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Momentum correlation functions of light (anti)nuclei formed by the coalescence mechanism of (anti)nucleons
are calculated for several central heavy-ion collision systems, namely 10

5 B + 10
5 B, 16

8 O + 16
8 O, 40

20Ca + 40
20Ca, as

well as 197
79 Au + 197

79 Au in different centralities at center-of-mass energy
√

sNN = 39 GeV within the framework
of a multiphase transport (AMPT) model complemented by the Lednický and Lyuboshitz analytical method.
Momentum correlation functions for identical or nonidentical light (anti)nuclei are constructed and analyzed
for the above collision systems. The Au+Au results demonstrate that emission of light (anti)nuclei occurs
from a source with smaller space extent in more peripheral collisions. The effect of system size on the momentum
correlation functions of identical or nonidentical light (anti)nuclei is also explored by several collision system
in central collisions. The results indicate that the emission source size of light (anti)nuclei pairs deduced from
their momentum correlation functions and system size is self-consistent. Momentum correlation functions of
nonidentical light nuclei pairs gated on velocity are applied to infer the average emission sequence of them. The
results illustrate that protons are emitted on average on a timescale similar to neutrons but earlier than deuterons
or tritons in the small relative momentum region. In addition, a larger interval of the average emission order
among them is exhibited for smaller collision systems or at more peripheral collisions.
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I. INTRODUCTION

In heavy-ion collisions (HICs), the two-particle mo-
mentum correlation function is different from the original
application in astronomy [1,2], and has been normally uti-
lized to extract space-time information of the emission source
and probe the dynamical evolution of nuclear collisions in
an extensive energy range [3–12]. Many different studies on
the two-particle momentum correlation functions in inter-
mediate energy HICs can be also found in literature, e.g.,
Refs. [12–27], which include the momentum correlation func-
tions of neutron, proton, as well as light charged particle
(LCP) pairs. Multivariable dependences of the momentum
correlation functions, such as impact parameters, total mo-
mentum of particle pairs, isospin of the emission source,
nuclear symmetry energy, nuclear equation of state (EOS),
as well as in-medium nucleon-nucleon cross section (NNCS),
etc., contain a wealth of information about the space-time
characteristics of intermediate energy HICs. In high energy
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HICs, the two-hadron momentum correlation function, also
called Hanbury Brown–Twiss (HBT) interferometry, was also
well extensively measured and some interesting properties on
emission source were extracted [28,29]. Oscillations of the
extracted HBT radii versus emission angle indicate that the
emission source is elongated perpendicularly to the reaction
plane. The results indicate that the initial shape more or less
remains and could be identified even though the collision
system undergoes pressure and expansion. Furthermore, in-
teraction between antiprotons has also been measured with
the momentum correlation functions, and the equality of in-
teractions between p-p and p̄- p̄ was proved by the STAR
Collaboration [30]. The interaction property of the particle
pairs has been discussed for other particles, for instance �

pairs [31], proton-� and proton-�, etc. [32,33], with the same
momentum correlation technique. Furthermore, the measure-
ments of momentum correlation functions for nonidentical
nucleons and light clusters can be used to characterize the
mean emission sequence of them, which was first proposed
in Ref. [34]. Theoretical study has been extended to different
kinds of nonidentical particle pairs, for instance p-d , n-p
[35–38], π -p [39], K+-K− [40], d-t [12,22], as well as 3He-α
particles [41] in intermediate energy HICs.

In this work, for the first time, we extend the studies on
the momentum correlation functions of light (anti)nuclei to ul-
trarelativistic heavy-ion collisions simulated by a multiphase
transport (AMPT) model [42,43] coupled with a dynamical
coalescence model [44–46], specifically at

√
sNN = 39 GeV.
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Different gating conditions such as centrality gate, system-
size gate, as well as velocity gate are applied to the momentum
correlation functions of light (anti)nuclei pairs. In particular,
we report on the indication of the emission chronology of
protons, deuterons, and tritons, which can be deduced from
their corresponding momentum correlation functions in ultra-
relativistic HICs at

√
sNN = 39 GeV. The emission sequence

of light clusters inferred from the correlation functions is
expected to be measurable in future experiments to verify our
deduction from the coalescence picture.

