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Measurements of the dynamical correlations between neutral and charged kaons in central Pb-Pb collisions at√
sNN = 2.76 TeV by the ALICE Collaboration display anomalous behavior relative to conventional heavy-ion

collision simulators such as AMPT, EPOS, and HIJING. We consider other conventional statistical models, none
of which can reproduce the magnitude and centrality dependence of the correlations. The data can be reproduced
by coherent emission from domains, which grow in number and volume with increasing centrality. We show that
the energy released by condensation of strange quarks may be sufficient to explain the anomaly.
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I. INTRODUCTION

High-energy heavy-ion collision experiments help us ex-
plore the deconfined state of QCD matter. The quark-gluon
plasma (QGP) created in these experiments expands and cools
to form hadrons on timescales on the order of ten fm/c. We in-
fer the properties of the QGP from the yields and correlations
of these hadrons.

The ALICE Collaboration has measured the correlation
function νdyn(K0

S , K±) as a function of multiplicity and trans-
verse momentum in Pb-Pb collisions at

√
sNN = 2.76 TeV [1].

These measurements stand in contrast to the predictions made
using standard heavy-ion simulators [2], including AMPT,
EPOS, and HIJING. The purpose of this paper is to construct
a simple model, based on the condensation of strange quark
and antiquark pairs, in an attempt to reproduce the data, and
to explore the degree to which other, less exotic, physics might
explain the ALICE results. The proposed disordered chiral
condensate (DCC) [3] state is expected to give anomalous
values of νdyn(K0

S , K±), which could explain the data, though
we show in this work that an ordinary strange condensate will
give a similar result.

The νdyn(A, B) measures the degree to which the observa-
tion of particles of types A and B are more correlated with
themselves than with each other,

νdyn(A, B) = RAA + RBB − 2RAB,

RAB = 〈NANB〉 − 〈NA〉δAB

〈NA〉〈NB〉 − 1, (1)
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where the symbols 〈· · · 〉 refer to averages over events. The
second term, proportional to δAB, subtracts the contribution
of a particle with itself. If particles were uncorrelated with
one another, one would have RAA = RBB = RAB = 0, and νdyn

would vanish. That is the reason for referring to this cor-
relation function as dynamical. If νdyn(A, B) > 0, it implies
that the observation of an A- or B-type particle more strongly
biases a second particle toward being the same type. For the
ALICE measurement the two types of particles were charged
kaons, either K+ or K−, and neutral kaons, i.e., K0

S mesons.
Positive values of νdyn(K0

S , K±) can result from decays, such
as the φ meson, which decays into either two charged kaons or
two neutral kaons. Other sources can be charge conservation,
or anomalously strong Bose enhancement from condensation
or coherent emission.

Background sources of correlation, such as decays and
charge conservation, largely correlate two particles with one
another. In such cases νdyn scales inversely with the multiplic-
ity. For this reason, ALICE multiplied νdyn by a factor 1/α,
which is inversely proportional to the multiplicity

1/α = NK±NK0
S

NK± + NK0
S

, (2)

where NK± and NK0
S

refer to the average number of charged and
K0

S mesons observed per event. If the number of each species
of kaon were equal,

1

α
= (NK+ + NK− )NK0

S

NK+ + NK− + NK0
S

= 2

3
NK0

S
= 1

6

(
NK+ + NK− + NK0

S
+ NK0

L

)
, (3)

or one-sixth the total number of kaons. In reality there are
slightly more charged kaons, because they are lighter and
because some resonances such as the φ preferentially decay
to charged kaons. Thus, the factor 1/α provides a factor that
roughly scales with the multiplicity. If correlations were of an
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TABLE I. Summary of the relevant νdyn experimental data from Table II of Ref. [1]. The charged particle pseudorapidity densities are taken
from Ref. [4] and the number of participants from Ref. [5].

Centrality νdyn νdyn/α 1/α NK0
S

≡ 3/2α NK± ≡ 3/α dNch/dη Npart

0–5 % 0.006827 ± 0.00068 0.213 ± 0.021 31.20 46.80 93.60 1601.0 382.8
5–10 % 0.006927 ± 0.00069 0.169 ± 0.017 24.40 36.60 73.20 1294.0 329.7
10–15 % 0.006993 ± 0.0007 0.141 ± 0.014 20.16 30.24 60.48 1075.0* 281.1
15–20 % 0.007226 ± 0.0007 0.113 ± 0.011 15.64 23.46 46.92 857.0* 238.6
20–40 % 0.008307 ± 0.0008 0.080 ± 0.010 9.630 14.45 28.89 537.50 157.2
40–60 % 0.016430 ± 0.00167 0.066 ± 0.007 4.02 6.03 12.06 205.0 68.56
60–80 % 0.025130 ± 0.0022 0.053 ± 0.005 2.11 3.17 6.33 55.50 22.52

intrinsic nature, i.e., if the number of correlated partners were
independent of multiplicity, the quantity νdyn/α would be-
come independent of multiplicity. Thus defined, if νdyn grows
with multiplicity, one can infer that a given kaon is either
becoming correlated with a larger number of partners in more
central collisions, or, is becoming more strongly correlated
with a given number of partners. For example, correlations
from charge correlation or resonance decays result in νdyn/α

being approximately independent of centrality. In contrast, if a
percentage of kaons derives from a single coherent source, and
if that percentage is independent of centrality, then those cor-
relations lead to νdyn/α growing linearly with the multiplicity.
Some experimental effects, if not accounted for, can also
lead to such behavior. For example, if the relative efficiency
of measuring charged kaons vs. K0

S fluctuates from event to
event, that correlation might involve all charged, or all neutral
kaons, which could result in νdyn/α growing with multiplicity.

