890(390) fm [75]. Z is the charge of the daugh-
ter nucleus and the electron velocity ve = |pe|/Ee. Other
large corrections arise from the radiative corrections �V

R and
δR(Z, ε), which contribute to the half-life at the level of a few
percent. These and other higher-order corrections, encoded in
the functions L0(Z, ε), S(Z, ε), RN (ε) and in the explicit O(α)
and O(α2) terms in Eq. (14), are discussed in Appendix E.
In this work, we did not attempt a rederivation of electromag-
netic corrections in chiral EFT and instead followed closely
the literature, as summarized in Ref. [76]. To assess the im-
portance of higher-order terms in the multipole expansion, we
define the leading contribution to the spectrum as

d�0

dε
= G2

FW 5
0 V 2

ud

2π3

√
1 − μ2

e

ε2
ε2(1 − ε)2 4π

3

∣∣L(0)
1

∣∣2
× F0(Z, ε)L0(Z, ε)S(Z, ε)RN (ε), (16)

where we included in the definition of d�0/dε some radiative
corrections, for which we just use results in the literature.

III. THEORETICAL FRAMEWORK

A. Quantum Monte Carlo methods

In this work, we employ Quantum Monte Carlo methods
[48]—both the variational (VMC) and the Green’s function
Monte Carlo (GFMC) methods—and the Norfolk chiral ef-
fective field theory many-body interactions and electroweak
currents [56,59,60,62,69] to evaluate the required nuclear ma-
trix elements. This computational scheme was most recently
described in Refs. [66,67] where some of the present authors
evaluated Gamow-Teller matrix elements entering β decays
and electron captures in light nuclei as well as muon capture
rates in A = 3 and 6 nuclei. Here, we will not provide the
details of the computational method or the interactions. We
will instead limit ourselves to briefly summarize the salient
points of the calculation and defer the interested reader to
Ref. [66] and references therein for additional technicalities.

The Norfolk potentials consist of local two- and three-
nucleon interactions formulated in configuration space, and
derived from a chiral effective field theory that retains, in
addition to nucleons and pions, � isobars as explicit degrees
of freedom [56,60,62,69]. They are denoted below as NV2+3,
where the two-body interaction (NV2) is constructed up to
next-to-next-to-next-to leading order (N3LO) in the chiral ex-
pansion, and the three-body force (NV3) retains up to N2LO
contributions [77].

In the QMC calculation, theoretical uncertainties arise
from deficiencies in the nuclear wave function, i.e., from how
well the QMC wave function reproduces the actual ground
states for a given nuclear interaction, and from the nuclear
interactions themselves. In chiral EFT, the uncertainties in
the nuclear interactions stem from the two- and three-nucleon
data used to determine the unknown low-energy constants
(LECs) in the nuclear potential and currents, from the residual
dependence of observables on the cutoff used in the calcula-
tion and from the truncation error arising from working at a
finite order in the chiral expansion. In order to assign a theoret-

ical error to our estimates, we perform the calculations using
four models of Norfolk interactions. These models differ in
the cutoff utilized to regularize divergences, in the number of
nucleon-nucleon scattering data used to constrain the LECs
entering the NV2 interaction, and in the fitting procedure
implemented to constrain the NV3 interaction. In particular,
NV2+3 models belonging to class I (denoted with NV2+3-I)
are fitted up to 125 MeV and use ≈2700 data points, while the
NV2+3-II models are fitted up to 200 MeV and use ≈3700
data points. For each class, two different sets of cutoff are
implemented. Specifically, the coordinate space regulators are

CRS (r) = 1

π3/2R3
S

e−(r/RS )2
,

(17)

CRL (r) = 1 − 1

(r/RL )6e2(r−RL )/RL + 1
,

where CRL regulates divergences at r ≈ 0 in the pion exchange
potential, while contact interactions are regulated by CRS .
Models labeled with an “a” use the combination (RS, RL ) =
(0.8, 1.2) fm (models NV2-Ia and NV2-IIa), while those
labeled with a “b” use (RS, RL ) = (0.7, 1.0) fm (models NV2-
Ib and NV2-IIb). The NV2 models are supplemented by a
three-body force at N2LO. At this order, there are two LECs
characterizing the NV3′s strength. They are determined by a
simultaneous fit to either the trinucleon binding energy and the
triton β decay reduced matrix element [62] or the trinucleon
binding energy and the nd scattering length [78]. Norfolk
models based on the former procedure are denoted with a
“ * ”, that is NV2+3∗.

Nuclear wave functions are constructed in two steps. First,
a trial variational Monte Carlo (VMC) wave function �T ,
which accounts for the effect of the nuclear interaction via the
inclusion of correlation operators, is generated by minimizing
the energy expectation value with respect to a number of
variational parameters. The second step improves on �T by
eliminating excited state contamination. This is accomplished
in a Green’s function Monte Carlo (GFMC) calculation which
propagates the Schrödinger equation in imaginary time τ . The
propagated wave function �(τ ) = exp[−(H − E0)τ ]�T , for
large values of τ , converges to the exact wave function with
eigenvalue E0. Ideally, the matrix elements should be evalu-
ated in between two propagated wave functions. In practice,
we evaluate mixed estimates in which only one wave function
is propagated, while the remaining one is replaced by �T .
The calculation of diagonal and off-diagonal matrix elements
is discussed at length in Refs. [48,79]. We will present both
VMC and GFMC results. As discussed in Sec. IV A, while the
latter are more accurate and are in excellent agreement with
the experimental half-life, the two calculations of the spectral
shape show minimal differences, well below the 10−3 level,
justifying the use of the numerically cheaper VMC in future
studies.

B. Power counting and many-body electroweak currents

Accompanying the Norfolk many-body interactions are
one- and two-body axial and vector currents derived within
the same chiral effective field theory formulation with pions,
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TABLE I. Scaling in Qν = Qn−3 up to ν = 1 of the chiral axial
current, jν (A), and charge, ρν (A), operators and of the vector current
operator, j(V ). The acronyms stand for 1b = one-body, OPE = one-
pion-exchange, TPE = two-pion exchange, NR = non-relativistic,
RC = relativistic correction, OPE-� = one-pion-exchange currents
with an intermediate delta excitation, and sub = subleading. “–”
indicates that no contribution exists at that order, while “×” that con-
tributions of that order have not been included. We also indicate to
which multipole operator, and at which order in the chiral expansion,
each term contributes. See text for explanation.

LO NLO N2LO N 3LO N 4LO
Operator ν = −3 ν = −2 ν = −1 ν = 0 ν = 1

jν (A) 1b(NR) – 1b(RC) OPE(sub) ×
OPE-� CT

Multipole {L1, E1}(i,0) {L1, E1}(i,1) {L1, E1}(i,2) {L1, E1}(i,3) {L1, E1}(i,4)

ρν (A) – 1b(RC) OPE – ×
Multipole C (i,0)

1 C (i,1)
1 C (i,2)

1 C (i,3)
1 C (i,4)

1

jν (V ) – 1b(NR) OPE 1b(RC) OPE(sub)
OPE-� TPE

CT
Multipole M (i,0)

1 M (i,1)
1 M (i,2)

1 M (i,3)
1 M (i,4)

1

nucleons, and �′s [50,51,59,60,62,63]. We use the axial and
vector charges, ρ(A) and ρ(V ), and currents, j(A) and j(V ), to
evaluate the SM multipoles of Eqs. (4)–(7). The current oper-
ators are arranged in powers of a second expansion parameter,
namely mπ/�χ or equivalently |p|/�χ , where |p| ≈ mπ de-
notes a typical nuclear physics scales such as the binding
momentum, the inverse of the nuclear radius RA = 1.2 A1/3

fm (with A being the mass number), or the typical nucleons’
momenta inside nuclei. As a consequence, the coefficients of
the q expansion in Eqs. (10)–(13), i.e., the multipoles C(i)

1 ,
L(i)

1 , M (i)
1 , and E (i)

1 , have a second expansion in Qn, where
Q ≡ mπ/�χ is the chiral expansion parameter. We can then
express any of the multipoles—here generically denoted with
M(i)—as

M(i) =
∞∑

n=0

M(i, n). (18)

where the superscripts i and n indicate the orders of the mul-
tipole and chiral expansions, respectively.

The scaling in Qn of the chiral electroweak currents de-
rived in Refs. [50,51,59,60,62,63] is reported in Table I. The
aforementioned references adopt a different convention where
the counting is carried out in powers of Qν with ν = n − 3.
Without going too much into details, the operators consist of
one-body contributions obtained from the non-relativistic re-
duction of the covariant axial and vector nucleonic four-vector
currents. We denote with “1b(NR)” and “1b(RC)” leading-
order and first-order terms in the nonrelativistic expansion.
Two-body currents include contributions of one- and two-pion
range (OPE and TPE) as well as short-range currents encoded
in contact-like operators (CT). OPE currents involving nucle-
ons’ virtual excitations into a � are denoted with “OPE-�”
while those involving subleading terms in the pion-nucleon

FIG. 1. Schematic representations of the types of contribu-
tions entering the one- and two-body electroweak currents from
Refs. [50,51,59,60,62,63] adopted in this work. Solid, dashed, and
wavy lines represent nucleons, pions, and axial and vector external
fields. The square and the dot represent the relativistic corrections
to the leading one-body operators and subleading terms in the pion-
nucleon Lagrangian, respectively, while the thick line represents a �

intermediate state. See Table I and Appendix C for the operators’
scaling and formal expressions. Not shown in the figure are the
pion-pole and tadpole diagrams (see Refs. [50,51,59,60,62,63] for
details.)

chiral Lagrangian are denoted with “OPE(sub).” In addition,
there are the so called pion-pole contributions where the
external field couples with a pion that is then absorbed by a nu-
cleon. These operators are schematically represented in Fig. 1
while their formal expressions are listed for convenience in
Appendix C. Details on the derivation of the currents can be
found in Refs. [50,51,59,60,62,63].

For our discussion, it is sufficient to focus on the leading
order terms of both the charge and current operators. The E1
and L1 multipoles are proportional to matrix elements of the
axial current, which, at leading order in the chiral expansion,
is given by the usual Gamow-Teller and pion-pole contribu-
tions [see Eq. (C6) in Appendix C]. This implies that

E (i,0)
1 and L(i,0)

1 ≈ O(Q0) = O(1), (19)

as can be inferred form Table I. In particular, E (0,0)
1 and L(0,0)

1
are determined by the zero-momentum Gamow-Teller matrix
element in Eq. (8). As illustrated in Table I, two-body axial
currents first contribute to E (0,2)

1 and L(0,2)
1 with the OPE-�

term, while subleading OPE diagrams and contact interactions
to E (0,3)

1 and L(0,3)
1 . With the interactions and axial current that

we use, E1 and L1 are accurate up to order n = 3 (ν = 0)
in the chiral expansion. The E (2,0)

1 and L(2,0)
1 multipoles are

also nonzero, and they are related to the square radius of the
Gamow-Teller matrix element, for which the relevant scale
is the system’s binding momentum. The one-body induced
pseudoscalar form factor, which, as shown in Eq. (C6), in
momentum space scales as q2/m2

π , gives additional LO con-
tributions to L(2)

1 . The momentum dependence of the nucleon
axial form factor, on the other hand, is suppressed and con-
tributes at N2LO in the chiral expansion to both the E (2,2)

1 and
L(2,2)

1 multipoles. The expressions of the nucleon axial form
factor used in the currents is given in Appendix C.

The C1 multipole is induced by the axial charge, which,
as shown in Table I, at lowest order receives one-body
contributions from the non-relativistic expansion of the ax-
ial form factor, starting at O(1/mN ), and from the induced

015503-5



G. B. KING et al. PHYSICAL REVIEW C 107, 015503 (2023)

pseudoscalar form factor. As shown in Appendix C, the latter
contribution is proportional to the electron endpoint energy
W0, which, for power counting purposes, scales as W0 ≈
O(mN Q2). As a consequence,

C(1,0)
1 (A) ≈ 0 and C(1,1)

1 (A) ≈ O(Q1). (20)

We then expect C(1,1)
1 (A) to be suppressed with respect to the

L(i)
1 and E (i)

1 multipoles. The two-body axial charge operator
scale as Q2 (see Table I) and thus contributes to the C(1,2)

1
multipole.

Finally, the magnetic multipole is induced at the one-body
level by the weak magnetic form factor, or equivalently by the
one-body vector current at leading order—see Eq. (C10) and
Table I—and thus also in this case

M (1,0)
1 (V ) ≈ 0, M (1,1)

1 (V ) ≈ O(Q1), (21)

even though the large isovector anomalous magnetic moment
κV = κp − κn ≈ 3.7 enhances the formally NLO contribution.
Two-body currents start to contribute to M (1,2)

1 (V ) and are
found to provide a 6% to 8% contribution to the overall matrix
element.

