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0νββ decay to the first 2+ state with a two-nucleon mechanism for a L-R symmetric model
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We develop the formalism for calculating the decay rate of neutrinoless double β decay to the 2+ excited states
within the L-R symmetric model. We consider the effects from induced hadronic currents up to next to leading
order. The quasiparticle random phase approximation method in a spherical basis is adopted for the nuclear
many-body calculation and the corresponding nuclear matrix elements are given. Also, the phase space factors
are obtained with numerical electron wave functions. Our results suggest that the nuclear matrix elements are
nucleus dependent and they are generally smaller than that of the decay to the ground states. And finally, we give
a naive analysis of how current experiment data constrains the L-R symmetric model.
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I. INTRODUCTION

New physics beyond the standard model is always the
hottest topic in particle physics. Further, the origin of the
neutrino mass could be one of the most important questions
in this area. Perhaps, the most promising explanation for a
small neutrino mass is the seesaw mechanism. The see-saw
mechanism can usually be divided into different categories.
To realize such mechanisms, different new physics models
are proposed. One of the appealing proposals is the L-R
symmetric model [1] with the underlying gauge symmetry
SU(2)L × SU(2)R × U(1)B−L. With two more Higgs particles
introduced, one can naturally incorporate the seesaw mech-
anism into this model. There are different phenomenologies
related to this model. One of the important consequences is
the existence of the so-called neutrinoless double beta decay
(0νββ decay).

However, the underlying mechanism of 0νββ decay may
not be unique. Thus, it is important to find a way to identify the
decay mechanisms by future measurements. There are several
proposals for this purpose, such as comparing the ratios of
the decay rates for different candidates [2] or measuring the
spectra and the angular correlations of the emitted electrons
[3]. As an alternative, one also suggests to compare the decay
rates of decays to ground and excited states [4], especially
between the ground states and the 2+ excited states [3].

In the minimal L-R symmetric model, for the decay to the
ground state, due to the neutrino propagator’s helicity sup-
pression by the mass mechanism, the non-helicity-suppressed
q term may play a dominant role [5]. Under such a scenario,
the emission of P-wave electrons will surely lead to a visible
effect on the angular correlation of the double β spectrum,
this is investigated in [6]. Also, for another decay mode—
neutrinoless double β decay to the 2+ excited states [hereafter
0νββ(2+)m], contributions from such P-wave electrons will

become dominant. While different from the decay to ground
states, the helicity suppressed me terms are negligible since
these terms come from the next to leading order (NLO) parts
of the hadronic current. So with such a physics model, we may
probe the underlying mechanism by comparing these different
decay modes. Unfortunately, 0νβββ(2+) is actually rarely
investigated, and the only calculation available is done with
the projected Hartree-Fock-Bogoliubov (pHFB) approach [7].
The pHFB calculation suggests that the decay is highly sup-
pressed since the Nuclear Matrix Element (NME) is several
orders of magnitude smaller than that of the decay to ground
states (Hereafter 0νββ(0+)). This smallness is caused partly
by the suppression from each part of the NME and partly
by the cancellation among them. On the other hand, in [8],
one finds that although the neutrino mass mechanism can
contribute to this decay mode, their NME is about two orders
of magnitude smaller than the q mechanism. These together
make it impossible to observe 0νββ(2+).

Nevertheless, our recent calculations [9] suggest that the
NME in [7] is underestimated, our results are orders of
magnitude larger than those of [7] and cancellations among
different components are not observed especially for Mη′ .
These results may suggest that decay to the first 2+ states
is not that heavily suppressed as previously expected. In all
previous calculations, only the vector and axial-vector parts
of the hadronic current are considered. Another important
component, namely, the pseudoscalar part from the pion pole
[10], is not taken into account. As suggested in [11], this
pseudoscalar piece is accounted as a LO contribution like the
vector and axial-vector parts. In most 0νββ calculations, the
NLO weak-magnetism contribution is also taken into account.
In this work, we incorporate all these parts into the calculation
and study their effects on the NME’s.

The calculation of NME relies on various nuclear many-
body approaches, and we limit our discussions to traditional
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ones with effective nuclear forces, leaving out those of
ab initio methods using a nuclear force starting from the
bare nucleon-nucleon interaction. For the decay to the ground
states with the standard neutrino mass mechanism, several cal-
culations have been done over the decades. First we mention
the time-consuming large scale shell model (LSSM) calcula-
tions [12,13], which take advantage of the existence of the
shell gap, and separates the particles of the core and the
nucleons of the valence part.

Apart from LSSM calculations, which are applicable to
limited cases due to the large computation requirement, sev-
eral other methods can be applied to more occasions, e.g.,
the IBM-2 method [14], the DFT methods of nonrelativistic
[15] and relativistic versions [16], the project HFB method
[17], as well as the quasiparticle random phase approximation
(QRPA) method [18–21], which takes intermediate states into
account. For recent reviews of these calculations, we refer to
[22,23].

Meanwhile, the NME calculations for the nonstandard
LR-symmetric model with the inclusion of the non-helicity-
suppressed q terms are less frequently considered for
0νββ(0+). Recent calculations have been done by QRPA
[6,24,25], LSSM [26–30] as well as by pHFB [31]. Especially
for [26–28,32], contributions from standard model (SM) ef-
fective field theory have been thoroughly analyzed besides
the LR-symmetric model. There are also other calculations
starting from SM effective field theories which have different
expressions as traditional LR symmetric models [11,33].

Compared to the above calculations of decay to the ground
states, the decay to the excited 2+ state is rarely discussed,
and the most recent calculations are from about two decades
ago [8] as mentioned above. To investigate this special de-
cay mode, we adopt the QRPA method with realistic nuclear
forces [9]. Our previous results suggest that the final NMEs
are larger than expected with only the vector and axial vector
parts of the hadronic currents included. In this work, we in-
clude more components up to NLO to make a more thorough
investigation.