We present a phenomenological model with coherent emis-
sion in Sec. II. We find that the data can be reproduced if a
sufficient fraction of the kaons were to originate from coherent
sources of sufficient size. Section III considers simple systems
to illustrate the effects of decays, charge conservation, and
Bose symmetrization. We find that generating large correla-
tions requires that many kaons are in the same quantum state,
as occurs in Bose condensation. Section IV shows results of a
purely thermal model with charge conservation. The resulting
correlation from this model also comes well short of the data.
Section V calculates the energy available from strange quark
condensation in several versions of the linear σ model. Con-
clusions from this study, along with prospects and suggestions
for future study, are given in Sec. VI.

II. ISOSPIN FLUCTUATIONS FROM CONDENSATES

The observable that isolates isospin fluctuations is νdyn

as discussed earlier. The ALICE Collaboration measured the
number of short-lived kaons K0

S and the number of posi-
tively and negatively charged kaons K+ and K− to construct
νdyn(K0

S , K±) [1]. Table I shows some of the experimental
data. The numbers marked with an asterisk were interpolated
from 966.0 in the 10–20 % bin. From the data there is a best fit
relation where dNch/dη = 1.317N1.19

part , and the total number
of kaons, N tot

K ≈ 0.113 dNch/dη, as one would expect from
an isothermal freezeout model. The 60–80 % bin does not fit
this trend and has been excluded from these fits. The quantity

α was defined as

α = 1

NK0
S

+ 1

NK±
. (4)

For a first analysis we assume that kaons of all four kinds
are produced in equal numbers despite the fact that K0

S was
measured in a slightly different range in momentum space
than the charged kaons. ALICE found that the correlations
are spread across pseudorapidity but are restricted in trans-
verse momentum. This indicates that the coherent kaons likely
originate in different domains, which extend to at least 1.5
units in pseudorapidity and are moving at different velocities
depending on their transverse position in the produced matter.
In the language of DCC, the data favors the domains picture
[6] as opposed to the “Baked Alaska” picture where there is
a single DCC at the center with the expanding fireball on the
outside [7].

A simple formula for νdyn was derived in Ref. [8]. It is

νdyn = 4βK

(
βK

3Nd
− 1

N tot
K

)
, (5)

where βK is the fraction of all kaons coming from conden-
sates, Nd is the number of domains, and N tot

K is the total
number of kaons regardless of their charge or source. This
formula is based on several assumptions. (i) There are two
sources for each domain. One is a coherent source, which
for the purposes of this paper is defined as having a uniform
distribution of the fraction f of neutral kaons. With uniform
distribution, the probabilities of having some of the kaons
being neutral, or all the kaons being neutral are equal. This
is the case for strange DCCs [9]) while the other (random)
source is a Gaussian with a width determined by the number
of kaons. (ii) Domains are independent of each other. (iii) The
number of domains is greater than two.

The fraction of kaons from condensates can be estimated
as

βK = εζVd

mK N tot
K

, (6)

where εζ is the energy density of condensation, which is con-
verted to kaons and Vd is the total volume of all such domains.

In the DCC picture domain size should be limited by
causality, and that is related to the lifetime of the system.
In order to estimate the latter, we use results from Pb-Pb
collisions at

√
sNN = 2.76 TeV as simulated by the rela-

tivistic second-order viscous hydrodynamic code MUSIC, with
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TABLE II. Proper time elapsed in fm/c, τav, beginning at the start
of hydrodynamic flow and ending at the indicated temperature using
the hydrodynamic code MUSIC with IP Glasma initial conditions
[10]. Chemical equilibration happens at about 160 MeV.

Centrality T = 160 MeV T = 150 MeV T = 140 MeV

0–5 % 11.56 13.27 14.93
5–10 % 10.84 12.48 14.39
10–15 % 10.22 11.78 13.84
15–20 % 9.81 11.52 12.98
20–25 % 9.31 10.72 12.10
25–30 % 9.05 10.15 11.89
30–35 % 8.47 9.69 11.11
35–40 % 7.88 8.81 10.53
40–45 % 7.24 8.61 9.83
45–50 % 6.88 7.51 8.94

IP-Glasma initial conditions and initial proper time τ0 = 0.4
fm/c [10]. For a given event, the fluid cell with the highest
initial temperature was followed until it expanded and cooled
to some temperature of interest, and the proper time duration
(not including τ0) was recorded. Averaged over events in a
given multiplicity window yielded a numerical value τav. The
results are shown in the Table II, with τav in units of fm/c.
If the expansion is primarily one dimensional then one would
expect Nd/Vd to scale as 1/τav. Being an intensive quantity,
Nd/Vd should be independent of the total charged particle
multiplicity dNch/dη. On the other hand, both Vd and Nd

should be proportional to dNch/dη. Taken together it means
that νdyn will depend on centrality. The experimental data
for νdyn(K±, K0

S )/α is plotted as a function of dNch/dη in
Fig. 1(a) and as a function of time in Fig. 1(b). In both cases
the data exhibits greater than linear growth.

To reproduce the data, we assume that the number of
domains scales with the total kaon multiplicity, which scales
with dNch/dη so that

Nd = aN tot
K ,

Vd = v0N tot
K

(
τav

10τ0

)
, (7)

where the factor of 10 is inserted simply as a matter of numer-
ical convenience. Then

βK = b

(
τav

10τ0

)
, (8)

where

b = εζv0

mK
, (9)

which results in

νdyn = 4b

(
τav

10τ0

)[
b

3a

(
τav

10τ0

)
− 1

]
1

N tot
K

,

νdyn

α
= 2

3 b

(
τav

10τ0

)[
b

3a

(
τav

10τ0

)
− 1

]
. (10)

A fit to the five highest multiplicity bins yields b =
0.1044 ± 0.0380 and b2/a = 0.2187 ± 0.0458 as shown in

FIG. 1. The correlation νdyn(K±, K0
S )/α from the ALICE Collab-

oration is plotted against the charged multiplicity, also measured by
ALICE (a) and against the duration of the collision in the deconfined
phase, as estimated by hydrodynamic calculations (b). Times are
shown for three choices of deconfinement temperatures: 140, 150,
and 160 MeV. The correlation increases roughly linearly with the
multiplicity, and stronger than linear with the collision duration.

