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Conductivity, diffusivity, and violation of the Wiedemann-Franz Law in a hadron
resonance gas with van der Waals interactions
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In this work, a hadron resonance gas under van der Waals interactions has been studied. Both attractive and
repulsive interactions between the meson-meson and (anti)baryon-(anti)baryon have been taken into considera-
tion. Various transport properties such as electrical conductivity (σel) and thermal conductivity (κth) have been
estimated by solving the Boltzmann transport equation under the relaxation time approximation. The effect
of baryochemical potential (μB) and temperature is also explicitly explored for the mentioned observables.
Comparisons have been made with the results obtained from other existing theoretical models. We observe the
violation of Wiedemann-Franz law in a hadron resonance gas at a high-temperature regime. The corresponding
diffusivities have also been estimated, which can help us to understand the systems better.
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I. INTRODUCTION

Various transport properties can act as necessary probes
to analyze the systems formed in ultrarelativistic collisions.
Transport coefficients such as shear viscosity (η), bulk viscos-
ity (ζ ) along with the thermal conductivity (κth) and electrical
conductivity (σel) contribute to the dissipative nature of any
fluid. These coefficients are expressed in terms of the distri-
bution function’s responses to the nonuniformities present in
the system. More importantly, in the hot and dense system
formed in heavy-ion collisions where the strong interaction is
expected to be prevalent, these coefficients can have a sub-
stantial role in determining the behavior of system evolution.
They can also help us locate the phase transition through their
dependencies on various system parameters such as tempera-
ture and chemical potential.

In peripheral heavy-ion collisions, a large transient elec-
tromagnetic field is expected to be formed [1,2]. The strong
magnetic field decays with the space-time evolution of the
system. However, the rapid decay in the magnetic field is
slowed down due to the induced electric current. This can be
quantified by the electrical conductivity (σel), which measures
the system’s response to the small perturbations from the
electromagnetic field. σel can have a considerable effect in the
enhancement of the low mass dilepton production as well as
in the soft photon production [3,4]. It is also related to the
charge diffusion coefficient through the well-known relation
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Del = σel/χQ, where χQ is the charge susceptibility [5]. The
electrical conductivity is also partially responsible for the chi-
ral magnetic effect, which is a signature of CP violation [6].
Although direct experimental measurement of σel is not pos-
sible, a myriad of theoretical and phenomenological studies
have been conducted to estimate this coefficient. It has been
estimated from the Monte Carlo simulations in lattice quan-
tum chromodynamics (LQCD) calculations [7]. In Ref. [8],
the scaled electrical conductivity estimated from the parton-
hadron-string dynamic (PHSD) approach shows a minimum
near the critical temperature. In addition, σel has been esti-
mated from the kinetic theory approach [9], holography [10],
Dyson-Schwinger calculation [11], excluded volume hadron
resonance gas model [12], color string percolation model [13],
and quasiparticle model [14].

Along with this, another transport coefficient that plays a
crucial role in the thermodynamic evolution of the system is
the thermal conductivity (κth). The Fourier law of thermal con-
duction connects the heat flux to the temperature gradient and
the thermal conductivity. It is also very closely related to the
isospin diffusivity in the nuclear matter [15]. In high baryon-
rich environments, such as the systems produced in FAIR and
NICA, κth has of significant importance in the hydrodynamic
evolution. It also diverges near the critical temperature and
can be used to study the hydrodynamic fluctuations on ex-
perimental observables by the fluctuation-dissipation theorem
[16]. This coefficient has also been studied extensively by the
semiclassical transport theory [17], excluded volume hadron
resonance gas model [12], color string percolation model [18],
and Nambu–Jona-Lasinio model [19].