This article is arranged as follows. At first we present
the formalism we use. It is followed by the results for the
phase space factors and the nuclear matrix elements. Then we
discuss constraints on the L-R model parameters from current
results. Finally we give a conclusion as well as an outlook.

II. FORMALISM

In the L-R symmetric models, such as SU(2)L × SU(2)R ×
U(1)B−L , after two successive spontaneous symmetry break-
ings, the left- and right- handed gauge bosons acquire masses
through the Higgs mechanism, and in general the left- and
right-handed gauge bosons are mixed [1,5]:

(
WL

WR

)
=

(
cos ξ − sin ξ

sin ξ cos ξ

)(
W1

W2

)
. (1)

Here, ξ is the mixing angle and W1, W2 the mass eigenstates
of W bosons.

The neutrinos acquire masses through their Yukawa cou-
pling with Higgs bosons [1]:(

νL

NR

)
=

(
U U ′
V ′ V

)(
νM

NM

)
, (2)

where νT
L = (νe, νμ, ντ ) and NT

R = (Ne, Nμ, Nτ ) are the three
flavor left- and right-handed neutrinos. νM and NM are their
light and heavy mass eigenstates. The seesaw mechanism can
be naturally fulfilled in this model [1].

Starting from the left- and right-gauge-fermion interac-
tions, the effective weak Hamiltonian can be written following
the definition in [5]:

Heff =
√

1
2 GF cos θC

(
jLμJ̃μ

L + jRμJ̃μ
R

) + H.c., (3)

where the lepton currents are

jμL(R)(�x) = ψ̄e(�x)γ μPL(R)ψν (�x) (4)

with PL = (1 − γ5)/2 and PR = (1 + γ5)/2, respectively.
In the current model, the hadronic currents have the form

J̃Lμ ≈ JLμ,

J̃Rμ ≈ ηJLμ + λJRμ. (5)

Here,

η ≡ −(gR/gL ) tan ξ [1 − (M1/M2)2]/[1 + tan2 ξ (M1/M2)2],

(6)

λ ≡ (gR/gL )2[(M1/M2)2 + tan2 ξ ]/[1 + tan2 ξ (M1/M2)2].

(7)

Here, M1 and M2 are the mass eigenvalues of W1 and W2 gauge
bosons, respectively.

Within the nonrelativistic impulse approximation, under
the Breit frame, the left- or right-handed hadronic currents
have the form

JLμ(�x) = (J0(�x), �JL(�x)),

JRμ(�x) = (J0(�x), �JR(�x)), (8)

where

J0(�x) =
A∑

n=1

gV (q2)δ(�x − �rn),

�JL =
A∑

n=1

−[gA(q2)�σn − gP(q2)(�σn �q)�q

+ i
gM (q2)

2mp
(�σn × �q)]δ(�x − �rn),

�JR =
A∑

n=1

[gA(q2)�σn − gP(q2)(�σn �q)�q

− i
gM (q2)

2mp
(�σn × �q)]δ(�x − �rn). (9)

According to angular momentum conservation, for
0νββ(2+), the emitted electrons must be coupled to total
angular momentum J = 2, this suggests that the dominant
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TABLE I. The decomposition coefficients of NMEs for Mλ, Mη,
and M ′

η. Here, gA = gA(0).

i 1 2 3 4 5 6 7

C
i
1
3 g2

A − 2
3 g2

A

√
7
3 g2

A 1 −
√

3
2 gA

Cηi
1
3 g2

A − 2
3 g2

A

√
7
3 g2

A −1 0

C′
ηi

√
1
2 gA −

√
3
2 gA

contribution comes from the combination of decomposed par-
tial waves s1/2 − p3/2 [5]. Substituting the hadronic currents
into the S matrix, the decay width can then be written as [5,7]

� = G1|Mλ〈λ〉 − Mη〈η〉|2 + G2|M ′
η〈η〉|2. (10)

Here, G’s are phase space factors and M’s are the NMEs.
〈λ〉 and 〈η〉 are new physics parameters connected to
λ and η defined above as [6] 〈η〉 = η| ∑ j Ue jV ′∗

e j | and
〈λ〉 = λ| ∑ j Ue jV ′∗

e j (g′
V /gV )|. Here, gV and g′

V are the vec-
tor coupling constants for left- and right-handed currents,
respectively. U and V ′ are neutrino mass mixing ma-
trix elements. And j sums over the light neutrino mass
eigenstates.

The phase space factor (PSF) can be expressed as [7]

Gi = 4π

ln 2R4
n

∫
dE1dE2

(G cos θC )4

32π6
fi p1 p2E1E2

× δ(E1 + E2 − 2me − Qββ (2+)). (11)

Here,

f1 = 3[| f −2−1|2 + | f21|2 + | f −1−2|2 + | f12|2],

f2 = 3
[∣∣ f −2

1

∣∣2 + ∣∣ f −1
2

∣∣2 + ∣∣ f −2
1

∣∣2 + ∣∣ f −1
2

∣∣2]
. (12)

For these f functions such as f12, we follow the convention
in [34]. In our definition, the phase space factor are with the
unit of y−1, this is obtained by dividing R2

n to Eq. (11) of [7].
Here Rn = 1.2A1/3 fm is the conventionally defined nuclear
radius. By deriving this, the no finite de Broglie wave length
correction (no FBWC) approximation is used [5].

The expressions for the NME are much more complicated,
and we follow the conventions in [7], divide the NME into
seven parts:

Mλ =
5∑

i=1

CλiMi,

Mη =
5∑

i=1

CηiMi,

M ′
η =

7∑
i=6

C′
ηiMi.

For the coefficients C’s, we follow the definition of [7] as well
and they are tabulated in Table I, where we have absorbed
gA into the NME unlike the conventional treatment where
coupling constants g’s are included in PSFs.

