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Critical net-baryon fluctuations in an expanding system
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In this work we study the consequences of a longitudinal Bjorken expansion and a Hubble-like temperature
cooling scenario on a 1 + 1 dimensional nonlinear model of the diffusive dynamics of fluctuations in the net-
baryon density. The equilibrium behavior of the fluctuations is fully encoded in the temperature dependence of
the susceptibilities on the crossover side both in the vicinity of the assumed location of the critical point and at
vanishing baryochemical potential in line with lattice quantum chromodynamics calculations. We demonstrate
the great sensitivity of the fluctuation observables on the dynamics, in particular on the diffusion length and the
freeze-out conditions. While the critical signals are visible and the critical region is broadened by the expansion,
a too small diffusion length can strongly reduce the amplitude of the signals. We propose to search for significant
anticorrelations of baryons at intermediate rapidity experimentally and to map out the rapidity dependence of
the fourth-order cumulant, which, in the presence of a critical point (and only in its presence), has a pronounced
minimum at intermediate rapidities.
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I. INTRODUCTION

Near a critical point the conventional relativistic fluid dy-
namical description ceases to be valid as thermal fluctuations,
which are usually assumed to be negligible, have an impact
at the macroscopic scale of a system. The dynamical behavior
of these critical fluctuations has gained recent attention in the
context of mapping the phase diagram of quantum chromody-
namics (QCD) by means of heavy-ion collisions and looking
for signals of a potential critical point [1–5].

For the study of the fluctuation dynamics, the tool of fluid
dynamics is particularly well suited, because its deterministic
version describes well the event-averaged bulk observables in
heavy-ion collisions [6,7] and the critical mode is a fluid dy-
namical field [8]. Currently there are two different approaches
which are followed to include fluctuations into fluid dynam-
ics: the first is a hydrokinetic approach, where the correlator of
the critical mode is solved in addition to the fluid dynamical
equations [9–14]. The resulting set of coupled equations is
then deterministic. The second approach, which we follow up
on in this work, is stochastic fluid dynamics, where an ex-
plicit stochastic noise term is included in the fluid dynamical
equations which are then solved event by event [15–24]. For
a comparison of the two approaches see [4,25]. The evolution
of fluctuations in simple diffusive systems is also studied in
[26,27].

Heavy-ion collision experiments at the CERN Large
Hadron Collider (LHC), the BNL Relativistic Heavy Ion Col-
lider (RHIC), at GSI, or the future FAIR, are expected to
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measure critical fluctuations in the event-by-event fluctua-
tions of particle multiplicities related to conserved charges of
QCD [28], such as net-proton number fluctuations [29,30]. By
varying the beam energy

√
sNN regions with different bary-

ochemical potential can be probed and when coming close to
the potential critical point the fluctuation observables should
grow large. So far most predictions have been formulated
based on thermodynamic calculations [31–38].

However, a direct comparison between theoretical predic-
tions at thermal equilibrium and experimental measurements
is not possible. In fact, the in- or out-of-equilibrium situation
of the fluctuations is not known a priori. In fact, earlier
discussions of a possible nonequilibrium situation point to
interesting effects [22,24,39–41]. Thermal fluctuations must
diffuse over the entire system before equilibrium can be
reached. In heavy-ion collisions, the impact of the violent
longitudinal expansion on the diffusive dynamics of the fluc-
tuations as well as the small lifetime of the medium of the
order of 10 fm/c may prevent fluctuations to diffuse suffi-
ciently and, thus, any equilibrium situation to occur both
during and at the end of the evolution. This effect is largely
enhanced for fluctuations near the critical point due to the
critical slowing down, e.g., the downscaling of the diffusion
length in the vicinity of the critical point [42].

The present study aims at investigating the competition be-
tween the diffusion and the expansion in heavy-ion collisions
and its impact on the dynamics of the critical fluctuations of
the net-baryon density. To achieve this, we use the prescrip-
tions in [19] and [22]. In [19] the stochastic diffusion is solved
analytically in the linear limit for a Bjorken expansion. In
[22] a stochastic diffusion equation (SDE) for the net-baryon
density fluctuations is studied, where the criticality is encoded
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in a free-energy functional containing nonlinear contributions.
Here, we revisit the construction of the free-energy functional
via the temperature parametrization of its second- and fourth-
order susceptibilities. This allows us to smoothly connect the
equilibrium properties in the scaling region coming from a
mapping of the three-dimensional (3D) Ising model into the
QCD phase diagram with lattice QCD calculations at van-
ishing baryochemical potential. The parametrization of the
susceptibilities also permits to fully incorporate the expansion
scenario into the equilibrium properties.

We first proceed to compare our results to the analytical
expectations obtained in the limit of a linearized free-energy
functional containing only a Gaussian second-order coupling.
This step is important for any stochastic formulation of the
dynamics. Then, for the full nonlinear model we study the
time evolution, the dependence on the diffusion length, and
the rapidity window dependence of the second- and fourth-
order fluctuation observables.

II. STOCHASTIC DIFFUSION EQUATION
FOR THE NET-BARYON DENSITY

In this section, we derive the stochastic diffusion equa-
tion and the corresponding noise correlator for a rapidly
expanding medium as created in ultrarelativistic heavy-ion
collisions. In this case, Milne coordinates represent a con-
venient choice. Then, we connect the derived evolution
equation with known properties of the phase transition be-
tween the quark gluon plasma (QGP) and the hadronic phase.