The LQCD approach has been very effective in estimating
the thermodynamic properties of the strongly interacting mat-
ter [20,21]. In such studies, a rapid crossover phase transition
can be observed between the temperature range, T ≈ 140–
190 MeV [22]. While the LQCD calculations give effective
results at zero or low baryochemical potential, interacting
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hadron gas models can explore baryon-rich environments
where μB is very high. Such treatment will give us exciting
insights into the systems that are formed in the hadronic
phase of the evolution at the CERN Large Hadron Collider
(LHC), BNL Relativistic Heavy Ion Collider (RHIC), FAIR,
and NICA. Although at a low-temperature regime (T ≈ 100–
150), the hadron resonance gas (HRG) model can explain the
lattice QCD data very well, the HRG model predictions at
high temperatures deviate from that of the lattice QCD. This
can be attributed to the statement that hadrons quickly melt
after temperature T ≈ 160 MeV. However, recent works have
made some substantial efforts to show that this conclusion
is very premature because the van der Waals interaction can
play an essential role in determining the thermodynamics of
the hadron gas at high temperatures [23]. In the ideal HRG
model, where there is no interaction involved, estimations of
the higher-order charge fluctuations substantially deviate from
that of the LQCD estimations [24]. Once we include interac-
tions into the ideal HRG model, the model becomes sensitive
to the higher-order charge fluctuations, and at zero bary-
ochemical potential, it gives results that match with LQCD
results to a reasonable extent.

This work studies a hadron gas subjected to van der Waals
(VDW) interactions, both attractive and repulsive, and esti-
mates various transport coefficients by solving the Boltzmann
transport equation using a relaxation time approximation.
We take the (anti)baryon-(anti)baryon and meson-meson in-
teractions into account, while the meson-(anti)baryon and
baryon-antibaryon interactions are neglected for the sake of
simplicity. We present a few results showing the behavior
of conductivities and diffusivities under the change in both
temperature and baryon density. The paper is organized as
follows. In Sec. II, a detailed formulation of electrical and
thermal conductivity in relaxation time approximation for a
van der Waals hadron resonance gas is given. Section III
discusses the obtained results, and finally, all the results are
summarized in Sec. IV.

II. FORMULATION

A. van der Waals HRG model

Under the ideal HRG model, the hadrons are considered
noninteracting point particles. However, nucleon-nucleon
scattering experiments suggest the existence of finite van der
Waals (VDW) interactions. Taking this into consideration, the
van der Waals HRG (VDWHRG) model was developed to
take both attractive and repulsive hadronic interactions.

The partition function for ith particle species in a grand
canonical ensemble (GCE) of ideal HRG can be written
as [25]

ln Zid
i = ±V gi

2π2

∫ ∞

0
p2d p ln{1 ± exp[−(Ei − μi )/T ]}. (1)

Here, gi and Ei =
√

p2 + m2
i are defined as the degeneracy

and energy of the ith hadron, respectively. The ± sign cor-
respond to fermions and bosons, respectively. μi denotes the

corresponding chemical potential, which is given by

μi = BiμB + SiμS + QiμQ, (2)

where baryon chemical potential, strangeness chemical po-
tential, and charge chemical potential are given by μB, μS ,
and μQ, respectively. Bi, Si, and Qi denote the baryon number,
strangeness, and electric charge of the ith hadron. Pressure Pi,
energy density εi, number density ni, and entropy density si

can now be obtained from the partition function as

Pid
i (T, μi ) = ± T gi

2π2

∫ ∞

0
p2d p ln{1 ± exp[−(Ei − μi )/T ]},

(3)

εid
i (T, μi ) = gi

2π2

∫ ∞

0

Ei p2d p

exp[(Ei − μi )/T ] ± 1
, (4)

nid
i (T, μi ) = gi

2π2

∫ ∞

0

p2d p

exp[(Ei − μi )/T ] ± 1
, (5)

sid
i (T, μi ) = ± gi

2π2

∫ ∞

0
p2d p

[
ln{1 ± exp[−(Ei − μi )/T ]}

± (Ei − μi )/T

exp[(Ei − μi )/T ] ± 1

]
. (6)

In a canonical ensemble representation, the VDW equa-
tion can be written as [26,27](

P +
(

N

V

)2

a

)(
V − Nb

) = NT, (7)

where a and b (both positive) are the usual VDW parameters
describing the attractive and repulsive interactions, respec-
tively. Pressure, volume, temperature, and number of particles
in the system are denoted by P, V , T , and N , respectively.

In terms of number density, n ≡ N/V, the above equa-
tion can be simplified as

P(T, n) = nT

1 − bn
− an2. (8)

The correction due to repulsive interactions is included in the
first term of Eq. (8) by replacing the total volume V with
the effective volume available to particles using the proper
volume parameter b = 16πr3/3, r being the particle hardcore
radius. The second term takes care of attractive interactions
between particles.