Fig. 2. We assume that chemical freezeout occurs at T =
160 MeV. The fit only determines the product of εζ with v0.
Using as a reference εζ = 25 MeV/fm3 we have

v0 = 2.07

(
25 MeV/fm3

εζ

)
fm3. (11)

Table III shows the results with the reference εζ =
25 MeV/fm3. We use the extrapolated value of τav for the
20–40 % bin to be 8.62 fm/c and for the 40–60 % bin to
be 6.60 fm/c so that we can fill in the table. If, for example,
εζ = 50 MeV/fm3 instead, the number of sources Nd does
not change but the volume Vd is halved. There are a number
of points to be made. First, the number of domains in the
40–60 % centrality class is only 1.2, which means that the
formula (5) for νdyn is no longer applicable. That is why we
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FIG. 2. Two parameter fit to the five highest multiplicity bins.
The fit assumes that chemical equilibration occurs at T = 160 MeV.
Data is from Ref. [1].

fit only the five most central collision bins. Second, the back-
ground value of νdyn/α for the two least central collision bins
is consistent with the estimate of about 0.045, which could be
explained by resonance decays without invoking condensates
(see discussion below in Sec. IV). Third, the average volume
per domain rises from 90 fm3 for the 20–40 % bin to 120 fm3

for the 0–5 % bin. These seem to be physically reasonable
numbers.

III. FLUCTUATIONS IN SIMPLE KAON SYSTEMS

In this section we consider a simple subsystem, or sin-
gle domain, consisting solely of nK kaons. The goal is to
demonstrate how specific physics affects the correlation, both
in magnitude and in scaling with domain size. In Sec. III A
three examples are presented: the purely random case, the case
with overall electric charge and strangeness conservation, and
a case where all particles are emitted from neutral resonances
decaying to two kaons. The next section considers the effect
of indistinguishable particles, in the extreme, by working out
examples where all kaons are in the same single-particle level.
This perfectly degenerate case is considered with and without
charge conservation.

TABLE III. The number of domains Nd , the total volume Vd oc-
cupied by them, and the fraction of kaons coming from condensates,
βK . The two-parameter fit was made to the five highest multiplicity
bins. This assumes εζ = 25 MeV/fm3.

Centrality Nd Vd (fm3) βK

0–5 % 9.32 1120 0.302
5–10 % 7.29 821 0.283
10–15 % 6.02 640 0.267
15–20 % 4.67 476 0.256
20–40 % 2.88 258 0.225
40–60 % 1.20 82 0.172

A. Purely distinguishable kaons

Ignoring charge conservation, each of the nK kaons can
randomly be in any state. If m+, m−, m0 and m0̄ reference the
number of kaons of each species, the probability of having
n0 = m0 + m0̄ neutral kaons, and nc = m+ + m− = nK − n0

charged kaons is

P(n0) = nK !

n0!nc!

1

2nK
, (12)

and the moments are

〈n0〉 = nK

2
,

〈n0(n0 − 1)〉 = 1
4 nK (nK − 1),

〈n0nc〉 = 1
4 nK (nK − 1), (13)

which results in

νdyn
(
K0

S , K±) = 0. (14)

Thus, the observation of a charged kaon does not bias the
probability of a second observed kaon being charged vs. being
neutral.

Charge conservation gives a nonzero result for νdyn. If both
strangeness and electric charge are conserved, m+ = m− and
m0 = m0̄. The distribution of neutrals is then

P(n0) = [(nK/2)!]4

nK !

1

[(n0/2)!(nc/2)!]2
, (15)

and the moments are

〈n0〉 = nK

2
,

〈n0(n0 − 1)〉 = n3
K

4(nK − 1)
− nK

2
,

〈n0nc〉 = n3
K − 2n2

K

4(nK − 1)
, (16)

which results in

νdyn
(
K0

S , K±)/α = 2

3

1

nK − 1
, (17)

where 1/α = nK/6. When charge is conserved, only even
values of nK are allowed. As nK → ∞ the ratio approaches
zero. From studies of how charge conservation affects charge
fluctuations, this result was expected [11,12]. In the small-
system limit, canonical ensemble calculations show that the
observation of a positive particle requires the presence of an
additional negative particle, but that in the large-system limit
the positive charge is equally likely to be balanced by an
additional negative charge as it is to be balanced by one fewer
positive charges. Thus, the width of the charge multiplicity
distributions become identical and are not affected by charge
conservation in the limit of large systems. The distribution
P(n0) is displayed in Fig. 3 for the case nK = 24, and looks
extremely similar to results from the random case, with the ex-
ception that the random case allows both even and odd values
of nK . The important lesson is that if chemical equilibration
extends over a volume large enough to include several kaons,
charge conservation has little effect on νdyn. The more detailed
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FIG. 3. Probability distributions of neutral kaons for a system of
nK = 24 kaons are shown for several simple pictures are shown as a
function of nK . Including charge conservation constrains the result to
even numbers [P(n0) is halved to better compare the widths], but
does not affect the width much. If all kaons come from a single
degenerate level, the widths become much broader. In this case, when
charge conservation is included the distribution is perfectly flat.

calculations in Sec. IV, which consider a full hadron gas with
charge conservation, reinforce this conclusion.

The effects of charge conservation in an equilibrated sys-
tem contrast with the effects of a system of decaying neutral
resonances. When resonances decay into the final state there is
no inverse reaction. This system conserves charge, but unlike
the previous case, when a positive particle is observed, one
knows that there must be an additional negative particle from
the decay. The same is true for the decay into a K0K̄0 pair.
The probability distribution in that case is

P(n0) = 1

2nK /2

(N/2)!