The NME can be further expressed as Mi = 〈2+
f ||Mi||0+

i 〉,
and these operators Mi can be expressed in a general form:

Mi = 2Rn

π

∫
qdq

q + EN
hi(q, r)Oi. (13)

Here, EN = Emx + Mm − (Mi + M f + E2+ )/2 is the interme-
diate state excitation energy relative to the initial and final
states. And h is usually called the neutrino potential and O
is the angular transition operator.

Where, for different NME components, the detailed forms
for neutrino potential hi is as follows:

h1(q, r) = 1

g2
A(0)

j1(qr)

[
g2

A(q2) + 2
gA(q2)gP(q2)q2

2mp
− g2

P(q2)q4

(2mp)2
− 2

g2
M (q2)q2

(2mp)2
)

]
,

h2(q, r) = 1

g2
A(0)

j1(qr)

[
g2

A(q2) − gA(q2)gP(q2)q2

2mp
+ 1

5

g2
P(q2)q4

(2mp)2
+ 1

5

g2
M (q2)q2

(2mp)2

]
,

h3(q, r) = 1

g2
A(0)

{
j1(qr)

[
g2

A(q2) − gP(q2)gA(q2)q2

2mp
+ 1

5

g2
P(q2)q4

(2mp)2
+ 1

5

g2
M (q2)q2

(2mp)2

]
− j3(qr)

[
3

35

g2
P(q2)q4

(2mp)2
+ 3

35

g2
M (q2)q2

(2mp)2

]}
,

h′
3(q, r) = 1

g2
A(0)

j3(qr)

[√
3

5

g2
P(q2)q4

(2mp)2
+

√
3

5

g2
M (q2)q2

(2mp)2

]
,

h4(q, r) = g2
V (q2)

g2
V (0)

j1(qr), h5(q, r) = gV (q2)gA(q2)

gV (0)gA(0)
j1(qr), h6(q, r) = h7(q, r) = gV (q2)gA(q2)

g2
A(0)

r+ j1(qr)

r
. (14)

Here, q = |�q| is the exchange momentum carried by
the neutrino propagator. The gα (q2)’s are the form fac-
tors. It can be written in an empiric dipole form
in general: gV (q2) = gV (0)/(1 + q2/
V )2 and gA(q2) =
gA(0)/(1 + q2/
A)2. Here, gV (0) = 1 and gA(0) = 1.27, and

we take 
V = 0.85 GeV and 
A = 1.1 GeV for the en-
ergy cutoff. In the nuclear environment, gA(0) is usually
quenched with a not definitely known origin. Therefore in the
current work we adopt two values for this coupling constant:
The bare one and a quenched one with a quenching factor
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TABLE II. PSFs for various nuclei from the current work and that of [5] as well as current experimental limits. For results from [5], we
have converted to our convention. We also present the constraints on new physics parameter on two special cases.

G1 (10−15 y−1) G2 (10−15 y−1) |λ| 	 |η|, mββ |η| 	 |λ|, mββ

Q (MeV) this work [5] this work [5] t limit
1/2 (y) 2+ 0+[6] 2+ 0+[6]

76Ge 1.480 6.86 7.37 4.77 5.12 >2.1×1024[38] <2.13×10−5 <5.07×10−7 <4.56×10−6 <2.81×10−9

82Se 2.219 50.12 55.28 40.11 44.30 >1.0×1022[39] <8.35×10−5 <5.63×10−5

96Zr 2.572 140.4 117.2 >9.1×1020[39] <2.76×10−3 <2.38×10−4

100Mo 2.495 134.2 149.8 111.3 124.3 >1.6×1023[39] <2.52×10−4 <1.73×10−5

116Cd 1.520 18.18 12.98 >6.2×1022[39] <1.75×10−4 <2.32×10−5

128Te 0.423 0.225 0.267 0.0825 0.0985
130Te 1.991 76.41 91.37 60.04 71.84 >1.4×1023[39] <2.35×10−5 <5.11×10−6

136Xe 1.639 35.61 44.99 26.33 33.42 >2.6×1025[39] <2.43×10−6 <4.35×10−7 <4.17×10−6 <2.12×10−9

gA = 0.75gA0. And gM (q2) = (1 + κ1)gV (q2) [18] with κ1 =
μp − μn. Also gP(q2) = 2mpgA(q2)/(q2 + m2

π ) is given by
the Partially Conserved Axial Currents (PCAC) hypothesis.

And the angular operators Os have the forms

O1 = �σ1 · �σ2[r̂ ⊗ r̂](2),

O2 = [�σ1 ⊗ �σ2](2),

O3 = [[�σ1 ⊗ �σ2](2) ⊗ [r̂ ⊗ r̂](2)](2),

O′
3 = [[�σ1 ⊗ �σ2](2) ⊗ [[r̂ ⊗ r̂](2) ⊗ [r̂ ⊗ r̂](2)](4)](2),

O4 = [r̂ ⊗ r̂](2),

O5 = [(�σ1 + �σ2) ⊗ [r̂ ⊗ r̂](2)](2) (15)

for the nonprimed NMEs Mλ and Mη.
And

O6 = [(�σ1 − �σ2) ⊗ [r̂ ⊗ r̂+](1)](2),

O7 = [(�σ1 − �σ2) ⊗ [r̂ ⊗ r̂+](2)](2) (16)

for the primed NME M ′
η.

Compared to the expression in [7], M3 has one extra term
induced by the hadronic current, we denote it by M ′

3. For
M4–M7, no corrections from the induced hadronic current are
presented.

For the sake of comparison with the decay to the ground
state cases, we find that we have also AA, AP, PP, and MM
components for the space-space current-current interactions
(M1, M2, and M3) coming from different components of in-
duced hadronic current. Except for M1, one finds that PP and
MM components are suppressed by a factor smaller than 1/5
compared to AA and AP components.