The VDW equation of state in GCE can then be written as
[26,28,29]

P(T, μ) = Pid (T, μ∗) − an2(T, μ), (9)

where the n(T, μ) is the particle number density of the VDW
hadron gas and is given by

n(T, μ) =
∑

i nid
i (T, μ∗)

1 + b
∑

i nid
i (T, μ∗)

. (10)

Here, i runs over all hadrons in the interacting medium and μ∗
is the modified chemical potential given by

μ∗ = μ − bP(T, μ) − abn2(T, μ) + 2an(T, μ). (11)
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Other thermodynamical variables like entropy density s(T, μ)
and energy density ε(T, μ) can now be obtained as

s(T, μ) = sid (T, μ∗)

1 + bnid (T, μ∗)
, (12)

ε(T, μ) =
∑

i ε
id
i (T, μ∗)

1 + b
∑

i nid
i (T, μ∗)

− an2(T, μ). (13)

The VDWHRG model, in its initial formalism, includes
interactions only between all pairs of baryons or all pairs of
antibaryons [23,26,28,29]. The interaction between baryon-
antibaryon pairs was neglected as the short-range interactions
between them are believed to be dominated by annihilation
processes [23,25]. Meson-meson or meson-(anti)baryon inter-
actions are neglected as the inclusion of mesonic interactions
leads to a suppression of thermodynamical quantities in the
crossover region at μB = 0.0 GeV in comparison with LQCD
data [23]. However, a formalism including meson-meson in-
teractions was developed by choosing the VDW parameters
which best fit the LQCD data [30] by considering a hardcore
radius rM for mesons. Hence the total pressure in the VD-
WHRG model is modified as [23,26,28–30]

P(T, μ) = PM (T, μ) + PB(T, μ) + PB̄(T, μ), (14)

where the PM (T, μ), PB(B̄)(T, μ) are the contributions to pres-
sure from mesons and (anti)baryons, respectively, and are
given by

PM (T, μ) =
∑
i∈M

Pid
i (T, μ∗M ), (15)

PB(T, μ) =
∑
i∈B

Pid
i (T, μ∗B) − an2

B(T, μ), (16)

PB̄(T, μ) =
∑
i∈B̄

Pid
i (T, μ∗B̄) − an2

B̄(T, μ). (17)

Here, M, B, and B̄ represent mesons, baryons, and an-
tibaryons, respectively. μ∗M is the modified chemical potential
of mesons because of the excluded volume correction and
μ∗B and μ∗B̄ are the modified chemical potentials of baryons
and antibaryons due to VDW interactions [30]. Considering
the simple case of vanishing electric charge and strangeness
chemical potentials [31], μQ = μS = 0, the modified chem-
ical potential for mesons and (anti)baryons can be obtained
from Eqs. (2) and (11) as

μ∗M = −bPM (T, μ), (18)

μ∗B(B̄) = μB(B̄) − bPB(B̄)(T, μ) − abn2
B(B̄) + 2anB(B̄), (19)

where nM , nB, and nB̄ are the modified number densities of
mesons, baryons, and antibaryons, respectively, which are
given by

nM (T, μ) =
∑

i∈M nid
i (T, μ∗M )

1 + b
∑

i∈M nid
i (T, μ∗M )

, (20)

nB(B̄)(T, μ) =
∑

i∈B(B̄) nid
i (T, μ∗B(B̄) )

1 + b
∑

i∈B(B̄) nid
i (T, μ∗B(B̄) )

. (21)

The van der Waals parameters can be obtained by repro-
ducing the ground state of the nuclear matter [28] or one

can also fit the results for different thermodynamic quantities
obtained in lattice QCD and obtain the parameters “a′′ and
“b′′ [26,30]. This is interpreted as a VDW-like interaction that
mimics the short-ranged residual nuclear force. The parame-
ters in the model are now chosen as a = 0.926 GeV fm3 and
b = (16/3)πr3, where the hardcore radius r is replaced by
rM = 0.2 fm and rB,(B̄) = 0.62 fm, respectively, for mesons
and (anti)baryons [30]. It is also to be noted that although
the van der Waals interaction is used in Gibbsian equilibrium,
we are using the Boltzmann theory. Such an approach can
be justified as both of these coincide for a large number of
participants in the system under certain conditions [32], i.e.,
provided that the system is in agreement with the Khinchin
condition, which describes a phase function having a suffi-
ciently small dispersion of the macrovariable for a system
with a large number of constituents. The Boltzmann and Gibb-
sian equilibrium values agree if (i) the macrovariable is a sum
of the observable in the constituent space, and (ii) the variable
in the constituent space corresponds to a partition with cells
of equal probability. Assuming we are within these limits, we
may apply the Khinchin condition to our case. For example,
when we are calculating the total energy, it is actually the sum
of the energies of all hadrons, which are equally probable in
the given phase space, which is homogeneous in nature.

