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Two-particle correlations are a widely used tool for studying relativistic nuclear collisions. Multiplicity
fluctuations comparing charge and particle species have been studied as a possible signal for quark-gluon
plasma (QGP) and the QCD critical point. These fluctuation studies all make use of particle variances which
can be shown to originate with a two-particle correlation function. Momentum correlations and covariances of
momentum fluctuations, which arise from the same correlation function, have also been used to extract properties
of the nuclear collision medium such as the shear viscosity to entropy density ratio, the shear relaxation time,
and temperature fluctuations. Searches for critical fluctuations are also done with these correlation observables.
We derive a mathematical relationship between several number and momentum density correlation observables
and outline the different physics mechanisms often ascribed to each. This set of observables also contains
a new multiplicity-momentum correlation. Our mathematical relation can be used as a validation tool for
measurements, as a method for interpreting the relative contributions of different physics mechanisms on
correlation observables, and as a test for theoretical and phenomenological models to simultaneously explain
all observables. We compare an independent source model to simulated events from PYTHIA for all observables
in the set.
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I. INTRODUCTION

We present a set of two-particle number density and trans-
verse momentum correlation observables that each separately
test different aspects of relativistic heavy-ion collisions, but
are mathematically connected through a parent correlation
function. Several observables in the set have previously been
measured individually, but are rarely measured simultane-
ously under the same collision system, energy, and acceptance
conditions. One observable, multiplicity-momentum corre-
lations, is new. The mathematical connection between the
observables allows any one to be described as a combina-
tion of the others, signaling the relative contributions of the
physical mechanisms of each. This connection also poses a
challenge for models to address experimental measurements
of all observables simultaneously. In this paper, we outline the
construction and interpretation of the individual observables,
demonstrate their mathematical connection, and compare a
simple independent source model to simulated data.
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Two-particle correlation observables are widely used to
study aspects of relativistic heavy-ion collisions. Multiplic-
ity fluctuations, R, have been linked to centrality or volume
fluctuations and studied as a possible signal for quark-gluon
plasma (QGP) [1–16]. We outline these aspects and the ex-
perimental measurement in Sec. II A. The dependence of R
on volume fluctuations is also informed by its representation
in an independent source mode,l which is discussed in the
Appendix.

Transverse momentum correlations, in the form of a
covariance of two different particles’ traverse momentum
fluctuations away from the global average, 〈δpt1δpt2〉, have
also been examined as a signature of critical fluctuations and
linked to event-by-event temperature fluctuations [17–30]. In
past work, we argue that these correlations result from initial
state correlations modified by radial flow [31]. We also argue
that these correlations can signal the level of thermalization
reached by the collision medium [32–34]. We discuss this
observable in detail in Sec. II C.

We distinguish the net correlation of transverse momentum
fluctuations, 〈δpt1δpt2〉, from a different measure of two-
particle transverse momentum correlations that we label C.
In 〈δpt1δpt2〉, the fluctuation of an individual particle’s trans-
verse momentum away from the global average, δpt = pt −
〈pt 〉, is compared to that of every other particle. C directly
compares two different particles’ transverse momentum. C
was first defined in Ref. [35] and used there to estimate the
shear viscosity to entropy density ratio and shear relaxation
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time [36–44]. In this work, we focus on the mathematical
and observable construction of these correlations and discuss
how the effects of dynamical correlations and the influence
of multiplicity fluctuations can be distinguished (see Secs. II
and II B).

A major component of this work is the definition of a
new two-particle correlation that measures the covariance of
event-by-event multiplicity and total transverse momentum in
excess of random fluctuations,

D = Cov(PT , N ) − 〈pt 〉Var(N )

〈N〉2
. (1)

The first mention of (1) can be found in Ref. [45]. In Sec. II,
we show that D emerges as a moment of the same par-
ent correlation function that produces correlations R, C, and
〈δpt1δpt2〉. More detailed discussion of the construction of D
can be found in Sec. II D.

In Sec. II D we discuss how D will vanish if the only source
of multiplicity-momentum correlations is multiplicity fluc-
tuations. Additionally we show that, in the grand canonical
ensemble, D is also zero in equilibrium. Nonzero values of D
represent correlations born from the particle production mech-
anism that survive to freeze-out, and, similarly to 〈δpt1δpt2〉
[34], could be a sign of incomplete thermalization.

Interestingly, in Sec. III, we find that D is not zero in
PYTHIA/ANGANTYR simulations of proton-proton (pp) and
nucleus-nucleus (AA) collisions. Also, we find D is compa-
rable in magnitude to correlations of transverse momentum
fluctuations, 〈δpt1δpt2〉, which have been well measured at
both the Relativisitic Heavy Ion Collider (RHIC) and the
Large Hadron Collider (LHC). Until this work, we have
previously assumed D is zero, and this is also assumed in
Ref. [37], wherein the ALICE Collaboration measured two-
particle transverse momentum correlations differentially in
relative pseudorapidity and relative azimuthal angle.

The main result of this work is that multiplicity-momentum
correlations, D, net correlations of transverse momentum
fluctuations, 〈δpt1δpt2〉, multiplicity fluctuations, R, and
transverse momentum correlations, C, are mathematically re-
lated by the equation

(1 + R)〈δpt1δpt2〉 − C + 2〈pt 〉D + 〈pt 〉2R = 0. (2)

We derive this result in Sec. II E. When each observable is
measured individually, (2) provides a previously unknown
validation. Additionally, theoretical and phenomenological
models that demonstrate good agreement with one observable
can now use that comparison as a benchmark for simulta-
neously addressing the other observables. Importantly, each
observable potentially represents a different physics effect;
with (2), one observable can be decomposed into the contri-
butions from each different effect.

In Sec. III, we compare an independent source model
(ISM) to simulated data generated with PYTHIA 8.2 [46]
for several collision energies in pp collisions, as well as
in AA collisions using the ANGANTYR model [47]. A de-
viation of experimental measurement from the ISM may
signal novel physics. The Angantyr model for heavy-ion
collisions uses a superposition of the nucleon-nucleon sub-
collision model, similar to the wounded nucleon model, and

allows for fluctuating positions of nucleons in the target and
projectile nuclei. Additionally, multiparton interactions and
fluctuations exist in individual nucleon-nucleon subcollisions.
PYTHIA and ANGANTYR do not include any mechanism for
collective expansion in pp or AA collisions, therefore our cal-
culations from simulated events provide a good comparison
to ISM results. Furthermore, the lack of collective effects
makes the PYTHIA/ANGANTYR results an important baseline
for experimental measurement. Using PYTHIA/ANGANTYR, we
demonstrate the relationship (2), and calculate the first esti-
mate of D, which we find to be nonzero and positive.

II. CORRELATIONS AND FLUCTUATIONS

The construction of two-particle correlation observables
begins by defining the two-particle momentum density

ρ2(p1, p2) = ρ1(p1)ρ1(p2) + r(p1, p2). (3)

Here p1,2 is the three-momentum of particle 1 or 2 in the
pair. Single particle and pair momentum densities, ρ1(p) and
ρ2(p1, p2), are the momentum densities of particles for an
ensemble of events such that

ρ1(p) = dN

d3p
, (4)

ρ2(p1, p2) = dN

d3p1d3p2
(5)

and

〈N〉 =
∫

ρ1(p)d3p, (6)

〈N (N − 1)〉 =
∫∫

ρ2(p1, p2)d3p1d3p2. (7)

The angled brackets represent an average over the events in
the ensemble. For any quantity X , the event average is defined
as 〈X 〉 = N−1

events

∑Nevents
k=1 Xk . Then, 〈N〉 is the average number

of particles per event, and 〈N (N − 1)〉 is the average number
of particle pairs, neglecting autocorrelations.

Equation (3) highlights that particle pairs have two contri-
butions. First, if pairs are formed from independent particles,
i.e., no correlations, then the pair distribution is simply the
multiplication of two single-particle densities ρ1ρ1. Second,
correlated pairs are represented by

r(p1, p2) = ρ2(p1, p2) − ρ1(p1)ρ1(p2). (8)

By construction, correlations vanish in the case of uncorre-
lated particle emission, when only statistical fluctuations are
present.

We focus on four moments of this distribution due to the
complementary relationship provided by (2),

R =
∫∫

r(p1, p2)d3p1d3p2

〈N〉2
, (9)

C =
∫∫

r(p1, p2) pt,1 pt,2 d3p1d3p2

〈N〉2
, (10)

〈δpt1δpt2〉 =
∫∫

r(p1, p2) δpt,1δpt,2 d3p1d3p2

〈N (N − 1)〉 , (11)
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and

D =
∫∫

r(p1, p2) δpt,1 d3p1d3p2

〈N〉2
. (12)

Here

δpt,i = pt,i − 〈pt 〉 (13)

is the fluctuation of the transverse momentum of particle i
from the global average transverse momentum per particle,
〈pt 〉, for a given centrality class.