We can use the counting of currents and potentials to give a
rough estimate of the truncation error we expect for different
multipoles. The coordinate space cutoff RS can be converted
into a scale �χ = 2/RS , and, for the potentials used in this
work �χ ≈ 500–550 MeV. For the multipoles L1, E1, and
M1, the first term that is missed in the calculation is of order
Q4 = 0.6%, taking �χ = 500 MeV. This error is, as we will
see, smaller than the uncertainties arising from using different
models. For C1, the first missing term in the chiral expansion
is O(Q3) ≈ 2%. These estimates are merely indicative. This
type of estimation has been the standard procedure in nuclear
physics; however, for a more robust estimate, one should
develop Bayesian methods to quantify the uncertainties asso-
ciated with parameters entering the many-body calculations
and truncation errors. Work along this line is being vigorously
pursued by the community [80–85], and is beyond the scope
of this work.

IV. STANDARD MODEL RESULTS AND SPECTRUM

In order to determine the matrix elements entering the
β spectrum in Eq. (14) we calculate Eqs. (4)–(7) for six
momenta between 0 and 0.25 fm−1 (0 and ≈50 MeV), and

FIG. 2. VMC multipoles for the NV2+3-Ia∗ (blue circles),
NV2+3-IIa∗ (orange squares), NV2+3-IIb∗ (green triangles), and
NV2+3-Ia (magenta stars) models. The curves of best fit for each
case are shown in the same color as the multipoles. Statistical errors
from the Monte Carlo are included on each point but are too small to
be visible in the figure.

we fit them to the functional forms in Eqs. (10)–(13). To
have a realistic assessment of the theoretical uncertainty, we
performed the calculation with four sets of chiral potentials
and currents, NV2+3-Ia∗, NV2+3-IIa∗, NV2+3-IIb∗, and
NV2+3-Ia, using both VMC and GFMC methods.

Figure 2 shows the VMC multipoles and the associ-
ated curves of best fit for the NV2+3-Ia∗, NV2+3-IIa∗,
NV2+3-IIb∗, and NV2+3-Ia models retaining one- and
two-body vector and axial current operators. The expansion
coefficients obtained by fitting VMC multipoles obtained with
one-body and one- and two-body operators are listed in Ta-
ble II, where the error denotes the fitting error. Two-body
currents have a minor effect on the L1 and E1 multipoles,
leading to a shift in L(0)

1 , E (0)
1 , L(2)

1 , E (2)
1 of at most ≈2%,

in the case of model Ia. As expected from power counting,
two-body currents are more important for M1 and C1. In both
cases, two-body currents contribute at O(Q) compared to the
LO. We see that M (1)

1 receives an ≈8% correction, for all the
models considered here. In VMC, the corrections to C(1)

1 are
about 30–40%.

TABLE II. Expansion coefficients of the VMC multipole operators, including only one-body currents (1b) or one- and two-body currents
(2b). The four columns denotes four different NV interactions, as discussed in the text. The error denotes the fitting error.

Model Ia∗ Model IIa∗ Model IIb∗ Model Ia

1b 1b+2b 1b 1b+2b 1b 1b+2b 1b v1b+2b

L(0)
1 1.3578(3) 1.3607(4) 1.3662(2) 1.3742(3) 1.3717(2) 1.3777(1) 1.3641(3) 1.3986(3)

E (0)
1 1.9255(4) 1.9299(5) 1.9355(2) 1.9471(3) 1.9470(3) 1.9555(1) 1.9333(4) 1.9824(4)

M (1)
1 −0.5487(1) −0.5860(2) −0.5510(1) −0.5952(2) −0.5550(1) −0.60111(4) −0.5521(1) −0.5908(2)

C (1)
1 −0.0182(3) −0.0269(3) −0.0217(3) −0.0311(3) −0.0151(3) −0.0257(3) −0.0128(3) −0.0218(3)

L(2)
1 23.87(5) 23.93(6) 23.51(3) 23.51(4) 23.94(3) 24.07(1) 23.64(5) 24.12(5)

E (2)
1 17.86(7) 17.99(8) 17.35(5) 17.49(6) 18.07(5) 18.22(2) 17.45(7) 17.80(7)
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TABLE III. Summary of the values of the expansion coefficients
for the charge (C1), longitudinal (L1), electric (E1), and magnetic
(M1) VMC multipoles for the NV2+3 models under study. The
percent error due to the cutoff εC (%), energy range of the fit εE (%),
the three-body force fit ε3N (%), and the total error εtot (%) are
also presented. Details of how the average expansion coefficients are
obtained are provided in the text. The uncertainty on coefficients for
individual models is fitting error only. The error is <0.001 unless
otherwise noted.

Model C (1)
1 L(0)

1 L(2)
1 E (0)

1 E (2)
1 M (1)

1

Ia* −0.027 1.361 23.93(6) 1.923 17.99(8) −0.586
IIa* −0.031 1.374 23.51(4) 1.947 17.49(6) −0.595
IIb* −0.026 1.378 24.07(1) 1.955 18.22(2) −0.601
Ia −0.022 1.399 24.12(5) 1.982 17.80(7) −0.591

Average −0.026 1.378 23.869 1.954 17.847 −0.593

εE (%) 5.4 0.3 3.2 0.3 5.6 0.6
εC (%) 6.9 0.01 0.3 0.07 0.8 0.3
ε3N (%) 7.2 0.8 7.0 0.8 13.9 0.3
εtot (%) 11.8 0.8 7.8 0.9 15.0 0.7

A. Uncertainty estimation

1. Variational Monte Carlo

The expansion coefficients for the NV2+3-Ia∗,
NV2+3-IIa∗, NV2+3-IIb∗, and NV2+3-Ia models are
presented in Table III. From Figure 2 and Table II, it is clear
that there will be some degree of uncertainty due to the choice
of model. To account for the model uncertainty, four sets
of average multipoles were obtained: an average between
two models with the same cutoff, same determination of the
three-body force, and fit to different ranges of NN scattering
data (NV2+3-Ia∗ and NV2+3-IIa∗); an average between
two models fit to the same range of NN scattering data,
same determination of the three-body force, and different
cutoffs (NV2+3-IIa∗ and NV2+3-IIb∗); an average between
two models with consistent NV2 and cutoff but different
NV3 interactions (NV2+3-Ia∗ and NV2+3-Ia); and an
average of all four models. These average multipoles were
fit to the functional forms of Eqs. (10)–(13) with the two
model calculations at each q providing the upper and lower
theoretical error bars. The statistical uncertainty of these
averaged fits provides the estimated uncertainty on the
expansion coefficients due to the energy range of the fit (εE ),
the choice of cutoff (εC), and the three-body force fitting
procedure (ε3N ).

For the fourth case described above, a similar procedure
was followed; however, when assigning the error for the
multipoles at each value of q, the uncertainty was not taken
as simply the spread of the model calculations. Instead, we
summed in quadrature the uncertainties on each point from the
other three average fits to combine the cutoff, energy range,
and three-body force uncertainties. The expansion coefficients
obtained from this fit are the “Average” results in Table III and
their statistical uncertainties are cited as εtot. Figure 3 shows
the averaged multipoles and curves of best fit for these three
cases.

As evidenced by the results in Table III, the coefficient E (2)
1

has the largest model uncertainty at 15%. The next largest

FIG. 3. Average VMC multipoles for the four NV2+3 models
under study. Averages were obtained for NV2+3 potentials with the
same cutoff (blue circles), the same energy range of NN scattering
data used to fit the interaction (red squares), the same NN but differ-
ent 3N force (pink triangles), and for all models (black stars). The
curves of best fit for each case are shown in the same color as the
average multipoles. Details on how the error bars are obtained in
each case are provided in the text.

uncertainties are on the coefficients C(1)
1 at 11.8% and L(2)

1

at 7.8%. The remaining uncertainties are �1% for L(0)
1 , E (0)

1 ,
and M (1)

1 . The main driver of the uncertainty in most of the
coefficients is the choice of three-body force, though for C(1)

1

and M (1)
1 the uncertainties from this source and the others are

comparable. In fact, it is the energy range of scattering data
used to fit the interaction that provides the largest uncertainty
on M (1)

1 .
We analyzed the stability of our fits by performing tests

with one model, namely NV2+3-Ia*. To investigate if the
range of momentum points is sufficient, we fit with the same
grid size but one more point and one fewer point; i.e., we refit
on the ranges [0, 0.20] fm−1 and [0, 0.30] fm−1. The leading
order coefficients in the polynomials are altered by less than
one percent in this procedure. In the quadratic terms, L(2)

1 and
E (2)

1 , we observe changes that are on the order of a few percent
but well within the quoted model uncertainty. The effect of
a more fine grid in momentum was investigated by reducing
the grid spacing by half, thus doubling the number of points
included in the fit. We find that this procedure changes all
coefficients by less than one percent. Finally, we investigated
the inclusion of higher order terms in the polynomials. This
does not significantly alter the leading order coefficients; how-
ever, it does change the quadratic coefficients on the order of
the model uncertainty. While this change is significant, we
find that the coefficient introduced at order O(q4) is highly
correlated with the one at order O(q2). Further, including this
term reduced the residuals of the fit from O(10−2) to O(10−4).
Successively adding higher order terms in the expansion leads
to similar order of magnitude reductions in the residuals. This
successive addition of terms was tested up to O(q10) with no
convergence in the residuals observed. Thus, to avoid overfit-
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TABLE IV. Expansion coefficients of the GFMC multipoles and comparison with the VMC, using three different Norfolk models. The
error denotes fitting error only

Model Method C (1)
1 L(0)

1 L(2)
1 E (0)

1 E (2)
1 M (1)

1

Ia* VMC −0.027 1.361 23.93(6) 1.930 17.99(8) −0.586
GFMC −0.047 1.308 23.98(6) 1.856 19.71(9) −0.559

IIa* VMC −0.031 1.374 23.51(4) 1.947 17.49(6) −0.595
GFMC −0.045(2) 1.341(7) 25(1) 1.901(9) 19(2) −0.573(4)

Ia VMC −0.022 1.399 24.12(5) 1.982 17.80(7) −0.591
GFMC −0.045 1.360 23.64(6) 1.929 17.77(9) −0.575

Average VMC −0.026(3) 1.38(1) 24(2) 1.95(2) 18(3) −0.593(4)
GFMC −0.046(2) 1.34(2) 24(3) 1.90(3) 19(5) −0.568(9)

ting L(2)
1 and E (2)

1 , we opted to truncate the expansion of the
even polynomials at O(q2).

Another way that one might obtain the average expansion
parameters with an uncertainty would be to instead use the
results of Table II. The average value of the expansion coef-
ficients for the four models differs from the values obtained
in our procedure by less than one percent. Then, one could
estimate the uncertainty due to the energy range used to fit NN
interaction from the difference between the NV2+3-Ia∗ and
NV2+3-IIa∗ results, the uncertainty due to the cutoff from
the difference between the NV2+3-IIa∗ and NV2+3-IIb∗ re-
sults, and the uncertainty due to the three-body force from
the difference between the NV2+3-Ia∗ and NV2+3-Ia re-
sults. Following this procedure, the error on the leading order
expansion coefficients increase by factors of 1.5 to 1.8. The
error on the dominant contributions would be �1.4% in this
approach. For the coefficients L(2)

1 and E (2)
1 , this scheme re-

duces the uncertainty by a factors of 2.6 and 3.0, respectively.
However, the approach that we took to obtain the uncertainty
is more reasonable as each matrix element should have its
own model uncertainty that then propagates to the expansion
coefficients in the fitting procedure.

2. Green’s function Monte Carlo

In addition to a calculation of the multipoles using VMC,
we also performed calculations at the Green’s function Monte
Carlo level, to remove residual excited state contamination
in the nuclear wave functions. Following the procedure of
Ref. [79], we perform a mixed estimate extrapolation of the
GFMC multipoles. We then fit the expansion coefficients of
Eqs. (10)–(13) as was done for the VMC calculations. The
results of these fits are presented in Table IV for models
Ia*, IIa*, and Ia. The GFMC evolution reduces the leading
coefficients, L(0)

1 and E (0)
1 , by ≈3-4%, which, as we will

see, results in better agreement with the experimental half-
life. Propagating models Ia* and Ia changes the remaining
expansion coefficients at the level of a few percent while
for model IIa* terms that were higher order in qrπ experi-
enced a more significant percent change after the propagation.
This can be understood by looking at the system size as a
function of τ during the GFMC propagation. To further un-
derstand this, we calculate the point proton radius in GFMC
and we observe that for model IIa*, the system size grows

much more rapidly in τ than models Ia and Ia*. This be-
havior is due to the proximity of the model IIa* 6He(0+; 1)
[6Li(1+; 0)] ground state energy in GFMC to the α + 2n
[α + d] breakup threshold. Because of terms going like e−iq·ri

in the current operators, the monotonic increase of the system
size will impact the convergence of the IIa* matrix elements
needed to determine the multipoles. To account for this in
the GFMC extrapolation with model IIa*, we adopt a proce-
dure used for systems near threshold and broad resonances
[57]. We note that while the system sizes grow with τ ,
the ground state energies of 6Li and 6He drop rapidly and
stabilize near τ ≈ 0.1 MeV−1. This indicates that spurious
contamination has been removed from the wave functions at
that point. Under this assumption, we extract the values of
the matrix elements by performing a linear fit to the ma-
trix element in the interval τ = [0.1 MeV−1, 0.3 MeV−1]
and extrapolating back to 0.1 MeV−1. We determine
the systematic error of this procedure by averaging in
the intervals τ = [0.08 MeV−1, 0.3 MeV−1] and τ =
[0.12 MeV−1, 0.3 MeV−1] to get a conservative estimate.