The NMEs are calculated in our case with the nuclear
many-body approach, the so-called pn-QRPA as well as
charge conserving QRPA methods both with realistic nuclear
forces [9]. The detailed expression can be found in [9]

Mi =
Jπ m∑

pnp′n′
〈2+

f ||˜[c†
pc̃n]J ′ ||Jπm f 〉〈Jπm f ||Jπm f 〉

× 〈Jπ mi||[c†
p′ c̃n′ ]J ||0+

i 〉. (17)

The expressions for the one-body densities as well as the
overlap of the initial and final intermediate states can also be

found in [36], where the final 2+ states are obtained by charge
conserving QRPA [35,36].

III. RESULTS AND DISCUSSIONS

A. Phase space factors

For the calculation of PSFs, we use the numerical package
RADIAL [37] for the electron wave functions and we follow the
convention in [34]. We use a uniform charge distribution for
the calculations of the nuclear static charge potential and we
choose the charge radius to be the same as the nuclear radius.
We neglect the screening effect from the orbital electrons
since it gives minor corrections to PSF [34] in the case of the
decay to the ground state.

The results of PSFs of various nuclei are presented in
Table II, we also list these nuclei’s Q values. For most nuclei
except 128Te, PSFs span a range of about two orders of mag-
nitude. Three nuclei have Q values larger than 2 MeV, and of
which 96Zr has the largest PSF for the decay into the excited
state. 100Mo has almost the same values for the PSF as 96Zr,
since their Q values are close. While 82Se has a larger Q value,
its PSFs are somehow smaller than those of 130Te mostly due
to its smaller atomic number Z .

We also present results from an earlier calculation [5],
where a Taylor expansion of the electron wave function
is used. For 76Ge, we have also results from [7], G1 =
7.34×10−15 y−1 and G2 = 5.10×10−15 y−1, which are ba-
sically the same as the results in [5] with a deviation less
than 1% since they use a similar treatment for electron wave
functions. Our current numerical results generally agree with
their results quantitatively. We find the deviations for ours and
theirs are about 10%–30%, the current numerical results are
smaller than their predictions. There is a strong trend of an
increase for the deviations as Z increases. This is reasonable,
with the growth of Z the nuclear radius R also increases. Since
the conventional Taylor expansion method uses αZ and W R
as variables, the errors will grow with the increase of these
variables. One finds the largest phase space factor for 100Mo
from their calculations. If this nucleus has also the largest
NME, then it can be one of the most promising candidates for
a future experimental search. To explore such a possibility, we
need high precision nuclear many-body calculations. We will
proceed into this direction in the next part.
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TABLE III. NMEs for decay to 2+
1 with gA = gA0 = 1.27. Here, a and b refer to two different cases with AV-18 and CD-Bonn short range

correlations adopted.

76Ge 82Se 96Zr 100Mo 116Cd 128Te 130Te 136Xe

a b a b a b a b a b a b a b a b

M1 AA 0.641 0.640 0.790 0.789 0.027 0.027 0.205 0.205 0.198 0.199 0.700 0.700 0.643 0.643 0.334 0.333
AP 0.481 0.480 0.649 0.648 0.046 0.046 0.141 0.141 −0.058 −0.057 0.425 0.425 0.449 0.448 0.563 0.562
PP −0.087 −0.087 −0.149 −0.149 −0.022 −0.022 −0.022 −0.022 0.067 0.067 −0.044 −0.043 −0.070 −0.070 −0.206 −0.206

MM −0.033 −0.033 −0.098 −0.098 −0.027 −0.028 −0.007 −0.007 0.071 0.072 0.018 0.018 −0.016 −0.016 −0.182 −0.183
tot. 1.001 1.000 1.193 1.191 0.024 0.023 0.317 0.317 0.279 0.280 1.099 1.100 1.006 1.006 0.510 0.506

M2 AA −0.249 −0.252 −0.005 −0.006 0.238 0.239 −0.052 −0.054 −0.992 −0.996 −0.268 −0.269 −0.175 −0.175 0.405 0.408
AP 0.207 0.210 −0.028 −0.027 −0.229 −0.230 0.265 0.267 0.564 0.568 0.142 0.143 0.059 0.060 −0.416 −0.419
PP −0.034 −0.034 −0.002 −0.003 0.029 0.030 −0.043 −0.043 −0.066 −0.067 −0.022 −0.022 −0.012 −0.012 0.044 0.045

MM −0.021 −0.023 −0.005 −0.006 0.014 0.014 −0.022 −0.023 −0.035 −0.037 −0.014 −0.015 −0.008 −0.009 0.022 0.023
tot. −0.097 −0.098 −0.041 −0.042 0.052 0.052 0.148 0.147 −0.530 −0.532 −0.162 −0.163 −0.136 −0.136 0.056 0.058

M3 AA −0.049 −0.049 0.118 0.118 −0.008 −0.008 0.158 0.158 0.015 0.015 −0.098 −0.098 −0.009 −0.009 0.407 0.407
AP −0.031 −0.031 −0.059 −0.059 −0.005 −0.005 −0.034 −0.034 −0.053 −0.053 −0.039 −0.039 −0.044 −0.044 −0.056 −0.056
PP 0.004 0.004 −0.000 −0.000 −0.001 −0.001 −0.001 −0.001 0.001 0.001 0.006 0.006 0.003 0.003 −0.009 −0.009

MM 0.001 0.001 −0.003 −0.003 −0.001 −0.001 −0.002 −0.002 −0.002 −0.002 −0.001 −0.001 −0.001 −0.001 −0.005 −0.005
tot. −0.074 −0.074 0.056 0.056 −0.015 −0.015 0.121 0.121 −0.040 −0.040 −0.132 −0.132 −0.052 −0.052 0.336 0.336

M ′
3 PP −0.003 −0.003 −0.023 −0.023 0.004 0.004 −0.021 −0.021 −0.012 −0.012 −0.019 −0.019 −0.019 −0.019 −0.019 −0.019

MM −0.001 −0.001 −0.012 −0.012 0.001 0.001 −0.010 −0.010 −0.007 −0.007 −0.010 −0.010 −0.010 −0.010 −0.009 −0.009
tot. −0.004 −0.004 −0.035 −0.035 0.005 0.005 −0.031 −0.031 −0.019 −0.019 −0.029 −0.029 −0.030 −0.030 −0.028 −0.028