A. Stochastic diffusion in Milne coordinates

We start from the conservation equation for the net-baryon
number current four-vector Nμ,

∂;μNμ = 0, (1)

where Nμ can be expressed as Nμ = nBuμ + jμ [6] and ∂;μ

is a covariant derivative. Here, nB is the net-baryon density
and the conventionally deterministic, dissipative current jμ

receives an additional stochastic current contribution ξμ in
this work following

jμ = σT �μν∂ν

{μB

T

}
+ ξμ. (2)

This defines Nμ in the basis (uμ,�μν ), where uμ is the
fluid four-velocity and �μν = gμν − uμuν is the projec-
tion operator orthogonal to uμ. We use the metric tensor
gμν = diag(+,−,−,−). In Eq. (2), μB is the baryochemical
potential, T is the temperature, and σ is a mobility coefficient.
We will assume that the components of the stochastic current
are Gaussian white noise where, in line with the determinis-
tic part of the dissipative current in Eq. (2), the noise-noise
correlators are local in space and time and given as [43]

〈ξμ(X ) ξν (X ′)〉 = −2σT δ(4)(X − X ′)�μν. (3)

This guarantees that the fluctuation-dissipation balance is
locally respected such that the relative importance of the fluc-
tuations depends on the value of the transport coefficient.

Inserting Eq. (2) into Eq. (1) gives rise to a stochastic
diffusion equation which we discuss in the following. In

addition, we define the net-baryon number diffusion length
as D = σT/nc, where nc is a constant critical net-baryon den-
sity which we set, in Cartesian coordinates, to nc = 1/3 fm−3

throughout this work, and assume that the temperature cools
spatially homogeneous during the fireball evolution.

In our study, we model the dynamics of the medium
by a Bjorken-type expansion [44], i.e., we consider boost-
invariance in the longitudinal (collision axis) direction of the
created fireball. In this model, the fluid four-velocity reads
neglecting the transverse dynamics

uμ = 1

τ
(t, 0, 0, z). (4)

To arrive at a stochastic diffusion equation for the net-
baryon density in a rapidly expanding medium we introduce
Milne coordinates, i.e., proper-time τ = √

t2 − z2 and space-
time (Bjorken) rapidity y = 1

2 ln[(t + z)/(t − z)]. In these
coordinates Eq. (4) renders to uμ = (cosh y, 0, 0, sinh y) and
nB(τ, y) = τnB(t, z). We note that this provides a good ap-
proximation for the midrapidity region at very large collision
energies while for lower

√
sNN expected to be relevant for the

search of the QCD critical point this picture is less valid. In
fact, as discussed in [45], for lower beam energies μB and T
are expected to be y dependent with interesting consequences
for fluctuation observables.

Using the ansatz Eq. (4) in Eq. (2) one obtains a stochastic
diffusion equation for the net-baryon density of the form

∂τ nB(τ, y) = Dnc

τ
∂2

y

(
μB(τ, y)

T (τ )

)
− ∂yξ (τ, y). (5)

The noise field ξ (τ, y) = ξ (t, z), which is the y component of
ξμ in Eq. (3), obeys in Milne coordinates the autocorrelation

〈ξ (τ, y)ξ (τ ′, y′)〉 = 2Dnc

τ
δ(τ − τ ′)δ(y − y′). (6)

Equations (5) and (6) in Milne coordinates for a constant D
may be interpreted as describing a classical stochastic diffu-
sion with a diffusion length, which decreases as a function of
time as 1/τ .

In line with uμ in Eq. (4), the temperature cools during the
expansion with proper time as

T (τ ) = Ti

(
τ0

τ

)dc2
s

. (7)

This describes the temperature evolution starting from an
initial temperature Ti at initial proper time τ0 similar to the
Hubble expansion in cosmology. In this work we consider
d = 3 spatial dimensions and assume a constant squared
speed of sound c2

s = 1/3 for simplicity. For the numerical
results presented in this work we choose Ti = 500 MeV at
τ0 = 1 fm/c.

B. Free energy density functional

In order to solve Eqs. (5) and (6) we need to know μB/T
as function of τ and y along a given trajectory in the QCD
phase diagram. This can be achieved by making use of either
a suitable equilibrium equation of state or by using the ther-
modynamic relation between μB and the free energy density
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F reading

μB = δF

δnB
. (8)

In this work we pursue the latter approach.
The equilibrium properties of the medium can be described

by a free energy density for an expanding system

F [nB](τ ) = T (τ )
∫

dy d2x⊥

(
m2

2τn2
c

nB(τ, y)2

+ K

2τ 3n2
c

(∂ynB(τ, y))2 + λ4

4τ 3n4
c

nB(τ, y)4

)
. (9)

Here, m is an effective mass parameter connected with the
standard Gaussian diffusion and K is the surface tension pa-
rameter related to the kinetic energy of the net-baryon density
field. In addition, F includes a term proportional to the cou-
pling strength λ4 in order to study non-Gaussian net-baryon
density fluctuations arising from the resulting nonlinear dif-
fusion equation. The noise term in Eq. (5) ensures that the
equilibrium functional probability distribution is connected
with F in the standard way. We note that a similar functional
form has been considered in previous studies of the critical
dynamics of the net-baryon density, cf. [22,24].

Using the variational relation Eq. (8), we can determine
μB/T which expressed as a function of τ and y reads

μB

T
(τ, y) = m2

τn2
c

nB(τ, y) − K

n2
cτ

3
∂2

y nB(τ, y) + λ4

τ 3n4
c

nB(τ, y)3.