(n0/2)!(nc/2)!
, (18)

and the moments are

〈n0〉 = nK

2
,

〈n0(n0 − 1)〉 = n2
K

4
, (19)

〈n0nc〉 = n2
K

4
− nK

2
,

resulting in

νdyn/α = 2/3. (20)

If nK kaons are all produced from the decay of a resonance,
which proceed 50% of the time into K+K− and 50% of the
time into K0K̄0, the distribution of neutral kaons is approxi-
mately broader by a factor of

√
2 than the random case. The

value of νdyn/α is 2/3, independent of nK .

B. Indistinguishable cases

Now we consider a random assignment of kaons into their
respective species, but with the assumption that kaons of the
same type are indistinguishable, as if they are all degenerate,

being in the same single-particle level. This might be called a
finite condensate.

When charge conservation is neglected, the distribution
is found by summing over the full distribution. In this case
P(m+, m−, m0, m0̄ ) is constant for all combinations of m. For
a given value of nc there are nc + 1 different ways to arrange
m+ and m−, and for a given n0 there are n0 + 1 different
combinations of m0 and m0̄.

P(n0) = (n0 + 1)(nc + 1)

Z
,

Z = nK (nK + 1)(nK + 2)

6

+ nK (nK + 1)

2
+ nK + 1. (21)

As seen in Fig. 3, this distribution is much broader than those
where the kaons were all distinguishable. The moments are

〈n0〉 = nK

2
,

〈n0(n0 − 1)〉 = 3
10 nK (nK − 1),

〈n0nc〉 = 1
5 nK (nK − 1), (22)

so that

νdyn/α = 2
15 (nK − 1). (23)

When charge conservation is included, all even values of
n0 are equally probable,

P(n0) = 2

nK + 2
, (24)

and the moments are

〈n0〉 = nK

2
,

〈n0(n0 − 1)〉 = n2
K

3
− nK

6
,

〈n0nc〉 = nK (nK − 2)

6
, (25)

so that

νdyn/α = 2
9 (nK + 1). (26)

Finally, we consider the case of all kaons being degenerate,
but we confine the nK kaons to an isosinglet. For the case
of pions, placing all pions into the same mode [13,14] was
found to give the same form for P(n0) as that for a disoriented
chiral condensate [6]. Because there is only one single-particle
state being considered, creation and annihilation operators
need not have a label describing their momentum. However,
one does need labels denoting whether the kaons are charged
positively or negatively, and if neutral, whether they are kaons
or antikaons. The isosinglet state with zero net strangeness,
i.e., S = 0, is

|ψ〉 = 1√
Z

(a†
0a†

0̄
− a†

+a†
−)(nK /2)|0〉. (27)

The state clearly has S = 0 and zero electric charge, and thus
zero isospin projection, I3 = 0. To see that it has total isospin
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zero, one can apply the isospin lowering operator, (a†
0̄
a+ +

a†
−a0), and see that the state is annihilated.

The probability that the state has n0 neutral kaons is

P(n0) = 1

Z
|〈n0, nc|(a†

0a†
0̄
− a†

+a†
−)(nK /2)|0〉|2

= 1

Z

[
(nK/2)!

(n0/2)!(nc/2)!

]2

× (n0/2)!(n0/2)!)(nc/2)!(nc/2)!

= [(nK/2)!]2

Z
. (28)

The first set of factorial terms in the middle expression
above come from the binomial factor of expanding (a†

0a†
0̄
−

a†
+a†

−)nK /2, and the remaining factors come from the algebra of
creation and destruction operators. Thus, P(n0) is independent
of n0. This is identical to the case above where the projection
of I3 was constrained to be zero, but the overall isospin was
allowed to vary.

As an aside, we review the corresponding calculation for
an oriented I = 0 pion condensate, confining nπ pions to an
isosinglet, as was considered in Refs. [13] and [14]. In that
case the isosinglet state is

|nπ , I = 0〉 = 1

Zn
(−2a†

+a†
− + a†

0a†
0)nπ /2|0〉. (29)

This gives the charge distribution

P(n0) = 1

Z

(nπ

2

)
!2nπ −n0

n0!

[(n0/2)!]2
,

ln[P(n0)] ≈ C − 1
2 ln(n0/nπ ), (30)

where Stirling’s approximation was applied to third order. For
large nπ , P(n0) ∼ n−1/2

0 , which is the same result as for the
disoriented chiral condensate [6]. Thus, it should not be so
surprising that the result for kaons above is consistent with the
coherent source. For the pion case, it was important to confine
the state to be overall I = 0, as otherwise one could have odd
powers of nπ and n0. In contrast, for the kaon case only even
values of n0 were allowed by the linear constraints of charge
conservation.

C. Experimental acceptance and multiple domains

The calculations presented earlier in this section all as-
sumed that all kaons came from the same domain, and that
all were accepted. When multiple domains exist, kaons from
different domains would not be correlated. In that case, νdyn

would fall as 1/Nd where Nd is the number of domains con-
tributing to the final measurement. However, νdyn/α would
be independent of Nd . Given the observation of a charged
particle, finite acceptance lowers the probability of observing
the balancing charge. This depends on whether the balancing
charge tends to be close, in momentum space, to the observed
charge. From studies of charge balance functions, one expects
that probability to be near 30% [15,16]. Thus, the background
contributions to νdyn/α coming from charge conservation
would likely be lowered by a factor of 0.3 compared to what

FIG. 4. Summary of the results obtained in this section. For
degenerate emission, values of νdyn/α increase with the number of
kaons in the domain. If acceptance corrections were included, values
would likely fall to roughly 30% of the values presented here.

is shown in Fig. 4. The same is true for the contributions
from Bose condensation. In that case, after multiplying by
the acceptance factor, ≈0.3, the correction to the moments
in Fig. 4 would involve replacing nK , the number of kaons
within a domain, with the number of kaons that make it into
the acceptance from a single domain.

