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Effect of global momentum conservation on longitudinal flow decorrelation
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We calculate the longitudinal flow decorrelation coefficients, i.e., rn(η, ηr ) for n = 2, 3, in the presence of
hydro-like flow and the global momentum conservation (GMC) constraint. The longitudinal flow decorrelation
is weakened due to the GMC constraint. The GMC effect is sensitive to the total number of particles involved
in GMC, the average longitudinal momentum, the transverse momentum, and the reference pseudorapidity.
Our results of the r2(η, ηrA)/r2(η, ηrB ) ratio between two reference pseudorapidity bins are consistent with the
experimental measurements. We predict that the modification effect of GMC on longitudinal flow decorrelation is
more noticeable at BNL Relativistic Heavy Ion Collider energies than at CERN Large Hadron Collider energies.
Our finding provides a new perspective for understanding the longitudinal flow decorrelation in relativistic
heavy-ion collisions.
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I. INTRODUCTION

Experiments at the relativistic heavy-ion colliders create
excellent opportunities to study the hot and dense deconfined
phase of quarks and gluons, commonly known as the QGP
(quark-gluon plasma) [1–4]. The azimuthal anisotropic flow
of hadrons in heavy ion collisions is critical evidence for
collective expansion [5–8]. The relativistic viscous hydro-
dynamical framework thus has emerged as one of the most
successful descriptions of the fireball evolution [9–21]. For
the past two decades, the flow behavior has been studied
extensively to understand the initial state of the collisions and
the transport properties of the strongly interacting quantum
chromodynamics (QCD) medium [22–33].

The anisotropic flow parameters depict the harmonic
modulation of the particle density distribution along the
azimuthal direction, i.e., dN/dφ ∝ 1 + 2

∑∞
n=1 vn cos[n(φ −

ψn)], where vn characterizes the strength of the nth or-
der of anisotropic flow and ψn is the corresponding event
plane angle. The boost invariant hydrodynamical framework
particularly has been very successful in predicting the be-
havior of flow observable (i.e., vn) of different hadrons and
their relative fluctuations at midrapidity for various symmet-
ric collision systems (A + A) at the BNL Relativistic Heavy
Ion Collider (RHIC) and the CERN Large Hadron Collider
(LHC) [34]. However, recent developments in the theory and
experiments have shown that we require a more realistic 3 + 1
hydrodynamic framework with fluctuating three-dimensional
(3D) initial conditions to describe the copious production
of particles and their flow observables along the rapidity
direction [35–38]. The experiments incorporating various
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asymmetric and small collisions at RHIC and the LHC have
witnessed the breaking of flow factorization in both trans-
verse momentum and rapidity directions [39]. One measured
observable related to the breaking of flow factorization in
the rapidity direction is called the longitudinal flow decor-
relation coefficient [i.e., rn(η, ηr )], which provides important
insights regarding the longitudinal structure of the fireball
produced in heavy-ion collisions, i.e., vn(η1) �= vn(η2) and
ψn(η1) �= ψn(η2) for η1 �= η2 [40–42]. For example, the CMS
and ATLAS collaborations have measured the longitudinal
flow decorrelation coefficients for Pb + Pb and p+Pb colli-
sions for different centrality bins at 2.76A TeV and 5.02A TeV
[43,44]. The ATLAS collaboration has also studied the sys-
tem size dependence of the longitudinal flow decorrelation
coefficients with Xe + Xe collisions at 5.44A TeV [45]. The
STAR collaboration has taken a similar initiative to study the
coefficients for Au + Au collisions at different beam ener-
gies [46], for Ru + Ru and Zr + Zr collisions at 0.2A TeV [47].
The physics explanation for the longitudinal flow decorrela-
tion is thought to be due to the twist of event plane angles
of initial torqued fireball [48,49] or initial-state longitudinal
fluctuations [50–52]. The initial spatial decorrelation in the
longitudinal direction is finally transferred into the measured
longitudinal flow decorrelation through the final state evolu-
tion [53–57].