At this point, we make no assumption about the physi-
cal mechanisms that produce the correlations characterized
by (8), though many possibilities have been identified.
Correlations of particle emission (momentum) angle with
respect to an event plane is commonly called flow and is
characterized by the coefficients vn of a Fourier fit to the par-
ticle azimuthal distribution dN/dφ = ∑

n vn cos(nφ − nψn)
[48–50]. Since the event plane angle ψn is calculated for
each order and is identified with a geometrical shape (n = 2
is elliptical, n = 3 is triangular, etc.), flow correlations are
often called geometrical correlations. Much effort has gone
into identifying so-called “nonflow” correlations that include
Hanbury-Brown–Twiss (HBT)-like femtoscopic correlations
[51,52], resonance decays and final state interactions [53],
momentum conservation [54,55], and jets. In other works,
[31,56,57], we have proposed that particles created in close
spatial proximity develop a momentum correlation due to
transverse expansion. We have argued that this mechanism
accounts for much of the signal of two-particle correla-
tions. Since this effect is only indirectly tied to an event
reaction plane, many would label this effect as a nonflow
effect.

Instead of trying to diagnose the relative contributions from
different correlation mechanisms in one observable, we pro-
pose the collection of observables (9), (10), (11), and (12)
that all originate with (3). Each observable has a different
sensitivity to particle production, initial state correlations,
and dynamical evolution; their mathematical connection, (2),
challenges experiments to measure each in a consistent way
and constrains models to agree with all of the observables si-
multaneously. We comment that any theoretical model with a
well-defined two-particle correlation function should produce
correlation moments (9)–(12) that satisfy (2), since (2) is a
mathematical identity. However, if a model is tuned to address
experimental results for one observable, that tuning can now
be tested by simultaneous comparison to all of (9)–(12). This
highlights the importance of simultaneous experimental mea-
surements of (9)–(12) that satisfy (2).

It is common in modern studies [29,36,37] for experiments
to measure correlation and fluctuation quantities differentially
in relative azimuthal angle �φ = φ1 − φ2 and relative pseu-
dorapidity �η = η1 − η2. It is also common for experiments
to measure pairs that are separated by a gap in pseudorapidity
larger than |�η| ≈ 1.

Measuring observables as a function of �φ allows for the
diagnosis of contributions from anisotropic flow. Projections
of differential measurements of R, C, and 〈δpt1δpt2〉 onto
the �φ axis all show a similar pattern of two peaks, one
at �φ = 0 and one at �φ = π that is characteristic of both

momentum conservation and anisotropic flow. These observ-
ables also show a broader peak at �φ = π in comparison
to the narrower peak at �φ = 0. This observation is often
attributed to the existence of triangular flow.

Pseudorapidity gaps between pairs are used to eliminate
“short-range,” |�η| < 1, correlations such as resonance de-
cays and jets. Separately, in differential measurements, HBT
and track pileup effects are often removed by eliminating
the �η = 0 bin. Projections onto the �η axis of the dif-
ferential measurements of R, C, and 〈δpt1δpt2〉 all show a
“long-range,” |�η| > 1–2, correlation in central collisions.
This long-range “near-side” (�φ = 0) correlation appears to
extend beyond detector rapidity acceptances. Thus, the near-
side peak is often described as a peak sitting on a long
and flat pedestal, commonly called “the ridge.” Experimental
measurements often fit the ridge with a Fourier series like∑

n an cos(n�φ) that is flat in �η and then relate the an coef-
ficients to the vn anisotropic flow harmonics [28,29,37,41,58].
The peak sitting on the pedestal represents correlations in
excess of the ridge (in excess of flow correlations) and still
extends to long range in �η (and possibly beyond the experi-
mental acceptance) in central collisions. The broadness in �η

of this excess decreases as collisions become more periph-
eral. Peripheral peaks have widths between 0.5 and 1, which
are consistent with jet and resonance decay correlations. The
increasing �η width of the near side peak from peripheral
to central collisions indicates that a correlation mechanism
that is not attributed to flow harmonics is at work. See, for
example, Ref. [42].

If R, C, and 〈δpt1δpt2〉 are not measured differen-
tially in (�η,�φ), then all flow effects are eliminated. To
understand this, imagine the quantity R (�φ) has been mea-
sured and is well described by a Fourier series with terms
an cos(n�φ). To find the integrated quantity, one calculates
R = ∫ 2π

0 R(�φ)d�φ. When calculating the equivalent inte-
gral of the Fourier series, the integral of all terms cos(n�φ)
over a symmetric interval vanishes term by term, indicating
R = 0 if correlations are only described by flow. Therefore, if
the integrated quantity R is not zero, it is not fully explained
by Fourier flow coefficients. Although these remaining cor-
relations might be characterized as nonflow, they are still
interesting and potentially provide useful information about
the collision dynamics or initial state. In particular, we high-
light the near-side correlations in excess of flow that are long
range in nature. Additionally, if jet effects dominate the in-
tegrated observables (9)–(12), then analyzing them together
may provide clues for identifying classes of events based on
jet properties. Alternatively, the centrality and system energy
dependence of these correlations can indicate the level of
thermalization of events, which we leave to future work.

Correlations (8) also embody the event-by-event fluctua-
tions in produced particles. Notice that integrating (8) over all
momenta for both particles results in 〈N (N − 1)〉 − 〈N〉2 =
Var(N ) − 〈N〉. Here the variance of particles, Var(N ) =
〈N2〉 − 〈N〉2, characterizes the fluctuation in produced parti-
cles. If each event is independent of all other events, then
this variance should follow Poisson statistics—where the vari-
ance is equal to the mean—resulting in a vanishing integral
of (8).
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Non-Poissionian fluctuations indicate that a physical
mechanism—in initial state production, the dynamical ex-
pansion, or final state interactions—generates fluctuations in
a correlated way in all of the events of the ensemble; in
this case r(p1, p2) �= 0. Consequentially, since these fluctua-
tions are tied to physical processes, they are not completely
random and can be identified with correlation observables.
Non-Poissionian behavior is seen in experiments as well as
simulations, and will be discussed in the next sections.

A. Multiplicity fluctuations

In this section we outline aspects of the multiplicity fluctu-
ation observable (9) that is measurable as [16]

R = 〈N (N − 1)〉 − 〈N〉2

〈N〉2
= Var(N ) − 〈N〉

〈N〉2
. (14)

From (9) we see that R is a direct integral of the correlation
function (8) and therefore sets an overall scale for all two-
particle correlations. There are three important features of R
that influence the construction and interpretation of all observ-
ables in this work: The first is the choice of normalization of
R by 〈N〉−2. The second is the non-Poissionian multiplicity
distribution that makes R nonzero. This distribution has been
measured as a negative-binomial distribution [10]. Thee third
is the expected 〈N〉−1 behavior with collision centrality.

In Ref. [16], Pruneau et al. show that, for inclusive distribu-
tions, the observable R is robust against detection efficiency
effects and acceptance limitations. To show this, we start by
constructing (14) from the single particle distribution, ρ1, and
pair distribution, ρ2, using (6) and (7) and follow arguments
from both Refs. [16,31]. If (6) and (7) are given arbitrary
normalizations a and b such that we have ρ2 → aρ2 and
ρ1ρ1 → bρ1ρ1, then (14) becomes

Racc = a

b
R + a − b

b
. (15)

If a �= b, then R will receive a scale and offset that could be
detector and collision system and energy dependent. However,
if a and b are equal, such as the case for detector tracking
efficiency, then R = Rmeasured. This motivates the choice to
normalize R by 〈N〉−2. For this reason, C was first constructed
with the same normalization [35], and consequentially, in this
work, we construct D in the same way. However, 〈δpt1δpt2〉
was normalized to the number of particle pairs 〈N (N − 1)〉,
and this difference is the source of the (1 + R) factor in (2).
Since (1 + R) = 〈N (N − 1)〉/〈N〉2, it changes the normaliza-
tion of 〈δpt1δpt2〉 to match the other observables.