For the GFMC extrapolations, we assigned errors to the
average matrix element arising from the energy range and
three-body force following the same procedure as was done
for the VMC. We also include the systematic uncertainty from
the model IIa* extrapolation by summing it in quadrature with
the energy range and three-body force uncertainties. For the
GFMC average, the coefficients L(0)

1 , E (0)
1 , C(1)

1 , and M (1)
1 have

uncertainties ranging from ≈1.4% to ≈5.2%. The coefficients
L(2)

1 and E (2)
1 have uncertainties of ≈12% and ≈26%, respec-

tively. In the expression for the rate, the large error coefficients
appear suppressed by powers of qrπ and do not contribute as
strongly as the coefficients with errors of order 1%.

Because of the small cutoff uncertainty, we estimate the
impact of including model IIb* by reweighting the matrix
elements in the average so that model IIa* is counted twice.
Averaging under this assumption provides coefficients and
errors that are consistent with the average results obtained
when omitting model IIb*. Thus, we conclude that we can
safely neglect model IIb* in the GFMC average.

B. Experimental comparison and remaining
spectral uncertainty

We can first of all check the L(0)
1 and E (0)

1 multipoles by
comparing our calculation with experimental half-life τ1/2 =
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807.25 ± 0.16 ± 0.11 ms [86,87]. Using the VMC matrix el-
ements in Table III, we obtain

τ1/2|VMC = ln 2

�
= 1

V 2
ud g2

A

(1175 ± 17) ms

= (762 ± 11 ± 2) ms, (22)

where we have used Vud = 0.97370 ± 0.00031 and gA =
1.2754 ± 0.0013. The first error is due to the nuclear ma-
trix elements while the second is due to gA. The error from
Vud is negligible. Equation (22) deviates by about 5% from
the observed value. While small, the discrepancy between
the VMC calculation and the experiment is not covered by
the uncertainty range in Eq. (22), indicating that the errors
due to either the chiral EFT truncation or the Monte Carlo
method are underestimated. For this reason, we evolved the
VMC wave functions in the GFMC. Using the GFMC matrix

elements, we obtain

τ1/2|GFMC = 1

V 2
ud g2

A

(1246 ± 37) ms = (808 ± 24 ± 2) ms,

(23)

which has a 3% error and is in perfect agreement with the
observed half-life. The half-life is dominated by L(0)

1 , E (0)
1 ,

and by the Fermi function. The next most important correction
comes from inner and outer radiative corrections, �V

R and
δR(Z, ε), which together shorten the half-life by about 4%.
For �V

R we use the dispersive evaluation of Refs. [16,17,88],
�V

R = 2.467(22) × 10−2. Higher multipoles impact the half-
life at the 0.1% level.

Moving on to the differential decay rate, using the VMC
multipoles given in Table III, we find

d�

dε

∣∣∣∣
VMC

= d�0

dε

{
1 +

[(
1 − 2ε + μ2

e

ε

)
(−1.16 ± 0.01) +

(
1 − μ2

e

ε

)
(3.6 ± 0.4) × 10−2

]
× 10−2

−
[(

1 − μ2
e

ε
(2 − ε)

)
(0.96 ± 0.08) +

(
3 − 10ε(1 − ε) + μ2

e

4 − 7ε

ε

)
(0.32 ± 0.06)

]
× 10−3

+ (4.1 ± 1.1) × 10−4(1 − ε)

}
, (24)

where the terms in the first line appear at NLO in the multipole expansion, and are proportional to M (1)
1 and C(1)

1 , respectively.
The terms in the second line appear at N2LO, the first proportional to L(2)

1 and the second to a combination of |M (1)
1 |2 and

E (0)
1 E (2)

1 . Finally, the term in the third line is an electromagnetic correction proportional to subleading multipoles. Using the
GFMC matrix elements in Table IV, the differential rate is

d�

dε

∣∣∣∣
GFMC

= d�0

dε

{
1 +

[(
1 − 2ε + μ2

e

ε

)
(−1.15 ± 0.02) +

(
1 − μ2

e

ε

)
(6.6 ± 0.7) × 10−2

]
× 10−2

−
[(

1 − μ2
e

ε
(2 − ε)

)
(0.99 ± 0.12) +

(
3 − 10ε(1 − ε) + μ2

e

4 − 7ε

ε

)
(0.35 ± 0.10)

]
× 10−3

+ (4.0 ± 1.8) × 10−4(1 − ε)

}
. (25)

From Eqs. (24) and (25) we see that the dominant correction
is, as expected [74,89], given by the magnetic multipole M1,
which contributes to the spectrum at the percent level. The
uncertainty on the ratio M (1)

1 /L(0)
1 , which dominates the error

budget, is about 2%, and, in our calculation, it receives the
main contribution from changing the energy range of the fits
to NN scattering data. The next contributions come from
L(2)

1 , E (2)
1 , and C(1)

1 , which affect the energy distribution at
the 10−3–10−4 level. L(2)

1 , C(1)
1 and E (2)

1 have uncertainties of
about 10%, 12%, and 20%, respectively, so that these terms
contribute to the theory error at the 10−4 level.

In Fig. 4 we show the deviation of the β spectrum from
the leading term in the multipole expansion, d�0/dε, defined

in Eq. (16), using both VMC and GFMC matrix elements. We
see that, while GFMC and VMC differ by 6% on the total rate,
the differences largely cancel in the ratio, and the corrections
to the spectral shape are very similar in both cases. The bottom
panel of Fig. 4 shows the error on the ratio. This is somewhat
larger in GFMC, but well below 10−3. Figure 5 shows the con-
tributions of the leading O(Qrπ ) correction, arising from M1,
and of the second order terms O((Qrπ )2) [including the for-
mally O(Qrπ ) but numerically small contribution from C(1)

1 ],
to the differential rate (left) and to the uncertainty (right). We
see that, while M1 dominates the correction to the spectrum,
the second-order terms contribute at the 10−3 level and the
first- and second-order terms give contributions of similar size
to the uncertainty.
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FIG. 4. Deviation of the 6He β spectrum from the expression
truncated at leading order in the multipole expansion, given in
Eq. (16), and percentage error on the ratio. The blue curves use
GFMC matrix elements in Table IV, while the red lines use the VMC
averages in Table III. In the top panel, the width of the curves denotes
the theoretical error.

1. Validation of M1

We can further validate the calculation in several ways.
The magnetic multipole M1 can be cross-checked against data.
Using the conserved vector current hypothesis, M (1)

1 can be
expressed in terms of the transition �( 6Li(0+) →6 Li(1+)γ ):∣∣M (1)

1

∣∣ = 3mπ√
4π

√
�M1

αE3
γ

= 0.582(6), (26)

where the uncertainty is determined by the width, �M1 =
8.19(17) eV [75,90]. Using the average VMC value listed in
Table III, our result agrees within 1% with the experimental

value, while individual models are consistent within 3% when
including two body currents. The GFMC average is a bit
lower, but still only 2% away from Eq. (26), and compatible
within ≈1σ . Our results also agree with the ab initio calcula-
tion of Ref. [46], which, including only the one-body piece of
the current, finds |M (1)

1 | = 0.565.
Equation (26) is valid up to isospin breaking corrections.

To check the level of isospin breaking that we can ex-
pect in M (1)

1 , we computed both the 6He(0+; 1) → 6Li(1+; 0)
transition and the electromagnetic transition 6Li(0+; 1) →
6Li(1+; 0) with NV2+3-IIb wave functions in the impulse ap-
proximation, that is, retaining only one-body current operators
at LO in the chiral expansion. Using VMC wave functions,
the electromagnetic transition had a value 0.553 and the weak
transition a value of 0.554. Agreement between the two M1

calculations is thus achieved at the ≈0.1% level. Propagating
this calculation in GFMC, we find, in the electromagnetic
case, |M (1)

1 |EM = 0.532 and, for the weak transition, |M (1)
1 | =

0.538, showing a 0.9% difference. This analysis is performed
with one nuclear interaction model and thus does not account
for any model uncertainty.

The change in the level of agreement between VMC and
GFMC can be understood as due to how the wave func-
tions are generated in each method. For the VMC case,
the variational parameters in the 6He(0+; 1) and 6Li(0+; 1)
wave functions are minimized separately. Because of explicit
isospin symmetry breaking terms in the potential, the pa-
rameters of the two wave functions differ; however, ispospin
symmetry breaking correlations are not turned on in the VMC
wave functions. When the trial states are acted on with the
imaginary time propagator, isospin breaking correlations are
introduced. This, in turn, increases the disagreement for the
electromagnetic and weak M1 transitions. Because the sys-
tems differ by changing the isospin of one nucleon, the effect
of this symmetry breaking is small and at the level of the
experimental uncertainty in Eq. (26). Since isospin breaking
corrections are smaller than the experimental error, we can
use M (1)

1 extracted from 6Li(0+; 1) → 6Li(1+; 0) to further

FIG. 5. Corrections to the β spectrum (left) and contributions to the error on the ratio between d�/dε and d�0/dε (right) at next-to-leading
order [O(Qrπ )] and next-to-next-to leading order [O(Q2r2

π )] in the multipole expansion. The figure uses GFMC matrix elements.
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TABLE V. VMC and GFMC one-body and two-body averages
for C (1)

1 compared with Refs. [46,89]. Notice that to obtain C (1)
pseudo

we rescale the results of Ref. [46] by W0/(W0 + �Ec ), as we are not
including Coulomb corrections to C1.

Calaprice Glick-Magid et al.
VMC GFMC [89] [46]

Recoil 0.020(3) −0.001(3) −0.0144 −0.006
Pseudo −0.040 −0.038 −0.039
2 body −0.006 −0.007
Total −0.026(3) −0.046(3) −0.0144 −0.045

reduce the error on M1 to the 1% level. Controlling isospin-
breaking effects will become more important with improved
measurements of the 6Li(0+) →6 Li(1+)γ transition, such as
those suggested in Ref. [91].

2. Validation of C1

The axial charge correction C(1)
1 , unlike the weak mag-

netism correction, is not constrained by an experimental
datum. As such, its evaluation is critical for current experi-
mental efforts aiming for the sub-0.1% level. The prefactor to
C(1)

1 from Eq. (14) is 2W0rπ ≈ 0.05 and with C(1)
1 ≈ 1−2%

a relative ≈10−20% precision is needed for a theory uncer-
tainty to be smaller than one part in 104. As can be seen
in Eq. (C4), at lowest order in chiral EFT, the axial charge
receives a O(1/mN ) recoil contribution from the coupling of
the axial current to the nucleon, and a contribution from the
induced pseudoscalar form factor, proportional to the energy
of the electron and neutrino Ee + Eν = W0. Naively, these
would translate in an O(mπ/mN ) and O(W0/mπ ) correction to
C1, respectively. The matrix element of the recoil component,
however, vanishes for transitions between the dominant S state
components of the wave function [89], making this compo-
nent particularly sensitive to other wave function admixtures
and two-body currents. In our calculation, indeed, C1 is domi-
nated by the induced pseudoscalar contribution, which, being
proportional to L(0)

1 , is fairly stable. We can separate C(1)
1 into

three pieces,

C(1)
1 = C(1)

recoil + C(1)
pseudo + C(1)

2-body, (27)

where C(1)
recoil and C(1)

pseudo are given by the matrix element of

ρ−2
recoil(q, A) and ρ−2

pseudo(q, A) in Eq. (C4), while C(1)
2-body by is

given the matrix element of ρ−1(q, A) in Eq. (C5). Results
for each component, after averaging over different models as
discussed in Sec. IV A, are given in Table V.