(10)

This renders Eq. (5), in general, into a nonlinear stochastic
evolution equation for nB(τ, y). The parameters m and λ4

are related to the thermodynamic susceptibilities of the net-
baryon density using the classical definition of the latter as

χ2 =
(

δ2(F/T )

δn2
B

∣∣∣∣
�nB=0

)−1

= τn2
c

m2
,

χ4 =
(

δ4(F/T )

δn4
B

∣∣∣∣
�nB=0

)−1

= τ 3n4
c

6λ4
. (11)

In the following, we will study the evolution of net-baryon
density fluctuation observables along trajectories of constant
μB. This implies that the susceptibilities, or the respective
parameters, are functions of T at fixed μB and, following
Eq. (7), are functions of τ . Injecting Eqs. (10) and (11) into
Eq. (5) we find

∂τ nB = Dnc

τχ2(τ )
∂2

y nB − DncK (τ )

τ
∂4

y nB

+ Dnc

6 τχ4(τ )
∂2

y nB
3 − ∂yξ . (12)

This constitutes an evolution equation directly for the net-
baryon density fluctuations nB(τ, y), and K (τ ) = K/τ 3 is
the Milne equivalent to the surface tension. The prefactors
Dnc/[τχ2(τ )] and Dnc/[6τχ4(τ )] in the SDE reveal the non-
trivial interplay between the diffusion length D, the expansion
dynamics with increasing proper time τ , and the equilibrium

properties of the medium encoded in the susceptibilities χ2

and χ4. In this respect the SDE in Eq. (12) for our particular
choice of the free energy density functional, like its general
version Eq. (5), intrinsically includes the nonequilibrium ef-
fects that we wish to discuss in this work.

C. Parametrization of the susceptibilities in the QCD
phase diagram

To model the equilibrium properties of the medium in
the QCD phase diagram, we employ parametrizations for the
second- and fourth-order susceptibilities following the proce-
dure advocated in [19]. To this end we split the susceptibilities
into a regular and a singular part, where the regular part
represents all noncritical contributions and the singular part
contains the contributions stemming from a conjectured QCD
critical point valid only in a specific scaling region around it,
via

χn(T ) = χ sing
n (T ) + χ reg

n (T ). (13)

The singular contributions in χ2 and χ4 are, by definition,
directly related to the singular contributions in the parameters
m and λ4 via χ

sing
2 = τn2

c/m2
sing and χ

sing
4 = τ 3n4

c/(6λ4,sing).
The latter, as functions of T and μB, are obtained from a
matching to the susceptibilities of the scaling equation of
state of the 3D Ising model [46] as explained in more de-
tail in [47]. Correspondingly, m2

sing and λ4,sing are functions
of the correlation length and given as m2

sing = (ξ0ξ
2)−1 and

λ4,sing = ncλ̃4(ξ/ξ0)−1. As in [22,24], we will use constant
values for the appearing parameters ξ0 = 0.48 fm and λ̃4 = 10
throughout this work. This implies, in particular, that χ4 in this
work shows no sign changes across the phase transition [48].
In this model the critical point is placed at Tc = 150 MeV and
μB,c = 390 MeV.

The regular part is given by the smooth connection be-
tween two limiting values, see [19], for low and high T in
the hadronic phase and for the quark gluon plasma (QGP)
following

χ reg
n (T ) = χH

0,n + (
χ

QGP
0,n − χH

0,n

)
S(T ), (14)

where

S(T ) = 1

2

(
1 + tanh

[
T − Tc

δT

])
(15)

accomplishes the smooth connection. In Eq. (15),
δT = 10 MeV is the width of the transition between the
limiting values. The parameters χ

QGP
0,n and χH

0,n are fixed
by imposing conditions for the values reached by the full
susceptibilities χn in Eq. (13) at an initial, high temperature
and at a final, low T . Numerical values for the latter will be
discussed in the following.

D. Connection with susceptibilities from lattice QCD

The relations in Eq. (11) define net-baryon number sus-
ceptibilities per unit volume expressed in Milne coordinates,
i.e., per unit of rapidity and transverse area. For relating
them to the lattice equilibrium susceptibilities, we follow the
arguments in [19,49]. At early times/high temperatures and
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FIG. 1. The late-time value (at T = 100 MeV) of the scaled
second-order cumulant of nB, σ 2/(χH

0,2�y) for a noncritical trajectory
as a function of the rapidity window �y for λ4 = 0 and several
constant values of K (τ ).

late times/low temperatures the equilibrium fluctuations per
unit of rapidity 〈�NB

2〉/�y are expected to be constant as a
function of temperature [19]. To obtain the limiting values
from lattice QCD results, we use the fact that the entropy
per unit rapidity S/�y is conserved as a function of τ in the
Bjorken expansion described by ideal fluid dynamics that may
be justified at sufficiently large collision energies. In this case
χ2 is proportional to

X2 = 〈�NB
2〉

S
= χB,latt

2

s/T 3
, (16)

during the time evolution. The temperature dependence of
X2 is obtained from lattice QCD results for χB,latt

2 and s/T 3

[50–52], which indeed approaches constants at low and high
T . By neglecting the proportionality coefficient S/�y, we
can therefore at high and low temperature identify χ2(τ )
with X2, for which from [50,51] we find as numerical values
X QGP

2 = 0.02 at T = 280 MeV for the QGP and X H
2 = 0.01

at T = 130 MeV in the hadronic phase. This allows us to
determine, in connection with lattice QCD results, values for
the parameters χ

QGP
0,2 and χH

0,2 needed for the parametrization
of χ2(τ ) discussed in Sec. II C.

We note that a strict identification of these quantities is
only possible in the linear Gaussian model (λ4 = K = 0),
where the quantitative values can be scaled with the respective
χH

2 . In this case, χ2(τ ) is equal to the equilibrium variance
of the net-baryon number at vanishing rapidity window, as
discussed in [19], for both the high-temperature QGP and the
low-temperature hadronic phase. For K → 0 this is verified
for our model, shown at late times in the hadronic phase, see
Fig 1. We show in addition the dependence of the second-
order cumulant of nB, σ 2 (as defined below), on the rapidity
window for a couple of values of K (τ ). Since in this work we
take K (τ ) = 2 fm−4 and look predominantly at �y = 1, we
expect a reduction of approximately 20% of the final value in
the hadronic phase, compared to the input from lattice QCD.