The longitudinal flow decorrelation coefficient measures
the correlation between two flow vectors at two symmetric
rapidity bins. The absence of collectivity in an expanding
system produces maximum decorrelation, i.e., rn(η, ηr ) ≈ 0,
whereas the boost invariant type of longitudinal flow invokes
maximum correlation (or minimum decorrelation). The boost
invariance is not a realistic way to deal with 3D expansion,
since the initial state fluctuations along the rapidity play an
essential role in the outcome of the flow coefficients. In con-
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trast to flow, there is a correlation known as the “non-flow”
contribution. The momentum conservation can be consid-
ered as one of the sources for “non-flow” [58–60], which is
satisfied by any final state interactions. Considering the trans-
verse momentum conservation (TMC) and hydro-like flow,
the multiparticle cumulants at midrapidity have been studied
elaborately in Refs. [61–63]. The studies found that the non-
flow contribution from TMC cannot be ignored to understand
the true flow contribution in small collision systems, because
the TMC contribution is more significant for particles with
higher transverse momenta and for systems with a smaller
number of particles. In this paper, we aim to explore the
contribution of global momentum conservation (GMC) on
the longitudinal flow decorrelation in relativistic heavy-ion
collisions.

Our paper is organized as follows. In Sec. II, we derive
the two-particle azimuthal correlation under the influence of
GMC. Section III is dedicated to finding out the longitudi-
nal flow decorrelation parameter rn(η, ηr ) in the presence of
hydro-like flow and GMC. Section IV discusses a parametric
form of particle production from 3D ideal hydrodynamic evo-
lution to obtain some key parameters. We present our main
results about the effects of global momentum conservation
on the longitudinal flow decorrelation in Sec. V. Finally, we
summarize in Sec. VI.

II. TWO-PARTICLE AZIMUTHAL CUMULANT
FROM GMC

For a system consisting of N number of particles, the
N-particle joint probability distribution function upon full
phase-space integration normalizes to unity. Any M-particle
observable (M < N) is calculated using M-particle joint prob-
ability distribution function in momentum space, which is
expressed as f (p1, p2, p3, . . . , pM) [58–60]. The M-particle
joint probability distribution can be expressed as the prod-
uct of M-single particle distributions if the M momenta are
independent. However, the M momenta are not independent
of each other. Consequently, the joint probability distribution
function includes additional terms. For two- and three-particle
cases, the joint probability distributions look as follows:

f (p1, p2) = fc(p1) fc(p2) + fc(p1, p2),

f (p1, p2, p3) = fc(p1) fc(p2) fc(p3) + fc(p3) fc(p1, p2)

+ fc(p2) fc(p1, p3)

+ fc(p1) fc(p2, p3) + fc(p1, p2, p3), (1)

where each term is a cumulant corresponding to the distinct
partition of M particles. Here, the single particle cumulant
corresponds to the single particle probability distribution
function, i.e., fc(p) = f (p) and the product of single-particle
cumulant is known as the “indirect” correlation term. In
contrast, the M-particle cumulant [i.e., fc(p1, p2, . . . , pM )]
represents the “direct” correlation term of M particles.

In Refs. [59,60], a systematic way of obtaining the
cumulants using generating function has been presented.
First, we define the generating function of joint probability

distribution as

G(x1, x2, . . . , xN ) = 1 + x1 f (p1) + x2 f (p2)

+ . . . + x1x2 f (p1, p2) + . . . , (2)

where x1, x2, . . . , xN are auxiliary variables. To obtain the
“direct” cumulant terms, we take the logarithm of Eq. (2),

ln G(x1, x2, . . . , xN ) = 1 + x1 fc(p1) + x2 fc(p2)

+ . . . + x1x2 fc(p1, p2) + . . . , (3)

where the coefficient of x1x2 . . . x j represents the correspond-
ing cumulant term fc(p1, p2, p3, . . . , pj).

A. Two-particle cumulant from GMC

Momentum conservation is one such constraint that re-
stricts the momentum of particles to be not independent of
each other. Next, we discuss how momentum conservation
changes the joint probability distribution function. In the
center of mass frame for a N particle system, the sum of
N-momenta is always zero, i.e., p1 + p2 + p3 + . . . + pN = 0
in three-dimensional momentum space. Thus, the joint N-
particle probability distribution can be represented as [59,60]

f (p1, p2, p3, . . . , pN)

= 1

A
δ3(p1 + p2 + p3 + . . . + pN) F (p1)F (p2)F (p3)(pN),

(4)

where A is an overall normalization constant, F (p) is the
single-particle ‘unnormalized’ probability distribution func-
tion, and δ3(p1 + p2 + p3 + . . . + pN) is for the global
momentum conservation (GMC) constraint.1 Now the two-
particle joint distribution from the above equation can be
obtained by integrating over all N − 2 momenta as follows:

f (p1, p2) = 1

A

⎛
⎝ 2∏

j=1

F (pj)

⎞
⎠∫

δ3(p1 + p2 + p3 + . . . + pN)

×
N∏

j=3

[F (pj)dpj]. (5)

Note that in the absence of GMC constraint, F (p) = f (p) and
the joint probability distribution function simply factorizes to
the product of two single-particle distribution functions.