It should be emphasized that these calculations were pred-
icated on all events being similar. If events have different
character due to different multiplicities the results would
change, especially if the efficiencies for observing charged
vs. neutral kaons then fluctuated. Examples of experimental
effects that can cause such fluctuations would be large varia-
tions of the location of the collision vertex in the detector, or
large variations of the multiplicity combined with a different
multiplicity dependencies for the observation of neutral and
charged kaons.

IV. FULL HADRON GAS MODEL

We analyze an extension of the model in Ref. [11], where
sets of hadrons were generated consistently with the canonical
ensemble. A large number of hadron species were considered,
and each set of particles had zero baryon number, strangeness
and electric charge. Ensembles were not confined to have
zero total isospin and Bose statistics were neglected. Once
the particles in an ensemble were created, according to a
temperature T and volume V , they were allowed to decay. If
ensembles from several volumes V are created independently,
the resulting value of νdyn/α should be the same as from a
single volume.

Generating sample ensembles of particles required first
calculating canonical partition functions, ZA

B,S,Q(T ) indexed
by the three types of charge, baryon number B, strangeness
S, electrical charge Q, plus the net number of hadrons A. The
complete partition function is then

ZB,S,Q(T ) =
∑

A

ZA
B,S,Q(T ). (31)
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Even though for the ensembles of interest B = S = Q = 0,
the Monte Carlo procedure requires knowing ZA

B,S,Q(T ) for
all possible charges. Calculations were based on the recursion
relation

ZA
B,S,Q(T ) = 1

A

∑
h

zh(T )ZA−1
B−bh,S−sh,Q−qh

(T ), (32)

where zh(T ) is the partition function of a single hadron species
of type h,

zh = (2sh + 1)V
∫

d3 p

(2π h̄)3
e−Eh (p)/T

= (2sh + 1)V

2π2h̄3

[
m2

hT K0(mh/T ) + 2mhT 2K1(mh/T )
]
.

(33)

Beginning with Z0(T ) = 1, one can find partition functions
for higher A recursively to some cutoff Amax

To generate an ensemble of particles, one first chooses A
with probability

P(A) = ZA
B=0,S=0,Q=0

ZB=0,S=0,Q=0
. (34)

One then chooses hadron species with probability,

Ph = zh

A

ZA−1
B−bh,S−sh,Q−qh

ZA
B,S,Q

. (35)

For the first particle, B = S = Q = 0, and for subsequent par-
ticles the remainder from the previous choice is used. This
procedure is followed until A particles have been chosen. This
produces particles and correlations perfectly consistent with
the canonical ensemble for a noninteracting gas of distin-
guishable particles, which ignores Bose and Fermi statistics.
Although one can adjust the procedure to account for Bose
effects, it should not be important for kaons given that the
average phase space density for kaons is below one percent.

For a central collision, one expects this volume to be on the
scale of �100 fm3. This scale, characterizing the scale over
which charge conservation is enforced, need not be related to
the volume of a coherent domain. Canonical results are shown
in Fig. 5. For large volumes, νdyn/α appears to approach 0.04.
Over 90% of this value can be attributed to the φ, which
decays to two neutral (33% branching ratio) or to two charged
kaons (50% branching ratio).

For smaller volumes, V ≈ 10 fm3, νdyn/α can be near 0.18,
which is large enough to explain much of what is observed by
ALICE. However, such small volumes should not be relevant
for central collisions. For small volumes, a strange meson
must be accompanied by an antistrange meson. In a small
system, if a K+ meson (us̄) is observed, one must have a
meson with an s quark, preferably another kaon, because it
does not require the addition of a baryon-antibaryon pair.
To generate nonzero νdyn, the additional kaon must prefer-
entially be a K− (sū) vs. a K0 (sd̄). As soon as systems are
large enough that several pions exist, that preference should

FIG. 5. For increasingly large subsystem νdyn/α appears to ap-
proach approximately 0.4, consistent with most of the correlation
coming from φ decays. After correcting for acceptance, the value
is likely to fall near 0.035, well below what was reported by ALICE.

disappear because the pion chemistry can readily exchange
u and d quarks in a kaon. In fact, studies of charge balance
functions of kaons in central collisions suggest that balancing
strangeness extends to a unit of rapidity or more [17], consis-
tent with most strangeness being created at the beginning of
the collision [16]. Other observations of strangeness yields are
also consistent with earlier freezeout of strange particles [18].
It would then be highly unlikely that a balancing antistrange
quark would have any preference toward pairing with an up
vs. a down quark.

Calculations in this section considered a single subsys-
tem. The results would not change if multiple subsystems
contributed to the measurement. However, if kaons from the
same domain extend across large rapidity ranges, the values
of νdyn/α could fall. If a kaon is observed, and the probability
that a second kaon from the same subsystem also falls into
the acceptance is γ , νdyn/α would be reduced by the factor γ .
Because these correlations are dominated by decays of the φ,
and because the opening angle between kaons from a φ decay
is small, the value of γ is likely in the range of 0.9. Thus, the
background contribution from charge contribution and decays
should be � 0.035.

Bose correlations are ignored in this section. Such corre-
lations enhance the probability of two kaons being the same
species if both are emitted into the same unit of phase space.
Given that the average phase space occupation is on the order
of one percent, one would expect an additional small, on the
order of 0.01, contribution to νdyn/α from Bose effects. The
sum of these two background in the neighborhood of 0.045,
which is well below the strength needed to reproduce the
ALICE measurement in central collisions.

One possibility for producing large values of νdyn would
be to have anomalously large numbers of neutral resonances
decaying to 2 kaons, e.g., additional φ or f0 mesons. This
would become clearly manifest in kaon correlations. Not only
has this not been seen [17], but the ALICE analysis shows that
the additional correlation is spread over the entire measured
rapidity range [1].
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V. LINEAR σ MODEL

Melting quark condensates with increasing temperature
requires energy. Conversely, condensing the quarks and an-
tiquarks releases energy. It is important to know how much
energy might be converted into kaons, especially from the 〈s̄s〉
condensate. The answer is not readily available from lattice
QCD calculations. Therefore, in this section we make some
estimates based on several incarnations of the linear σ model.