Let us now briefly introduce the Boltzmann transport
equation in relaxation time approximation in order to esti-
mate the conductivities and diffusivities of the system under
consideration.

B. Electrical and thermal conductivity
from Boltzmann transport equation

To estimate the transport coefficients of a hadron gas, we
take advantage of the Boltzmann transport equation (BTE)
which is given as [33,34]

pμ∂μ fi(x, p) + qiF
νρ pρ

∂

∂ pν
fi(x, p) = Ci[ fi]. (22)

Here, the F νρ is the electromagnetic field strength tensor and
qi is the charge of ith hadronic species. Ci[ fi] is the collision
integral that gives the rate of change of the nonequilibrium
distribution function, fi, due to collisions. At the beginning,
the system will be away from equilibrium and with subsequent
collisions between the constituent hadrons, it will attain local
equilibrium after a certain relaxation time. The collision in-
tegral within the relaxation time approximation (RTA) can be
given as

Ci[ fi] 	 − pμvμ

τi

(
fi − f 0

i

) = − pμvμ

τi
δ fi. (23)

Here, τi denotes the system relaxation time, which is of the
order of collision time, vμ is the four velocity, and f 0

i is the
equilibrium distribution function, which is defined as

f 0
i = 1

exp
(Ei−μ

T

) ± 1
, (24)

where Ei =
√

p2 + m2 is the free energy of the ith hadronic
species. When the small departure of the system from equilib-
rium is assumed to be space-time translational invariant, the
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first term in Eq. (22) simply vanishes. Assuming only a time
directional four-velocity, i.e., in the local rest frame, the fluid
four-velocity is of the form vμ = (1, 0), so that pμvμ = p0.
Then considering a constant electric field, Eq. (22) can be
written as

qi

(
p0E

∂ f 0
i

∂p
+ E · p

∂ f 0
i

∂ p0

)
= − p0

τi
δ fi. (25)

In the Boltzmann approximation, this can be solved to give

δ fi = qiτi

T

E · p
p0

f 0
i . (26)

Electrical conductivity (σel) quantifies the response of a
system to an applied electric field:

jel = σelE, (27)

where jel is the current density and E is the applied electric
field. The electric four current jμel is defined as

jμel =
∑

i

qigi

∫
d3 p

(2π )3Ei
pμ fi(x, p), (28)

where qi and fi(x, p) are the charge and the distribution
function of the ith hadron. For a small perturbation from
equilibrium, the four currents can be approximated as

jμel = (
jμ0

)
el + � jμel, (29)

where

� jμel =
∑

i

qigi

∫
d3 p

(2π )3Ei
pμδ fi(x, p). (30)

Substituting the value of δ fi from Eq. (26) into the above
equation and hence using the definition of electrical conduc-
tivity we get [12]

σel = 1

3T

∑
i

giτiq
2
i

∫
d3 p

(2π )3

p2

E2
i

× f 0
i , (31)

where qi and τi are the electronic charge and average relax-
ation time of th hadronic species and f 0

i is the equilibrium
distribution function given by Eq. (24).

The relaxation time given above is averaged over all parti-
cles and is given by

τ̃−1
i =

∑
j

n j〈σi jvi j〉. (32)

Here, n j is the number density of jth hadronic species. The
thermal average of total cross-section times relative velocity,
i.e., 〈σi jvi j〉 can be calculated as [35–37]

〈σi jvi j〉 = σi j
∫

d3 pid3 p jvi j f 0
i f 0

j∫
d3 pid3 p j f 0

i f 0
j

, (33)

where we have assumed σi j = π (ri + r j )2 with r being the
corresponding mesonic or baryonic (antibaryonic) hard core
radius. For the same hadronic species, it is reduced to σ =
4πr2. The general expression for a scattering between two
different particle species [i(pi ) + j(p j ) −→ i(pk ) + j(pl )] can

be given as [35]

〈σi jvi j〉 = σi j

8T m2
i m2

j K2
(mi

T

)
K2

(mj

T

) ∫ ∞

(mi+mj )2

× ds
s − (mi − mj )2

√
s

[s − (mi + mj )
2]K1

(√
s

T

)
.