In order to extend the discussion to the fourth-order sus-
ceptibility per unit of rapidity and transverse area we make
use of known relations between χB

2 and χB
4 in the low and high

temperature phases. For low T , based on the hadron resonance

FIG. 2. The second-order (upper panel) and fourth-order (lower
panel) susceptibilities per unit of rapidity and transverse area as a
function of the temperature for different values of the baryochemical
potential. The values reached in the hadronic phase (at low T ) and in
the QGP (at high T ) are χH

2 = 0.01 fm−2, χ
QGP
2 = 0.02 fm−2, χH

4 =
0.01 fm−6, and χ

QGP
4 = 0.00135 fm−6.

gas model, one has χB
4 = χB

2 . For high T , by considering a
free gas of quarks and gluons, one finds χB

4 = 2/(3π2)χB
2 .

These relations are extended to determine X4 in connection
with X2 by dividing χB

2,4 with s/T 3. In line with recent lattice
QCD results [50,51] we use X H

4 = X H
2 in the hadronic phase

and X QGP
4 = 2/(3π2)X QGP

2 for the QGP as limiting values.
From these, values for the parameters χ

QGP
0,4 and χH

0,4 entering
the parametrization of χ4 are obtained. In Fig. 2, we show
the resulting parametrizations of the second and fourth order
susceptibilities per unit of rapidity and transverse area, χ2 and
χ4, as functions of T for different constant μB. We note that
for this work we ignore a possible μB dependence of χ

QGP
2(4)

and χH
2(4).

III. TWO-POINT FLUCTUATION OBSERVABLES
IN THE GAUSSIAN APPROXIMATION

In this section, the numerical results for simulations of the
SDE in the Gaussian approximation are shown to reproduce
analytic expectations which can be derived in this limit. This
is an essential step, as it confirms the ability of the numerics
to simulate the expected power spectrum of the fluctuations in
the linear approximation. For the numerics discussed in this
section we choose nB(τ0, y) = 0 as initial condition for the
net-baryon density fluctuations and D = 1 fm.
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We impose λ4 = 0 in the free energy density functional in
Eq. (9). The SDE in Eq. (12) then takes the following form:

∂τ nB = Dnc

τχ2(τ )
∂2

y nB − DncK (τ )

τ
∂4

y nB − ∂yξ . (17)

Since Eq. (17) is linear in the net-baryon density fluctua-
tions nB(τ, y), we can obtain a formal solution for the spatial
Fourier transform of the fluctuations as

nB(τ, q) = nB(τ0, q) e−q2d (τ0,τ )2/2−q4k(τ0,τ )4/4

+
∫ τ

τ0

iq ξ (τ ′, q) e−q2d (τ ′,τ )2/2−q4k(τ ′,τ )4/4 dτ ′,

(18)

where τ0 is the initial proper time. In Eq. (18), the time-
integrated diffusion and surface tension coefficients for
the expanding medium between two proper times τ1 < τ2,
d (τ1, τ2) and k(τ1, τ2), appear and are defined as

d (τ1, τ2)2 = 2Dnc

∫ τ2

τ1

1

τ ′χ2(τ ′)
dτ ′, (19)

k(τ1, τ2)4 = 4Dnc

∫ τ2

τ1

K (τ )

τ ′ dτ ′. (20)

The solution for nB(τ, q), Eq. (18), allows us to analytically
study the evolution of fluctuations in the continuum limit. In
the Gaussian approximation, only two-point fluctuation ob-
servables are relevant for which we present the structure factor
and its inverse Fourier transform, the two-point correlation
function, at equal proper time in the following.

A. Structure factor at equal proper time

From the continuum solution in Eq. (18) we may con-
struct the two-point correlation function in Fourier space at
equal proper time as G(τ, q1, q2) = 〈nB(τ, q1) nB(τ, q2)〉. For
a translationally invariant system all information is contained
in the structure factor which, because nB(τ, y) is real, is related
to the two-point correlation function with q1 = −q2 via

S(τ, q1)δ(q1 + q2) = G(τ, q1, q2). (21)

Assuming that there are no correlations between differ-
ent modes qi and q j of the noise field for all proper times
τ , i.e., 〈ξ (τ, qi ) ξ (τ, q j )〉 = 0, and between the initial net-
baryon density fluctuations and the noise for all τ � τ0, i.e.,
〈nB(τ0, qi ) ξ (τ, q j )〉 = 0, we find the following structure fac-
tor in the Gaussian approximation:

S(τ, q) = S(τ0, q) eα(q)d (τ0,τ )2+β(q)k(τ0,τ )4/2

+ γ (q)
∫ τ

τ0

dτ ′

τ ′ eα(q)d (τ ′,τ )2+β(q)k(τ ′,τ )4/2, (22)

where

α(q) = −q2,

β(q) = −q4, (23)

γ (q) = 2Dncq2.

Here, S(τ0, q) is the inverse Fourier transform of the correla-
tion function for the initial net-baryon density fluctuations.

A direct comparison between Eqs. (22)–(23) and our nu-
merical calculations is not possible due to the lattice spacing
dependence of the amplitude of the noise in the discretized
space-time. Therefore, we derive a formal solution for nB in
discretized space for the Gaussian limit and find the associated
structure factor at finite lattice spacing δy, see Appendix for
more details. This discretized solution depends on the partic-
ular discretization scheme used for the numerical integration.
We find S(τ, q) to be formally the same as in Eq. (22) but the
discretized counterparts of the coefficients in Eq. (23) now
read

α(q) = −2(1 − cos(�q))

δy2 ,

β(q) = −4(1 − cos(�q))2

δy4 , (24)

γ (q) = 8Dnc

δy2 sin(�q/2)2.

Here, �q = q δy for a cell-size in space-time rapidity δy de-
fined as δy = L/N , where N is the number of cells in the y
direction within L units of rapidity. Correspondingly, only a
finite number of discrete modes with wave-vector length q are
realized.