In the search for critical fluctuations, the PHENIX Col-
laboration measured the scaled variance of the charged
multiplicity,

ω = 〈N2〉 − 〈N〉2

〈N〉 = σ 2

μ
. (16)

where 〈N〉 = μ is the average charged particle multiplicity
and σ 2 = 〈N2〉 − 〈N〉2 is the variance [10]. The multiplic-
ity distribution of heavy ion collisions follows a negative
binomial distribution (NBD) with mean μ and scaled vari-
ance ω = 1 + μ/kNBD, where kNBD is a parameter. The NBD

parameter is related to (14) by

R = σ 2 − μ

μ2
= ω − 1

μ
= 1

kNBD
. (17)

Importantly, subsets of a NBD, randomly sampled with con-
stant probability, will have the same kNBD.

Using the properties of the NBD, we now show that it is ac-
ceptable to measure R using only a subset of the multiplicity;
this guides our methods in Sec. III. Let μ and ω be the mean
multiplicity and scaled variance from an unlimited accep-
tance. Also let μacc and ωacc be the mean and scaled variance
from a fractional acceptance. By definition, the scaled vari-
ance for fractional acceptance is then ωacc = 1 + μacc/kNBD.
Using R = k−1

NBD and the relation (17) for μacc and ωacc, we
find R = (ωacc−1)/μacc = Racc, since kNBD is identical for
the full acceptance and fractional acceptance regions. This
result is consistent with (15) for a = b, and makes R an ideal
measure of the strength of correlations.

The variance of a NBD is proportional to the mean, but,
importantly, always larger than the mean. In the case where
kNBD → ∞, the NBD approaches the Poisson distribution
where the variance equals the mean. Examining the rightmost
definition of R in (14), notice that for the case of independent
particle production the distribution would be Poisson and
then R = 0. In the case where the variance of particles is
proportional to the mean, then both terms in the numerator
have a scale of 〈N〉, and R will follow a 1/〈N〉 behavior.
For this reason we expect that all observables R, C, D, and
(1 + R)〈δpt1δpt2〉 will all follow 1/〈N〉, a centrality and
collision energy dependent quantity. Furthermore, in the Ap-
pendix, we show that in an independent source model all of
the observables trend like 〈K〉−1, where K is the number of
sources in an event. This 1/〈N〉 or 1/〈K〉 behavior is a defining
characteristic of these correlations and therefore we look for
deviations from this trend to signal novel physics. To have a
positive R, the multiplicity variance must be larger than 〈N〉.
To deviate from a 1/〈N〉 behavior, the multiplicity variance
must also change faster or slower than 〈N〉 with increasing
centrality.

When investigating the centrality dependence of multiplic-
ity fluctuations (14), biases are introduced if the same particles
are used to measure correlations and to measure centrality.
This will be discussed in detail in Sec. III; however, it is
informative to briefly discuss one aspect here. Imagine (14)
was calculated from an ensemble of events where each event
has exactly the same number of particles. Then, 〈N2〉 = 〈N〉2

and

R → − 1

〈N〉 . (18)

This shows a limiting behavior that is a response to mul-
tiplicity binning. To avoid this effect, the multiplicity used
to measure centrality must be different from the multiplic-
ity used to calculate (14). This is acceptable because R is
robust against acceptance effects, as discussed earlier in this
section.
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B. Transverse momentum correlations

Two-particle transverse momentum correlations, (10), are
measurable as

C =
〈∑Nk

i=1

∑Nk
j �=i pt,i pt, j

〉 − 〈PT 〉2

〈N〉2
, (19)

where

〈PT 〉 =
〈

Nk∑
i=1

pt,i

〉
=

∫
ρ1(p) pt d3p (20)

is the average total transverse momentum per event.
Momentum correlations (19) are sensitive to both number

density fluctuations as well as transverse momentum fluctua-
tions; both are necessary to address the diffusion of transverse
momentum fluctuations due to shear viscosity. Reference [35]
predicts that the simultaneous diffusion and dampening of ini-
tial state momentum fluctuations due to shear viscous forces
results in the broadening of correlations C in relative rapid-
ity over the collision lifetime. Since central collisions have
longer lifetimes than peripheral ones, a centrality dependent
measurement of the relative rapidity width of C should show a
monotonic increase. This behavior was first seen by the STAR
Collaboration when they measured (19) differentially in rela-
tive pseudorapidity and relative azimuthal angle C (�η,�φ)
[36].

We can see how (19) incorporates number density fluctu-
ations by writing it in terms of the correlation function (8) to
find (10). Comparing (10) to (9), notice that all multiplicity
fluctuations in (19) are the same as those in (14), except
they are weighted by transverse momentum. This is important
because every particle carries some momentum, and therefore
correlations and diffusion of particles necessarily implies cor-
relations and diffusion of momentum.

C probes the transfer of transverse momentum correlations
between two points in the QGP from small rapidity separation
to larger separations. Imagine an event with a fluctuating
initial state. Movement toward equilibrium is driven, in part,
by viscous forces transferring energy density or momentum
density or particle number density from higher temperature
spots to lower ones. Interestingly, shear viscosity transports
momentum perpendicular to the direction of flow, therefore
shear viscosity spreads transverse momentum fluctuations
(and therefore correlations) in the longitudinal direction up to
approximately 1–2 units in relative rapidity.

Momentum correlations emerge form the initial state be-
cause pairs of particles are emitted from the same source and
are generally subject to local enforcement of conservation
laws. Since particles originate at the same spatial location,
they experience roughly the same dynamics and can develop
new correlations with each other and with the global event
plane due to transverse expansion [31,56,57,59]. If corre-
lations exist over rapidity ranges of |�η| > 1–2 units then
causality requires that they develop at the early stages of the
collisions [60].

If momentum correlations originate because pairs of par-
ticles are emitted from the same source, then the number of
correlated pairs is roughly proportional to the temperature
of the source; the more pairs, the stronger the correlation.

In equilibrium, the distinction between different sources is
destroyed, reducing the strength of the correlation. In this
manner, C is sensitive to the equilibration process and can be
used to estimate levels of partial thermalization [34].

C. Covariance of transverse momentum fluctuations

Transverse momentum correlations in excess of multiplic-
ity fluctuations, defined by (11), have been widely studied
as a possible signal for the existence of QGP [17–30]. QCD
critical point searches look for nonmonotonic behaviors since
fluctuations are expected to diverge if the system passes
through a phase transition [6,61]. Similarly, the event-by-
event variation in pt can be used as a measure of event
temperature fluctuations [20,62].

We focus on momentum correlations defined by (11),
which are experimentally measurable with

〈δpt1δpt2〉 =
〈∑Nk

i=1

∑Nk
j=1, j �=i δpt,iδpt, j

〉
〈N (N − 1)〉 , (21)

where δpt,i, defined by (13). Since (13) is a fluctuation, (21)
is a covariance of fluctuations. In this work, we distinguish
correlations of transverse momentum fluctuations (21) from
transverse momentum correlations in Sec. II B to avoid confu-
sion. We will discuss the relationship between these two types
of momentum correlations in Sec. II E.

When two particles both have larger or smaller pt than the
average, that pair contributes positively to 〈δpt1δpt2〉. When
one particle of a pair has positive δpt and the other has neg-
ative δpt , then that pair contributes negatively to 〈δpt1δpt2〉.
In the case of purely independent particle emission,
〈δpt1δpt2〉= 0.

The definition (21) differs slightly from definitions found
in experimental measurements. Experiments measure

〈δpt1δpt2〉 = 1

Nevent

Nevent∑
k=1

Ck

Nk (Nk − 1)
(22)

with

Ck =
Nk∑

i=1

Nk∑
j=1, j �=i

(
pt,i − Mpt

)(
pt, j − Mpt

)
(23)

and

Mpt = 1

Nevent

Nevent∑
k=1

〈pt 〉k, (24)

where 〈pt 〉k is the average transverse momentum in event k,

〈pt 〉k = 1

Nk

Nk∑
i=1

pt,i. (25)

There are two differences. First, the average transverse mo-
mentum (24) is calculated event by event such that the average
transverse momentum per particle of each event is found first
then averaged over all events in the same centrality class. In
(21) we define the average transverse momentum per particle
as

〈pt 〉 = 〈PT 〉/〈N〉, (26)
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FIG. 1. Comparison of Eq. (27) calculations from PYTHIA pp
events (circles and squares) with measurement from ALICE (solid
diamonds) [26,27]. Solid circles and squares represent (21), while
open circles and squares represent (22).

where 〈PT 〉 is (20), which is more representative of our theo-
retical description of the momentum density (4). The second
difference between (21) and (22) is in the normalization.
The denominator of (21) is calculated independently, where
the ratio Ck/Nk (Nk − 1) is calculated event by event in (22).
We make this choice in (21) to maintain as much consistency
as possible between (9), (10), (11), and (12). In Fig. 1 we plot
both (21) and (22) calculated with the same PYTHIA events.
Excellent agreement is observed.