(34)

s = (pi + p j )2 denotes the usual Mandelstam variable, mi’s
the particle masses and Kn’s are modified Bessel functions
of order n. Knowing the thermal averaged cross section, we
calculate the relaxation time using Eq. (34).

Another transport coefficient, thermal conductivity (κ), ex-
presses the ability of an interacting system to conduct heat.
In the absence of any external field the Boltzmann transport
equation can be written as [12,34]

pμ∂μ fi(x, p) = − pμvμ

τi
δ fi. (35)

The energy momentum tensor and the baryon four current
are, respectively, given as

T μν =
∑

i

gi

∫
d3 p

(2π )3

pμ pν

Ei
fi(x, p), (36)

jμB =
∑

i

giti

∫
d3 p

(2π )3

pμ

Ei
fi(x, p), (37)

where the gi denotes the degeneracy and ti is the bary-
onic charge of ith hadronic species. Again for a small
perturbation, when the system is slightly away from the equi-
librium distribution function, The energy momentum tensor
becomes

�T μν =
∑

i

gi

∫
d3 p

(2π )3

pμ pν

Ei
δ fi(x, p), (38)

and under RTA, the δ fi can be calculated from the collision
term of BTE using Eq. (35). Hence the quantity �T μν be-
comes

�T μν = −
∑

i

gi

∫
d3 p

(2π )3

pμ pν

Ei

τi

p.v
pρ∂ρ fi(x, p). (39)

Similarly, the change in four current, � jμB can be written as

� jμB = −
∑

i

giti

∫
d3 p

(2π )3

pμ

Ei

τi

p.v
pρ∂ρ fi(x, p). (40)

The derivative ∂μ can be written in terms of its components
parallel and orthogonal to vμ as [34]

∂μ = vμD + ∇μ, (41)

where the local four-velocity is again considered as vμ =
(1, 0):

D = vμ∂μ = (∂t , 0), (42)

∇μ = ∂μ − vμD = (0, ∂i ). (43)
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Then one can use the conservation equations ∂μT μν =
0, ∂μ jμB = 0 to have the following form:

(ε + P)Dvμ − ∇μP = 0, (44)

Dnnet + nnet∇μvμ = 0. (45)

Using these two relations above, we can write the �T μν and
� jμB as

�T μν =
∑

i

gi

∫
d3 p

(2π )3Ei

pμ pν

pv

1

T
τi f 0

i

×
[

pv

(
∂P

∂ε

)
nnet

∇αvα + pαXα + pα pβ

pv
∇αvβ

+
(

∂P

∂nnet

)
ε

∇αvα − ε + P

nnet

pα

pv
Xα

]
(46)

and

� jμB =
∑

i

gi

∫
d3 p

(2π )3Ei

pμ

pv

1

T
τi f 0

i

×
[

pv

(
∂P

∂ε

)
nnet

∇αvα + pαXα + pα pβ

pv
∇αvβ

+
(

∂P

∂nnet

)
ε

∇αvα − ε + P

nnet

pα

pv
Xα

]
, (47)

where

Xα = ∇αP

ε + P
− ∇αT

T
, (48)

and ε and nnet are the energy density and net baryon number
density. Within an Eckart condition one can define vi as [34]

ji
B = nnetv

i + � ji
B = 0,

so that the energy flux component T 0i becomes

T 0i = (ε + P)vi + �T 0i

= �T 0i − ε + P

nnet
� ji

B ≡ I i, (49)

the I i being the heat current, the �T 0i and the � ji
B are

given by

�T 0i =
∑

i

gi

∫
d3 p

(2π )3

p2

3T
τi f 0

i

(
1 − ε + P

nnetEi

)
Xi (50)

and

� ji
B =

∑
i

tigi

∫
d3 p

(2π )3

p2

3T Ei
τi f 0

i

((
1 − ε + P

nnetEi

)
Xi. (51)

Using the Eckart condition, thermal conductivity is defined as

I i = −κ[∂iT − T ∂iP/(ε + P)]. (52)

One can now obtain the expression for thermal conductivity
using Eqs. (50) and (51) as

κ = 1

3T 2

∑
i

giτi

∫
d3 p

(2π )3

p2

E2
i

(
Ei − tiω

nnet

)2

× f 0
i , (53)

where τi is the relaxation time defined in Eq. (33). The bary-
onic charge of ith hadronic species is denoted by ti whereas
ω = εi + Pi gives the enthalpy of the ith hadronic species and
nnet is the net baryon density in the system.