We note that in the limit �q → 0 the coefficients in
Eq. (24) tend to those in Eq. (23). Therefore, the structure fac-
tor in discretized space approaches its continuum counterpart
either for small q at a given δy or with increasing resolution
δy → 0.

A comparison between the continuum solution (solid
line), the results of our numerical calculations (sym-
bols), and the discretized solutions (dashed lines) for
different resolutions δy at two different T and two dif-
ferent μB is presented in Fig. 3. Here, we vary N
while keeping L = 20 fixed. Because of the symme-
try property of the discretized structure factor S(τ, κ ) =
S(τ, N − κ ) we show the results only for 0�κ�N/2.
The wave number κ = Lq/(2π ) ranging from 0 to N is used
to have a coherent variable for continuum, discretized and
numerical calculations. For the chosen initial condition we
have S(τ0, q) = 0 and Eq. (22) simplifies significantly. We
observe that the numerical results perfectly reproduce the
analytic expectations in discretized space for all T and μB and
resolutions. Moreover, as N is increased the structure factor
approaches more and more the continuum result. For N = 128
we find already a reasonable agreement between the numerics
and the continuum for small and intermediate wave numbers.
For this reason and to optimize the computational effort, we
choose N = 128 in the remainder of this work.

In Fig. 3, we observe that far away from the critical point,
at μB = 0 MeV, the power spectrum of the fluctuations re-
mains almost unchanged when approaching the pseudocritical
temperature as expected from the behavior of χ2. For the
trajectory at μB = 350 MeV, which passes near the critical
point, one finds the expected significant enhancement in the
amplitude of the fluctuations at T = Tc (note the different
scale of the y axis). Moreover, we observe a slight shift in
the position of the maximum of S(τ, κ ) toward larger wave
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FIG. 3. The structure factor S(τ, κ ) of the net-baryon density fluctuations at T = 400 MeV (left panels) and at T = Tc = 150 MeV (right
panels) as a function of the wave number κ = Lq/(2π ). The continuum solution (solid line) is compared to our numerical results (symbols)
and the solutions in discretized space (dashed lines) for different numbers of cells N = 32, 64, 128, 256 within L = 20 units of rapidity. In the
upper panels the comparison is shown for a trajectory at constant μB = 0 MeV far away from the critical point and in the lower panels for a
trajectory with μB = 350 MeV passing near the critical point.

numbers κ , i.e., smaller wavelengths. In contrast, far outside
the critical region for T = 400 MeV the result resembles the
situation on the noncritical trajectory.

B. Correlation function at equal proper time

The two-point correlation function of the net-baryon
density fluctuations in the Gaussian approximation can be
obtained by calculating the inverse Fourier transform of the
structure factor in Eq. (22). Its behavior as a function of
proper-time and space-time rapidity is strongly affected by
the size of the system and the total charge conservation, the
diffusion length, and the expansion rate.

In Fig. 4, the correlation function for the Gaussian limit
is presented at T = Tc for a critical and a noncritical trajec-
tory. In contrast to the analytic expectation for infinite and
static systems, the correlation function for a finite and rapidly
expanding system becomes negative at a certain distance in
rapidity. This reflects the conservation of the net-baryon num-
ber, since in a finite system the integral of the correlation
function over the entire system must vanish. In an expanding
medium large fluctuations are balanced locally by an anti-
correlation and the correlation function goes back to zero
for large distances. It is expected that with increasing D this
anticorrelation is diffused over the entire finite system, as seen
in [24]. In Fig. 4 one clearly observes that as one approaches
the critical point with increasing μB, correlations increase
significantly at small distances and, as a consequence, the
anticorrelations are also enhanced and remain visible over a
rather large region in space-time rapidity up to y ≈ 1–2.5 for
the considered D = 1 fm.

Note that in a dynamical system the resolution dependence
of the correlation function is not limited to small rapidities,

as the corresponding change in the anticorrelations is not
diffused over the entire system. Therefore, we observe in
Fig. 4 a slight difference between the discretized (numerical
and analytical) results and the continuum result.

The presented studies of the resolution dependence of the
structure factor and of the impact of total charge conservation
on the correlation function in a finite-size system serve as
successful benchmark tests for our numerical approach. In
addition, we observe the basic effect of an increase of the
fluctuations as the critical point is approached with increasing
μB. This motivates us to proceed and include as a next step the

FIG. 4. The correlation function at equal proper time in the Gaus-
sian approximation as a function of space-time rapidity for different
trajectories with constant μB at T = 150 MeV. The symbols repre-
sent our numerical results, and the solid and dashed lines are the
analytic solutions obtained through inverse Fourier transformation
of the continuum and the discretized structure factor, respectively.
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nonlinear coupling term, see Eq. (12). In this case, no analytic
expressions are available.

IV. DYNAMICS OF FLUCTUATION OBSERVABLES

In this section, we apply the full SDE, as given in Eq. (12),
in order to study the dynamics of the higher-order cumulants
of the net-baryon density fluctuations. We then investigate
the dependence on the diffusion length D and the considered
rapidity window �y.

At τ0, we expect that the subsequent expansion smoothly
follows the pre-equilibrium phase (not treated in our ap-
proach) in which correlations in space have already built up.
For the results discussed in this section we therefore construct
initial conditions that allow us to continue the expanding
evolution, according to the SDE in Eq. (12), without creating
discontinuities. When we start solving Eq. (12) numerically,
the algorithm needs a certain number of iterations to converge
to the true solution, in particular when nonlocal correlations
need to build up. To achieve this, we perform a significant
amount of numerical evolution steps at fixed Ti = 500 MeV at
τ0 = 1 fm/cm before we let the system expand and cool.