The rest of this article is organized as follows. In Secs. II A
and II B, we briefly describe a multiphase transport model
[42,43] and the coalescence model [44–46], then we introduce
how to calculate the momentum correlation functions of par-
ticle pairs by using the Lednický and Lyuboshitz analytical
formalism [3,47–50] in Sec. II C. In Sec. III, we summa-
rize the simulated results of the light (anti)nuclei momentum
correlation functions gated on various parameters in relativis-
tic heavy-ion collisions. Section III A compares the results
of proton-proton and proton-antiproton momentum correla-
tion functions with experimental data from the RHIC-STAR
Collaboration. From Secs. III B to III D, identical and non-
identical light (anti)nuclei momentum correlation functions
gated on different conditions are systematically discussed.
Finally, a summary and outlook are given in Sec. IV.

II. MODELS AND FORMALISM

A. AMPT model

To obtain phase-space distributions of (anti)particles, a
multiphase transport model [42,43] is used as the event gen-
erator; it has been applied successfully for studying heavy-ion
collisions at relativistic energies, e.g., in [45,46,51–59]. We
briefly review the main components of the AMPT model used
in the present work. In the version of AMPT, the initial phase-
space information of partons is generated by the heavy-ion
jet interaction generator (HIJING) model [60,61]. The inter-
action between partons is then simulated by Zhang’s parton
cascade (ZPC) model [62]. During the hadronization process,
a quark coalescence model is used to combine partons into
hadrons [63–65]. Then, the hadronic rescattering evolution is
described by a relativistic transport (ART) model [66].

In this paper, the collisions of 10
5 B + 10

5 B, 16
8 O + 16

8 O, and
40
20Ca + 40

20Ca at 0–10 % centrality and midrapidity (|y| < 0.5)
as well as 197

79 Au + 197
79 Au at the same midrapidity for five cen-

tralities of 0–10%, 10–20%, 20–40%, 40–60%, and 60–80%
at

√
sNN = 39 GeV are simulated. The phase-space distribu-

tions of (anti)particles are selected at the final stage in the
hadronic rescattering process (ART model [66]) considering
baryon-baryon, baryon-meson, and meson-meson elastic and
inelastic scatterings, as well as resonance decay or week de-
cay. The transverse momentum spectra of light (anti)nuclei
have been successfully reproduced by the AMPT model with
the maximum hadronic rescattering time (MRT) of 100 fm/c
[46]. Therefore, the same maximum hadronic rescattering
time is used for most calculations in this work except for a
quantitative comparison with the p-p and p- p̄ data from the
STAR Collaboration in Sec. III A.

B. Coalescence model

The coalescence model has been used widely in describing
the production of light clusters in intermediate [67–71] and
high [72,73] energy heavy-ion collisions. The detailed defi-
nition of the probability for producing a cluster of nucleons
is in Ref. [44]. In our model calculations, light (anti)clusters
such as (anti)deuterons and tritons are constructed by using
the coalescence model as follows [74,75]. The probability of
producing an M-nucleon cluster is determined by its Wigner
phase-space density and the nucleon phase-space distribution
at the freeze-out stage [44]. The multiplicity of an M-nucleon
cluster in transport model simulations for heavy-ion collisions
is given by

NM = G
∫ ∑

i1>i2>···>iM

d�ri1 d�ki1 · · · d�riM−1 d�kiM−1

× 〈
ρW

i

(
�ri1 , �ki1 , . . . , �riM−1 , �kiM−1

)〉
, (1)

where �ri1 , �riM−1 and �ki1 , �kiM−1 are the relative coordinates and
momentum in the M-nucleon rest frame, and the spin-isospin
statistical factor G is 3/8 for (anti)deuteron and 1/3 for tri-
ton [44]. In addition, ρW is the Wigner density function,
which is different for all kinds of particles. Therefore, we will
calculate separately the Wigner phase-space density of the
(anti)deuteron and triton in detail. The Wigner phase-space
density of (anti)deuteron is constructed by

ρW
d (�r, �k) = 8

15∑
i=1

c2
i exp

(
−2ωir

2 − k2

2ωi

)

+ 16
15∑

i> j

cic j

(
4ωiω j

(ωi + ω j )2

) 3
4

exp

(
− 4ωiω j

ωi + ω j
r2

)