Experiments report positive values of 〈δpt1δpt2〉 in
pp and AA collisions at various energies. 〈δpt1δpt2〉 de-
creases with centrality, but not quite following 1/〈N〉
[20,26,30]. If 〈δpt1δpt2〉 falls with 1/〈N〉, then the quantity
(dN/dη)〈δpt1δpt2〉 should be approximately flat. However,
experimental measurements of (dN/dη)〈δpt1δpt2〉 rise from
peripheral to mid-peripheral collisions and plateau toward
more central collisions. This rise could signal the onset of
critical fluctuations [20,26] or the effects of incomplete ther-
malization [34].

It is common for experimental measurements to report
〈δpt1δpt2〉 as a relative dynamical correlation,√

〈δpt1δpt2〉/〈pt 〉, (27)

which is dimensionless. It also rescales the growth of (21) to
be dependent on the cumulative effect of correlations rather
than the size of 〈pt 〉. This scaling nearly removes the collision
energy dependence of the measurements [20,26,30]. Using
PYTHIA/ANGANTYR simulated events, we calculate (27) using
(21) and (26), and compare to experimental data in Figs. 1–3.
Details are discussed in Sec. III.

As with R and C, experiments measure 〈δpt1δpt2〉 dif-
ferentially in relative rapidity and relative azimuthal angle
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accN
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p

>
T,

2
 pδ

T,
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Angantyr Pb-Pb 2.76 TeV
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ALICE pp 2.76 TeV

ALICE Pb-Pb 2.76 TeV

STAR Au-Au 200 GeV

FIG. 2. Comparison of Eq. (21) calculations from PYTHIA AA
events with measurement from ALICE pp and Pb-Pb collisions
[26,27], and STAR Au-Au collisions [30]. Centrality is determined
by multiplicity.

(�η,�φ). The ALICE Collaboration measures the quan-
tity P2(�η,�φ) = 〈δpt1δpt2〉(�η,�φ)/〈pt 〉2 which shows
the characteristic ridge-like shape for charge independent
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partN
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Angantyr Au-Au 200 GeV 

Au-Au 200 GeV (ISM-WN)

ALICE Pb-Pb 2.76 TeV

STAR Au-Au 200 GeV

FIG. 3. Comparison of Eq. (21) calculations from PYTHIA AA
events with measurement from ALICE pp and Pb-Pb collisions
[26,27] and STAR Au-Au collisions [30]. Centrality is determined
by the number of participating nucleons. Solid lines represent the
independent source model for wounded nucleons, Eq. (A16).
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correlations [29]. The near-side ridge at �φ = 0 is not com-
pletely explainable with Fourier decomposition, and excess
correlations appear to be long range in �η. Short-range effects
like resonance decays and jets can produce positive correla-
tions in 〈δpt1δpt2〉, but they cannot fully explain the excess
long-range correlations seen in P2(�η,�φ).

Several explanations for these correlations have been pro-
posed. They include the quark coalescence models [63], string
percolation models where clustered strings produce colored
sources [64], fluctuations in event size and entropy [65], and a
boosted source model where correlations originating in initial
state hot-spots are enhanced by radial flow [31]. We propose
that any explanation of these correlations should simultane-
ously address other two-particle correlations that originate
from (8) such as (9), (10), and (12).

D. Covariance of multiplicity and transverse momentum

A new observable D, defined by (12), tests the correlation
of transverse momentum with particle production event by
event. In Sec. III we show that in PYTHIA/ANGANTYR simu-
lations D is generally positive and comparable in magnitude
to 〈δpt1δpt2〉.

In (12), δpt is defined by (13), and 〈pt 〉 is the average
transverse momentum per particle for a given centrality class
of events (26). Experimentally, (12) can be measured with the
final state particle pair sum

D =
〈∑Nk

i=1

∑Nk
j=1, j �=i δpt,i

〉
〈N〉2

=
〈
(Nk − 1)

∑Nk
i=1 δpt,i

〉
〈N〉2

. (28)

To understand this observable, we expand δpt,i in the mid-
dle term of (28) with (13) and substitute〈

Nk∑
i=1

Nk∑
j=1, j �=i

pt,i

〉
= 〈PT N〉 − 〈PT 〉 (29)

and 〈
Nk∑

i=1

Nk∑
j=1, j �=i

〈pt 〉
〉

= 〈pt 〉〈N (N − 1)〉. (30)

Adding and subtracting 〈PT 〉〈N〉 and making use of the fact
that (26) can be written as 〈PT 〉 = 〈pt 〉〈N〉, we find Eq. (1),
where Cov(PT , N ) = 〈PT N〉 − 〈PT 〉〈N〉 is the covariance of
total transverse momentum PT and multiplicity N per event.
The event multiplicity variance is Var(N ) = 〈N2〉 − 〈N〉2.

Since every particle carries some transverse momentum,
adding any particle to an event will increase the total trans-
verse momentum in that event. Therefore, a natural correlation
between total pt and multiplicity exists that is dominated
purely by multiplicity fluctuations. Notice that this contribu-
tion is subtracted by the rightmost term of (1). This indicates
that D should be zero if multiplicity fluctuations are the only
source of multiplicity-momentum correlations.

In the grand canonical ensemble, we can follow Ref. [45]
to show that D should vanish in equilibrium. In equilibrium,
the grand partition function with chemical potential μ, volume
V , and temperature T , is Z (μ,V, T ) = ∑

i exp(αNi − βEi ).
Here the Gibbs factor, with number of particles Ni and energy

Ei of state i, is summed over all states. We define α = μ/T
and β = 1/T and take the Boltzmann constant to be in natural
units kB = 1. The average number of particles and average
energy are found in the usual way:

〈N〉 =
∑

i

Ni
eαNi−βEi

Z = 1

Z
∂Z
∂α

, (31)

〈E〉 =
∑

i

Ei
eαNi−βEi

Z = − 1

Z
∂Z
∂β

. (32)

Second derivatives in α yield

∂〈N〉
∂α

=
∑

i

Ni

(
NieαNi−βEi

Z − eαNi−βEi

Z2

∂Z
∂α

)

= 〈N2〉 − 〈N〉2, (33)

∂〈E〉
∂α

=
∑

i

Ei

(
NieαNi−βEi

Z − eαNi−βEi

Z2

∂Z
∂α

)

= 〈NE〉 − 〈N〉〈E〉 = ∂〈E〉
∂〈N〉

∂〈N〉
∂α

. (34)

Defining DE = [Cov(E , N ) − ε Var(N )]/〈N〉2, where ε =
〈E〉/〈N〉, we find that DE vanishes when the energy per parti-
cle satisfies ε = ∂〈E〉/∂〈N〉.

To relate energy and transverse momentum fluctuations,
we take the transverse mass to be mt =

√
m2 + p2

t ≈ pt for
particles with large momentum, pt 	 m. Near midrapid-
ity y ≈ 0, the energy Ei = mt,i cosh yi ≈ mt,i ≈ pt,i averaged
over states is then approximately the average total trans-
verse momentum 〈E〉 ≈ 〈PT 〉. Following that, we substitute
∂〈E〉/∂〈N〉 = ∂〈PT 〉/∂〈N〉 in the last term of (34). In the case
where 〈pt 〉 is constant over a wide range of multiplicities,
the definition 〈PT 〉 = 〈pt 〉〈N〉, Eq. (26), yields ∂〈PT 〉/∂〈N〉 ≈
〈pt 〉. Using this result in (34) with (33), we find

〈NPT 〉 − 〈N〉〈PT 〉 = 〈pt 〉(〈N2〉 − 〈N〉2). (35)

Finally, substituting (35) in (1), we find that D = 0.
Several factors may generate a nonzero D. Hadronization

may violate the assumption that pt 	 m for all particles.
For example, in

√
s = 200 GeV collision systems, the aver-

age transverse momentum is approximately 〈pt 〉 ≈0.5 GeV,
which is arguably large compared to the pion mass, but not
the kaon or proton masses. Heavier particles may skew the
momentum-multiplicity covariance Cov(PT , N ). Correlations
could be affected by canonical effects in the same way pro-
ton cumulants are influenced by baryon conservation (an
interesting topic we leave for future work). Particle rapidi-
ties greater than |y| > 0.5 have increasingly larger deviations
from our y = 0 assumption. If higher momentum particles,
say with pt > 2 GeV, come at the cost of producing fewer
particles near the average momentum, then the covariance
Cov(PT , N ) would become negative. If high momentum par-
ticles come in conjunction with excess particles near the
average, then the covariance Cov(PT , N ) will be positive.
Lastly, the assumption ∂〈PT 〉/∂〈N〉 ≈ 〈pt 〉 does not hold if
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FIG. 4. Average transverse momentum per particle for all
charged particles as a function of reference multiplicity for pp col-
lisions at select energies. Error bars on the PYTHIA results represent
statistical uncertainty.

transverse momentum per particle increases with increasing
event multiplicity.