We calculate the second- and fourth-order cumulants of
the net-baryon density distribution in a given rapidity win-
dow �y. They are related to the variance and the kurtosis
of these distributions. To compute these quantities, the in-
tegral over �y is calculated symmetrically for each noise
configuration i,

n�y,i(τ ) =
∫ �y/2

−�y/2
nB,i(τ, y)dy, (25)

where nB,i refers to the field of net-baryon density fluctuations
for the noise configuration i. From the distribution of n�y,i(τ )
over the noise configurations the nth centered moments can be
calculated as

mn,�y(τ ) = 1

Nconf

Nconf∑
i=1

(n�y,i(τ ) − 〈nB〉)n (26)

with 〈nB〉 the mean value of the distribution of n�y,i(τ ) over
the different noise configurations and the sum runs over the
number of noise configurations, Nconf. The cumulants κn,�y

are then defined at order 2 and 4 from the moments using the
following formula:

κ2,�y(τ ) = m2,�y, κ4,�y(τ ) = m4,�y − 3m2,�y. (27)

In particular, the second- and the fourth-order cumulants,
κ2 and κ4, are related to the variance σ 2 and the kurtosis κ via
the relations

σ 2 = κ2,�y, κ = κ4,�y

κ2
2,�y

. (28)

By looking at integrated quantities such as defined in
Eq. (25), we avoid any residual lattice spacing dependence
in a one-dimensional system like the longitudinal expansion
studied here. It also allows us to study the dependence of the
fluctuation observables on the rapidity window �y.

FIG. 5. The second (upper panel) and fourth (lower panel) order
cumulants of nB within a space-time rapidity window of �y = 1 as a
function of proper-time for different constant μB (the corresponding
temperature is displayed on the upper x axis). The vertical dashed-
line indicates the proper time where the pseudocritical temperature
is reached. Here, the diffusion length is set to D = 1 fm.

A. Time evolution of fluctuation observables

It is instructive to study the time evolution of the fluc-
tuation observables in order to understand their behavior
in the region of the phase diagram where the chemical
freeze-out occurs. In Fig. 5, the second and fourth order in-
tegrated cumulants of the net-baryon density averaged over
2.25 × 106 noise configurations are presented for different
values of μB. The noncritical trajectory μB = 0 MeV accounts
for the behavior of the background fluctuations (solid lines
in Fig. 2) namely a smooth connection between the QGP
and the hadronic values. As expected from the discussion of
Fig. 1, we observe a reduction of about 20% in σ 2 at low T
compared to the second-order susceptibility for a finite value
of K (τ ).

The fluctuations are largely affected by the presence of a
critical point (see Fig. 5) despite the rapid expansion in the
longitudinal direction. More precisely, after the susceptibili-
ties reach their peak values at T = 150 MeV (dashed vertical
line), the variance and the kurtosis show also a peak value
which increases when μB approaches the critical baryochem-
ical potential μB,c = 390 MeV. Moreover, in comparison to
the susceptibilities (see Fig. 2) the critical signals are clearly
visible in a broadened temperature region. The kurtosis is
negative which for positive λ4 (and in the absence of a cubic
coupling) can already be anticipated from the leading-order
term in [34]. To probe the sensitivity of the observed signal
on the freeze-out conditions, an alternative point of view is
presented in Fig. 6. The integrated second- and fourth-order
cumulants are shown as a function of μB for different temper-
atures. Consistently with the result in Fig. 5 a nonmonotonic
behavior is observed for the critical trajectories (μB > 0 MeV)
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FIG. 6. The second (upper panel) and fourth (lower panel) order
cumulants of nB within rapidity window �y = 1 as a function of
μB for different fixed T and D = 1 fm. The colored bands highlight
the statistical uncertainties in the cumulants for a total number of
2.25 × 106 noise configurations.

on a range of �T ∼ 20 MeV around T = 150 MeV corre-
sponding to a time interval of �τ ∼ 0.6 fm.

Finally, in Fig. 7 we look at the correlation function for
the reference trajectory without criticality at μB = 0 MeV and
the most critical trajectory at μB = 350 MeV for different
temperatures. As in Fig. 4, we observe an enhancement of the
positive correlations within a range of one unit of rapidity for
the critical trajectory near Tc. Beyond this an anticorrelation

is observed at intermediate rapidities due to global charge
conservation. Experimentally, it might be interesting to not
only look for the strong enhancement of net-baryon fluctu-
ations in a small rapidity window, but also for the strong
anticorrelation of baryons at intermediate rapidity.

B. Diffusion length dependence of fluctuation observables

The diffusion length D in Eq. (12) is inversely related to the
relaxation time τr of the fluctuations, see [24]. In our study the
diffusion of the fluctuations competes with the rapid expan-
sion of the system. It can be expected that for small diffusion
lengths D the system cannot reach equilibrium because the
expansion occurs much faster. In the opposite limit of large
diffusion lengths D the fluctuation observables should quali-
tatively resemble those studied in static systems, cf. [22,24].
In Fig. 8, we show the dependence of the cumulants on the
diffusion length and thus on the relaxation time. At fixed
(assumed) freeze-out temperature Tf = 145 MeV the strength
of the fluctuation observables in the rapidity window �y = 1
increases for all considered trajectories when we increase
the diffusion length. For very small diffusion lengths it is
found that the critical signals at freeze-out are only slightly
increasing when approaching the critical point with increasing
μB. In this case the rapid expansion of the system has almost
completely washed out the critical signal. When we look at the
correlation function for different diffusion lengths D in Fig. 9,
we clearly observe the transition from expansion-dominated,
i.e., small D, to diffusion-dominated, i.e., large D, behavior.
For small D the anticorrelation that develops due to charge
conservation is trapped at smaller rapidity, while with in-
creasing D it diffuses more and more into the entire system
and the correlation function starts to resemble the one we
know from static systems [22,24]. This study demonstrates
that the precise determination of this parameter is important
for obtaining quantitative results.