× exp

(
− k2

ωi + ω j

)
cos

(
2
ωi − ω j

ωi + ω j
�r · �k

)
, (2)

where �k = (�k1 − �k2)/2 is the relative momentum and �r =
(�r1 − �r2) is the relative coordinate of the (anti)proton and
(anti)neutron. The Wigner phase-space density of the triton
is constructed by a spherical harmonic oscillator [44,45,76],

ρW
t (ρ, λ, �kρ, �kλ)

=
∫

ψ

(
ρ + �R1

2
, λ + �R2

2

)
ψ∗

(
ρ − �R1

2
, λ − �R2

2

)

× exp(−i�kρ · �R1) exp(−i�kλ · �R2)3
3
2 d �R1d �R2

= 82 exp

(
−ρ2 + λ2

b2

)
exp

[ − (�k2
ρ + �k2

λ

)
b2

]
, (3)

where ρ and λ are relative coordinates, and �kρ and �kλ are the
relative momenta in the Jacobi coordinate.

The above parameters of the Gaussian fit coefficient ci

and wi for (anti)deuteron as well as b for triton are, given
in Ref. [44]. Based on the phase-space information of a
light (anti)cluster obtained by the above coalescence model,
the momentum correlation functions of (non)identical light
(anti)cluster pairs can be discussed in the following.
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TABLE I. Experimental determination of the effective range
function parameters for n-n (n̄-n̄), p-p ( p̄- p̄), t-t , n-p (n̄- p̄), p-d ( p̄-d̄),
p-t , and d-t systems [30,77,78].

System Spin f0 (fm) d0 (fm) P (fm3)

n-n (n̄-n̄) 0 17 2.7 0.0
p-p ( p̄- p̄) 0 7.8 2.77 0.0

t-t 0 1 × 10−6 0.0 0.0
n-p (n̄- p̄) 0 23.7 2.7 0.0
p-d ( p̄-d̄) 1/2 −2.73 2.27 0.08

3/2 −11.88 2.63 −0.54
p-t 0 1 × 10−6 0.0 0.0
d-t 0 1 × 10−6 0.0 0.0

C. Ledniký and Lyuboshitz technique

Next, we briefly review the technique of the two-particle
momentum correlation function proposed by Lednický and
Lyuboshitz [47–49]. The method is based on the following
principle: when two particles are emitted at small relative mo-
mentum, their momentum correlation function is determined
by the space-time characteristics of the production processes
owing to the effects of quantum statistics (QS) and final-state
interactions (FSI) [3,50]. The details on the formalism of the
two-particle momentum correlation function can be found in
Ref. [36].

Here, compared with our previous work [36], more particle
pairs are considered. Therefore, the final-state interactions
of different particle pairs can be known well by introducing
fc(k∗), as follows:

fc(k∗) =
[

Kc(k∗) − 2

ac
h(λ) − ik∗Ac(λ)

]−1

. (4)

fc(k∗) is the s-wave scattering amplitude renormalizied
by the long-range Coulomb interaction, with h(λ) =
λ2 ∑∞

n=1[n(n2 + λ2)]−1 − C − ln[λ], where C = 0.5772 is the
Euler constant. Kc(k∗) = 1

f0
+ 1

2 d0k∗2 + Pk∗4 + · · · is the ef-
fective range function, where d0 is the effective radius of the
strong interaction, f0 is the scattering length, and P is the
shape parameter. The parameters of effective range function
are important to characterize the essential properties of the
final-state interactions, and can be extracted from the correla-
tion function measured experimentally [30,36,77,78]. Table I
shows the parameters of the effective range function for dif-
ferent particle pairs in the present work.

In Table I, for n-n (n̄-n̄) and n-p (n̄-p̄) momentum cor-
relation functions which include an uncharged particle, the
Coulomb penetration factor [Ac(λ)] is not considered and
only the short-range particle interaction works. For the mo-
mentum correlation functions of charged particles such as
p- p̄, p-p ( p̄-p̄), d-d (d̄-d̄), t-t , p-d ( p̄-d̄), p-t , and d-t ,
both the Coulomb interaction and the short-range interaction
dominated by the s-wave interaction are taken into account.
The momentum correlation function of p-p ( p̄- p̄) particle
pairs is dominantly contributed by only the singlet (S =
0) s-wave final-state interactions while both spins 1/2 and
3/2 contribute in the case of p-d ( p̄-d̄) system. Moreover,
for the (anti)deuteron-(anti)deuteron momentum correlation