M4 −0.147 −0.147 −0.123 −0.123 −0.072 −0.071 0.121 0.120 0.142 0.142 −0.188 −0.188 −0.139 −0.139 0.119 0.119
M5 −0.061 −0.061 −0.216 −0.216 −0.257 −0.257 0.045 0.045 −0.124 −0.124 −0.130 −0.130 −0.161 −0.161 −0.280 −0.280
Mλ 0.398 0.399 0.952 0.952 0.262 0.261 0.284 0.285 0.909 0.911 0.384 0.385 0.597 0.597 1.527 1.523
Mη 0.597 0.598 0.862 0.862 0.005 0.004 0.112 0.114 0.431 0.435 0.558 0.559 0.626 0.626 0.854 0.849

M6 0.631 0.640 0.314 0.315 0.128 0.128 0.481 0.484 −0.609 −0.615 0.803 0.816 0.669 0.679 0.054 0.049
M7 −1.241 −1.251 −0.336 −0.339 0.419 0.422 −0.080 −0.083 0.948 0.951 −1.752 −1.762 −1.346 −1.353 0.187 0.190
M ′

η 2.496 2.520 0.804 0.810 −0.537 −0.542 0.557 0.564 −2.021 −2.032 3.446 3.474 2.694 2.715 −0.242 −0.251

B. Nuclear matrix elements

While PSF can be fairly well determined with decent ac-
curacy within about several percent, the NME’s have larger
uncertainties, greater than a factor of two [22]. In the current
work we adopt a QRPA for the many-body calculations. Com-
pared to the LSSM approach, QRPA has the advantage of a
small computation requirement with the price of less accuracy.

For the QRPA method with realistic forces several renor-
malization parameters are needed to reproduce experimental
data. We fit the pairing parameters by the experimental pairing
gaps. And we renormalize the residual forces by gT =1

pp to elim-
inate M2ν

F and gT =0
pp to reproduce the measured 2νββ NME.

All our results for the NME’s are presented in Tables III
and IV. The two tables correspond to two possible values of
the axial vector coupling constant gA commonly used in the
literature. In these tables we also give the results with two
different short range correlations (src’s) marked as a and b
for AV-18 and CD-Bonn [40], respectively, and we find these
different src’s barely change the results. As we are aware, dif-
ferent choices of src’s will change the NME’s for 0νββ(0+)
by about 5–10 %. Therefore, 0νββ(2+) is less sensitive to
the choice of the src’s. This suggests that the two nucleons
involved in this decay are farther away from each other, as we
shall see in a quantitative analysis later.

As shown in Eq. (14), except for M1, the PP and MM terms
are suppressed by a factor of about 1/5–1/10. Therefore,
since all the terms related to spherical Bessel function j3 in
M3 are contained in PP and MM terms, they are heavily
suppressed. Even though not suppressed by this small factor,
the MM terms are generally smaller for M1. On the contrary,
for most cases, the AP term plays an important role and they
are supposed to be the LO contribution [11].

We first discuss the bare gA case. For M1, besides the LO
AA contribution, the major correction of about 2/3 comes
from AP term as mentioned above. For most nuclei, this term
leads to an enhancement for the final results but for 116Cd, it
gives a 30% reduction. For 136Xe, it gives the largest contri-
bution, even larger than AA, this makes it the dominant term
in M1 for this nucleus. Meanwhile for most nuclei, the PP
term gives the reductions from 10%–20% relative to the AA
term. Two exceptions are the 116Cd and 136Xe cases: for the
former, this term gives an enhancement about 30% relative
to the AA term which nearly cancels the reduction from the
AP term as we discussed above; for the latter, PP gives a 2/3
reduction relative to AA, this term and the AP term together
gives nearly the same contribution as AA. The MM terms
are supposed to be NLO contributions [11]. For M1, it gives
negligible contributions for the nuclei 100Mo, 128Te, and 130Te,
while corrections for the other nuclei ranges from 5% to 50%.
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TABLE IV. The same as Table III but with gA = 0.75gA0.

76Ge 82Se 96Zr 100Mo 116Cd 128Te 130Te 136Xe

a b a b a b a b a b a b a b a b

AA 0.634 0.634 0.786 0.785 0.027 0.027 0.193 0.193 0.200 0.200 0.699 0.698 0.644 0.644 0.333 0.332
AP 0.476 0.476 0.648 0.647 0.045 0.045 0.137 0.137 −0.058 −0.057 0.424 0.424 0.448 0.447 0.563 0.561

M1 PP −0.086 −0.086 −0.149 −0.149 −0.022 −0.022 −0.022 −0.022 0.067 0.067 −0.043 −0.043 −0.070 −0.070 −0.206 −0.205
MM −0.033 −0.033 −0.098 −0.098 −0.027 −0.028 −0.007 −0.006 0.071 0.072 0.018 0.019 −0.016 −0.015 −0.181 −0.183
tot. 0.991 0.991 1.187 1.185 0.022 0.022 0.302 0.302 0.280 0.281 1.097 1.098 1.007 1.006 0.508 0.505

AA −0.237 −0.240 −0.005 −0.006 0.240 0.241 −0.119 −0.121 −0.962 −0.966 −0.272 −0.273 −0.172 −0.173 0.404 0.407
AP 0.204 0.207 −0.027 −0.025 −0.226 −0.227 0.277 0.279 0.553 0.558 0.144 0.145 0.059 0.060 −0.414 −0.418