Equations (31) and (53) give the expression for the
electrical and thermal conductivity, respectively, where the
quantities like net baryon density, nnet, enthalpy, ω = (ε + P),
relaxation time, τ , etc., are modified from ideal HRG on
account of VDW interaction. The ratio of these two transport
properties can now be used to study the Wiedemann-Franz law
in a hadronic medium.

C. Diffusivity

In simple words, diffusion is a process of net movement
of matter or energy due to the presence of a concentration
gradient and it flows from a higher concentration to the lower
one. Diffusivity is then defined as the rate of this diffusion.
The charge diffusion coefficient which represents the rate
of movement of charge in the direction of the concentration
gradient is related to the electrical conductivity through the
relation [5]

Del = σel

χQ
, (54)

where the χQ is the electrical charge susceptibility quantifying
the fluctuations of electric charges. Conserved charge suscep-
tibilities can be calculated by the second (or higher) order
derivative of the partition function or the equivalent pressure
with respect to a chemical potential corresponding to the con-
cerned conserved charge [26]. Electrical charge susceptibility
is given by

χQ = ∂2(P(T, μ)/T 4)

∂ (μQ/T )2
. (55)

Thermal diffusivity is defined as thermal conductivity di-
vided by specific heat capacity and density. Again the specific
heat capacity can be written in terms of the derivative of
entropy with temperature and hence the thermal diffusivity is
given by [38]

DT h = κ

/(
T

V

∂S

∂T

)
. (56)

III. RESULTS AND DISCUSSION

We have considered the VDWHRG model, which includes
the excluded volume effect of mesons along with both attrac-
tive and repulsive interactions between pairs of (anti)baryons.
All identified hadrons and resonances up to a mass cut-
off of 2.25 GeV [41] are included in the calculations. The
main goal of this work is to estimate the conductivities and
corresponding diffusivities (for which we have used the Boltz-
mann transport equation) and study their dependencies on
both temperature and net baryon density. Five different val-
ues of baryon chemical potential are chosen for the analysis;
μB = 0.0 GeV corresponding to LHC energies, μB = 0.025,
0.2 GeV corresponding to RHIC at

√
sNN = 200 GeV and√

sNN = 19.6 GeV, μB = 0.436 and 0.630 GeV corresponding

014910-5
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FIG. 1. (Left) The scaled electrical conductivity as a function of temperature. The solid black line is obtained from CSPM [13] and the grey
band is the result from PHSD [8]. The kinetic theory calculations [39] are represented by green circles. The dotted magenta line is from chiral
perturbation theory results [40], and the dashed blue line shows the result from excluded volume HRG model [12]. (Right) Scaled electrical
conductivity is plotted as a function of temperature for different baryon chemical potentials under both HRG and VDWHRG scenarios.

to RHIC/FAIR at
√

sNN = 7.7 GeV and NICA at
√

sNN = 3
GeV, respectively [42–45].

The left panel of Fig. 1 shows the temperature dependence
of scaled electrical conductivity, σel/T , in the VDWHRG
formalism (solid red line). We observe that electrical conduc-
tivity decreases with increasing temperature. An increase in
temperature increases the number density, decreasing relax-
ation time due to more frequent collisions. The randomness
in the system is thus larger in the high-temperature scenario.
This restricts the charge flow in one particular direction, thus
reducing σel. Similar behavior is observed for other models in
the hadronic phase. We have compared our results with results
from the parton-hadron-string dynamics (PHSD) transport
approach [8], excluded volume HRG (EVHRG) model [12],
kinetic theory [39], chiral perturbation theory (ChPT) [40],
and the color string percolation model (CSPM) [13]. In the
PHSD model, σel decreases with temperature in the hadronic
phase, attaining a minimum around the critical temperature
Tc, again increasing in the partonic phase. It is noteworthy
that there is a smooth transition from our results to the QCD-
inspired CSPM results near the critical temperature limit.