Examining 〈pt 〉 vs multiplicity, Figs. 4 and 5, we notice
that the average transverse momentum per particle increases
with event multiplicity. This is seen by experiment across col-
lision systems and energies. See, for example, Ref. [67]. This
is a positive transverse momentum and multiplicity covari-
ance, if only a slight one. Possible sources of this covariance
include jet particle production or an increased radial flow
velocity in central collisions in comparison to peripheral col-
lisions. This increase in 〈pt 〉 has been seen in PYTHIA and is
considered a consequence of the multiple interaction model
[68] and color reconnection [69]. In all of these cases, nonzero
D indicates a correlation related to particle production and
dynamics that is distinct from R, C, and 〈δpt1δpt2〉. We will
show in Sec. II E how correlations D contribute to the other
observables C and 〈δpt1δpt2〉.
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FIG. 5. Average transverse momentum per particle for all
charged particles as a function of reference multiplicity for select
AA collision systems. Error bars on the PYTHIA results represent
statistical uncertainty. STAR data are from [66].

E. Complimentary fluctuation and correlation observables

The observables R, (14), C, (19), 〈δpt1δpt2〉, (21), and D,
(28), are mathematically related based on their common origin
(8) and the definition of a transverse momentum fluctuation
δpt , (13). We find the relation (2).

Starting from the definition (21) we expand the argument
δpt,iδpt, j , to find

〈δpt1δpt2〉

=
〈∑Nk

i=1

∑Nk
j �=i(pt,i pt, j − pt,i〈pt 〉 − pt, j〈pt 〉 + 〈pt 〉2)

〉
〈N (N − 1)〉 .

(36)

Applying the sums over pairs, we find

〈N (N − 1)〉〈δpt1δpt2〉 = 〈N〉2C + 〈PT 〉2 (37a)

− 2(〈PT N〉 − 〈PT 〉)〈pt 〉 (37b)

+〈pt 〉2〈N (N − 1)〉. (37c)

Using (19), the first term of (36) becomes (37a). The middle
two terms in (36) both become (〈PT N〉 − 〈PT 〉)〈pt 〉 after using
(29), resulting in (37b). The last term of (36) yields (37c), sim-
ilarly to (30). After adding and subtracting 2〈pt 〉〈PT 〉〈N〉 +
2〈pt 〉2〈N2〉 to (37), we make use of definitions (1) and (14) to
construct

〈δpt1δpt2〉 = C − 2〈pt 〉D − 〈pt 〉2R
(1 + R)

, (38)

where (1 + R) = 〈N (N − 1)〉/〈N〉2.
The denominator of (38) is a result of the different normal-

ization of (21) compared to (14), (19), and (28). To facilitate
direct comparison to measured data, we choose not to alter
the normalization of 〈δpt1δpt2〉. However, (38) requires the
definition of 〈δpt1δpt2〉 to be (21) rather than (22). We show
that this change has small effect on measurement in Fig. 1.

Equation (38) is equivalent to (2) and is a primary result
of this paper. Using (38) we now see, explicitly, the intent of
the construction of 〈δpt1δpt2〉: first that it can be interpreted
as transverse momentum correlations with multiplicity fluctu-
ations removed (C − 〈pt 〉2R), and second that it also removes
multiplicity-momentum correlations. Interpreting 〈δpt1δpt2〉
in terms of the other observables allows for diagnosis of
different physics contributions. For example, simulated results
for R and C are up to an order of magnitude bigger that D.

In Sec. III, we calculate values of D in simulated PYTHIA

events. We find that it is on the same order of magnitude as
〈δpt1δpt2〉, and possibly even larger. Therefore, D should not
be assumed negligible when measuring 〈δpt1δpt2〉 or C.

The 1/〈N〉 (or deviation from 1/〈N〉) behavior of
〈δpt1δpt2〉 can also be studied with (38). Notably, R ex-
hibits the most obvious expression of the 1/〈N〉 trend—see
discussion in Sec. II A—and, by construction, C and R are
expected to have similar behavior. This is more obvious in an
independent source model, which we discuss in the Appendix.
We test this behavior with simulated events in Sec. III.

The influence of 〈pt 〉 also appears in (2) and (38). Since
〈pt 〉 is seen to rise with multiplicity, it is a potential source
of deviation from 1/〈N〉 scaling for 〈δpt1δpt2〉 that is not
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due to critical phenomena. Since 〈pt 〉 also increases with
increasing collision energy, experiments tested the scaling
(27) for 〈δpt1δpt2〉, showing approximate agreement over a
wide range of systems and energies [20,26,30]. The quality
of the agreement relies somewhat on the choice of central-
ity measure. In (38), we can see how constituent correlation
observables contribute to this scaling and how centrality de-
termination affects this agreement. To avoid interpreting the
square root in (27), we instead consider 〈δpt1δpt2〉/〈pt 〉2 and
write (2) as

(1 + R)〈δpt1δpt2〉
〈pt 〉2

= C
〈pt 〉2

− 2D
〈pt 〉 − R. (39)

Using (39) we can see that scaling with collision energy
requires consistent handling of multiplicity fluctuation R.
Fortunately, if R and C are measured with the same methods,
centrality biases in C are subtracted by R. This is what makes
〈δpt1δpt2〉 robust against different centrality definitions.

Alternatively, we can study two-particle transverse mo-
mentum correlations by rewriting (2), or (38), as

C = (1 + R)〈δpt1δpt2〉 + 2〈pt 〉D + 〈pt 〉2R. (40)

Equation (40) distinguishes the different physical influences
on momentum correlations. The rightmost term represents
the contribution just from multiplicity fluctuations (including
volume fluctuations). This is the largest contribution to C.
In this context the quantitative difference between R and its
momentum weighted counterpart C can be measured. C is
affected by forces like viscosity that impact temperature fluc-
tuations which are represented by the presence of 〈δpt1δpt2〉.
Similarly, the presence of D signals how C is influenced by the
mechanism that correlates total transverse momentum with
multiplicity event-by-event.

The ALICE Collaboration measures the differential quan-
tity G2(�η,�φ) = C(�η,�φ)/〈pt 〉2 [37–40]. Using (39) we
find the integrated version

G2 = C
〈pt 〉2

= (1 + R)〈δpt1δpt2〉
〈pt 〉2

+ 2D
〈pt 〉 + R, (41)

but each of the terms on the right-hand side can also be
measured differentially. For example, the quantities P2 =
〈δpt1δpt2〉(�η,�φ)/〈pt 〉2 and R(�η,�φ) are measured
in Ref. [29]. With the measurement of D(�η,�φ)/〈pt 〉,
G2(�η,�φ) can be checked experimentally, using (41).

To summarize, multiplicity fluctuations, R, set an underly-
ing scale of correlations, (8), that is determined by particle
production mechanisms, volume fluctuations, and possibly
phase change fluctuations. Momentum correlations, C, indi-
cate both how initial state correlations survive to final state
particle pt and how transverse momentum can be trans-
ferred throughout the collision volume by forces like shear
viscosity. D represents correlations of event-by-event total
transverse momentum and multiplicity. Equation (1) demon-
strates that these correlations are in excess of those from
random multiplicity fluctuations, so D is therefore tied to
particle production. Furthermore, lack of correlations, D,
can signal equilibration while enhancement of D could exist
around the QGP critical point.

III. RESULTS FROM SIMULATION

In this section, our primary goal is to make the first esti-
mates of D and test relationship (2) with simulated collision
events. We do not attempt to perform a comprehensive study
using different simulation routines to compare different colli-
sion dynamics mechanisms; we leave this for future work. For
simplicity, we chose PYTHIA 8.2 [46] since its description of
pp collisions is well established and it includes the ANGANTYR

model for nuclear collisions [47], which provides a baseline
estimation based on wounded nucleons.

We look for nonzero values of the new observable D,
defined by Eq. (1) or (12). This may indicate a deviation
from thermal equilibrium; see Sec. II D. Moreover, we also
test the 1/〈N〉 dependence of R, C, 〈δpt1δpt2〉, and D when
using multiplicity as a centrality measure. Deviation from this
trend is an indication of non-Poissonian particle production
which, in turn, indicates that either particle sources or the
particles themselves are not produced independently from
event to event, resulting in net correlations. Correlations that
develop during the system evolution can also contribute to this
behavior.