FIG. 1. Proton-proton (a) and proton-antiproton (b) momentum
correlation functions for different centrality classes in

√
sNN = 39

GeV Au+Au collisions. Solid markers represent the preliminary
experimental data from the RHIC-STAR Collaboration [79,80], and
lines represent our model calculation results from the AMPT model
plus the Lednický and Lyuboshitz code. Note that the longer hadronic
rescattering time of 700 fm/c is used in this specific calculation for
comparing with the data.

function, a parametrization of the s-wave phase shifts δ has
been used from the solution of Kc(k∗) = cot δ for each total
pair spin S = 0, 1, 2. Note that the effective range function for
the total spin S = 1 is irrelevant, since it does not contribute
due to the quantum statistics symmetrization.

III. ANALYSIS AND DISCUSSION

A. Comparison between our p-p and p- p̄ correlation functions
with experimental data

Figure 1 presents results of p-p and p- p̄ correlation func-
tions for three different centrality classes of 0–10%, 10–30%,
and 30–70% calculated by the AMPT model in Au+Au
collisions at

√
sNN = 39 GeV. Within the cut of transverse

momentum pt and rapidity y, we confront the experimental
data with the predictions of the AMPT model combined with
Lednický and Lyuboshitz code. When the phase-space infor-
mation of nucleons at the maximum rescattering time among
hadrons of 700 fm/c is selected from the AMPT model, it
is found that the results can well describe the experimen-
tal data for the momentum correlation functions of p-p and
p- p̄ from the RHIC-STAR Collaboration [79,80], especially
in more central collisions. Considering that the preliminary
experimental results were not corrected by feed-down effect
corrections [79,80], the real correlation functions for primary
p-p and p- p̄ could be much more stronger. In this case, using
much longer MRT of 700 fm/c in the AMPT model might be a
reasonable choice for making a quantitative comparison with
feed-down uncorrected data since the system will become
more expanded and weakly correlated among particles after
longer MRT in AMPT. However, the quantitative reproduction
is not our main concern in the present work. In the following
calculations, we fixed the MRT at 100 fm/c and presented
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FIG. 2. The momentum correlation functions at midrapidity
(|y|<0.5) of (anti)neutron-pairs and (anti)proton-pairs as a function
of five different centralities for the 197

79 Au + 197
79 Au reaction at

√
sNN

= 39 GeV are presented in (a) and (c), respectively. The momentum
correlation functions of (anti)neutron-pairs and (anti)proton-pairs at
midrapidity (|y|<0.5) for 0–10% central collisions of 10

5 B + 10
5 B,

16
8 O + 16

8 O, 40
20Ca + 40

20Ca, as well as 197
79 Au + 197

79 Au systems at
√

sNN

= 39 GeV are presented in (b) and (d), respectively. The p-p and n-n
momentum correlation functions (solid symbols) and the antiparticle
ones (open symbols) are shown in each panel.

systematic results among different light (anti)nuclei. How-
ever, as one can notice, the results for p-p and p- p̄ change
substantially when changing the MRT by comparing Figs. 1
and 2. To estimate this uncertainty, we also check some results

FIG. 3. Same as Fig. 2 but for the light (anti)cluster pairs: (a) and
(b) for d-d momentum correlation functions (solid symbols) and
the antiparticle ones (open symbols), (c) and (d) for t-t momentum
correlation functions (solid symbols).

FIG. 4. Same as Fig. 2 but for the nonidentical particle pairs:
(a) and (b) for n-p momentum correlation functions (solid symbols)
and the antiparticle ones (open symbols), (c) and (d) for p-p̄ momen-
tum correlation functions (solid symbols).

for light nuclei correlations with different MRT. For example,
d-d or p-d correlations for MRT equal 700 fm/c. It is found
that the correlation becomes slightly weaker at smaller q (i.e.,
a little larger value of Cdd or Cpd close to 1 at MRT = 700
fm/c), which has a trend similar to the p-p and p- p̄ cases.
But the uncertainty is less than 20% at the lowest relative
momentum and tends to vanish at q>50 MeV/c for light
nuclei correlations (d-d or p-d) when changing the MRT from
100 to 700 fm/c, which can be essentially understood by weak
feed-down effects for light nuclei. In addition, we also check
the p-d correlation with different velocity selection. Only less
than 10% uncertainty is found for lower q between the cases
of MRT equal to 700 fm/c to the one at 100 fm/c. By this
comparison of results at MRT equal to 700 and 100 fm/c, we
conclude that nucleon-(anti)nucleon correlations are much in-
fluenced by the MRT but light nuclei correlations only change
slightly. Overall, MRT = 100 fm/c is basically the safe choice
for such light nuclei correlations.