For large N , we approximate the two-particle joint proba-
bility distribution (or two-particle cumulant) [59] as

f (p1, p2) = F (p1)F (p2)

× exp

[
− p1,x p2,x

N
〈
p2

x

〉
F

− p1,y p2,y

N
〈
p2

y

〉
F

− p1,z p2,z

N
〈
p2

z

〉
F

]
, (6)

where x, y, and z axes are three principal axes that diagonalize
the tensor 〈p ⊗ p〉. The z axis, conventionally, denotes the
beam axis, whereas the x axis represents the direction of the

1If we only consider of transverse momentum conservation, p will
be reduced to pT.
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impact parameter and the y-axis lies perpendicular to the x
axis and z axis. The quantity 〈· · · 〉F in the above equation de-
notes the average obtained from full phase space integration
as

〈O(p)〉F =
∫

F O(p)F (p)d3p∫
F F (p)d3p

. (7)

In the Cartesian coordinate system, the three-momentum (p)
of a particle can be written as

p =

⎛
⎜⎝

px = pT cos φ

py = pT sin φ

pz =
√

p2
T + m2 sinh y = pT sinh η

⎞
⎟⎠, (8)

where m, pT , y (= 1
2 ln E+pz

E−pz
), η (= 1

2 ln p+pz

p−pz
), and φ are the

mass, transverse momentum, rapidity, pseudorapidity, and
momentum azimuthal angle of the particle, respectively.

The nth harmonic of two-particle azimuthal cumulant,
i.e., cn{2} = 〈ein(φ1−φ2 )〉, can be obtained by performing the
azimuthal integration of the two-particle joint probability dis-

tribution as

cn{2}|η1,p1;η2,p2 =
∫ 2π

0 f (p1, p2)ein(φ1−φ2 )dφ1dφ2∫ 2π

0 f (p1, p2)dφ1dφ2

. (9)

B. Two-particle azimuthal cumulant
from GMC + hydro-like flow

For hydro-like flow, we can approximate the single-particle
distribution at the pseudorapidity η as

F (p) = g(p, η)

2π

[
1 +

∑
n

2vn(p, η) cos[n(φ − ψn(η))]

]
,

(10)

where the vn(p, η) and ψn(η) are the nth order the differential
flow parameter and the nth event-plane angle at pseudorapid-
ity η, respectively. Note that we henceforth denote pT as p for
simplicity. Next, we will calculate the second and third order
harmonics of the two-particle cumulants in the presence of
hydro-like flow and GMC using Eqs. (10) and (6).

Considering elliptic flow only and expanding Eq. (6) up to
the second order (1/N2), we get the following result of two-
particle c2{2}:2

c2{2} = 〈ei2(φ1−φ2 )〉|GMC+Flow
η1,p1;η2,p2

≈ v2(p1, η1) v2(p2, η2) cos [2(ψ2(η1) − ψ2(η2))]

− p1 sinh (η1) p2 sinh (η2) v2(p1, η1) v2(p2, η2) cos [2(ψ2(η1) − ψ2(η2))]

N
〈
p2

z

〉
F

+ p2
1 sinh2 (η1) p2

2 sinh2 (η2) v2(p1η1) v2(p2, η2) cos [2(ψ2(η1) − ψ2(η2))]

2N2
〈
p2

z

〉2
F

+ p2
1 p2

2 v2(p1, η1) v2(p2, η2) cos [2(ψ2(η1) − 2ψ2(η2))]

N2
〈
p2

T

〉2
F

+ p2
1 p2

2

2N2
〈
p2

T

〉2
F

(11)

where we assume that 〈p2
x〉F ≈ 〈p2

y〉F ≈ 〈p2
T 〉F /2. Similarly, after considering the momentum anisotropy flow up to third order

harmonic and expanding the Eq. (6) up to the third power 1/N3, we can obtain the following result of two-particle c3{2}:
c3{2} = 〈ei3(φ1−φ2 )〉|GMC+Flow