In Sec. V A we study the model with two flavors of
light quarks, including the chiral symmetry breaking term.
In Sec. V B we add strange quarks and include not only the
SU(3) chiral symmetry breaking but also a term that repre-
sents the U (1)A anomaly. In Sec. V C we add another, recently
studied, term, which includes both nonzero quark masses and
the anomaly. In Sec. V D we make numerical estimates of how
much energy might be released during the condensation. The
numbers for three flavors is encouraging.

We point out that there is nothing original in the models we
use. The goal is to make quantitative estimates.

A. Two flavors

The vacuum potential for two flavors of light quarks with
equal mass mq is

U (σ,π) = λ

4

(
σ 2 + π2 − c2

λ

)2

− fπm2
πσ − c4

4λ
. (36)

It is normalized such that U = 0 when the fields are zero.
Minimization of the potential yields the vacuum condensate
σvac = fπ and no pion condensate. This leads to the masses
m2

π = λσ 2
vac − c2 and m2

σ = 3λσ 2
vac − c2. From the PDG we

use fπ = 92.1 MeV and mπ = 138.039 MeV (average of
charged and neutral pions). The PDG [19] gives the best
estimate of mσ = 449+22

−16 MeV with a width of 275 MeV.
Therefore we fix mσ = 450 MeV. Then c = 269.57 MeV and
λ = 10.813. The Gell-Mann, Oakes, and Renner (GMOR)
relation gives the light quark condensate as

m2
π f 2

π = −2mq〈q̄q〉. (37)

B. (2+1) flavors

Here we review the important features of the (2+1)-flavor
linear σ model using the notation of Ref. [9]. The field poten-
tial U is expressed in terms of the 3 × 3 bosonic field matrix
M as

U (M ) = − 1
2μ2Tr(MM†) + λTr(MM†MM†)

+ λ′[Tr(MM†)]2 − c(det M + det M†)

− fπm2
πσ −

(√
2 fK m2

K − 1√
2

fπm2
π

)
ζ . (38)

The σ meson is a ūu + d̄d scalar and the ζ meson is an s̄s
scalar. The μ2, λ, λ′, and c are constants. Assuming that only

those two scalars condense leads to the potential

U (σ, ζ ) = − 1
2μ2(σ 2 + ζ 2) + 1

2λ(σ 4 + 2ζ 4)

+ λ′(σ 2 + ζ 2)2 − cσ 2ζ − fπm2
πσ

−
(√

2 fK m2
K − 1√

2
fπm2

π

)
ζ . (39)

Minimizing the potential leads to

∂U

∂σ
= −μ2σ + 2λσ 3 + 4λ′(σ 2 + ζ 2)σ − 2cσζ − fπm2

π = 0,

∂U

∂ζ
= −μ2ζ + 4λζ 3 + 4λ′(σ 2 + ζ 2)ζ − cσ 2 −

√
2 fK m2

K

+ 1√
2

fπm2
π = 0. (40)

Partially conserved axial current (PCAC) says that the vacuum
solutions must be

σvac = fπ ,

ζvac =
√

2 fK − 1√
2

fπ . (41)

Reference [9] used the two equations of motion, the mass
of the lightest scalar meson f0(500), and the average m2

η + m2
η′

to determine the four independent parameters. From the latest
2022 version of the PDG

mK = 495.644 MeV

mη = 547.862 MeV

mη′ = 957.78 MeV

fK = 110.1 MeV (42)

where isospin averaging was performed for the kaons. Note
that the f 0(980), which is commonly identified with the ζ ,
has a mass in the range from 980–1010 MeV with a width
ranging from 20–35 MeV.

It is more important to fit the f 0(980) mass than to fit m2
η +

m2
η′ for our purposes. From the equations of motion we can

solve for

c =
√

2
(
m2

K − m2
π

)
4( fK − fπ )

−
√

2λ(2 fK − fπ ) (43)

in terms of λ and for

μ2 = 8(λ + λ′) fK ( fK − fπ ) + 2(2λ + 3λ′) f 2
π

− 1
2 m2

K − fK m2
K − fπm2

π

2( fK − fπ )
(44)

in terms of λ and λ′. These two parameters are then deter-
mined by fixing the masses of the f0(500) and f0(980). The
scalar mass eigenstates are determined by diagonalizing the
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symmetric matrix

m2
σσ = m2

π + 4(λ + 2λ′) f 2
π

m2
σζ = 2

√
2(λ + 2λ′)(2 fK − fπ ) fπ −

(
m2

K − m2
π

)
fπ√

2( fK − fπ )

m2
ζ ζ = 1

2 m2
K + 2(λ + λ′)

(
8 f 2

K − 8 fπ fK + f 2
π

)
+ 2λ′ f 2

π + fK m2
K − fπm2

π

2( fK − fπ )
, (45)

where m2
xy ≡ ∂2U/∂x∂y, which is evaluated at the minimum

of the potential. Explicitly

m2
f0(980) + m2

f0(500) = m2
σσ + m2

ζ ζ (46)

and

m2
f0(980) − m2

f0(500) =
√(

m2
σσ − m2

ζ ζ

)2 + 4m4
σζ . (47)

We choose m f0(980) = 990 MeV, which is close to the K̄K
threshold. The resulting parameters are

λ = −35.29

λ′ = 24.37

c = 10.84 GeV

μ2 = −(977.6 MeV)2. (48)

This is unsatisfactory because λ + λ′ < 0 means that the po-
tential is unstable.