B. Centrality and system-size dependence of identical light
(anti)nuclei momentum correlation functions

The centrality dependence of the two-particle momen-
tum correlation function can systematically investigate the
contributions from the system-size and particle interactions
on the correlations. Figures 2(a) and 2(c) present the mo-
mentum correlation functions of identical (anti)particle pairs
[n-n (n̄-n̄) and p-p ( p̄- p̄)] for 197

79 Au + 197
79 Au collisions at

different centralities of 0–10%, 10–20%, 20–40%, 40–60%,
and 60–80% at

√
sNN = 39 GeV. The momentum correla-

tion functions of (anti)neutron pairs exhibit more than unity
in Fig. 2(a), which is caused by the attractive s-wave in-
teraction between the two (anti)neutrons. In Fig. 2(c), the
shape of the (anti)proton-(anti)proton momentum correlation
functions looks as expected from the interplay between the
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FIG. 5. Same as Fig. 4 but for nonidentical light (anti)nuclei: (a) and (b) for p-d momentum correlation functions (solid symbols) and the
antiparticle ones (open symbols), (c) and (d) for p-t momentum correlation functions (solid symbols), (e) and (f) for d-t momentum correlation
functions (solid symbols).

quantum statistical (QS) and final state interactions (FSI)
and is consistent with previous results [13,30,36]. The
(anti)proton-(anti)proton momentum correlation functions ex-
hibit less than unity at low relative momentum q in Fig. 2(c),
which is mainly caused by the Coulomb repulsion between
the (anti)proton pairs. With increasing relative momentum,
the attractive s-wave interaction between the two (anti)protons
gives rise to a maximum of the (anti)proton-(anti)proton mo-
mentum correlation functions at q around 0.020 GeV/c in
Fig. 2(c). The antiproton-antiproton momentum correlation
functions show a similar structure with proton pairs, resulting
from the same attractive interaction between two antipro-
tons [30]. Figures 2(a) and 2(c) compare five centralities of
0–10%, 10–20%, 20–40%, 40–60%, and 60–80% of the two-
(anti)particle momentum correlation functions. The enhanced
strength of the n-n (n̄-n̄) and p-p ( p̄- p̄) momentum correlation
functions is observed in peripheral collisions. These results
indicate that (anti)particle emission occurs from a source

with smaller space extent in peripheral collisions. In addi-
tion, the effect of system size on the momentum correlation
functions of (anti)particles is also investigated by four differ-
ent systems, namely 10

5 B + 10
5 B, 16

8 O + 16
8 O, 40

20Ca + 40
20Ca, and

197
79 Au + 197

79 Au, in central collisions. In Figs. 2(b) and 2(d),
the n-n (n̄-n̄) and p-p ( p̄- p̄) momentum correlation functions
appear to have strong sensitivity to system size, and an en-
hanced strength is observed when particle pairs are emitted
from smaller system collisions. This enhanced strength of
the momentum correlation functions for particle pairs is a
physical effect stemming from the smaller space extent of the
emission source [8]. Therefore, the emission source size of
particle pairs obtained by their momentum correlation func-
tions and system size is self-consistent.

Figure 3 shows the centrality and system-size dependences
of the momentum correlation functions for light (anti)cluster
in similar condition as in Fig. 2. Figures 3(a) and 3(c)
present the momentum correlation functions of d-d (d̄-d̄)
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and t-t for 197
79 Au + 197