On the right panel of Fig. 1 the variation of scaled electrical
conductivity is shown as a function of temperature for various
μB in both ideal and VDWHRG models. σel/T decreases
monotonically with temperature in both ideal and VDWHRG
cases at low μB with VDWHRG results being higher than
ideal HRG values at high temperatures. For μB = 0.0 GeV,
the number density of both mesons and baryons at low temper-
atures is small, and both models behave similarly. At higher
temperatures, the number density increases rapidly and the
VDW repulsive part becomes more prominent. This reduces
the number of particles per unit volume and in turn, leads to
an increase in relaxation time as compared to the ideal HRG

scenario. Hence, there is a finite increase in the magnitude of
σel/T when a VDW type of interaction is involved. As μB

gradually increases baryon number density increases and the
deviation from the ideal scenario shifts towards lower tem-
peratures. In the regime of low temperature and high μB, the
attractive parameter dominates over the repulsive parameter;
thus, the number density becomes higher than the ideal case.
As temperature increases, this situation is reversed, resulting
in a larger σel/T . Once the number density saturates at a
higher temperature and particles gain higher energies, this
results in a gradual increase in σel/T with an increase in
temperature.

The left panel of Fig. 2 shows the temperature dependence
of scaled thermal conductivity in the VDWHRG model at
μB = 0.025 GeV (solid red line). The κ/T 2 also shows a
similar kind of temperature dependency as shown by the elec-
trical conductivity in Fig. 1. On the increasing temperature,
the number density in the system increases, which in turn
increases the frequency of collisions. These random collisions
restrict the flow of heat energy. The results obtained are
compared with the three quark (u, d, s) Nambu–Jona-Lasino
(NJL) model [19], EVHRG model [12], ChPT model [40],
CSPM [13], and pion gas in relaxation time approximation
(RTA) [46], all of which have a general decreasing trend
of κ/T 2 with an increase in temperature. The difference in
magnitude for various models may be because of the fact that
in the NJL model, degrees of freedom are calculated at the
partonic level, while for the EVHRG model, the difference
is mainly due to the particle radii chosen. The low values
obtained by Mitra et al. [46] for the pion gas signifies the
importance of contribution from other hadrons. Once again,
we note that the QCD-inspired CSPM model agrees well with
our results near the possible critical temperature.
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FIG. 2. Scaled thermal conductivity as a function of temperature. (Left) The VDW HRG model at μB = 0 GeV is compared to results
obtained from different models. The black solid line shows the results obtained in CSPM [13]. The blue dashed line gives the calculations
from NJL [19] model. The dotted magenta line is from chiral perturbation theory [40] and the dashed blue line shows the result from excluded
volume HRG model [12]. The green dashed line is for pion gas [46]. (Right) Scaled thermal conductivity is shown as a function of temperature
for different baryon chemical potentials under both HRG and VDWHRG scenarios.

Figure 2 (right panel) also shows the μB dependence of
κ/T 2. The relaxation time, τ decreases with increasing num-
ber density and thus hinders the transport of thermal energy
through the medium. As stated in the case of electrical con-
ductivity, the VDWHRG thermal conductivity deviates from
ideal HRG towards higher temperature as a result of lower
number density due to repulsive interactions. The overall
thermal conductivity, however, decreases with an increase in
temperature. At a particular μB, because of the van der Waals
interaction, the increase in both enthalpy and net baryon den-
sity with temperature is reduced as compared to that in the
ideal case. However the decrease in net baryon density (as
compared to the ideal case) is much more pronounced and
therefore at high temperatures, thermal conductivity increases
resulting in the minima observed. As the baryon chemical
potential increases further, this behavior is seen even at lower
temperatures and the minima get shifted accordingly.

The response of an electrically charged interacting medium
to an external electric field is measured by electrical conduc-
tivity. On the other hand, thermal conductivity gives a measure
of the transport of thermal energy on account of a temperature
gradient. According to the Wiedemann-Franz law, the ratio
of thermal to electrical conductivity is proportional to tem-
perature with the proportionality constant being known as the
Lorenz number. This law is observed to be valid for metals
where the Lorenz number depends on the nature of the metal.
On the left panel of Fig. 3, our results at baryon chemical
potential, μB = 0.025 GeV are compared with the results
from CSPM [13] and with the calculations based on an ideal
EOS framework with a fixed coupling constant (αs = 0.3)
[17]. Both calculations do not show any dependence of L on
temperature. Our analysis shows that at the low-temperature
region, the Lorenz number is nearly constant and it increases
almost linearly after a temperature of T ∼ 110 MeV, indicat-
ing that the Wiedemann-Franz law is violated in a hadron gas