The calculation of C(1)
recoil in the decay of 6He, together with

other triplet decays in the mass A = 8, 12, 20 systems, re-
ceived a significant amount of attention over 40 years ago but
ultimately remained unresolved [89,92–94]. Until recently,
the only theoretical determination of the axial charge contri-
bution to 6He was performed by Calaprice [89] in Holstein’s
formalism. A direct comparison can be made by observing
[95]

C(1)
recoil = −

√
3(2Ji + 1)

4π

d (0)

2rπM
, (28)

where d (q2) is the so-called induced tensor form factor. Using
wave functions tuned to reproduce the experimental energy
levels, Calaprice obtained d (0) = 2.4 [89], which can be
converted into C(1)

recoil = −0.0144. This value is in the same
ballpark of the VMC calculation, which, however, has an
opposite sign. After GFMC evolution, the recoil contribution
is reduced and qualitatively agrees with the result of Ref. [46].

To further track down the origin of the discrepancy, we
notice that one can write

C(1)
recoil = −

√
3

4π

gA

2rπmN
(MσL + mNMσ r p), (29)

where MσL and Mσ r p are one-body matrix elements defined
in Ref. [74]. Calaprice assumed the first matrix element to be
dominant and neglected Mσ r p. To check the assumption, we
calculated MσL in model NV2+3-Ia∗. In the VMC, the 6He
and 6Li wave functions are expressed in terms of the action of
correlation operators on single particle wave functions with
an α core and two nucleons whose wave functions are p-
wave solutions of an effective α − N potential [45,96]. The
two nucleons can be coupled in different LS channels, with
strength determined by the parameter βLS . In the NV2+3-Ia∗

model, β00 and β11, parametrizing the 1S0 and 3P0 components
of the 6He wave function, are given by β00 = 0.931 and β11 =
−0.364. In the case of 6Li, the 3S1, 1P1 and 3D2 components
are given by β01 = 0.967, β10 = 0.182, and β21 = 0.176, re-
spectively. These agree fairly well with Ref. [89], which found
a smaller D wave component, β21 = −0.03. In this model, we
obtain

C(1)
recoil

∣∣
σL = 0.013, (30)

with statistical uncertainties <0.001. We observe a small,
approximately linear dependence on β21, which would shift
the value to 0.012 for β21 = −0.03. To better mimic the
shell model calculation of Ref. [89], we turned off the “one-
pion-exchange-like” correlation operators in the VMC wave
functions in a fashion similar to what was done in Ref. [61],
observing a 10% increase of the matrix element, from 0.013
to 0.014. While the magnitude of the matrix element agrees
very well with Ref. [89], we were not able to resolve the
disagreement on the sign. Note that the correlation and D
wave analyses above have been done only at the VMC level.

In GFMC the value of MσL is further decreased to

C(1)
recoil

∣∣
σL = 0.009. (31)

The above values have small statistical uncertainties but are
not accounting for any possible model dependencies. We con-
clude that (a) the magnitude of MσL agrees well with shell
model calculations, but is reduced by nuclear correlations and
by the GFMC evolution, and (b) the contribution of Mσ r p is
non-negligible in the case of 6He, varying from

C(1)
recoil

∣∣
σ r p

= 0.007 (32)

in VMC to

C(1)
recoil

∣∣
σ r p = −0.012. (33)
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Finally, as anticipated in Refs. [89,92–94], we find substantial
contributions from two-body currents for all three models.

The induced pseudoscalar contribution, captured by the
h(q2) function in Holstein’s formalism, was not considered
in Ref. [89]. In agreement with Ref. [46], we find this contri-
bution to dominate C(1)

1 . However, we stress that the induced
pseudoscalar contribution to C(1)

1 is partially canceled by the
one to L(2)

1 , so that the single-nucleon induced pseudoscalar
form factor gives corrections to the spectrum that are propor-
tional to m2

e , as expected.

V. CHARGED CURRENTS IN THE
SM EFFECTIVE FIELD THEORY

With the theoretical accuracy of the SM spectrum well be-
low 0.1%, we can then study the sensitivity to physics beyond
the SM. If BSM physics arises at a scale � � v, its correc-
tion to β decays can be described in the framework of the
standard model effective field theory [97,98], an effective field
theory that complements the SM with the most general set of
gauge-invariant effective operators, expressed in terms of SM
fields and organized according to their canonical dimension.
SMEFT contains a single dimension-5 operator [99], which,
when the Higgs gets its vacuum expectation value, gives rise
to a Majorana mass term for the three left-handed neutri-
nos. At dimension 6, the SMEFT contains several classes
of operators, which, at low energy, induce new axial, vector,
scalar, pseudoscalar, and tensor semileptonic interactions be-
tween quarks, charged leptons and left-handed neutrino fields
[97,98]. Since the mechanism behind the origin of neutrino
masses is unknown, for generality we extend the SMEFT
with a multiplet of n sterile neutrino fields νR (νSMEFT)

[5,100,101]. The sterile neutrino is a singlet under the SM
group. At dimension 3, νR has a Majorana mass term, while
at dimension 4 it interacts with active neutrinos via Yukawa
interactions. If one considers only these renormalizable in-
teractions, after diagonalizing the neutrino mass matrix, the
neutrino sector is characterized by 3 + n mass eigenstates
with masses m1, . . . , m3+n, and a (3 + n) × (3 + n) unitary
mixing matrix U , which generalizes the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) mixing matrix. For simplicity, we
will consider n = 1, so that one has to consider the param-
eters m4 and Uα4, with α ∈ {e, μ, τ }, in addition to the SM.
The inclusion of multiple light neutrino states is straightfor-
ward. From oscillation experiments and from the upper limit
from the KATRIN experiment [102,103], m1,2,3 � 0.8 eV, so
that they can be neglected in our analysis. We will consider
m4 as a free parameter, and mostly focus on the region in
which m4 is smaller than the Q value, so that ν4 can be
produced in the decay. In addition to renormalizable inter-
actions, νR can have lepton-number-conserving nonstandard
interactions with SM fields at dimension 6 [5,100,101], which,
as we will see, induce new axial, vector, scalar, pseudoscalar,
and tensor charged-current interactions involving sterile
neutrinos.

After integrating out heavy gauge and quark fields and
rotating to the neutrino mass basis, the most general low-
energy Lagrangian for β decays is given in Refs. [5,104,105].
If the masses of all active and sterile neutrino states are much
smaller than the nuclear scale or the electron mass, we can
neglect sterile neutrino operators, whose interference with the
SM is suppressed by powers of the neutrino masses. In this
case, only scalar, pseudoscalar, and tensor interactions can
give rise to a Fierz interference term, and, making connec-
tions with the notation of Ref. [5], we can write the relevant
interactions as

L(6) = −4GF√
2

Vud

{
1

2
ēRνL (εSūd + εPūγ5d ) + εT ēRσμννL ūRσμνdL

}
+ H.c. (34)

If the masses of sterile neutrinos are non-negligible compared to the electron mass, there are additional interference terms. Using
again the conventions of Ref. [5], we write the Lagrangian for ν4 as

L(6) = −4GF√
2

VudUe4

{
ēLγμ ν4((1 + εL )ūLγ μdL + εR ūRγ μdR) + 1

2
ēRν4(εSūd + εPūγ5d )

+ εT ūRσμνdL ēRσμν ν4

}
− 4GF√

2
Vud

{
ēRγμν4(ε̃LūLγ μdL + ε̃RūRγ μdR)

+ 1

2
ēLν4(ε̃Sūd + ε̃Pūγ5d ) + ε̃T ūLσμνdR ēLσμν ν4

}
+ H.c. (35)

The conversion between the ε, the low-energy EFT (LEFT)
couplings defined in Ref. [105] and νSMEFT is discussed in
Appendix A. The terms in the first bracket of Eq. (35) are
induced by SMEFT operators involving active neutrinos and
are proportional to the mixing Ue4. Since Ue4 is small, we can
usually neglect terms proportional to Ue4 × ε. The terms in the
second bracket, on the other hand, are induced by νSMEFT
operators with sterile neutrinos.

A. Beyond the SM corrections to the β spectrum

The multipole expansion can be generalized to nonstandard
currents induced by SMEFT operators (see also Ref. [106]).
At dimension 6 in the νSMEFT, for both scalar/tensor and
vector/axial operators, the leptonic and hadronic currents
have at most spin 1. The derivation of the multipole expansion
therefore proceeds essentially as in the SM. The additional
vector and axial operators in Eq. (35) generate exactly the
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same multipoles as in Eqs. (B15)–(B18). For scalar and pseu-
doscalar currents, only the CJ0 multipole is present, while for
tensor currents only the electric, magnetic, and longitudinal
multipoles are present.

Restricting again to the case of Ji = 0, Jf = 1, we can
easily adapt the formulas in Eqs. (4)–(7) to the case of non-
standard currents and define

C1(q, P) = i√
4π

〈 6Li, 10|ρ†
P+(qẑ)| 6He, 00〉, (36)

L1(q, T ) = i√
4π

〈 6Li, 10|ẑ · j†
T +(qẑ)| 6He, 00〉, (37)

E1(q, T ) = i√
2π

〈 6Li, 10|ẑ · j†
T +(qx̂)| 6He, 00〉, (38)

M1(q, T ′) = − 1√
2π

〈 6Li, 10|ŷ · j′†T +(qx̂)| 6He, 00〉. (39)

We used

ρP(q) =
∫

d3x eiq·xJP(x), j(′)
T (q) =

∫
d3x eiq·xJ (′)

T (x).

(40)

The pseudoscalar density JP and tensor currents JT and J (′)
T

are defined in Eq. (B34), and the subscript + again refers to
the isospin components. The multipoles C1(q, P), L1(q, T ),
E1(q, T ), and M1(q, T ′) have a q expansion completely anal-
ogous to Eqs. (10)–(13). All corrections to the 6He decay
spectrum arising at dimension 6 in the νSMEFT can be ex-
pressed in terms of Eqs. (4)–(7) and (36)–(39).

The same power counting considerations in Sec. III B
apply to multipoles induced by SMEFT charged-current op-
erators. For purely GT transitions, tensor interactions are the
most important, as they induce both E (m,0)

1 (T ) and L(m,0)
1 (T )

of order 1. From Eq. (C16), M (1,0)
1 (T ′) = 0, and thus we will

neglect this contribution. Pseudoscalar interactions induce the
multipole C1(q, P), which starts at O(qrπ ). This suppression

is partially overcome by pion pole dominance of the pseu-
doscalar form factor, which implies

C(1)
1 (P) = O

(
ε−1
χ

)
. (41)

We thus include this contribution in the analysis. In the case
of multipoles induced by non-SM currents, we only consider
contributions at LO in both the multipole and chiral expan-
sions, implying, in particular, that we only consider one-body
currents, as given in Appendix C. To this order, from Eqs. (4)–
(7), (36)–(39), and (C13)–(C16), we can see that

L(0)
1 (T ) = 1√

2
E (0)

1 (T ) = −2gT

gA
L(0)

1 (A) + O(εχ ), (42)

C(1)
1 (P) = − B

mπ

L(0)
1 (A) + O(εχ ), (43)

where gT is the isovector tensor charge, gT = 0.989 ± 0.033
[107], and B = m2

π/(mu + md ) ≈ 2.8 GeV. B and gT are
scale dependent and given at the MS scale μ = 2 GeV.
Equation (43) confirms the relative enhancement of the pseu-
doscalar contribution.

We first consider the case in which active and sterile neu-
trinos have masses much smaller than the electron mass. In
this particular case, nonstandard axial and vector interactions
simply shift the overall normalization of Eq. (14). If BSM in-
teractions induce not only V − A but also V + A right-handed
currents, the only effect on the spectrum will be a shift in
the relative coefficient between the (L(0)

1 )2 and E (0)
1 M (1)

1 terms
in Eq. (14), as the second originates from the interference of
the axial and vector currents. Since this effect arises at recoil
order, it will not provide strong constraints on new physics.

Tensor and scalar currents interfere with the standard
model via terms proportional to the electron mass. Tensor
interactions give rise to a term at O(q0). The pseudoscalar
contribution is formally O(q), but it is enhanced because of
the pion-pole dominance of the pseudoscalar form factor. The
differential cross section with respect to the electron energy is
given by

d�T

dε
= d�0

dε

4me

3Ee

1∣∣L(0)
1 (A)

∣∣2
{
εT Re

(
E (0)

1 (T )E (0)∗
1 (A) + L(0)

1 (T )L(0)∗
1 (A)

)− εP

2
(1 − ε)W0rπ Re

(
C(1)

1 (P)L(0)∗
1 (A)

)}
, (44)

where d�0/dε is the SM decay rate at LO in the multipole expansion, defined in Eq. (16) [108]. Equation (44) shows the
characteristic me/Ee behavior. Using Eq. (43), Eq. (44) becomes

d�T

dε
= d�0

dε

me

Ee

{
− 8

gT εT

gA
+ 2

3
εP(1 − ε)

W0

mu + md

}
. (45)

The tensor contributions agrees with the result of Ref. [34], while the enhancement of the pseudoscalar contribution was noted,
for example, in Ref. [109]. Equation (45) is only valid at LO in chiral EFT.