η1,p1;η2,p2
≈ v3(p1, η1) v3(p2, η2) cos [3(ψ3(η1) − ψ3(η2))]

− p1 p2 v2(p1, η1) v2(p2, η2) cos [2(ψ2(η1) − ψ2(η2))]

N
〈
p2

T

〉
F

− p1 sinh (η1) p2 sinh (η2) v3(p1, η1) v3(p2, η2) cos [3(ψ3(η1) − ψ3(η2))]

N
〈
p2

z

〉
F

+ p2
1 p2

2 v3(p1, η1) v3(p2, η2) cos [3(ψ3(η1) − ψ3(η2))]

N2
〈
p2

T

〉2
F

+ p2
1 sinh (η1) p2

2 sinh (η2) v2(p1, η1) v2(p2, η2) cos [2(ψ2(η1) − ψ2(η2))]

N2
〈
p2

T

〉
F

〈
p2

z

〉
F

+ p2
1 sinh2 (η1) p2

2 sinh2 (η2) v3(p1, η1) v3(p2, η2) cos [3(ψ3(η1) − ψ3(η2))]

2N2
〈
p2

z

〉2
F

− p3
1 p3

2 v2(p1, η1) v2(p2, η2) cos [2(ψ2(η1) − ψ2(η2))]

2N3
〈
p2

T

〉3
F

2Note that evaluating Eq. (9), the denominator is considered as 4π 2 only, as the other terms are suppressed by the higher power of 1/N .
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− p3
1 sinh (η1) p3

2 sinh (η2) v3(p1, η1) v3(p2, η2) cos [3(ψ3(η1) − ψ3(η2))]

N3
〈
p2

T

〉2
F

〈
p2

z

〉
F

− p3
1 sinh2(η1) p3

2 sinh2(η2) v2(p1, η1) v2(p2, η2) cos [2(ψ2(η1) − ψ2(η2))]

2N3
〈
p2

T

〉
F

〈
p2

z

〉2
F

− p3
1 sinh3 (η1) p3

2 sinh3 (η2) v3(p1, η1) v3(p2, η2) cos [3(ψ3(η1) − ψ3(η2))]

6N3〈p2
z〉3

F

− p3
1 p3

2

6N3
〈
p2

T

〉3
F

.

(12)

In both Eqs. (11) and (12), we can see a pure flow-contributed term [vn(p1, η1) vn(p2, η2) cos[n(ψn(η1) − ψn(η2))]] in the
beginning and a pure TMC term [(−1)n pn

1 pn
2

n!Nn〈p2
T 〉n

F
] which is flow-independent at the end [61]. The former arises from the “indirect”

part of the joint probability distribution, whereas the latter comes from the “direct” part. The remaining terms are of the order of
O(1/N ), O(1/N2), or higher powers, which appear due to the interplay between GMC and hydro-like flow.

To estimate the first order correction in the two-particle correlation under the influence of GMC, we drop all the terms with
O(1/N2) and higher powers.3 Consequently, Eqs. (11) and (12) look simpler as follows:

c2{2} ≈ v2(p1, η1) v2(p2, η2) cos [2(ψ2(η1) − ψ2(η2))]

×
(

1 − p1 sinh (η1) p2 sinh (η2) v2(p1, η1) v2(p2, η2) cos [2(ψ2(η1) − ψ2(η2))]

N
〈
p2

z

〉
F

)
, (13)

c3{2} ≈ v3(p1, η1) v3(p2, η2) cos [3(ψ3(η1) − ψ3(η2))]

− p1 p2 v2(p1, η1) v2(p2, η2) cos [2(ψ2(η1) − ψ2(η2))]

N
〈
p2

T

〉
F

− p1 sinh (η1) p2 sinh (η2) v3(p1, η1) v3(p2, η2) cos [3(ψ3(η1) − ψ3(η2))]

N
〈
p2

z

〉
F

. (14)

From the above two equations, we can see that the two-particle
azimuthal cumulants can be modified by the constraint of
GMC. For example, the c2{2} can be decomposed into the
product of two terms as shown in Eq. (13), where the first-line
term is the regular v2 decorrelation and the second-line one
can be seen as a modification factor from GMC. The modifica-
tion factor is smaller than one when the two particles are in the
same longitudinal momentum direction, but greater than one
when the two particles are in opposite longitudinal momen-
tum directions. Considering that two-particle correlations are
usually measured within a midrapidity window (|η| < ηcut),
we expect that the total modification effect of GMC on two-
particle correlations can be largely canceled out. However, the
details of the �η dependence of the modification effect need
further investigation. In this work, we will focus on how the
GMC effect affects the longitudinal flow decorrelation.