79 Au collisions at different centrali-
ties of 0–10%, 10–20%, 20–40%, 40–60%, and 60–80% at√

sNN = 39 GeV. The d-d (d̄-d̄) momentum correlation func-
tions exhibit less than unity at lower relative momentum q
in Figs. 3(a) and 3(b), which is caused by the Coulomb
repulsion. The two-triton momentum correlation functions
are less than unity with increasing relative momentum q
as shown in Figs. 2(c) and 2(d), which is caused by only
the Coulomb potential in the Lednický and Lyuboshitz code
[47–49]. The antideuteron-antideuteron momentum correla-
tion function also shows almost the same shape with deuteron
pairs due to the similar phase-space distributions between
deuteron and antideuteron. Due to significantly less yields of
tritons which induce too large error, the antitriton-antitriton
momentum correlation function is not shown in the present
work, which should be observed as the same trend with triton
pairs. Figures 3(a) and 3(c) also compare five centralities
of 0–10%, 10–20%, 20–40%, 40–60%, and 60–80% for the
momentum correlation functions of two light (anti)clusters.
The larger suppression of the d-d (d̄-d̄) and t-t correlation
functions is clearly visible in peripheral collisions. These re-
sults also indicate that light (anti)cluster emission occurs from
a source with smaller space extent for peripheral collisions,
which is similar to Figs. 2(a) and 2(c). In Figs. 3(b) and 3(d),
an enhanced strength of the momentum correlation function
for d-d (d̄-d̄) and t-t is also observed when light (anti)cluster
pairs are emitted from smaller systems, such as in B+B and
O+O collisions. However, the sensitivity seems to disappear
in these small systems.

C. Nonidentical light (anti)nuclei momentum correlation
functions gated on centrality and system size

Now we investigate centrality and system-size dependence
of the nonidentical (anti)particle momentum correlation

FIG. 6. The velocity-gated momentum correlation functions
(left) and velocity difference (�v) spectra (right) for n-p and p- p̄
as a function of five different centralities in midrapidity (|y|<0.5)
for 39 GeV 197

79 Au + 197
79 Au collision. The velocity conditions are

indicated in each panel: �v>0 is marked by solid symbols and
�v<0 by open symbols.

FIG. 7. Same as Fig. 6 but for 0–10% central collisions of 10
5 B +

10
5 B, 16

8 O + 16
8 O, 40

20Ca + 40
20Ca, as well as 197

79 Au + 197
79 Au systems at√

sNN = 39 GeV. The velocity conditions are indicated in each panel:
�v>0 is marked by solid symbols and �v<0 by open symbols.

functions, such as n-p (n̄-p̄), p- p̄, p-d ( p̄-d̄), p-t , and d-t .
Figures 4(a) and 4(c) show results for the momentum
correlation functions of n-p (n̄-p̄) and p- p̄ for the
same centrality classes as Fig. 2. The same centrality
dependence is also clearly seen in Figs. 4(a) and 4(c).
Because of the strong attractive final state interaction
between n and p, the n-p (n̄- p̄) momentum correlation
functions show a strong positive correlation at small
values of the relative momentum q in Figs. 4(a) and
4(b). Figure 4(c) shows results for proton-antiproton
momentum correlation functions, which are different from

FIG. 8. Ratios of the velocity-gated momentum correlation func-
tions (left) of n-p (a) and p-p̄ (c) pairs for 39 GeV 197

79 Au + 197
79 Au

collision at midrapidity (|y|<0.5) and five different centralities. Ra-
tios of the velocity-gated momentum correlation functions (right) of
n-p (b) and p-p̄ (d) pairs for 0–10% central collisions of 10

5 B + 10
5 B,

16
8 O + 16

8 O, 40
20Ca + 40

20Ca, as well as 197
79 Au + 197

79 Au systems at
√

sNN

= 39 GeV.
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FIG. 9. Same as Fig. 6 but for p-d [(a) and (b)], p-t [(c) and (d)], and d-t [(e) and (f)] pairs.

the results for proton pairs in Fig. 2(c); however, they
qualitatively agree with the experimental results in
Ref. [79,80]. In addition, Figs. 4(b) and 4(d) show
system-size dependence of n-p (n̄-p̄) and p- p̄ momentum
correlation functions, which is almost the same as that of
the (anti)particle ones in Figs. 2(b) and 2(d). We can also
observe an enhanced strength of the momentum correlation
function for particle pairs in smaller systems. In the same
way, we also investigate the effect of different centralities
and system size on the momentum correlation functions
of nonidentical light (anti)nuclei. The p-d ( p̄-d̄), p-t , and
d-t momentum correlation functions in Figs. 5(a), 5(c)
and 5(e) are all characterized by an anticorrelation feature.
For the p-d ( p̄-d̄) momentum correlation functions in
Fig. 5(a), the anticorrelation shape is a little unlike to the
proton-deuteron momentum correlation function in the
intermediate energy heavy-ion collisions [36,37], indicating a
competition between the s-wave attraction and the Coulomb
repulsion. The correlation functions of p-t in Fig. 5(c) and
d-t in Fig. 5(e) also display a trend below unity due to
the dominant Coulomb repulsion, which is similar to the
previous results in intermediate energy heavy-ion collisions
[36,37]. In Fig. 5(b), the system-size dependence of p-d ( p̄-d̄)