FIG. 7. The correlation function of nB as a function of the spatial rapidity y for different fixed T and D = 1 fm.
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FIG. 8. The second (upper panel) and fourth (lower panel) order
cumulants of nB within rapidity window �y = 1 as a function of μB

for different values of the diffusion length D at fixed T = 145 MeV.
The colored bands correspond to the statistical uncertainties in the
cumulants for 2.25 × 106 noise configurations.

C. Rapidity dependence of fluctuation observables at freeze-out

In the experimental situation, the fluctuations will always
be measured in a certain rapidity window and be limited by the
total rapidity acceptance of the detector. Using the definition
of the integrated quantities defined via Eq. (25), we can study
the fluctuation observables as a function of the rapidity win-
dow at the (assumed) freeze-out temperature Tf = 145 MeV.
In Fig. 10, we compare the second and fourth order integrated
cumulants of the net-baryon density fluctuations as defined in
Eqs. (26)–(28) at Tf for several values of μB. A monotonic

FIG. 9. The correlation function of nB as a function of the spatial
rapidity y for different D at μB = 350 MeV and T = 145 MeV.

FIG. 10. The second (upper panel) and fourth (lower panel) order
integrated cumulants of nB as a function of the rapidity window
�y at T = 145 MeV for different trajectories at constant μB. Here,
the diffusion length is set to D = 1 fm. The error bands indicate
statistical uncertainties for 2.25 × 106 noise configurations.

increase of the second-order cumulant (upper panel) can be
observed for all trajectories. This second-order cumulant cor-
responds to the double integral over the point-wise correlation
function and can be expressed as [19]

σ 2 =
∫ �y/2

−�y/2

∫ �y/2

−�y/2
〈nB(τ, y1)nB(τ, y2)〉dy1dy2,

=
∫ �y

−�y
(�y − |ȳ|)〈nB(τ, ȳ)nB(τ, 0)〉dȳ, (29)

where the correlation function only depends on the difference
ȳ = y1 − y2. Since the simple integral over the correlation
function in terms of ȳ is zero when the integration area ap-
proaches half of the system size (due to charge conservation
and symmetry) the double integral plateaus at the same point.
We point out that the shape of these curves is qualitatively
consistent with the results shown in [38].

The fourth-order cumulant presents a qualitative change in
its shape between the noncritical trajectory at μB = 0 MeV
and the trajectories impacted by the critical point. For a dy-
namically expanding system with charge conservation this is
different from the curves shown in [38]. For the noncritical
trajectory the rapidity window dependence is monotonically
decreasing, and for critical trajectories it is non-monotonic
with a pronounced minimum. This nonmonotonic behavior of
the fourth-order cumulant survives the rapid expansion of the
system for a diffusion length D = 1 fm and consequently, if
observed experimentally, is a strong indication for the pres-
ence of the critical point.

We note that in a heavy-ion collision different rapidities
y probe different regions in T and μB. Accounting for this
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FIG. 11. The second (upper panel) and fourth (lower panel) order
integrated cumulants as a function of the rapidity window �y at
T = 145 MeV and μB = 350 MeV for different values of the diffu-
sion length D. The error bands highlight statistical uncertainties for
2.25 × 106 noise configurations.

effect has interesting consequences for the rapidity depen-
dence of fluctuation observables, see the discussion in [45].
A quantitative inclusion into the context of our work would
be highly sensitive to additional parameters. For this reason,
we refer such a detailed discussion to a work in the future.
Qualitatively, however, one may already conclude that as a
consequence of the necessary averaging over more and more
trajectories with increasing �y, the signature of the critical
point in the shown fourth-order integrated cumulants may
even be sharpened and accompanied by a shift of the ex-
tremum position toward larger �y.

Finally, we show the same rapidity-window dependence of
the cumulants for different values of the diffusion length D
at Tf and for μB = 350 MeV in Fig. 11. Again, we observe
that both cumulants are strongly impacted by the choice of
the diffusion length D. For the fourth-order cumulant the non-
monotonic structure may be completely lost for small values
of D, even for the most critical trajectories. In this case, the
rapid expansion would wash out the critical signals even quali-
tatively. We note that for the value of D = 1 fm applied mostly
in this work the critical signal survives the rapid expansion of
the medium. It is also interesting to observe that for increasing
diffusion length the minimum moves to larger distances in
rapidity. So while the signal becomes stronger it would be
essential for the experimental setup to cover a wide range in
rapidity to see the nonmonotonicity.

V. CONCLUSIONS

In this work we presented a dynamical treatment of
the critical fluctuations of the net-baryon density in the

context of heavy-ion collisions. We formulated the stochastic
diffusion equation for a system undergoing a longitudinal
Bjorken expansion. During this expansion the system evolves
along different trajectories in μB. At μB = 0 MeV, there is
no critical contribution and this trajectory serves as the ref-
erence. Increasing μB, the critical point is approached and
the criticality increases. This behavior in the phase diagram
is characterized by a free-energy density functional. Via the
second- and the fourth-order susceptibilities it contains a crit-
ical contribution in the scaling region, which is obtained from
the 3D Ising model, while the regular contributions far from
the critical point are constructed in line with lattice QCD
calculations.

First, we showed the accurateness of our numerical imple-
mentation by comparing the numerical results to analytical
discretized expectations in the Gaussian approximation. We
demonstrated that the continuum solution is approached as
the lattice spacing is decreased. The structure factor and the
equal-time correlation function are properly reproduced. We
saw the impact of net-baryon charge conservation on the
correlation function leading to significant anticorrelations at
intermediate rapidities. This benchmarking step is very impor-
tant to ensure that the inclusion of the stochastic noise term is
done correctly.