Next, we consider the case of sterile neutrinos with non-negligible mass. Here we work at LO in the multipole expansion and
consider mν4 < Q, so that ν4 can be produced. Considering vector and axial currents, we obtain

d�ν4

dε
= d�0

dε

{⎛⎝√1 − m2
ν4

E2
ν

− 1

⎞⎠(1 + εL − εR)|Ue4|2 +
√

1 − m2
ν4

E2
ν

memν4

EeEν

U ∗
e4(ε̃L − ε̃R)

}
, (46)

where Eν = W0(1 − ε). If we turn off all dimension-6 operators, εL,R = 0 and ε̃L,R = 0, Eq. (46) is only proportional to the
mixing Ue4. In this case the presence of sterile neutrinos has two effects, one on the normalization and one energy dependent. In
the presence of nonstandard interactions of a sterile neutrino with a right-handed electron, ε̃L − ε̃R, we also get new Fierz-like
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terms. For tensor interactions

d�ν4,T

dε
= d�0

dε

4

3
∣∣L(0)

1 (A)
∣∣2 Re

[
E (0)

1 (T )E (0)∗
1 (A) + L(0)

1 (T )L(0)∗
1 (A)

]{me

Ee

⎛⎝√1 − m2
ν4

E2
ν

− 1

⎞⎠εT |Ue4|2 + mν4

Eν

√
1 − m2

ν4

E2
ν

ε̃T U ∗
e4

}
,

(47)

so that a fourth massive neutrino would affect the standard Fierz interference term, and, more importantly, generate a new
interference term, proportional to the neutrino mass. Similarly, the pseudoscalar interactions of sterile and active neutrinos give

d�ν4,P

dε
= −d�0

dε

2

3
∣∣L(0)

1 (A)
∣∣2 [(1 − ε)W0rπ Re

(
C(1)

1 (P)L(0)∗
1 (A)

)]⎧⎨⎩me

Ee

⎛⎝√1 − m2
ν4

E2
ν

− 1

⎞⎠εP|Ue4|2 + mν4

Eν

√
1 − m2

ν4

E2
ν

ε̃PU ∗
e4

⎫⎬⎭.

(48)

VI. SENSITIVITY TO BSM SIGNATURES

We now consider the impact of non-standard charged-
current interactions on the energy spectrum. In Fig. 6, we
assume all neutrinos to be massless and we set the tensor and
pseudoscalar interaction to εT = 10−3 and εP = 5 × 10−3,
corresponding to new physics scales � ≈ 8 and 4 TeV, respec-
tively. Interactions of these size lead to ≈10−3 corrections,
which should be resolved in the next generation of exper-
iments. For both pseudoscalar and tensor interactions, the
uncertainty band includes uncertainties on the one-body pa-
rameters, gT and B, and the nuclear uncertainties on the
multipoles, but does not include the truncation to the one-body
level, and it is thus slightly underestimated. High-invariant
mass Drell-Yan production at the LHC currently probes εT

at a very similar level [11,14], while a global analysis of
β decays found εT ∈ [−0.8, 1.2] × 10−3, at the 1σ level
[12]. Pseudoscalar interactions are very well constrained by
the ratio BR(π → eν)/BR(π → μν), which yields −1.4 ×

FIG. 6. Deviation of the 6He β spectrum from the expression
truncated at leading order in the multipole expansion, given in
Eq. (16). The blue curve denotes the SM results, while the red and
green lines include the contributions of a tensor and pseudoscalar
current, respectively. The widths of the bands denote the theoretical
error.

10−7 < εP < 5.5 × 10−4 [6]. Such values are not in reach of
upcoming 6He experiments.

We next consider the case of a massive sterile neutrino,
which mixes with the electron neutrino with strength Ue4, and
has nonstandard axial, vector, scalar, and tensor interactions.
Since the corrections scale in general as mν4/W0, 6He decays
can probe mν4 in the MeV range. Currently the best limit on
the a sterile neutrino with mass mν4 = 1 MeV come from the
β spectra of 20F and 144Pr, and, under the assumption that the
neutrino interacts with the SM only via mixing, these con-
strain a mixing angle Ue4 ≈ 2 × 10−3 [40–43,110,111]. From
this we see that we can always neglect terms in Eqs. (46), (47),
and (48) that are proportional to nonstandard interactions of
active neutrinos, εL,R,P,T , since they are doubly suppressed by
|Ue4|2 and v2/�2.

In the left panel of Fig. 7 we show the corrections to the
spectrum in the case sterile neutrinos interact with SM parti-
cles only via Yukawa interactions. In this case, the spectrum
would show a characteristic “kink” at ε = 1 − mν4/W0, due
to the emission of a massive neutrino. With mixing |Ue4|2 =
10−3, the spectrum receives permille level corrections.

Nonstandard interactions of sterile neutrinos cause correc-
tions to the spectrum of order Ue4 ε̃J , which could thus be rel-
evant for ε̃J ≈ Ue4 ≈ 3 × 10−2, corresponding to new physics
scales of 1 TeV. Sterile neutrinos with an axial coupling
to quarks induce corrections proportional to memν4/(EeEν ),
which are, however, fairly small. More promising is the case
of sterile neutrinos with nonstandard tensor interactions, ε̃T ,
shown in the right panel of Fig. 7. These interactions arise,
for example, in leptoquark models [105]. In this case, an
interference term of the form mν4/Eν is induced, which has a
very different shape compared to tensor interactions of active
neutrinos. This is particularly interesting, since the analysis
of Ref. [12] found some preference for a tensor interaction
involving sterile neutrinos in β decay data.

VII. CONCLUSIONS

We performed an ab initio calculation of the electron en-
ergy spectrum in the β decay of 6He. We used potentials
derived from chiral EFT, with consistent weak vector and
axial currents, and adopted quantum Monte Carlo methods to
solve the many-body nuclear problem. We included terms up
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FIG. 7. Corrections to the β spectrum from sterile neutrinos with minimal (left) and tensor (right) interactions, ε̃T .

to second order in the multipole expansion [71], and state-of-
the-art electromagnetic corrections, following the treatment of
Ref. [76]. In particular, we included two-body currents, for
the first time in an ab initio calculation of the spectrum. To
estimate the theoretical error on the spectrum, we evaluated
the matrix elements L1, E1, M1, and C1 with four potential
models in the Norfolk family of local two- and three-nucleon
interactions, derived in chiral EFT with explicit �′s and in-
cluding terms up to N3LO in the chiral expansion. The four
interactions have different cut-off, they fit nucleon-nucleon
scattering data up to different energies, and use different
observables to determine the low-energy constants in the
three-body force, and thus they provide a good estimate of the
systematic errors in the calculation. We find the 6He half-life
to be in good agreement with experiment. The theoretical
uncertainty of about 3% is dominated by the determination of
the three-body force. We find the error on the spectral shape to
be well below the permille level, and to receive contributions
of approximately the same size from M (1)

1 , C(1)
1 , L(2)

1 , and E (2)
1 .

In the case of M (1)
1 , which encodes the contribution of weak

magnetism, our results agree within theoretical error with the
extraction from the electromagnetic transition 6Li(0+, 1) →
6Li(1+, 0)γ , which is exact in the isospin limit. We checked
that isospin-breaking terms in the nuclear potential induce a
1% difference between M1 and its electromagnetic analog, of
the same size as the experimental error.

C1 is determined by the matrix element of the axial charge
density. We find this matrix element to be dominated by the in-
duced pseudoscalar form factor, in agreement with Ref. [46].
Finally, we find that E (2)

1 and L(2)
1 , which contribute at N2LO

in the multipole expansion, give permille level corrections
to the spectrum, and thus need to be included for an ac-
curacy goal of few parts in 10−4. In GFMC, E (2)

1 and L(2)
1

have relatively large uncertainties, 26% and 12%, respectively.
Also in this case, the dominant systematic uncertainty arises
from the determination of the three-body force and the linear
extrapolation of model IIa*.

Two-body currents play a particularly important role for
M1 and C1, which receive a 8% and ≈20–30% correction
respectively. The effects on E1 and L1 are smaller.

Combining the uncertainties on different matrix elements,
we reach a total error on the differential decay rate, normal-
ized by the rate at leading order in the multipole expansion, of
at most 4 × 10−4. We discussed the consequences of such ac-
curacy on nonstandard charged-current interactions involving
active and sterile neutrinos, showing that the next generation
of experiments will be sensitive to tensor interactions and, to a
lesser extent, to pseudoscalar interactions of active neutrinos.
Future experiments will also constrain sterile neutrinos with
mass in the ≈1 MeV region, with both minimal and non-
minimal interactions.
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APPENDIX A: EFFECTIVE LAGRANGIANS FOR
CHARGED-CURRENT PROCESSES

1. Charged currents in SMEFT and νSMEFT

The SMEFT Lagrangian includes all operators that are in-
variant under the SM SU(3)c × SU(2)L × U(1)Y gauge group
and are built out of SM fields, the left-handed quark and lepton
doublets, Q = (uL, dL )T and L = (νL, eL )T , the right-handed

SU (2) singlets u, d , and e, and the scalar doublet

H = v√
2

U (x)

(
0

1 + h(x)
v

)
, (A1)

where h(x) is the Higgs field, and U (x) is a SU (2) matrix
encoding the Goldstone modes. We will also use H̃ = iτ2H∗.

At dimension 5, the only operator that can be constructed
is the LNV Weinberg operator [99]

L(5)
SMEFT = εklεmn

(
LT

k C(5) CLm
)
HlHn, (A2)

where C is the charge conjugation matrix. After electroweak
symmetry breaking, Eq. (A2) induces a Majorana mass term
for active neutrinos. The full, nonredundant, dimension-6
Lagrangian is given in Ref. [98]. For β decays, the most im-
portant terms are quark and lepton bilinears, which modify the
couplings of the W boson to left-handed quarks and leptons
and induce new right-handed couplings of the W to quarks,
and semileptonic four-fermion operators:

L(6)
SMEFT = C(6)

HL 3

(
H†i

←→
D I

μH
)
(L̄τ Iγ μL) + C(6)

HQ 3

(
H†i

←→
D I

μH
)
(Q̄τ Iγ μQ) + C(6)

Hud i(H̃†DμH )(ūγ μd ) + C(6)
LQ 3(L̄γ μτ I L)(Q̄γμτ I Q)

+ [C(6)
LedQ(L̄ je)(d̄Q j ) + C(6)

LeQu 1(L̄ je)ε jk (Q̄ku) + C(6)
LeQu 3(L̄ jσμνe)ε jk (Q̄kσμνu) + H.c.

]
. (A3)

All dimension-6 operators are lepton-number-conserving (LNC). LNV operators arise at dimension-seven and were constructed
in Ref. [112]. Their contribution to low-energy charged-current operators were considered in Ref. [105].

In addition to the SM fields, we introduce a multiplet of sterile neutrinos νR, which is a singlet under the SM group. At
dimension 3, this allows to write down a Majorana mass term and a Yukawa interaction, so that the renormalizable νSMEFT
Lagrangian is

LνSMEFT = LSM + ν̄Riγ μ∂μνR − [ 1
2 ν̄c

R M̄RνR + L̄H̃YννR + H.c.
]
, (A4)

where M̄R is a symmetric n × n complex matrix, and Yν is a 3 × n matrix of Yukawa couplings. The next interactions relevant to
β decay appear at dimension 6,

L(6)
νSMEFT = L(6)

SMEFT + C(6)
Hνe(ν̄Rγ μe)(H̃†iDμH ) + C(6)

duνe(d̄γ μu)(ν̄Rγμe) + C(6)
QuνL(Q̄u)(ν̄RL)

+ C(6)
LνQd (L̄iνR)εi j (Q̄ jd )) + C(6)

LdQν
(L̄id )εi j (Q̄ jνR) + H.c. (A5)

The first operator induces a coupling of the W boson to νR and a right-handed electron. C(6)
duνe is a purely right-handed semileptonic

charged-current interaction, while the operators on the second line are scalar and tensor interactions of a right-handed neutrino
with quarks and left-handed electrons. Finally, there are LNV operators at dimension 7 [101], which we do not consider here.