On the other hand, instead of fitting the masses of the
f0(500) and f0(980) mesons, we could follow [9] and fit
m f0(500) and the sum of squares of the masses of the η and
η′ mesons, which is

m2
η + m2

η′ = m2
π + 2 fK m2

K − fπm2
π

2 fK − fπ

+
√

2c
8 fK ( fK − fπ ) + 3 f 2

π

2 fK − fπ
. (49)

This gives

λ = 15.01

λ′ = −2.176

c = 1.732 GeV

μ2 = −(472.8 MeV)2 (50)

and m f0(980) = 1261.4 MeV.
The GMOR relation can be used to relate the quark

condensates to the condensates of the σ and ζ fields. The
symmetry-breaking term is first order in the quark masses. It
is written as

USB = − c′
√

2
Tr[M†M + MM†] (51)

where M = diag(mu, md , ms) is the diagonal quark mass ma-
trix. In the vacuum this gives

USB = −c′(muσvac + mdσvac +
√

2msζvac). (52)

Henceforth we assume that mu = md ≡ mq. The quark con-
densates are determined by

〈ūu〉 = ∂U

∂mu
= −c′σvac = −c′ fπ

〈d̄d〉 = ∂U

∂md
= −c′σvac = −c′ fπ

〈s̄s〉 = ∂U

∂ms
= −

√
2c′ζvac = −c′(2 fK − fπ ). (53)

Then 〈ūu〉 = 〈d̄d〉 ≡ 〈q̄q〉. The pion and kaon masses can be
expressed as

m2
π = 2c′mq

fπ

m2
K = c′(mq + ms)

fK
(54)

so that one recovers the well-known relations

m2
π f 2

π = −2mq〈q̄q〉,
m2

K f 2
K = − 1

2 (mq + ms)(〈q̄q〉 + 〈s̄s〉). (55)

Note that c′ and the quark condensates only appear as products
with a quark mass. Only the products are renormalization
group independent, not the individual factors.

C. Extended (2+1) flavors

In a relatively recent paper [20] it was argued that the mass
hierarchy of the lightest scalar mesons can be described within
the linear sigma model by adding a term, which combines
SU(3) flavor symmetry breaking and the U (1)A anomaly.
It is

USB−anom = − 1
2 c′k[εabcεde f Mad MbeMc f + H.c.], (56)

where k is a new constant with dimension of inverse energy.
In terms of the two scalar fields that condense it is

USB−anom = −c′k(msσ + 2
√

2mqζ )σ. (57)

This extra term allows one to fix m2
η + m2

η′ in addition to
the others in the previous section. The equations of motion
become

∂U

∂σ
= −μ2σ + 2λσ 3 + 4λ′(σ 2 + ζ 2)σ − 2cσζ

− 2c′(mq + kmsσ +
√

2kmqζ ) = 0,

∂U

∂ζ
= −μ2ζ + 4λζ 3 + 4λ′(σ 2 + ζ 2)ζ − cσ 2

−
√

2c′(ms + 2kmqσ ) = 0. (58)

The quark condensates are now determined by

〈q̄q〉 = −c′ fπ [1 + k(2 fK − fπ )],

〈s̄s〉 = −c′[2 fK − fπ + k f 2
π ]. (59)
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The pion and kaon masses can be expressed as

m2
π = 2c′mq

fπ
[1 + k(2 fK − fπ )],

m2
K = c′(mq + ms)

fK
[1 + k fπ ], (60)

so that one recovers once again the well-known relations

m2
π f 2

π = −2mq〈q̄q〉,
m2

K f 2
K = − 1

2 (mq + ms)(〈q̄q〉 + 〈s̄s〉). (61)

So far there are four equations for the seven quanti-
ties μ2, c, λ, λ′, c′mq, c′ms, k. We choose to fix the masses
m f0(500) = 450 MeV and m f0(980) = 990 MeV. The entries in
the mixing matrix are

m2
σσ = 8λ′ fK ( fK − fπ ) + 2(3λ + 7λ′) f 2

π

− μ2 −
√

2c(2 fK − fπ ) − 2kc′ms

m2
σζ = 4

√
2λ′ fπ (2 fK − fπ ) − 2c fπ − 2

√
2kc′mq

m2
ζ ζ = 6(λ + λ′)(2 fK − fπ )2 + 4λ′ f 2

π − μ2. (62)

To obtain a seventh constraint on the parameters we use the
sum of squares of the η and η′ masses, which is

m2
η + m2

η′ =
√

2c
8 fK ( fK − fπ ) + 3 f 2

π

2 fK − fπ
+ 2c′mq

fπ (2 fK − fπ )

× [
2 fK − fπ + k

(
4 fK ( fK − fπ ) + 3 f 3

π

)]
+ 2c′ms

2 fK − fπ
[1 + 2k(2 fK − fπ )]. (63)

Then

λ = 5.928

λ′ = 0.7376

c = 1.433 GeV

μ2 = −(480.7 MeV)2

c′mq = 6.729 × 105 MeV3

c′ms = 2.152 × 107 MeV3

k = (421.4 MeV)−1. (64)

D. Energy densities

If at very high temperature the two condensates become
very small then, to first approximation, U (σ = 0, ζ = 0) = 0.
As the temperature decreases, energy is released as the fields
condense towards their vacuum values.

For the (2+1)-flavor linear σ model, using the parameters
from Eq. (50) in Eq. (39), we get

U2+1(σvac, ζvac) = −264.94 MeV/fm3. (65)

The total energy of condensation that is needed to be re-
leased is 264.94 MeV/fm3. If we use the values of the σ

and ζ condensates as inferred from lattice QCD from the
light quark [21,22] and strange quark [22] condensates at
T = 160 MeV, then σ160 ≈ 0.25 σvac and ζ160 ≈ 0.85 ζvac (see

Fig. 8 of Ref. [22]). The corresponding potential energy den-
sity is

U2+1(σ160, ζ160) = −234.28 MeV/fm3 (66)

so the total energy that needs to be released is

�U2+1 = 30.66 MeV/fm3. (67)

Similarly, for the extended (2+1)-flavor model,

UExt 2+1(σvac, ζvac) = −222.24 MeV/fm3

UExt 2+1(σ160, ζ160) = −192.89 MeV/fm3

�UExt 2+1 = 29.35 MeV/fm3 (68)

and for the two-flavor linear σ model

U2(σvac) = −35.83 MeV/fm3

U2(σ160) = −7.67 MeV/fm3

�U2 = 28.16 MeV/fm3. (69)

Note that the vacuum energy density is about seven times
greater when strange quarks are included. However, the differ-
ence in energy density between the vacuum and a temperature
of 160 MeV is remarkably consistent among the three versions
of the linear σ model, being about 29 MeV/fm3.