Then, by using the full nonlinear model we have access not
only to the variance but also to the fourth-order cumulant of
the fluctuations. We could show that during the time evolution
critical signals develop for all critical trajectories and that they
are larger the closer the critical point is approached. Com-
pared to the input equilibrium susceptibilities we see that the
dynamical evolution broadens the critical signal and moves
the results for the different μB trajectories further apart. As
experimentally we have access to only one value of this time
evolution, corresponding to the freeze-out conditions of the
fluctuation observable, we showed the increase of the critical
signal as a function of μB for given temperatures. As the
temperature is lowered the increase is seen only very close
to the most critical trajectory.

In our model the diffusion length is an input parameter,
which we have chosen to be of the typical length scale in the
QGP, D = 1 fm. By changing this parameter we can study
the interplay between the expansion and the diffusion and
especially its impact on the critical fluctuations. We observe
that the diffusion length has a strong impact on the cumu-
lants of the net-baryon density fluctuations due to its relation
to the relaxation time of the fluctuations. If the diffusion
length is significantly shorter than the length scale associated
with the expansion, local fluctuations cannot diffuse to form
long-range correlations and the anticorrelations, which orig-
inate from charge conservation, are equally trapped at short
distances in rapidity. This decreases the size of fluctuation
observables. For larger diffusion lengths the (anti)correlations
are spread over larger distances and, for example, the corre-
lation function approaches the form in a static system. The
diffusive properties of the QGP and the hadron gas are thus of
major significance for critical point studies.

Finally, we have studied the dependence of the second- and
the fourth-order cumulants on the rapidity window. While the
variance increases for larger rapidity windows and plateaus
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at half the system size, the fourth-order cumulant shows a
pronounced minimum between �y = 1–2. The amplitude of
this minimum grows as we approach the critical point. The
reference trajectory at μB = 0 does not show this nonmono-
tonicity, which is thus a robust signal of criticality.

In the future we want to couple the diffusion of the
net-baryon density fluctuations to fluctuations in the fluid
dynamical fields, i.e., energy density and momentum density.
In order to quantify the two main physics consequences of
this work—look out for anticorrelations of baryons and the
nonmonotonic behavior of the fourth-order cumulant as a
function of rapidity window—we plan to include a particliza-
tion scheme such as in [41] and provide calculations for actual
particle numbers.
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APPENDIX: NUMERICAL IMPLEMENTATION

In this Appendix, we provide details on the specific dis-
cretization scheme used for our numerical calculations and on
the associated analytic expressions in discretized space. In this
work, we use a simple Euler forward in time centered in space
scheme for the discretization of Eq. (12) which reads

ni+1
j = ni

j + Dnc

τiχ2(τi )

δτ

δy2

(
ni

j+1 − 2ni
j + ni

j−1

)
− DncK (τi )

τi

δτ

δy4

(
ni

j+2 − 4ni
j+1 + 6ni

j − 4ni
j−1 + ni

j−2

)
+ Dλ4(τi )

ncτi

δτ

δy2

((
ni

j+1

)3 − 2
(
ni

j

)3 + (
ni

j−1

)3)
−

√
2Dncδτ

τiδy3

(
W i

j+1 − W i
j

)
. (A1)

Here, the lower index j accounts for the site of cell j
in space-time rapidity y and the upper index i for the
time-step i in the temporal evolution, such that τi = τ0 +
iδτ . Accordingly, ni

j quantifies the cell average of the net-
baryon density fluctuations ñB(τi, y j ) at τi and cell position

y j = −L/2 + jδy. For the increment in proper time δτ we
choose δτ = 0.2 (δy)4nc/(8KD) for stability reasons, while
the resolution in space-time rapidity is defined as δy = L/N
for N sites. Throughout this work we consider L = 20 units of
space-time rapidity for the total size of the system. Finally, W i

j
represents a centered Gaussian white noise with unit variance
at τi and y j .

In Eq. (A1), all terms have an explicit proper-time depen-
dence. This makes, even in the Gaussian approximation with
λ4 = 0, an analytic calculation of the structure factor at equal
proper time τi very difficult. For this reason, we instead choose
to consider Eq. (12) for discretized space-time rapidity but
continuous proper time which reads

∂τ n j (τi ) = Dnc

τiχ2(τi )

1

δy2 (n j+1(τi ) − 2n j (τi ) + n j−1(τi ))

− DncK (τi )

τi

1

δy4 (n j+2(τi ) − 4n j+1(τi ) + 6n j (τi )

− 4nj−1(τi ) + n j−2(τi ))

+ Dλ4(τi )

ncτi

1

δy2

(
n j+1(τi )

3 − 2n j (τi )
3 + n j−1(τi )

3
)

−
√

2Dnc

τiδy3 (Wj+1(τi ) − Wj (τi )). (A2)

From Eq. (A2) in the Gaussian approximation with λ4 = 0
a formal solution for nq(τi ) equivalent to Eq. (18) but for
discrete values of q can be obtained after spatial Fourier
transformation. From this the structure factor at equal proper
time Sq(τi ) is calculated and found to have the same form
as S(τi, q) in Eq. (22) with coefficients α(q), β(q), and γ (q)
given in Eq. (24). It is Sq(τi ) which is presented in Fig. 3 as
analytic solutions in discretized space by dashed lines. The
almost perfect agreement with our numerical results shows
that with the chosen proper-time increment δτ we are already
sufficiently close to the temporal continuum limit. We have
numerically verified that this is indeed the case by varying δτ

within the stability range.
In the numerics, one may exploit Eq. (A1) in order to

prepare equilibrated initial conditions prior to the rapid cool-
ing and expansion as used in Sec. IV. This is accomplished
by iterating Eq. (A1) for sufficiently many numerical steps
without actually advancing the proper-time argument from τ0

and lowering the temperature from Ti.
Only after equilibrium is reached, which may be veri-

fied from the iteration-step independence of local fluctuation
observables or the correlation function for example, the dy-
namical evolution in line with Eq. (7) is switched on.
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