2. Charged currents in LEFT

After electroweak symmetry breaking and integrating out the W boson, the operators in Eq. (A3) and (A5) match onto a LNC
β decay Lagrangian in a low-energy, SU(3) × Uem(1) invariant theory (LEFT). In the flavor basis, this is given by

L(6) = −4GF√
2

{
ūLγ μdL

[
ēLγμc(6)

VL νL + ēRγμc̄(6)
VL νR

]+ ūRγ μdR
[
ēL γμc(6)

VR νL + ēR γμc̄(6)
VR νR

]+ ūLdR
[
ēR c(6)

SRνL + ēL c̄(6)
SRνR

]
+ ūRdL

[
ēR c(6)

SLνL + ēL c̄(6)
SLνR

]+ ūRσμνdL ēRσμνc(6)
T νL + ūLσμνdR ēLσμν c̄(6)

T νR
}+ H.c. (A6)

Here we follow the conventions of Ref. [105] and denote with unbarred and barred lower case coefficients, such as c(6)
VL and

c̄(6)
VL, lepton-number-conserving operators that, in the flavor basis, involve active and sterile neutrinos, and thus receive matching

contributions from dimension-6 SMEFT and νSMEFT operators, respectively. In the neutrino mass basis, and assuming one
additional light state, ν4, the Lagrangian becomes

L(6) = −4GF√
2

4∑
i=1

{
ūLγ μdL

(
ēRγμ

[
C(6)

VLR

]
ei νi + ēLγμ

[
C(6)

VLL

]
ei νi
)+ ūRγ μdR

(
ēR γμ

[
C(6)

VRR

]
ei νi + ēL γμ

[
C(6)

VRL

]
ei νi
)

+ ūLdR
(
ēL
[
C(6)

SRR

]
eiνi + ēR

[
C(6)

SRL

]
eiνi
)+ ūRdL

(
ēL
[
C(6)

SLR

]
eiν + ēR

[
C(6)

SLL

]
eiνi
)

+ ūLσμνdR ēLσμν

[
C(6)

TRR

]
ei ν

i + ūRσμνdL ēRσμν

[
C(6)

TLL

]
ei νi
}+ H.c. (A7)
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Neglecting lepton-number-violating (LNV) operators, which
only arise at dimension 7 in the νSMEFT, C(6)

VLL, C(6)
VRL, C(6)

SLL,
C(6)

SRL, and C(6)
TLL receive contributions from vector axial, scalar,

pseudoscalar, and tensor interactions with left-handed neutri-
nos, [

C(6)
VLL

]
ei = [c(6)

VL

]
eαUαi,

[
C(6)

VRL

]
ei = [c(6)

VR

]
eαUαi,[

C(6)
SLL

]
ei = [c(6)

SL

]
eαUαi,

[
C(6)

SRL

]
ei = [c(6)

SR

]
eαUαi,[

C(6)
TLL

]
ei = [c(6)

T

]
eαUαi, (A8)

with i = 1, . . . , 4, and α denotes a charged lepton flavor
index, α ∈ {e, μ, τ }. In practice, we will assume SMEFT
operators to be diagonal in lepton flavor, and restrict our
attention to the ee components. We will thus drop the flavor
subscripts on the c(6) coefficients. The operators C(6)

VLR, C(6)
VRR,

C(6)
SLR, C(6)

SRR, and C(6)
TRR involve sterile neutrinos[

C(6)
VLR

]
ei = [c̄(6)

VL

]
eSU ∗

Si,
[
C(6)

VRR

]
ei = [c̄(6)

VR

]
eSU ∗

Si,[
C(6)

SLR

]
ei = [c̄(6)

SL

]
eSU ∗

Si,
[
C(6)

SRR

]
ei = [c̄(6)

SR

]
eSU ∗

Si,[
C(6)

TRR

]
ei = [c̄(6)

T

]
eSU ∗

Si, (A9)

where S in the subscript of the PMNS matrix denote the sterile
flavor state. In this case, we will absorb the factor of USi in the
coefficient of the effective operators.

In the body of the paper, we adopt the ε notation defined
in Ref. [5]. For interactions involving active neutrinos, the re-
lation between the ε couplings and the couplings in Eqs. (A6)
and (A7) is given by

Vud (1 + εL ) = c(6)
VL, Vud εR = c(6)

VR,

Vud εS = c(6)
SR + c(6)

SL , Vud εP = c(6)
SR − c(6)

SL ,

Vud εT = c(6)
T , (A10)

while, in the case of sterile neutrinos, we have

Vud ε̃L = [
c̄(6)

VL

]
eSU ∗

S4, Vud εR = [c̄(6)
VR

]
eSU ∗

S4,

Vud ε̃S = [
c̄(6)

SR + c̄(6)
SL

]
eSU ∗

S4, Vud ε̃P = [c(6)
SR − c(6)

SL

]
eSU ∗

S4,

Vud ε̃T = [
c̄(6)

T

]
eSU ∗

S4. (A11)

The matching between SMEFT, νSMEFT, and Eq. (A6)
was carried out in Ref. [105], and here we report the results.
For nonstandard interactions involving active neutrinos, one
finds[

c(6)
VL

]
αβ

= Vud δαβ − v2
[
C(6)

LQ 3 − C(6)
HL 3

]
αβ

+ v2
[
C(6)

HQ 3 δαβ

]
,

[
c(6)

VR

]
αβ

= v2

2
C(6)

Hud δαβ,

[
c(6)

SR

]
αβ

= −v2

2

[
C(6)

LedQ

]∗
βα

,

[
c(6)

SL

]
αβ

= −v2

2

[
C(6)

LeQu 1

]∗
βα

,

[
c(6)

T

]
αβ

= −v2

2

[
C(6)

LeQu 3

]∗
βα

. (A12)

Here α and β denote charge lepton flavor indices, α, β ∈
{e, μ, τ }, while we are always assuming the quark flavor in-
dices to be u and d . The matching coefficients of LNC sterile
neutrino operators are[

c̄(6)
VL

]
αS = v2

2

[
C(6)

Hνe

]∗
Sα

,

[
c̄(6)

VR

]
αS

= −v2

2

[
C(6)

duνe

]∗
Sα

,

[
c̄(6)

SR

]
αS = v2

2

[
C(6)

LνQd

]
αS

− v2

4

[
C(6)

LdQν

]
αS

, (A13)

[
c̄(6)

SL

]
αS = −v2

2

[
C(6)

QuνL

]∗
Sα

,

[
c̄(6)

T

]
αS = − v2

16

[
C(6)

LdQν

]
αS

,

where S denotes a sterile flavor index. Ref. [105] also reports
the contribution of LNV SMEFT and νSMEFT operators to
Eq. (A7).

3. Charged currents in the chiral Lagrangian

The quark-level SM and SMEFT Lagrangians lead to inter-
actions between pions and nucleons, which can be organized
in chiral perturbation theory [113–115] and are the building
blocks for the derivation of the one- and two-body nuclear
currents used in this paper. Axial and pseudoscalar interac-
tions induce couplings to a single pion,

Lπ = 2GF Fπ

{
∂μπ−(ēRγμ

[
C(6)

VLR − C(6)
VRR

]
ei

νi

+ēLγμ

[
C(6)

VLL − C(6)
VRL

]
ei νi
)

+ iBπ− (ēL
[
C(6)

SLR − C(6)
SRR

]
eiνi

+ēR
[
C(6)

SLL − C(6)
SRL

]
eiνi
)}+ · · · , (A14)

where · · · denotes terms with multiple pions and affect the
nuclear currents beyond leading order. Axial and pseudoscalar
interactions induce terms with an odd number of pions, while
scalar and vector interactions induce terms with an even num-
ber of pions. Fπ = 92 MeV is the pion decay constant, while
B = m2

π/(mu + md ) ≈ 2.8 GeV, at the renormalization scale
μ = 2 GeV. The strong coupling of the pion to pseudoscalar
operators implies that this interaction dominates the nucleon
pseudoscalar density. In the heavy-baryon formalism, the nu-
cleon Lagrangian at leading order is

LN = −2GF√
2

N̄τ+{vμ
(
ēRγμ

[
C(6)

VLR + C(6)
VRR

]
ei νi + ēLγμ

[
C(6)

VLL + C(6)
VRL

]
ei νi
)− 2gASμ

(
ēRγμ

[
C(6)

VLR − C(6)
VRR

]
ei νi

+ ēLγμ

[
C(6)

VLL − C(6)
VRL

]
ei νi
)+ gS

(
ēL
[
C(6)

SLR + C(6)
SRR

]
eiν + ēR

[
C(6)

SLL + C(6)
SRL

]
eiνi
)

− 4gT εμναβvαSβ

(
ēLσμν

[
C(6)

TRR

]
ei ν

i + ēRσμν

[
C(6)

TLL

]
ei νi
)}

N, (A15)
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where N denotes a nonrelativistic nucleon field, with velocity
vμ = (1, 0) and spin Sμ = (1, σ/2), in the nucleon rest frame.
In the absence of nonstandard currents, the axial charge can be
extracted from neutron decay. In this work, we adopt for the
value of the axial charge [72]

gA

gV
= 1.2754 ± 0.0013. (A16)

This value is slightly larger and with roughly half the uncer-
tainty of the one in the 2018 version of the PDG, gA|18 =
1.2723(23) [116], which is used in the code. In obtaining
the half-life and β spectrum, we rescale the leading multi-
poles E1 and L1, given in Tables III and IV, by gA/gA|18.
For the subleading multipoles, C1 in particular, the difference
is well within the theoretical error. In the future, one can
envision using lattice QCD extraction of the axial charge
[10,27,28,107,117,118], which is approaching percent level
accuracy.

The scalar and tensor isovector charges have been com-
puted in lattice QCD [10,28,107,117]. We will use for the
scalar and tensor isovector charges the averages of the lat-
tice results with Nf = 2 + 1 + 1 flavors of dynamical quarks,
given in Ref. [28,107]

gS = 1.02 ± 0.10, gT = 0.989 ± 0.033. (A17)

Equations (A14) and (A15) are sufficient for the con-
struction of one-body currents at LO. The construction of
vector and axial currents to subleading orders is reviewed in
Refs. [51,59,119,120]. For the BSM scalar, pseudoscalar, and
tensor currents, it is sufficient to work at LO.

APPENDIX B: MULTIPOLE EXPANSION
FOR SM AND BSM CURRENTS

The derivation of the multipole expansion for SM currents
is reviewed in Ref. [71]. The starting point is the weak Hamil-
tonian

Hw = GF√
2

Vud

∫
d3x j lept

μ (x)J μ
V −A(x)

= − GF√
2

Vud

∫
d3x

(
jlept(x) · J V −A(x) − jlept

0 (x)J 0
V −A(x)

)
,

(B1)

where

jlept
μ = 2ēLγμνL. (B2)

Here J μ
V −A denotes the hadronic realization of the quark cur-

rent ūγ μ(1 − γ5)d , and the derivation only assumes that such
a realization exist. The first few orders of the explicit repre-
sentation of J μ

V −A in chiral EFT will be given in Appendix C.
Introducing the scalar and vector under rotations

�0 = 2〈eν̄|ēLγ0νL|0〉 and � = 2〈eν̄|ēLγνL|0〉, (B3)

we can write the matrix element

〈 f eν̄|Hw|i〉 = −GFVud√
2

∫
d3x

(
� · (J V −A) f i − �0

(
J 0

V −A

)
f i

)
,

(B4)
where |i〉 and | f 〉 denote the initial and final nuclear states. We
recall here that the leptonic tensor can be written as

�μ = e−i(pe+pν )·x�̃μ, (B5)

with

�̃μ = ueγ
μ(1 − γ5)vν, (B6)

with ue and vν spinors of the electron and electronic antineu-
trino respectively. The matrix element becomes

〈 f eν̄|Hw|i〉 = −GFVud√
2

∫
d3xe−iq·x

× (
�̃ · (J V −A) f i − �̃0

(
J 0

V −A

)
f i

)
, (B7)

we can define now(
J μ

V −A

)
f i

(−q) =
∫

dx e−iq·x(J μ
V −A

)
f i

(x). (B8)

We define (J μ
V −A) f i(−q) = (J μ

V −A)†
f i(q) and, for ease of no-

tation, we write

hμ
a = 〈 f |J μ†

V −A(q)|i〉 (B9)

that leads to the following matrix element for the interaction
Hamiltonian:

〈 f eν̄|Hw|i〉 = GFVud√
2

�̃μ hμ
a (B10)

Similarly to what has been done in Ref. [71] we can de-
compose the space part of the leptonic tensor �̃μ in terms of
spherical coordinates,

�̃ = �̃3ê†
q0 +

∑
λ=±1

�̃λê†
qλ, (B11)

where the êq,λ are defined as [45,71]

êq,±1 = ∓ 1√
2

(êq1 ± êq2), êq0 = êq3, (B12)

where êq3 = q̂, êq2 = ẑ × q/|ẑ × q| and êq1 = êq2 × êq3. The matrix element can now be expressed as