momentum correlation functions is shown; an enhancement
of p-d ( p̄-d̄) momentum correlation function is observed
in smaller systems. In Figs. 5(d) and 5(f), the p-t and d-t
momentum correlation functions appear to be more sensitive
to system size only in large systems such as Au and Ca.

D. Velocity selected nonidentical light nuclei momentum
correlation functions

The momentum correlation functions of unlike particles
can provide an independent constraint on their mean emission
order by simply making velocity selections [22,34,35,81,82].
The principle of comparing the velocity-gated momentum
correlation functions for the nonidentical particle pair to in-
fer their average emission order is as follows. Here the two
nonidentical particles are named by “a” and “b” respectively.
If the velocity of “a” particle is lower than that of the “b”
particle, the (anti)correlation will be stronger when the “a”
particle is emitted, on average, earlier than the “b” particle,
because the space size between them is reduced during the
flight and the final-state interaction (FSI) is enhanced, and
vice versa. In addition, the velocity difference (�v) spectrum
between the two nonidentical particles is also sensitive to
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FIG. 10. Same as Fig. 7 but for p-d [(a) and (b)], p-t [(c) and (d)], and d-t [(e) and (f)] pairs.

the mean emission order. Figure 6 presents the velocity-gated
momentum correlation functions as well as velocity difference
(�v) spectra of unlike particles pairs n-p and p- p̄ for 39 GeV
197
79 Au + 197

79 Au collisions at different centralities of 0–10%,
10–20%, 20–40%, 40–60%, and 60–80%. In Figs. 6(a) and
6(c), the centrality dependence on the velocity-gated momen-
tum correlation functions of n-p and p- p̄ is similar to Fig. 4.
In Fig. 6(a), the momentum correlation function for n-p pairs
with vn>vp is similar to those with the reverse situation.
The symmetry of velocity difference (�v) spectra for n-p
pairs is shown in Fig. 6(b). The results demonstrate that the
average emission sequence of neutrons and protons is almost
the same and is insensitive to the centrality. In Fig. 6(c), the
momentum correlation function for p- p̄ pairs with vp>vp̄ is
slightly higher than those with the reverse situation. The slight
asymmetry of velocity difference (�v) spectra for p- p̄ pairs is
shown in Fig. 6(d), which indicates that the mean order of
emission sequence between proton and antiproton may be a
little different but is not sensitive to the centrality. In Fig. 7(a),
the momentum correlation functions for n-p pairs with vn>vp

are always similar to those with the reverse situation with
increasing system size. The symmetry of velocity difference
(�v) spectra for n-p pairs in different systems is shown in

Fig. 7(b). The comparison of velocity-gated momentum corre-
lation functions illustrates that the average emission sequence
between neutrons and protons is always identical for different
centrality and system size, which is also learned from their
ratios in Figs. 8(a) and 8(b). In Figs. 7(c) and 7(d), the com-
parison of velocity-gated momentum correlation functions for
p- p̄ indicates that the mean order of emission sequence be-
tween protons and antiprotons may be a little different but has
no dependence on system size, which is also learned by their
ratios in Figs. 8(c) and 8(d).

Figures 9 and 10 show centrality and system-size depen-
dences of velocity-gated momentum correlation functions and
velocity difference (�v) spectra of p-d , p-t , and d-t pairs,
respectively. For p-d and p-t pairs, the momentum correlation
functions with vp<vd (vp<vt ) are stronger than the ones with
the reverse situation vp>vd (vp>vt ) in Fig. 9. The comparison
of two velocity-gated correlation strength shows that protons
are emitted on average earlier than deuterons and tritons ac-
cording to the above criteria. The similar trend for d-t pairs
is not so obvious overall, except in peripheral collisions the
momentum correlation function with vd<vt is stronger and
deuterons are emitted on average earlier than tritons. In con-
trast with the emission order shown in many previous results
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FIG. 11. Same as Fig. 8 but for p-d [(a) and (b)], p-t [(c) and (d)], and d-t [(e) and (f)] pairs.