M2 PP −0.033 −0.034 −0.003 −0.003 0.029 0.029 −0.043 −0.044 −0.066 −0.066 −0.022 −0.023 −0.012 −0.012 0.044 0.045
MM −0.021 −0.022 −0.005 −0.006 0.013 0.014 −0.022 −0.023 −0.035 −0.037 −0.014 −0.015 −0.008 −0.009 0.022 0.023
tot. −0.087 −0.089 −0.039 −0.040 0.056 0.057 0.092 0.091 −0.509 −0.511 −0.165 −0.165 −0.134 −0.134 0.056 0.058

AA −0.049 −0.049 0.118 0.118 −0.007 −0.007 0.149 0.149 0.018 0.018 −0.099 −0.100 −0.010 −0.010 0.407 0.406
AP −0.031 −0.031 −0.059 −0.058 −0.005 −0.005 −0.034 −0.034 −0.054 −0.054 −0.039 −0.038 −0.044 −0.044 −0.056 −0.056

M3 PP 0.004 0.004 −0.000 −0.000 −0.001 −0.001 −0.001 −0.001 0.001 0.001 0.006 0.006 0.003 0.003 −0.009 −0.009
MM 0.001 0.001 −0.003 −0.003 −0.001 −0.001 −0.002 −0.002 −0.002 −0.002 −0.001 −0.001 −0.001 −0.001 −0.005 −0.005
tot. −0.074 −0.074 0.056 0.056 −0.014 −0.014 0.112 0.112 −0.038 −0.038 −0.133 −0.133 −0.053 −0.053 0.336 0.336

PP −0.003 −0.003 −0.023 −0.023 0.004 0.004 −0.021 −0.021 −0.013 −0.012 −0.019 −0.019 −0.019 −0.019 −0.019 −0.019
M ′

3 MM −0.001 −0.001 −0.012 −0.012 0.001 0.001 −0.010 −0.010 −0.007 −0.007 −0.010 −0.010 −0.010 −0.010 −0.009 −0.009
tot. −0.004 −0.004 −0.035 −0.035 0.005 0.005 −0.031 −0.031 −0.020 −0.020 −0.029 −0.029 −0.030 −0.030 −0.028 −0.028

M4 −0.146 −0.146 −0.123 −0.122 −0.071 −0.071 0.120 0.120 0.143 0.143 −0.187 −0.188 −0.140 −0.140 0.119 0.119
M5 −0.061 −0.062 −0.214 −0.214 −0.258 −0.257 0.048 0.048 −0.124 −0.124 −0.128 −0.128 −0.161 −0.161 −0.280 −0.279

Mλ 0.161 0.162 0.489 0.489 0.194 0.193 0.170 0.171 0.568 0.569 0.133 0.133 0.280 0.280 0.943 0.941
Mη 0.391 0.392 0.535 0.535 0.032 0.031 0.027 0.028 0.170 0.172 0.395 0.395 0.411 0.411 0.427 0.425

M6 0.632 0.641 0.312 0.312 0.128 0.127 0.479 0.482 −0.612 −0.618 0.799 0.813 0.671 0.681 0.052 0.047
M7 −1.242 −1.252 −0.333 −0.336 0.422 0.424 −0.094 −0.097 0.948 0.952 −1.748 −1.758 −1.347 −1.355 0.187 0.190
M ′

η 1.874 1.893 0.598 0.602 −0.406 −0.410 0.432 0.437 −1.518 −1.526 2.577 2.598 2.024 2.040 −0.183 −0.190

For the extreme case of 96Zr, the MM term has an equal size
to AA due to the smallness of the latter.

For 96Zr, M1 is heavily suppressed, it is one order of mag-
nitude smaller than other nuclei, and a careful check suggests
that this smallness comes from the cancellation from different
intermediate states, this differs from the case of 76Ge, where
different intermediate states add up together (see Fig. 1 of [9]).
For all other nuclei, the total M1 is generally within one order
of magnitude, e.g., for 76Ge, 82Se, 128Te, and 130Te, its value
is around 1.

The case for M2 is quite different from M1. For the AA com-
ponent, different nuclei differ by several orders of magnitude,
especially for 82Se, it is heavily suppressed by the cancella-
tions from different intermediate states. This cancellation also
reduces the NME for 100Mo. For other nuclei it has a value of
about 0.2–0.3, but for the two cases with semimagic nuclei
involved in the transition process, the results are somehow
enhanced. Further investigation is needed for the possible
relation between the magicity and this enhancement.

The correction from the pseudoscalar current is much more
pronounced for M2. For M1 the AP term is about one order
of magnitude larger than the PP term. Unlike for M1, AP
terms here mostly appear for cancellations, this causes an
overall smallness of M2 for most nuclei compared to M1.
The semimagic nuclei—as already mentioned above—have
generally large AA terms, however for 136Xe, the AP term
exactly cancels the AA term. This leads to a suppressed M2;

meanwhile for 116Cd, the cancellation from AP is smaller
compared to AA. Thus we have the largest M2 for this nucleus.
As for 136Xe, a nearly exact cancellation between AA and
AP terms also happens for 76Ge and 96Zr. For 100Mo, we
find that the contribution from AP is about 5 times larger
than that from AA. While for Te isotopes, AP reduces the
results by about 50%. The PP term behaves like NLO con-
tributions by the suppression from a small coefficient, their
contributions are generally within a magnitude of 10%. So
does the NLO MM term which contributes with about 10% for
most cases.

Thus for most nuclei, M2 is around 0.1 due to the cancel-
lations between AA and AP terms, with the exception of 82Se
where all the components are small. 116Cd is the one with the
largest M2 about 0.5. As a result, our calculations suggest that
M2 is generally one order of magnitude smaller than M1.