The energy density associated with the production of
domain kaons (and pions) could be much larger than
29 MeV/fm3. The initial temperature in central collisions of
Pb nuclei at the LHC is in the range from 400–600 MeV. Ac-
cording to lattice calculations, the strange quark condensate
〈s̄s〉 is essentially zero for T > 250 MeV and rises to 85% of
its vacuum value at T = 160 MeV [22]. In contrast the light
quark condensate 〈q̄q〉 is essentially zero for T > 180 MeV
and rises to only 25% of its vacuum value at T = 160 MeV
[21,22]. This suggests that strange quarks become highly
correlated already at temperatures well above T = 160 MeV
forming the precursors to condensed kaons. Other evidence
for strong correlations of strange quarks comes from the
strange quark susceptibility χs(T ). To order m2

s it is

χs(T ) = T 2

(
1 − 3

2π2

m2
s

T 2

)
(70)

neglecting interactions. Lattice calculations give values of
χs/T 2 of about 0.8 at T = 250 MeV and 0.25 at T =
160 MeV [23]. These are well below the free gas values and
cannot be explained by a strange quark mass on the order of
100 MeV. In addition, it may very well be that equilibration of
the strange quark condensate lags the expansion of the system,
thereby yielding a larger energy necessary to be released.

Finally, it should be emphasized that νdyn does not repre-
sent a correlation between strange quarks, but between flavors
of kaons. Strange quarks produce kaons by combining with
either up or down quarks, creating neutral kaons when com-
bined with down quarks and charged kaons when combined
with up quarks. If the condensate forms before hadronization,
there is little reason for one strange quark’s choice of combin-
ing with an up vs a down quark would correlate to the choice
of a different strange quark. Even if the condensate forms at
the hadronization temperature, near 150 MeV, and if kaons
are produced in a strongly correlated state, kaons will likely

014913-10



CONFRONTING ANOMALOUS KAON CORRELATIONS … PHYSICAL REVIEW C 107, 014913 (2023)

collide with pions. These collisions mainly proceed through
the K∗ resonance, which after decays can readily convert
neutral to charged kaons, or charged to neutral kaons, by the
reactions

K+ + π− ↔ K0 + π0,

K+ + π0 ↔ K0 + π+,

K− + π+ ↔ K̄0 + π0,

K− + π0 ↔ K̄0 + π−. (71)

This underscores the fact that any proposed mechanism and its
estimate, should take into account that final-state interactions
dilute the signal, and that this dilution should be more acute
the earlier the coherent production occurs.

VI. SUMMARY AND CONCLUSIONS

The ALICE Collaboration has measured anomalously large
values of νdyn(K0

S , K±)/α, which cannot be explained without
invoking the presence of condensates. A random distribution
of kaons with charge conservation alone produces small val-
ues for νdyn/α, which decrease with increasing multiplicity,
in contradiction to the data. The contribution from Bose sym-
metrization is less than one percent and would not be enough.
Resonance decays can explain the magnitude of the measured
correlations only if there are a large number of neutral res-
onances, which decay to two kaons. The only scenario that
generates large values of νdyn/α, which increase with multi-
plicity, is when there are a large number of degenerate kaons,
such as those associated with condensates. These degenerate
kaons, folded with thermal kaons, could explain the values
observed by ALICE.

We constructed a simple two-parameter phenomenological
model where a fraction of kaons are produced from domains
of condensates, which coherently emit kaons. The sizes of
these domains are causally limited and the number of such
domains is proportional to the multiplicity of the system.
We extracted values for the number of domains and their
total volumes, which appear reasonable for Pb-Pb collisions.
We estimate that for central collisions, about one-third of
all kaons come from coherent emissions from condensates.

Further, we point out that, depending on when the condensates
dissolve, the correlations should be significantly diluted by
charge-exchanging interactions in the hadronic stage. Thus,
accounting for such effects would require one to attribute an
even greater fraction of the initial kaon production to conden-
sates.

We made quantitative estimates of the vacuum energy den-
sity of condensates in various versions of the linear σ model.
While that value is different for different linear σ models,
the difference between the energy density of condensates in
vacuum and at 160 MeV temperature is remarkably consistent
at about 30 MeV/fm3. This is just an estimate of energy re-
leased in formation of condensates that could be available for
formation of correlated kaons. In practice, this energy could
be higher for reasons explained at the end of the previous
section.

It would be interesting to perform similar measurements
for heavy-ion collisions at

√
sNN = 5.02 TeV at the LHC and

at
√

sNN = 200 GeV at RHIC. While these different energies
probe essentially the zero chemical potential region of the
QCD phase diagram, the kaon multiplicities, the maximum
temperatures reached, and the lifetimes and the volumes of
the fireballs created are greater at the LHC. If the anomalous
correlations are indeed originating from the condensates, and
the condensate number and volume are related to the size
of the fireball, that should be visible in these measurements.
More differential measurements in terms of rapidity and az-
imuthal angle should be done. It would be enlightening to
perform similar measurements for pions. The problem is that
neutral pions must be measured via the decay π0 → 2γ ver-
sus the measurement K0

S → π+π−. And, of course, a more
sophisticated theory should be developed and combined with
hydrodynamic modeling of the collisions.
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