of the intermediate energy heavy-ion collisions [12,36,37,81],
the average emission sequence of protons, deuterons, and tri-
tons is opposite for 39 GeV heavy-ion collisions. Meanwhile,
Fig. 9 presents velocity difference spectra for p-d , p-t , and d-t
pairs. The velocity difference spectra are all asymmetric due
to the mean emission order. In addition, there is an enhanced
difference between the momentum correlation functions for
p-d (p-t or d-t) pairs with vp>vd (vp>vt or vd>vt ) and ones
with the reverse situation at larger centrality, which manifests
as the larger interval of the mean emission order for unlike
light nuclei in peripheral collisions. Their ratios in Figs. 11(a),
11(c), and 11(e) can also illustrate the above phenomenon.
The system-size dependence for p-d , p-t , and d-t pairs can
be found by the fact that momentum correlation functions
with vp<vd (vp<vt or vd<vt ) are stronger than the ones with
the reverse situation vp>vd (vp>vt or vd>vt ) in Fig. 10.
Correspondingly, the velocity difference spectra for p-d , p-t,
and d-t pairs are all asymmetric about �v = 0, caused by
the average emission order in Fig. 10. Therefore, protons
are emitted on average earliest, and deuterons are emitted on

average earlier than tritons in smaller system-size collisions.
The system-size dependence of the velocity-gated momentum
correlation functions is also clearly seen by their ratios in
Fig. 11. With decreasing system size, we can also observe
an enhanced difference between the momentum correlation
functions for p-d (p-t or d-t) pair with vp>vd (vp>vt or
vd>vt ) and the ones with the reverse situation in Figs. 11(b),
11(d), and 11(f).

IV. SUMMARY

In summary, with the AMPT model complemented by the
Lednický and Lyuboshitz analytical method, we have con-
structed and analyzed the momentum correlation functions
of light (anti)nuclei formed by the coalescence mechanism
of (anti)nucleons for heavy-ion collisions with different sys-
tem sizes and centralities at

√
sNN = 39 GeV. We present

a comparison of proton-proton and proton-antiproton mo-
mentum correlation functions with the experimental data
from the RHIC-STAR Collaboration [79,80]. Taking the same
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transverse momentum and rapidity phase space coverage
corresponding to the experimental situation as well as the
maximum hadronic rescattering time of 700 fm/c in AMPT, it
is found that the p-p and p- p̄ momentum correlation functions
simulated by the present model can match the experimental
data. We further study centrality and system-size dependence
of momentum correlation functions for identical and noniden-
tical light (anti)nuclei pairs, respectively, with the condition
of the maximum hadronic rescattering time of 100 fm/c
in AMPT. The shape of momentum correlation functions
for light (anti)nuclei pairs is consistent with previous works
[13,30,36,37,79,80], which is caused by both QS and FSI. The
similar structure between light nuclei momentum correlation
functions and antiparticle ones indicates that the interactions
between them are the same, which has been confirmed in
Ref. [30] only for the proton and antiproton. The central-
ity dependence of momentum correlation functions for light
(anti)nuclei is investigated by 197

79 Au + 197
79 Au collisions at dif-

ferent five centralities of 0–10%, 10–20%, 20–40%, 40–60%,
and 60–80% at

√
sNN = 39 GeV. It is found that with in-

creasing centralities from center to periphery, the momentum
correlation functions for light (anti)nuclei become stronger,
which are probably emitted from smaller source. The momen-
tum correlation functions of light (anti)nuclei are sensitive to
system-size through studying 10

5 B + 10
5 B, 16

8 O + 16
8 O, 40

20Ca +
40
20Ca, and 197

79 Au + 197
79 Au in central collisions, and used to

obtain the emission source size of light (anti)nuclei, which
is self-consistent with their system size. Momentum correla-
tion functions between nonidentical light nuclei can provide
important information about the average emission sequence
of them. The average emission timescale between neutrons
and protons is almost identical. However, heavier light clus-
ters (deuterons or tritons) are emitted later than protons in
the small relative momentum region. In the future we can
explore further the energy dependence of the average emission
sequence of light nuclei and understand the physical interpre-
tation.
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