〈 f eν̄|Hw|i〉 = GFVud√
2

⎛⎝�̃0h0
a − �̃3ê†

q0 · ha −
∑
λ=±1

�̃λê†
qλ · ha

⎞⎠. (B13)
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We can expand Eq. (B4) in a sum of terms with well defined total angular momentum. For the SM current one finds [71]

〈 f eν̄|Hw|i〉 = − GF√
2

Vud〈 f |
{

−
∑
J�1

√
2π (2J + 1)(−i)J

∑
λ=±1

�λ[λMJ−λ(q) + EJ −λ(q)]

+
∑
J�0

√
4π (2J + 1)(−i)J (�3LJ0(q) − �0CJ0(q))

}
|i〉, (B14)

The multipole operators, defined in Ref. [71], are

CJM (q) =
∫

d3x jJ (qx)YJM (�x )
[
J 0

V (x) + J 0
A (x)

]
, (B15)

LJM (q) = i

q

∫
d3x ∇[ jJ (qx)YJM (�x )] · [J V (x) + J A(x)], (B16)

EJM (q) =
∫

d3x
[∇ × jJ (qx)YM

JJ1(�x )
] · [J V (x) + J A(x)], (B17)

MJM (q) = i

q

∫
d3x
[

jJ (qx)YM
JJ1(�x )

] · [J V (x) + J A(x)], (B18)

in terms of spherical Bessel function jJ , spherical harmonics YJM , and vector spherical harmonics YM
JJ1(�x ) (see Ref. [71] for

the relevant definitions). The matrix elements L1, E1, M1, and C1 that enter the decay rate in Eqs. (14) and (D2) are the reduced
matrix elements of the operators (B15)–(B18). The matrix elements between a generic multipole TJM between initial and final
nuclear states can be written as

〈Jf , M f |T †
JM |Ji, Mi〉 = α(−)M (−1)Ji−Mi

1√
2L + 1

〈Jf , M f ; Ji,−Mi|J,−M〉TJ (q) (B19)

with α = 1 for the multipole operator C and α = −1 for the multipole operators L, E , and M. We denote with TJ (q) the reduced
matrix element associated with the generic multipole operator TJM . We are now in the position to obtain Eqs. (4)–(7) reported
in the main text. We recall that for the problem of interest Ji = 0 and Jf = 1 therefore, using selection rules and the identities of
Ref. [45] we arrive at

h0
a = −4π iY10(q̂)

1√
3

C1(q), (B20)

ê†
q0 · ha = −4π iY1,0(q̂)

1√
3

L1(q), (B21)

ê†
qλ · ha = −

√
2π iD1†

M f ,λ
(−φ,−θ, φ)[λM1(q) + E1(q)], (B22)

where in the last passage we recall the following definition

D1†
M f ,λ

(−φ,−θ, φ) =
√

4π

3
Y �

1,λ(θ, φ). (B23)

We can now see that taking q̂ along ẑ, Eqs. (B20) and (B21) lead to Eqs. (4) and (5). Finally taking in Eq. (B22) q̂ along x̂ we
obtain a linear system of two equations for two different values of λ, whose solution leads to Eqs. (6) and (7).

We can generalize Eq. (B14) to nonstandard currents induced by (ν)SMEFT operators. The most general Hamiltonian
including dimension-six operator in the SMEFT has the form

H6 = − GF√
2

∫
d3x
(− jlept

S JS − jlept
P JP + 2

(
jlept
T

)i0J i0
T − ( jlept

T

)
i jJ

i j
T + jlept

V · J V + jlept
A · J A − ( jlept

0

)
VJ

0
V − ( jlept

0

)
AJ

0
A

)
,

(B24)

where the leptonic currents are

jlept
S = 2

(
C(6)

SRL + C(6)
SLL

)
ēRν + 2

(
C(6)

SRR + C(6)
SLR

)
ēLν, (B25)

jlept
P = 2

(
C(6)

SRL − C(6)
SLL

)
ēRν + 2

(
C(6)

SRR − C(6)
SLR

)
ēLν, (B26)(

jlept
T

)μν = 4C(6)
TLLēRσμνν + 4C(6)

TRRēLσμνν, (B27)(
jlept
V

)μ = 2
(
C(6)

VRL + C(6)
VLL

)
ēLγ μν + 2

(
C(6)

VRR + C(6)
VLR

)
ēRγ μν, (B28)(

jlept
A

)μ = 2
(
C(6)

VLL − C(6)
VRL

)
ēLγ μν + 2

(
C(6)

VLR − C(6)
VRR

)
ēRγ μν, (B29)
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and the hadronic currents the nucleon-level realization of

ūd → JS, ūγ5d → JP, ūσμνd → J μν
T , ūγ μd → JV , ūγ μγ5d → −JA. (B30)

Introducing the leptonic matrix elements

�S = 〈eν̄| jlept
S |0〉, �P = 〈eν̄| jlept

P |0〉, (�0)V, A = 〈eν̄|( jlept
V, A)0|0〉, (B31)

which are scalar under rotations, and the vectors

�T = − 1
2εi jk〈eν̄|( jlept

T

)i j |0〉, �′
T = 2〈eν̄|( jlept

T

)i0|0〉 �V, A = 〈eν̄|( jlept
V, A

)i|0〉, (B32)

the matrix element of the Hamiltonian becomes

〈 f eν̄|H6|i〉 = − GF√
2

∫
d3x
(−�S (JS ) f i − �P(JP ) f i − (�0)V

(
J 0

V

)
f i

− (�0)A
(
J 0

A

)
f i

+ �′
T · (J ′

T ) f i

+ �T · (J T ) f i + �V · (J V ) f i + �A · (J A) f i
)
, (B33)

where

(J ′
T )k

f i = 〈 f |J k0
T |i〉, (J T )k

f i = εklm〈 f |J lm
T |i〉. (B34)

Since at dimension 6 in the νSMEFT the leptonic and hadronic currents have at most spin 1 [121], for both scalar/tensor and
vector/axial operators, the derivation of the multipole expansion therefore proceeds as in the SM. Additional vector and axial
operators generate exactly the same multipoles as in the SM. For scalar and pseudoscalar currents, only the CJ0 multipole is
present. Tensor currents generate electric, magnetic, and longitudinal multipoles, but not CJ . One thus finds

〈 f |H6|i〉 = − GF√
2
〈 f |
{

−
∑
J�1

√
2π (2J + 1)(−i)J

∑
λ=±1

�T
λ

[
λMT

J−λ(q) + ET
J −λ(q)

]
−
∑
J�1

√
2π (2J + 1)(−i)J

∑
λ=±1

�′T
λ

[
λMT ′

J−λ(q) + ET ′
J −λ(q)

]+
∑
J�0

√
4π (2J + 1)(−i)J

[
�T

3 LT
J0(q) + �T ′

3 LT ′
J0(q)

]
−
∑
J�0

√
4π (2J + 1)(−i)J

[
�SCS

J0(q) + �PCP
J0(q)

]}|i〉, (B35)

with

CS
JM (q) =

∫
d3x jJ (qx)YJM (�x )JS (x), (B36)

CP
JM (q) =

∫
d3x jJ (qx)YJM (�x )JP(x), (B37)

and

LT (′)
JM (q) = i

q

∫
d3x ∇[ jJ (qx)YJM (�x )] · J (′)

T (x), (B38)

ET (′)
JM (q) =

∫
d3x [∇ × jJ (qx)YM

JJ1(�x )] · J (′)
T (x),

(B39)

MT (′)
JM (q) = i

q

∫
d3x [ jJ (qx)YM

JJ1(�x )] · J (′)
T (x). (B40)

Similar results were obtained in Ref. [106].
For the calculation of the 6He(0+) → 6Li(1+) transition,

only mulitpoles with J = 1 and positive parity are needed.
This leaves C10(q, A), L10(q, A), E1λ(q, A), and M1λ(q,V ) for
the SM currents and BSM axial and vector currents. For BSM
scalar and tensor currents, the only nonvanishing multipoles
are CP

10(q), LT
10(q), ET

1λ(q), and MT ′
1λ. The steps to express the

matrix elements of the operators in Eqs. (B36)–(B40) in terms
of momentum-space currents are analogous to those discussed
for the SM.

APPENDIX C: CHARGED CURRENTS IN CHIRAL EFT

We report in this Appendix, for completeness, the well-
known lowest-order expressions of the SM vector and axial
currents [51,59,119,120,122]. We also report the currents
induced by SMEFT operators. We preliminarily define, for
nucleons of incoming momentum pi and outgoing momentum
p′

i, the center of mass and relative momenta Ki and ki in the
following way:

Ki ≡ p′
i + pi

2
, ki = p′

i − pi, (C1)

and similarly q = p1 + p2. We can express the charge opera-
tor up to the order of interest as

ρ5,a(q) =
∑

ν∈{−2,−1}
ρ

(ν)
5,a(q), (C2)

and similarly for the current we have

j5,a(q) =
∑

ν∈{−3,0}
j(ν)
5,a(q), (C3)

where ν is the chiral order defined as in Ref. [60]. The
leading order ν = −2 and next-to-leading order ν = −1 axial
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charge read

ρ (−2)
a (q, A) = ρ

(−2)
recoil(q, A) + ρ

(−2)
pseudo(q, A)

= −gA

2
τ1,a

(
1

mN
σ1 · K1 − q0

q2 + m2
π

σ1 · q
)

(2π )3δ(k1 − q) + 1 ↔ 2, (C4)

ρ (−1)
a (q, A) = i

gA

4F 2
π

(τ1 × τ2)a
σ2 · k2

ω2
2

+ 1 ↔ 2 , (C5)

where the first term on the second line of Eq. (C4), suppressed by 1/mN , contributes to ρ
(−2)
recoil(q, A), while the second term,

proportional to the electron-neutrino energy q0, is induced by the induced pseuoscalar form factor. Here we use Fπ ≈ 92 MeV.
Similarly the leading order ν = −3 and next-to-leading order ν = 0 contributions to the axial current read

j(−3)
5,a (q) = −gA

2
τ1,a

[
σ1 − q

q2 + m2
π

σ1 · q
]

(2π )3δ(k1 − q) + 1 ↔ 2 , (C6)

j(0)
5,a = j̃(0)

5,a(q) − q
q2 + m2

π

q · j̃(0)
5,a + igA

4F 2
π m

(τ1 × τ2)a
q

q2 + m2
π

(K1 · k1 + K2 · k2)
σ2 · k2

ω2
2

+ 1 ↔ 2, (C7)

where we have defined for convenience

j̃(0)
5,a(q) = g2

A

2F 2
π

{
2c3τ2,ak2 + (τ1 × τ2)a

[
i

2m
K1 − c6 + 1

4m
σ1 × q +

(
c4 + 1

4m

)
σ1 × k2

]}
σ2 · k2

ω2
2

+ 1 ↔ 2. (C8)

In the code, we replace gA with the dipole parametrization of
the axial form factor,

gA(|q|2) = gA
1(

1 + q2/�2
A

)2 , (C9)

with �A = 1.05 GeV. c3, c4, and c6 are NLO low-energy
constants.

Neglecting isospin-breaking effects, the charged vector
current is an isospin rotation of the isovector component of the
electromagnetic current. The leading term is induced by the
isovector magnetic moment and by a recoil correction [51],

j(−2)
a = τ1, a

2

1

2mN
(2K1 + i(1 + κV )σ1 × q), (C10)

with κV ≈ 3.7. The NLO contributions originate from the
exchange of a pion between nucleon lines, with the vector
current coupling either to the pion in flight or to the nucleon.
This contribution gives

j(−1)
a = i

g2
A

F 2
π

(τ1 × τ2)a

(
− σ1

σ2 · k2

ω2
2

+ k1−k2

2ω2
1 ω2

2

σ1 · k1σ2 · k2

)
+ 1 ↔ 2. (C11)

For currents induced by SMEFT and νSMEFT operators,
we just retain one-body contributions. Recalling that, at the
quark level,

J a
S = q̄

τ a

2
q, J a

P = q̄γ5
τ a

2
q J μν a

T = q̄σμν τ a

2
q, (C12)

where q denotes a quark doublet q = (u, d )T , the scalar and
pseudoscalar densities and the tensor currents are then given
by

J (−3)
S,a = gS

τ1,a

2
(2π )3δ(k1 − q) + 1 ↔ 2, (C13)

J (−4)
P,a = gAB

m2
π + q2

τ1,a

2
σ1 · q(2π )3δ(k1 − q) + 1 ↔ 2,

(C14)

J i j(−3)
T,a = gT εi jk τ1,a

2
σ k

1 (2π )3δ(k1 − q) + 1 ↔ 2, (C15)

J i0(−2)
T,a = i

g′
T

2mN
qi τ1,a

2
(2π )3δ(k1 − q) + 1 ↔ 2, (C16)

and the currents defined in Appendix B are given by, for
example, J i j

T = J i j
T,x + iJ i j

T,y, where x and y are isospin in-
dices. The values of the scalar and tensor charges are given in
Eq. (A17). The exact value of g′

T is unknown, but should be a
number of order 1.