When measuring correlations based on moments of a
multiplicity distribution, centrality biases can be significant,
especially when the same particles used to calculate the
correlations are also used to determine centrality [70]. To
eliminate centrality biases due to volume fluctuations, we
follow the centrality method of Ref. [30] when calculating
observable dependencies on multiplicity. This method allows
for one-particle-wide multiplicity bins without encountering
the effects described at the end of Sec. II A.

In this method, observables are calculated using all charged
particles in the midrapidity region |η| < 0.5 while centrality
is determined using all charged particles in the remaining
region of experimental rapidity acceptance. We label these
accepted centrality determining particles Nacc. For compar-
ison to STAR, charged particles in the region 0.5 < |η| <

1.0 are used for Nacc. For comparison to ALICE, charged
particles in the region 0.5 < |η| < 0.8 are used for Nacc. In
Figs. 6 and 7 we plot the average midrapidity multiplicity
vs Nacc in PYTHIA events. The acceptance difference between
STAR and ALICE accounts for the different slopes in the
midrapidity multiplicities. This centrality measure also has
the consequence of transforming the two-particle correlation
observables into three-particle correlations since two particles
are used to calculate the correlation and different particles are
used to determine Nacc. If the pseudorapidity distribution of
charged particles is approximately flat in the rapidity accep-
tance, then the correlation between the number of particles
in the centrality determining and midrapidity regions is effec-
tively 1, and multiplicity trends can be taken at face value.

A nonlinear correlation between Nacc and the midrapid-
ity multiplicity could induce some modulation in correlation
measurements away from the expected 1/〈N〉 trend. However,
the average midrapidity multiplicity 〈N〉 tracks very linearly
with Nacc for PYTHIA events in Figs. 6 and 7 for pp and AA
collisions respectively.

Similarly to Ref. [30], we employ the so-called “sub-
group” method for estimating the uncertainty of correlation
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FIG. 6. Subgroup averaged midrapidity multiplicity 〈N〉 as a
function of accepted multiplicity Nacc in the region 0.5 < |η| < 1.0
for pp 200 GeV and 0.5 < |η| < 0.8 for pp 2.76 TeV.

observables. In our analysis, the full set of events for a given
centrality class is divided up into 30 subgroups and all ob-
servables are calculated for each subgroup. Each observable
is then averaged over all sub-groups and the standard devi-
ation is used to estimate the uncertainty. For AA collisions,
when multiplicity is used for centrality and after taking the
subgroup average, we average observable values over several
multiplicity bins and the set the error band to represent the
standard deviation of those values.

In Figs. 4 and 5 we report the average transverse momen-
tum per particle for all charged particles from PYTHIA events
in select pp and AA systems and energies. For all PYTHIA

simulation results we show in this work, we have used both
the centrality and subgroup methods described above. Notice
the increase in average pt per particle as multiplicity increases
in both figures. We argue in Sec. II D that this is important for
understanding multiplicity-momentum correlations D. The
smaller increase in AA collisions compared to pp collisions
is likely a factor in the different magnitudes of D estimates
from different collision systems. We also show STAR data for
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FIG. 7. Subgroup averaged midrapidity multiplicity 〈N〉 as a
function of accepted multiplcity Nacc in the region 0.5 < |η| < 1.0
for Au-Au 200 GeV and 0.5 < |η| < 0.8 for Pb-Pb 2.76 TeV.

negative pions, from Ref. [66], to illustrate that experimental
measurements also find a comparable increase in 〈pt 〉 with
multiplicity. The overall difference in magnitude of the STAR
data compared to our PYTHIA calculation is due to the fact that
the PYTHIA calculation includes all charged particles.

We now turn to estimating observables R, C, 〈δpt1δpt2〉,
and D, and their mathematical relationship (2) with
PYTHIA/ANGANTYR simulations of pp and AA collision sys-
tems at select energies. For the four observables we analyze
events following (14), (19), (21), and (28) respectively. We use
charged particles in the transverse momentum range 0.15 <

pt < 2 GeV for both Au-Au collisions at
√

s = 200 GeV and
for Pb-Pb collisions at

√
s = 2.76 TeV. To identify deviation

from 1/〈N〉 behavior we plot the product of each observable
with the multiplicity 〈N〉. If there is no deviation from 1/〈N〉,
then results will be constant with multiplicity, though with
different magnitudes.

Results for 〈N〉R from PYTHIA simulation of pp collisions
at 200 GeV and 2.76 TeV are shown in Fig. 8(a). At lower
multiplicities, the deviation from 1/〈N〉 behavior and the tran-
sition to negative values are both the result of a small variance
of total multiplicity produced in these events. Consider that
events with very few particles in the centrality defining rapid-
ity region also have correspondingly very few particles in the
midrapidity region. In this case the variance of midrapidity
particles is nearly zero. Following the argument surrounding
Eq. (18), negative values of R can be expected. At larger
multiplicities 〈N〉R becomes more flat and the error band
increases with the scarcity of events.

It is interesting to note that 〈N〉R in pp collisions at√
s = 2.76 TeV indicates a slightly faster than 1/〈N〉 de-

crease with increasing multiplicity when compared to
√

s =
200 GeV collisions. It will be interesting to discover if this
change persists to higher or lower collision energies in both
simulation and experiment. Moreover, it is also significant
to point out that 〈N〉R is nonzero. This indicates that parti-
cle production—averaged over events—is not Poissonian and
therefore not independent. This reinforces the fact that R
measures a fundamental particle production mechanism. De-
viation of experimental measurements from PYTHIA estimates
could signal the contribution form different particle sources. A
comparison covering different collision systems and energies
may be a useful tool to characterize the onset of QGP or jet
influences on particle production.

Results for 〈N〉R from PYTHIA/ANGANTYR simulation of
Au-Au and Pb-Pb collisions at

√
s = 200 GeV and

√
s = 2.76

TeV are shown in Fig. 9(a), plotted versus multiplicity, Nacc.
When centrality is determined by multiplicity, 〈N〉R is seem-
ingly constant until the most central points. The deviation in
high multiplicity events is likely due to low statistics. The drop
of the lowest multiplicity point is the result of averaging the
first few lowest multiplicity bins where values may be small
or negative for the same reasons small or negative values
appeared in low multiplicity pp collisions. In general, the
approximately constant value of 〈N〉R with multiplicity is
consistent with a superposition of the pp subcollision model.

In the Appendix we calculate R and the other correlation
observables using an independent source model (ISM). In
this model each event is comprised of K independent random
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scaled by midrapidity multiplicity 〈N〉 using PYTHIA pp collisions.
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FIG. 9. Calculation of observables (9), (10), (11), and (12),
scaled by midrapidity multiplicity 〈N〉 using PYTHIA/ANGANTYR AA
collisions.
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TABLE I. List of integrated values of observables 〈N〉pp, 〈pt 〉 pp,
(14), (19), (21), and (28) using PYTHIA pp collision events calcu-
lated with the subgroup method. Calculations are made with charged
particles from the kinematic region and |η| < 0.8 (

√
s = 2.76 TeV)

or |η| < 1.0 (
√

s = 200 GeV). Listed uncertainties are the standard
deviation of the subgroup values.

√
s 200 GeV ± 2.76 TeV ±

〈N〉pp 6.635 3.65×10−3 8.453 8.10×10−3

〈pt 〉 pp 0.4860 1.33×10−4 0.5356 1.78×10−4

Rpp 0.2731 7.58×10−4 0.453 1.02×10−3

Cpp 0.0842 2.20×10−4 0.1738 4.84×10−4

〈δpt1δpt2〉pp 0.00257 2.27×10−5 0.00446 3.67×10−5

Dpp 0.01685 9.32×10−5 0.0348 1.68×10−4

sources, where K fluctuates form event to event. Each source
also yields a random number of particles that fluctuates form
source to source. We then choose wounded nucleon sources
as a test case and estimate the average correlation of a single
source using PYTHIA pp collisions. Values for pp quantities
are listed in Table I.