For most nuclei, M3 is generally smaller than M1

but similar to M2. However, unlike the smallness caused
by the cancellation between AA and AP terms for M2, the mag-
nitude of each component of M3 is generally much smaller
than the counterparts in M1 or M2. For 100Mo and 136Xe, the
situation is a bit different: AA terms for them are close to that
of M1, but on the other hand, there is no large enhancement
from the AP term for M3, therefore those M3 are generally
smaller. And we find that for M3, PP and MM terms are neg-
ligible. In general, except 136Xe, M3’s are around or smaller
than 0.1.
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We also find that the induced M ′
3 is much smaller and

barely gives visible contributions. But for 82Se and 130Te, M ′
3

is comparable to M3, and gives a cancellation for the former
nucleus and an enhancement for the latter.

In general, for the space-space components of hadronic
currents, the inclusion of pseudoscalar and weak-magnetism
terms, especially the AP term, will change the NME drasti-
cally and these changes are usually not negligible. Whether
these contributions are positive or negative is nucleus
dependent.

M4 comes from the time-time component of hadronic
currents and the induced current will not contribute to this
component. As in [9], they are generally with the magnitude
of 0.1 and the difference for different nuclei are generally
within a factor of two. The largest value is found for 128Te
and the smallest from 96Zr, differed nearly by a factor of 3.

M5 is the space-time component of hadronic currents. Their
values are generally close to M4 with a magnitude around 1,
but differ in details, such as the phases. The relative magnitude
of these two NME’s is nucleus dependent.

Mλ and Mη are induced from the coupling of �q and the rela-
tive coordinate of the two decaying nucleons �r. The difference
between Mλ and Mη comes from the space-time and time-
time components of the nuclear currents, it can be defined as
δM = 2M4 − √

3/2gAM5. This suggests that for nuclei with
M4 and M5 close to each other, such as 82Se or 130Te, this
difference is small. On the other hand, this difference is also
related to gA. For all nuclei in our calculation, Mλ and Mη are
with the same phase, this means they will cancel or add up to
each other depending on the relative sign of 〈η〉 and 〈λ〉. For
76Ge, 82Se, 128Te, and 130Te, Mλ is smaller than Mη, while for
other nuclei, Mλ is larger. In general, except for 136Xe, Mλ and
Mη are about one order of magnitude smaller than M0ν (0+)
(to compare our results with those in various literatures, we
need to divide the current results by g2

A0). 136Xe does have Mλ

larger than 1 in our convention, but it is still less than half of
the values for M0ν (0+).

M ′
η are actually induced by the coupling of the �q term in the

neutrino propagator and the center of mass (c.m.) coordinate
of the two decaying nucleons �r+. The differences of M6 and
M7 originate from the coupled angular momenta of the c.m.
and relative coordinates, and thus are closely related to the or-
bitals of the decaying nucleons. In our calculation, we find for
most nuclei, these two terms give coherent contribution but for
96Zr and 136Xe, they cancel each other leading to suppressed
M ′

η’s. For most nuclei, we have also larger M7, but for 96Zr,
M7 is suppressed and is much smaller than M6. Also in most
cases, M ′

η is much larger than Mλ and Mη. Instead of one order
of magnitude smaller than corresponding M0ν (0+), they are
generally smaller within a factor of one-half. This differs with
previous studies [7] where these NMEs are supposed to be
several orders of magnitude smaller than M0ν (0+) and hence
can be safely neglected. We will study the consequence of this
dominance for the role of determining new physics parameters
in the following section.

As presented in Table III, different src’s produce actually
negligibly smaller deviations like for the light neutrino mass
mechanism of 0νββ(0+). On the other hand, a comparison

of Tables III and IV suggests that quenching of gA affects the
final results drastically. In QRPA calculations the quenching
affects the final results twofold:

(1) First we fit our model parameter gT =0
pp by the 2νββ

NME which is related to gA. Therefore, quenching of
gA will affect the choice of this parameter and subse-
quently the individual NMEs.

(2) Second the quenching changes the coefficients C’s in
Table I which are than multiplied with the individual
partial NME’s to get the final total NME’s.

For the current calculation, we find that the change of the
parameter gT =0

pp induced by quenching will not largely change
the individual NMEs, their changes are within 10%. Hence,
the change of the final results can be directly connected to the
quenched value of gA in the coefficients C.

For Mλ, only the coefficients of M4 are independent of gA,
and all other coefficients have a dependence linear or squared
on gA. Therefore, the quenching generally reduces Mλ by a
magnitude from 30% to 50% for different nuclei. The largest
reduction in percentage is found for 128Te, where the NME
for the quenched case is only one-third of that of the bare gA

case. The reduction for Mη is similar to that of Mλ, we now
have no gA linear dependent terms any more. The general re-
duction is from 30% to 70%, the largest reduction is found for
100Mo with more than 70%. While for 96Zr an enhancement
is observed, but for this nucleus, all the individual NME’s are
small and they cancel each other significantly, the presence of
quenching largely reduces the cancellation of M1–M3 to M4

which then leads to the enhancement. All these behaviors for
various nuclei stem from the interplay between M4 and other
individual NME’s which are reduced by gA. Drastic reductions
are also found for M ′

η with a nearly fixed factor q = gA/gA0

since the two terms are both proportional to gA and the gT =0
pp

dependence is weak for M6 and M7. Therefore, as for the
decay to the ground states, the role of gA is important. We need
to understand the origin of the quenching and the precise value
of gA for the ββ decay, we also need to determine whether the
quenching is operator dependent.

C. Constraints on L-R symmetric model

Unlike for the decay to the ground state, where the neutrino
mass mechanism is supposed to be dominant, the neutrino
mass mechanism for 0νββ(2+) can only be triggered by nu-
clear recoil [8] and hence is suppressed by a factor of Q/2M
compared to the 〈λ〉 and 〈η〉 terms. In [8], an estimation sug-
gests that their NMEs are about several orders of magnitude
smaller than that of the LR mechanism. Since this NME for
the mass mechanism in the decay to excited state is extremely
hindered, we do not expect to be able to observe this decay
mode with the dominance of the mass mechanism.