APPENDIX D: FULLY DIFFERENTIAL UNPOLARIZED DECAY RATE

In the main text we gave the expression for the decay rate, differential in the electron energy. We give here more differential
expressions, which can be used, for example, to extract corrections to the β-ν correlation a. We start from the expression given
in Ref. [45,71] for the specific case of 6He. The starting point is the usual Fermi’s golden rule for the unpolarized differential
decay rate

d� = (2π )δ(Ei − E f − Eν − Ee)
1

2Ji + 1

∑
MiM f

∑
sesν

|M|2 d3pe

(2π )3

d3pν

(2π )3
, (D1)
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with P f = −pe − pνe . Using the multipole expansion of the matrix element of the SM weak Hamiltonian, Eq. (B14), one gets

d� = 2πδ(Mi − E f − Ee − Eν )G2
FV 2

ud

4π

2Ji + 1

[
(1 + ve · vν )

∑
l�0

|Cl (q)|2 + (1 − ve · vν + 2ve · q̂ vν · q̂)
∑
l�0

|Ll (q)|2

− 2q̂ · (ve + vν )
∑
l�0

Re[Cl (q)L�
l (q)] + (1 − ve · q̂ vν · q̂)

∑
l�1

[|Ml (q)|2 + |El (q)|2]

− 2q̂ · (ve − vν )
∑
l�1

Re[Ml (q)E �
l (q)]

]
d3pe

(2π )3

d3pν

(2π )3
, (D2)

with q = pe + pν , q̂ = q/|q|, ve = pe/
√

p2
e + m2

e , and vν = pν/Eν . We notice that for the transition considered |Ji − Jf | = ±1, 0
and πiπ f = 1, which allow one to simplify the expressions to

d� = 2πδ(Mi − E f − Ee − Eν )G2
FV 2

ud

4π

2Ji + 1
[(1 + ve · vν )|C1(q; A)|2 + (1 − ve · vν + 2ve · q̂ vν · q̂)|L1(q; A)|2

− 2q̂ · (ve + vν )Re[C1(q; A)L�
1(q; A)] + (1 − ve · q̂ vν · q̂)[|M1(q;V )|2 + |E1(q; A)|2]

− 2q̂ · (ve − vν )Re[M1(q;V )E �
1 (q; A)]]

d3pe

(2π )3

d3pν

(2π )3
. (D3)

Retaining terms up to order q2 we have

d� = 2πδ(Ei − E f − Eν − Ee)G2
FV 2

ud

4π

2Ji + 1

1

9

{
(3 − ve · vν )|L(0)

1 (A)|2 − 2q̂ · (ve + vν ) qrπ Re
[
C(1)

1 (A)L(0)�
1 (A)

]
− 2q̂ · (ve − vν ) qrπ Re

[
M (1)

1 (V )E (0)�
1 (A)

]+ (1 + ve · vν )(qrπ )2|C(1)
1 (A)|2

+ (qrπ )2(1 − ve · q̂ vν · q̂)

[
|M (1)

1 (V )|2 − 1

5
Re
(
E (0)

1 (A)E (2)
1 (A)

)]
− (qrπ )2

5
(1 − ve · vν + 2vν · q̂ve · q̂)Re

(
L(0)

1 (A)L(2)
1 (A)

)} d3pe

(2π )3

d3pν

(2π )3
, (D4)

where we used the expansion in Eqs. (10)–(13). Integrating over the neutrino phase space and the electron angular variables, we
obtain Eq. (14).

With the definitions in Eqs. (10)–(13), the coefficients of the momentum expansion of the multipole operators are real.
Dropping the labels A and V and using E (0)

1 = √
2L(0)

1 , we can write

d� = 2πδ(Ei − E f − Eν − Ee)G2
FV 2

ud

4π

2Ji + 1

1

3
|L(0)

1 (A)|2 d3pe

(2π )3

d3pν

(2π )3

×
{

1 + 2W0rπ

3

[(
1 − 2ε + μ2

e

ε

) √
2M (1)

1

L(0)
1

−
(

1 − μ2
e

ε

)
C(1)

1

L(0)
1

]

+ (W0rπ )2

3

[(
1 − 4

3
ε(1 − ε) − μ2

e

ε

2 + ε

3

)(
C(1)

1

L(0)
1

)2

− 1

5

(
1 − μ2

e

ε
(2 − ε)

)
L(2)

1

L(0)
1

+
(

1 − 10

3
ε(1 − ε) + μ2

e

ε

4 − 7ε

3

)
M̃ (2)

1

L(0)
1

]

+ ve · vν

[
− 1

3
− 2W0rπ

3

(
(1 − 2ε)

√
2M (1)

1

L(0)
1

+ C(1)
1

L(0)
1

)

+ (W0rπ )2

3

(
(1 − μ2

e )

{(
C(1)

1

L(0)
1

)2

− 1

5

L(2)
1

L(0)
1

}
− (1 − 4ε(1 − ε) − μ2

e

)M̃ (2)
1

L(0)
1

)]

+ (W0rπ )2

3

(
(ve · vν )2 − 1

3

|pe|2
E2

e

)
ε(1 − ε)

[
2

(
C(1)

1

L(0)
1

)2

− M̃ (2)
1

L(0)
1

]}
, (D5)
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where we introduced the scaled variables ε and μe as in Sec. II, and we defined

M̃ (2)
1 = L(0)

1

⎛⎝(M (1)
1

L(0)
1

)2

−
√

2

5

E (2)
1

L(0)
1

⎞⎠. (D6)

From Eq. (D5), we can read the corrections to the β-ν angular correlation a and to the subleading correlations C(aa) [4],
proportional to (ve · vν )2. From these expressions, we find that the β-ν correlation coefficient, averaged over energy, is

〈a〉 = − 1
3 − 2.3(4) × 10−4 − 1.2(2) × 10−3, (D7)

where we used GFMC matrix elements, and we did not include radiative corrections. The second term is the correction linear
in M (1)

1 and C(1)
1 . The term proportional to M (1)

1 averages to almost zero, leaving behind a small contribution from C(1)
1 . The last

term appears at second order in the multipole expansion. Both corrections are still below the experimental sensitivity [123].
For tensor and pseudoscalar currents, we find that the interference with the SM is given, at lowest order in the multipole

expansion, by

d� = 2πδ(Ei − E f − Eν − Ee)G2
FV 2

ud

4π

2Ji + 1

4me

Ee

d3pν

(2π )3

d3pe

(2π )3

×
[
εT Re[E1(q, T )E∗

1 (q, A) + L1(q, T )L∗
1 (q, A)] − εP

2
v̂ν · q̂ Re[C1(q, P)L∗

1 (q, A)]

]
, (D8)

which, using the expansion in Eqs. (10)–(13) becomes

d� = 2πδ(Ei − E f − Eν − Ee)G2
FV 2

ud

4π

2Ji + 1

4me

9Ee

d3pν

(2π )3

d3pe

(2π )3

×
[
εT
(
E (0)

1 (T )E (0)
1 (A) + L(0)

1 (T )L(0)
1 (A)

)− εP

2
W0rπ ((1 − ε) + ε ve · vν )C(1)

1 (P)L(0)
1 (A)

]
, (D9)

so that tensor interactions only induce a Fierz interference term, while pseudoscalar interactons also affect a. The expressions
for the decay rates in the presence of sterile neutrinos can be found in a similar way.

APPENDIX E: HIGHER-ORDER ELECTROWEAK
AND KINEMATIC RECOIL CORRECTIONS

1. Coulomb and radiative corrections

The multipole expansion of the weak Hamiltonian de-
scribed at the start of this work does not explicitly take into
account electromagnetic interactions. The treatment of such
effects in nuclear β decay has historically been divided into
three parts: (i) Coulomb corrections via the outgoing β parti-
cle in the field of the final atomic state; (ii) infrared-divergent
contributions from various virtual and real emission photon
processes up to some O(αnZm) (m > n) not already contained
in (i); (iii) the remainder of electroweak radiative corrections,
which are independent of the process kinematics. The lat-
ter two are typically described as outer and inner radiative
corrections, respectively, and are the topic of a significant
body of literature [124,125] and will only be plugged into
the final result. The Coulomb corrections, on the other hand,
are of interest, and to first order can be understood as the
elastic response of the γW box diagrams. Higher-order (i.e.,
O{[αZ]n}) behavior can then be absorbed by substituting the
electron plane wave by a solution of the Dirac equation in the
static, spherical potential of the atomic final state, φe(r, pe),
and writing the Hamiltonian as

M f i =
∫

d3r φ̄e(r, pe)γ μ(1 − γ 5)v(pν̄ )

×
∫

d3s

(2π )3
eis·r 1

2
[〈 f (p f + pe − s)|Vμ + Aμ|i(pi )〉

+ 〈 f (p f )|Vμ + Aμ|i(pi − pe + s)〉]. (E1)

The multipole expansion then proceeds analogously, and the
most immediate modification is the introduction of the Fermi
function [Eq. (15)], i.e., the j = 1/2 large components of
the electron wave function for a point charge. The small and
j > 1/2 components show up as small modifications in the
radial integrals folded together with the nuclear current and
introduce additional small terms to the differential decay rate.
These are well known in the literature and can be found
in several places [74,126]. Additional correction terms are
well known for moving past a point-charge model of the
nucleus and introducing additional subdominant electromag-
netic corrections such as screening by atomic electrons and
atomic exchange processes. We use the results of Ref. [76]
by translating our results into the Behrens-Bühring formalism
[95,127]:

L0
1 = C

√
3AF (0)

101, E0
1 = C

√
6AF (0)

101, (E2a)

C1
1 = −C R

rπ

AF (0)
110, M1

1 = −C R

rπ

V F (0)
111, (E2b)

L2
1 = C 1√

3

(
R

rπ

)2(
5AF (1)

101 − 2
√

2AF (0)
121

)
, (E2c)

E2
1 = C

√
2

3

(
R

rπ

)2(
5AF (1)

101 +
√

2AF (0)
121

)
, (E2d)

where R is the nuclear radius of the uniformly charged sphere,
i.e., R = √

5/3〈r2〉exp and C = √
2Ji + 1/4π . This results in
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the additional terms

CCoulomb(Z, ε) = αZW0R

[
|L0

1 |2
(

6

35
− 233

210

αZ

W0R
− 3

70

μ2
e

ε
− 12

7
ε

)
+
(

rπ

R

)2(E0
1 E2

1

2
− L0

1L2
1

)(
− 20

35
+ 4

7
ε

)]
, (E3)

where the fractional prefactors were calculated assuming a uniformly charged sphere as described in Ref. [76].
Putting everything together, the inclusion of electroweak corrections modifies the β spectrum by

d�

dε
∝ (1 + �V

R

)
(1 + δR(ε))F0(Z, ε)L0(Z, ε)S(Z, ε)[C0(ε) + CCoulomb(Z, ε)] (E4)

where �V
R are the inner radiative corrections to vector tran-

sitions (the difference induced by axial transitions is small
and absorbed into an experimentally determined gA value)
and δR(ε) are outer radiative corrections to O(α3Z2). Further,
F0L0 is the Fermi function for a uniformly charged sphere,
S describes the shielding of the nuclear charge by atomic
electrons, and CCoulomb(Z, ε) are modifications due to higher-
order Coulomb corrections folded with the nuclear current
discussed above.

2. Kinematic recoil corrections

In Appendix B we defined the multipole expansion of the
weak Hamiltonian as introduced by Donnelly and Walecka
[71]. This expansion, however, is not Lorentz covariant but
implicitly performed in the Breit (brick wall) system, i.e.,
where pi = −p f . In the approximation of an infinitely mas-
sive nucleus the Breit and laboratory frames agree. For

a consistent description, however, results must be Lorentz
boosted back into the laboratory frame, leading to additional
O(q/M ) results. This is discussed in more detail in Ref. [95]
and will not be repeated here.

The kinematic recoil corrections originating from the phase
space integral can also be easily written as a multiplicative
factor,

d� ∝ |M|2
(

1 + 3Ee − W0 − 3pe · v̂ν

M

)
, (E5)

where the final term gives a finite contribution in the neutrino
angular integral when combined with the β-ν correlation.

Combining both leads to well-known expressions for the
total kinematic recoil corrections [76,128]:

RN ≈ 1 − 2W0

3M
+ 10Ee

3M
− 2m2

e

3EeM
, (E6)

where we kept only terms to first order in q/M, thereby ne-
glecting terms of O(10−6) at most.
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