at higher temperatures. This also indicates that both electrical
and thermal conductivities are proportional at low temper-
atures. However, with an increase in temperature, thermal
conductivity appears to be more prominent in comparison to
electrical conductivity. When the results of VDWHRG with
hadronic degrees of freedom are combined with that of CSPM
results based on the assumption of color degrees of freedom,
one observes a change in the behavior of the Lorentz number
around T ≈ 170 MeV. This may hint at a quark-hadron phase
transition around T ≈ 170 MeV. This also goes in line with
the LQCD predicted value of a critical temperature for the
deconfinement transition [47].

The right panel of Fig. 3 shows the μB dependence of
the Lorenz number. As μB increases, L is seen to increase.
With the increase in baryon chemical potential, there is a
decrease in both electrical and thermal conductivity. However,
the decrease in electrical conductivity is more prominent than
that of thermal conductivity. Therefore, with increasing μB,
the Lorenz number also increases. Again, at high μB and
high temperature, there is an enhancement in the thermal
conductivity, which is reflected in the results of the Lorenz
number in the same Fig. 3. At high μB, the Lorenz number
decreases at high temperature after attaining a maximum at
low-temperature region. Overall, the Wiedemann-Franz law is
violated for all cases of μB. We also observe the formation of
a maximum in the temperature dependence of L which shifts
towards lower temperature at higher μB. This behavior may be
the signature of a phase transition which might be seen at even
lower temperatures if μB is further increased. It is, however, to
be noted that if such a phase transition occurs, then it would
be a liquid-gas phase transition as we have chosen a model
based on the van der Waals interactions.

Figure 4 shows the temperature dependence on thermal and
charge diffusivities at various μB. On the left panel, the dimen-
sionless quantity Del/T is plotted as a function of temperature
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FIG. 3. (Left) The Lorenz number as a function of temperature. The black solid line shows the results from CSPM [13]. The blue dashed
line represents the result of the ideal EOS for a fixed coupling constant [17]. (Right panel) Lorenz number as a function of temperature for
different baryon chemical potential.

for different values of μB. It is observed that Del/T decreases
with increasing temperature. When we talk of diffusivity, we
essentially study the rate of diffusion of a quantity in the di-
rection of a concentration gradient. One can naively state that
a low diffusivity at high temperatures essentially means the
system is denser as compared to the low-temperature regime.
This behavior is similar to the trend observed in the case of
electrical conductivity. Moreover, results from LQCD show
minima for electrical diffusivity near the critical temperature,
and the trend again increases with an increase in temperature
[5]. This minimum appears because of the phase transition
from the hadronic to the QGP phase.

The same behavior is seen for thermal diffusivity plotted
as a function of temperature in the right panel of Fig. 4.
The dimensionless quantity T DT h decreases with tempera-

ture. At high temperatures, the increase in number density and
collision makes the medium less capable of transferring the
thermal energy, and hence the diffusion process slows down
at high temperatures. Thus more heat is absorbed than it is
transported. Both the diffusivities can be helpful in locating
the phase transition because of their minima at the critical
temperature.

IV. SUMMARY

In this work, we have estimated the electrical and ther-
mal conductivities along with their respective diffusivities.
We have studied these quantities as functions of temper-
ature and baryochemical potential. The effect of the van
der Waals interaction is also studied on the electrical and
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FIG. 4. The left and right panels show the dimensionless electrical diffusivity and dimensionless thermal diffusivity as functions of
temperature for certain baryochemical potentials, respectively.
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thermal conductivities. The VDW interaction seems to have
a dominant impact on the transport properties at high baryon
densities. The diffusivities show universal decreasing trends
for lower baryochemical potential. Along with this, we have
also studied the Weidemann-Franz law in the VDWHRG
model. The hadron gas under VDW interactions seems to
be violating the Weidemann-Franz law at a higher temper-
ature regime. It should be noted that for a partonic system
[13,17] the Weidemann-Franz law is respected like a sys-
tem of electrons in a metal. Whereas, when one considers
a hadronic system with or without interaction taking a ther-
malized Boltzmann distribution or assuming the system is a

little away from equilibrium [48] (one uses Tsallis nonex-
tensive statistics), the Weidemann-Franz law is seen to be
violated.
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