In this work we attribute all volume fluctuations to source
number fluctuations. To see how multiplicity fluctuations are
influenced by volume (source) fluctuations, imagine that par-
ticipant sources are independent, then the variance of the
number of participants in the numerator of the rightmost term
of (A13) follows Poisson statistics. In that case, Var(Npart ) =
〈Npart〉, then Eq. (A13) becomes R = (2Rpp + 1)/〈Npart〉.
Note that the contribution from source correlations is rep-
resented by 2Rpp. If 2Rpp = 1, then half of multiplicity
fluctuations come from source correlations and half come
from volume fluctuations. If 2Rpp < 1, then volume fluctua-
tions contribute more to R than source correlations. If 2Rpp >

1, then volume fluctuations contribute less to R than source
correlations. We estimate Rpp using PYTHIA simulations and
list values in Table I for

√
s = 200 GeV and

√
s = 2.76 TeV

collision energies. At
√

s = 200 GeV, a bit less than two-
thirds of R comes from volume fluctuations. At

√
s = 2.76

TeV, about half of R comes from volume fluctuations.
To compare to the ISM, in Fig. 10(a) we plot

PYTHIA/ANGANTYR results for 〈N〉R with respect to the num-
ber of participating nucleons (Npart ) corresponding to percent
centrality event ensembles. The most central events are the
top 10% highest multiplicity events, and each subsequently
peripheral point uses the next 10% of the remaining high-
est multiplicity events. The solid and dashed lines represent
the ISM with wounded nucleon sources, ISM-WN, from
(A13). The average and variance of participants are calculated
from PYTHIA/ANGANTYR in corresponding percent centrality
ranges.

The variance of participants is extremely sensitive to the
centrality definition, so we choose to use standard experimen-
tal definitions. This sensitivity is the cause of the nonlinear
shape of the ISM-WN curves in Fig. 10. For purely indepen-
dent sources, the distributions of participants is Posisson so
that the variance of participants equals the mean in Eq. (A13).
In that situation, ISM curves on Fig. 10(a) would take constant
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FIG. 10. Calculation of observables (9)–(11), scaled by multi-
plicity 〈N〉 using PYTHIA/ANGANTYR AA collisions. Centrality is
determined following the experimental percent centrality scheme
[67,71]. Solid and dashed lines represent the wounded nucleon model
using values from Table I and taking the average and variance of
participants from PYTHIA/ANGANTYR.
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values of 〈N〉R 200 GeV = 5.130 and 〈N〉R 2.76 TeV = 8.056.
Differences between ISM-WN and PYTHIA results are likely
due in part to the particle production mechanism and in part
to multi-particle interactions. Notice that the deviation form
ISM-WN is largest in the most central collisions where great-
est variety of events is present.

Note that in Fig. 10 we report PYTHIA/ANGANTYR re-
sults with horizontal and vertical error bars. When nucleon
participants are used to estimate centrality, uncertainty arises
from both fluctuations in participant number as well as fluc-
tuations in the observable values. Since centrality is not
determined directly by multiplicity, all charged particles in the
experimental acceptance can be used to calculate observables.
Consequentially, the fluctuations of calculated observable
values is reduced, but this improvement is exchanged for
significant uncertainty in the determination of the number of
participants. This is represented by the horizontal error bars in
Figs. 3 and 10.

Due to its similar construction, C shares many of the same
centrality trends as R. C scales both with R and 〈pt 〉2; the
latter scaling is visible by examining the ISM Eq. (A14).
〈N〉C is reported on Figs. 8(b), 9(b), and 10(b). Centrality
behaviors mostly follow those of 〈N〉R for both PYTHIA and
ISM-WN results. For purely independent sources, ISM results
take constant values of 〈N〉C 200 GeV = 1.342 GeV2 and 〈N〉C
2.76 TeV = 2.682 GeV2 in Fig. 10(b).

In Fig. 1 we compare 〈δpt1δpt2〉 as Eq. (27), calculated
from both (21) and (22), with experimental data for pp colli-
sions. The two methods (21) and (22) are in generally good
agreement. Similar results are obtained for AA collisions but
are omitted from Fig. 2 for clarity.

PYTHIA/ANGANTYR comparisons to experimental AA data
are shown in Fig. 2. Agreement with STAR data is good, but
significant difference from ALICE data is seen. This is likely
due to differences in the multiplicity centrality determination
between STAR and ALICE; our calculation technique repro-
duces that of STAR.

To test the 1/〈N〉 dependence of 〈δpt1δpt2〉, we plot
〈N〉(1 + R)〈δpt1δpt2〉 in Figs. 8(d), 9(d), and 10(d). As we
discover in Sec. II E and the Appendix, the factor (1 + R) is
required to rescale the normalization of (21) so that it follows
the same 1/〈N〉 trend as the other observables.

PYTHIA results for 〈N〉(1 + R)〈δpt1δpt2〉 in pp collisions,
shown in Fig. 8(d), are mostly flat except in peripheral col-
lisions where fluctuations become small. In AA collisions,
shown in Fig. 9(d), the trend is again consistent, inside the
error band, with a 1/〈N〉 except in the most central collisions
that are statistically limited. 〈δpt1δpt2〉 has reduced effect
from small fluctuations at low multiplicity in comparison to
R or C. By construction, 〈δpt1δpt2〉 removes multiplicity fluc-
tuations [see the discussion following Eq. (38) in Sec. II E].
Therefore, 〈δpt1δpt2〉 appears insensitive to choice of cen-
trality via multiplicity or participating nucleons. Results in
Fig. 10(d) for 〈N〉(1 + R)〈δpt1δpt2〉 with respect to partici-
pating nucleons are also constant and in strong agreement with
the wounded nucleon model, Eq. (A16).

The deviation of the wounded nucleon model in Fig. 3 in
comparison to Fig. 10(d) is likely due to multiple factors.
First, the integrated value of 〈pt 〉 pp is used with (A16). In

the independent source model, 〈pt 〉 is the same for individual
sources as it is for the whole event. 〈pt 〉 pp does not change
value in our simple wounded nucleon model, but 〈pt 〉 does
change in the centrality dependent measurement. Last, the
factor of (1 + R) in the denominator of (A16) also induces a
difference from PYTHIA values. As we see in Fig. 10(a), R for
our wounded nucleon model is generally smaller than PYTHIA

values, particularly in more central collisions.
An objective of this work is to stimulate experimen-

tal measurement of D. The first estimates of 〈N〉D from
PYTHIA/ANGANTYR pp and AA collisions are shown in
Figs. 8(c), 9(c), and 10(c). Immediate observations include
that D �= 0 and is positive. The positive nonzero value of
D is consistent with 〈pt 〉 centrality trends. For example,
notice in Fig. 4 that the average transverse momentum per
particle increases with the number of particles. This is a
multiplicity-momentum correlation. The difference of magni-
tudes of 〈N〉D in pp and AA collisions may be due to the fact
that the rate of increase of 〈pt 〉 with multiplicity is greater in
pp collisions that in AA for PYTHIA simulations.

The flatness of 〈N〉D with respect to multiplicity in
Fig. 9(c) indicates agreement with the 1/〈N〉 dependence.
Interestingly, pp collisions in Fig. 8(c) show a small negative
slope with increasing multiplicity, indicating a faster than
1/〈N〉 drop with increasing multiplicity. This slope seems to
increase from

√
s = 200 GeV to

√
s = 2.76 TeV collision

energies. We look for experimental measurements in a larger
range of collision energies to examine this behavior.

Figure 10(c) shows that when centrality is determined by
percent centrality, D values from PYTHIA/ANGANTYR are in
the general range of our wounded nucleon model. Deviations
may simply signal a difference between our choice to use
only participant nucleons as sources in our independent source
model and the PYTHIA/ANGANTYR model. Larger deviations
of the most central points may indicate increased importance
of multiplicity-momentum fluctuations when interpreting mo-
mentum correlation observables like C, G2, and 〈δpt1δpt2〉; the
contributions of multiplicity-momentum correlations to those
observables is discussed in Sec. II E around Eqs. (38), (40),
and (41).

D may also be sensitive to the thermalization of the
medium. In Sec. II D we calculate that D vanishes in equilib-
rium in in the grand canonical ensemble. Therefore, nonzero
measurements of D indicate incomplete thermalization. Fur-
thermore, we show in Ref. [34] that 〈δpt1δpt2〉 can be used
to quantify incomplete thermalization. This suggests that D
and C may be used in the same way to provide additional
constraints on that model. We leave this to future work.

Finally, as a validation, we calculate Eq. (2) for every
point in Figs. 8–10. We find minimal numerical error with
agreement to the level of |3|×10−17 or smaller for all points.