Therefore measurements of 0νββ(2+) can be used as per-
fect constraints on new physics parameters such as 〈λ〉 or
〈η〉. In this section, with the calculated NME and PSF as
well as the experimental limit presented in Table II, we per-
form a simple analysis on several extreme cases. Currently
the most stringent constraint for half-lives is that of 136Xe,
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which pushes the limit to 1025 y while others are two or three
orders of magnitude shorter. For 96Zr, the lower limit is 1020

y, which is much shorter than all others. While [6] provides
a way of probing different mechanisms from comparisons of
different nuclei, the current method would help distinguish the
underlying new physics within one isotope. This is done by
comparing the decay rates to the ground and excited states as
we shall show.

1. |λ| � |η|
In the λ dominant case (see Table II), Eq. (10) becomes

� = G1M2
λ |〈λ〉|2 and the most stringent constraints for λ are

obtained from 136Xe. With our calculated NME’s, we obtain
the constraint |λ| < 2.43×10−5. Other nuclei yield generally
the same magnitude except 96Zr and 100Mo which set limits
one order of magnitude larger. Since all these nuclei except
136Xe have basically similar Mλ, these larger limits generally
are due to shorter half-life limits. In Table II, we present
constraints obtained in [6] from decay to ground states for
two nuclei from QRPA calculations without considering the
hadronic induced currents. With a later calculation [25], one
finds that the NME for 0νββ(0+) is slightly enhanced, but
this will not change the general magnitude of the constraints.
Therefore, we can make a direct comparison. Our results
suggest that for the λ dominant case, the constraints for
76Ge differs by two orders of magnitude while for 136Xe this
difference is less than one order of magnitude while com-
paring our results with those from [6]. The half-life lower
limits used for 0νββ(0+) for both nuclei are around 1025

y, while for 0νββ(2+), 76Ge has a half-life lower limit one
order of magnitude shorter. However, 136Xe has the similar
half-life lower limits to the 2+ and ground states. Combining
these results, we find that for certain nuclei (136Xe here), for
the case of λ dominance, the half-lives for the two modes
are within a difference of two orders of magnitude, this could
perhaps be used in the future for the identification of the decay
mechanism if both modes are observed.

2. |λ| � |η|
For this case, Eq. (10) becomes � = (G1M2

η +
G2M ′2

η )|〈η〉|2 and the most stringent constraints come also
from 136Xe. However, 76Ge and 130Te yield also constraints
close to 136Xe. They all require that |η| is smaller than about
10−6. However, these constraints are far looser than those
of 0νββ(0+), where a limit around |η| < 10−9 is obtained
assuming the dominance of the η mechanism. If this case
is true in nature, it will not be possible to observe the 2+
decay in these nuclei, since we have a suppression for about
6 orders of magnitude for 0νββ(2+) compared to 0νββ(0+)
for 136Xe and 4–5 orders of magnitude for other nuclei. If
future measurements do push the half-life limit of 0νββ(2+)
to 4–5 orders of magnitude longer, we can then rule out for
both λ and η mechanisms.

3. |λ| ∼ |η|
More general cases are presented in Fig. 1. For these

cases, since 〈η〉 and 〈λ〉 share the same phase eiψ , Eq. (10)

FIG. 1. Constraints on 〈λ〉 and 〈η〉 from 0νββ(2+) decay. The
region outside the curves is excluded by the current limits obtained
from the measurements and our calculations.

can be written explicitly as � = G1M2
λ |〈λ〉|2 + (G1M2

η +
G2M2

η )|〈η〉|2 − 2G1MλMη〈λ〉〈η〉. In the current convention, λ

is always positive and the sign for η is not definite. Since
different nuclei give constraints of λ and η on different orders
of magnitude, we use a logarithm scale in the graph. The
interference term of η and λ rotates the long axis of the
ellipse to the first quadrant. From the figure, we can clearly
see that, like in the λ or η dominant cases, 136Xe sets the
most stringent constraints. While 76Ge and 130Te set both
less tight constraints for λ and η. And it is obvious that the
future slight improvement of the measurement will surely set
more stringent constraints for these two nuclei. This is highly
probable for 130Te, of which the current half-life lower limit
is about two orders of magnitude smaller than that for 136Xe.
Better half-life lower limits for other nuclei will also improve
our analysis. A combined analysis with decay to ground states
could give us more hints on the relative magnitude of 〈η〉
and 〈λ〉.

In general, the measurement of decay to the 2+ excited
states offers a way for the discrimination of the underlying
mechanism. For example, for 136Xe, within our calculations,
a half-time lower limit for about 2 orders of magnitude longer
than the observed half-life of 0νββ(0+) will rule out the
possibility of the existence of the λ mechanism dominance.
However, these conclusions rely heavily on the NME calcu-
lations, and need further verifications from other many-body
calculations.

IV. CONCLUSIONS AND OUTLOOKS

In this work, we systematically investigate the decay rates
of 0νββ(2+) under the L-R symmetric model, where both the
λ and η mechanisms are involved. We incorporate the contri-
butions from induced currents and find that the pseudoscalar
current is important for NME calculations. Our results sug-
gest that the NME is nucleus dependent and may differ by
up to one order of magnitude, also the NME for the two
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different mechanisms in the same nucleus can be differed
by more than one order of magnitude. We also improve the
phase space factor calculations by using numerical electron
wave functions. These results lead to different constraints
on different nuclei both from different NME’s and different
current lower limits of decay half-lives. With the comparison
to 0νββ(0+), we can constrain the underlying mechanisms
within an individual nucleus. These comparisons suggest that
for the special λ dominant case, 136Xe has the potential for
comparable decay half-lives for decays to both the ground
state and 2+ excited state. Future experiments could shift the
lower limit up and set more stringent constraints on the new
physics parameters for another nucleus, and even have the
potential of discovering the possible existence of right-handed
gauge bosons. Meanwhile, to draw a more solid conclusion,

more nuclear many-body calculations are needed to make
a better prediction of the NMEs which are keys for these
investigations.
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