IV. SUMMARY

We discuss four two-particle correlation observables: mul-
tiplicity fluctuations, R, Eq. (9), transverse momentum corre-
lations, C, Eq. (10), net correlation of transverse momentum
fluctuations, 〈δpt1δpt2〉, Eq. (11), and multiplicity-momentum
correlations D, Eq. (12). Importantly, all of these observables
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are derived from this same common origin, Eq. (8), and we
find an observable mathematical connection between them,
Eq. (2). We estimate these observables and their connec-
tion with PYTHIA/ANGANTYR simulated collisions events at√

s = 200 GeV and
√

s = 2.76 TeV collision energies.
Multiplicity-momentum correlations are a new observable

estimated here for the first time. We propose that this col-
lection of observables and their mathematical relationship,
measured or calculated simultaneously, can provide more
information than separately examining the individual observ-
ables. Measurements of these observables over a wide range
of collision systems and energies may provide invaluable in-
formation about initial state particle production mechanisms
of hadronic collisions as well as observable influences of local
equilibration on two-particle correlation measurements.
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APPENDIX: INDEPENDENT SOURCE MODEL

The independent source model assumes that nuclear colli-
sion events are composed of a superposition of independent
sources of particles and ignores any interactions between
particles emitted from different sources. Each event has a
fluctuating number of sources and each source has a fluc-
tuating multiplicity and momentum distribution of particles.
In this section we detail how the observables discussed in
Secs. II A, II B, II C, and II D depend on both of these types
of fluctuation. A similar discussion for only R and 〈δpt1δpt2〉
appears in Ref. [31].

Our independent source model assumes that a single col-
lision event is the sum of K independent particle sources.
Each source is represented by a momentum distribution ρ̂1(p)
normalized such that

∫
ρ̂1(p)d3p = μ is the mean multiplicity

per source. To understand the average particle distribution
of sources, imagine a large number of sources in the range
k = 1, . . . , Nsrc, where each emits nk particles. The average
number of particles per source is then

n̄ = 1

Nsrc

Nsrc∑
k=1

nk∑
i=1

1 −−−−→
Nsrc→∞

∫
ρ̂1(p)d3p = μ, (A1)

where the overbar indicates an average over sources, and
ρ̂1(p) is the particle momentum distribution per source in the
limit of a continuum of all possible sources. In that limit,
each source multiplicity has mean μ = n̄ and variance σ 2 =
n2 − n̄2. Similarly, the distribution of particle pairs emitted
from one source is

n(n − 1) = 1

Nsrc

Nsrc∑
k=1

nk∑
i=1

nk∑
j �=i

1

−−−−→
Nsrc→∞

∫∫
ρ̂2(p1, p2)d3p1d3p2 = σ 2 + μ2 − μ, (A2)

where ρ̂2(p1, p2) is the particle pair momentum distribution
for an individual source.

The event averaged singles and pair momentum distribu-
tions become

ρ1 = 〈 ρ̂1(p)K 〉 (A3)
and

ρ2 = 〈 ρ̂2(p1, p2)K + ρ̂1(p1)ρ̂1(p2)K (K − 1) 〉, (A4)

where the angled brackets indicate the average over events
and each event has K independent sources. Equation (A3)
specifies that the event multiplicity is a superposition of K
sources, yielding

〈N〉 = 〈K〉μ. (A5)

Equation (A4) indicates that particle pairs are made up of the
sum of pairs from the K individual sources, each with ρ̂2 pairs,
plus the sum of pairs where one particle of the pair is from one
source and the other particle comes from a different source.
For one pair of sources the particle pair distribution is ρ̂1ρ̂1,
and there are K (K − 1) pairs of sources. The event average
number of particle pairs then becomes

〈N (N − 1)〉 = 〈K〉(σ 2 − μ) + 〈K2〉μ2. (A6)

Beginning with R as defined in (9) with (8), then using
(A3) and (A4), we find

R = Rs

〈K〉 + 〈K2〉 − 〈K〉2

〈K〉2
, (A7)

where Rs = (σ 2 − μ)/μ2 is the equivalent of (14) for sources
when averaging is done over the ensemble of all possible inde-
pendent sources. Event-by-event fluctuations in the number of
sources are characterized by the variance of K in the rightmost
term. Since the sources are taken to be independent, this vari-
ance follows Poisson statistics, so 〈K2〉 − 〈K〉2 = 〈K〉, and
therefore fluctuations (A7) are diminished by 〈K〉−1.

Two-particle correlations of transverse momentum, C, are
defined by Eq. (10). Using Eq. (8) with (A3) and (A4) we find

C = Cs

〈K〉 +
( 〈K2〉 − 〈K〉2

〈K〉2

)
〈pt 〉2, (A8)

where Cs = (σ 2
PT

− μ〈pt 〉)/μ2 is the equivalent of Eq. (19)
for sources. Here the average total transverse momentum
per source is defined as P̄T = ∫

ρ̂1(p) pt dp and, using (A3),
the average total transverse momentum for events is 〈PT 〉 =
〈K〉P̄T . Following (26) and substituting (A5), the event aver-
aged transverse momentum per particle is equivalently written
as

〈pt 〉 = P̄T /μ. (A9)

Finally, the variance of total transverse momenta per source is
σ 2

PT
= P2

T − P̄2
T , where

∫∫
ρ̂2(p1, p2) pt,1 pt,2 dp1dp2 = σ 2

PT
+

μ2〈pt 〉2 − μ〈pt 〉.
Notice that both Eqs. (A7) and (A8) have similar contribu-

tions from the fluctuation in the number of sources. Given that
the sources are independent, (A8) decreases with the inverse
of the number of sources in the same way as (A7). However,
momentum correlations (A8) are sensitive to the transverse
expansion due to the correlation function weighting by pt .
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We reiterate that when C is measured as defined in (10) and
not differentially in relative azimuthal angle or pseudorapid-
ity, then effects form anisotropic flow are eliminated. C then
represents the magnitude of transverse momentum correla-
tions generated in the fireball. A measured deviation from
predictions of the independent source model might suggest
that sources of correlations are not independent, as would be
the case for a partially or fully equilibrated system.

Multiplicity-momentum correlations, D, are defined by
(12). Following the same procedure we use for R and C, we
obtain

D = Ds

〈K〉 , (A10)

where Ds = [Cov(PT , n) − 〈pt 〉σ 2]/μ2 is the equivalent of
Eq. (28) for sources rather than events.

Notice that since (28) is constructed to remove the effects
of multiplicity fluctuations, (A10) does not have the same
dependence on source fluctuations as R or C. However, all
three observables R, C, and D still are reduced by the inverse
of the number of sources.

Lastly, correlations of transverse momentum fluctuations
are defined by (11). Again, using Eq. (8) with (A3) and (A4)
we find

〈δpt1δpt2〉 = 〈K〉(Cs − 2〈pt 〉Ds − 〈pt 〉2Rs)

〈K〉Rs + 〈K2〉 (A11)

= 〈δpt1δpt2〉s

〈K〉
(1 + Rs)

(1 + R)
. (A12)

Here (1 + Rs)〈δpt1δpt2〉s = Cs − 2〈pt 〉Ds − 〈pt 〉2Rs follow-
ing the same reasoning leading to Eq. (2) except that averaging
is done over the ensemble of all possible independent sources

rather than events. The denominator of (11) is different from
the other observables in this work, but since 〈δpt1δpt2〉 is well
studied in literature, this form better suits direct comparison
to measured data. The consequence is that the effects from
fluctuating independent sources are not as obvious as the
other observables. By examining (A11) we see that 〈δpt1δpt2〉
approximately decreases like 〈K〉−1 in the limit of large K
where R is small.

If we take the origin of the sources to be participant nu-
cleons, then the minimum number of sources in any collision
is 2. Calculations of Rs, Cs, Ds, and 〈δpt1δpt2〉s in proton-
proton collisions can serve as a possible representation of
independent source correlations. In this scenario, pp collisions
always have K = 2 and never have a variance in the number
of sources. Therefore we must have 〈K2〉 − 〈K〉2 = 0 in (A7)
and (A8). Taking (A7) as an example for pp collisions, we
have Rpp = Rs/2 for K = 2 participants. Consequentially
for AA collisions using K = Npart and Rs = 2Rpp, we find
Eq. (A13). Similarly, Eqs. (A7), (A8), (A10), and (A12) be-
come

R = 2Rpp

〈Npart〉 +
〈
N2

part

〉 − 〈Npart〉2

〈Npart〉2
, (A13)

C = 2 Cpp

〈Npart〉 +
(〈

N2
part

〉 − 〈Npart〉2

〈Npart〉2

)
〈pt 〉2, (A14)

D = 2Dpp

〈Npart〉 , (A15)

〈δpt1δpt2〉 = 2 〈δpt1δpt2〉pp

〈Npart〉
(1 + Rpp)

(1 + R)
, (A16)

where R in the denominator of (A16) must come from (A13).
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