III. LONGITUDINAL FLOW DECORRELATION
FROM GMC

A. Definition of longitudinal flow decorrelation rn

The longitudinal decorrelation of harmonic flow measures
the decorrelation effect between two symmetric pseudora-
pidity bins (−η and η) along the longitudinal direction by

3We have checked that these higher orders of terms do not signifi-
cantly change our results below.

comparing the correlations between each of them and a ref-
erence pseudorapidity bin ηr (which is usually chosen a
considerable value to avoid nonflow contribution). The ob-
servable is defined as

rn(η, ηr ) = 〈Qn(−η)Q∗
n(ηr )〉

〈Qn(η)Q∗
n(ηr )〉 , (15)

where the Qn(η) vector quantifies the nth order harmonic flow
in a collision event, and 〈· · · 〉 denotes the event average

Qn(η) = 1

M

M∑
i=1

einφi , (16)

where M represents the number of particles in the correspond-
ing pseudorapidity η bin. The longitudinal flow decorrelation
coefficient rn can further be expressed as the ratio of two-
particle correlations:

rn(η, ηr ) = 〈ein(φ1(−η)−φ2(ηr ))〉
〈ein(φ1(η)−φ2(ηr ))〉 . (17)

If there are only “indirect” correlation terms but no “direct”
correlation terms present in the two-particle correlation in
Eq. (1), rn can be expressed as

rn(η, ηr )|Flow
−η;η;ηr

= 〈vn(−η) vn(ηr ) cos(n(ψn(−η)− ψn(ηr )))〉
〈vn(η) vn(ηr ) cos(n(ψn(η) − ψn(ηr )))〉 ,

(18)
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which reflects a normal form of longitudinal flow decorrela-
tion due to hydro-like flow.

B. Longitudinal flow decorrelation rn

from GMC + hydro-like flow

In the presence of both “indirect” and “direct” correlations
like both hydro-like flow and GMC, the rn for n = 2, 3 can be
evaluated by inserting Eqs. (13) and (14) into the following
relation:

rn(η, ηr )|GMC+Flow
−η,p1;η,p2;ηr ,p3

= 〈ein(φ1−φ2 )〉|GMC+Flow
−η,p1;ηr ,p3

〈ein(φ1−φ2 )〉|GMC+Flow
η,p2;ηr ,p3

. (19)

The above equation expresses a momentum-dependent (or
differential) form of rn. However, such a variable can mimic
the actual momentum-integrated observable (for example, the
transverse momentum window is considered to be 0.3 GeV <

p < 3 GeV for the Pb + Pb collisions at the LHC experiment),
if a relevant mean p is chosen. We consider the transverse
momenta of the particles at the forward, backward (i.e., ± η),
and at the reference pseudorapidity (ηr) to be equal to each

other (i.e., p1 ≈ p2 ≈ p3 = p, for i = 1, 2, and 3) and subse-
quently by inserting Eq. (13) into Eq. (19), we can obtain the
second order longitudinal flow decorrelation coefficient [i.e.,
r2(η, ηr )]

r2(η, ηr )|GMC+Flow
−η,p;η,p;ηr ,p = r2(η, ηr )|Flow

−η,p;η,p;ηr ,p × R2

where R2 ≈
[

p2 sinh(−η) sinh(ηr ) − N〈p2
z〉F

p2 sinh(η) sinh(ηr ) − N〈p2
z〉F

]
.

(20)

As we can see from the above equation, the modification fac-
tor for r2 (denoted by R2 here) appears due to the GMC effect,
which depends on the transverse momentum p, (reference)
pseudorapidity of particles, the averaged longitudinal momen-
tum 〈p2

z〉F , and the total number of particles in the collision
system. If the value of R2 is one, it indicates no impact on the
longitudinal decorrelation parameter. If R2 is greater than one,
it suggests that the longitudinal decorrelation is weakened due
to the presence of GMC. However, a fractional value of R2

indicates a stronger decorrelation in the presence of GMC.
Similarly, an approximated expression for longitudinal

decorrelation parameter r3 using Eq. (14) appears as

r3(η, ηr )|GMC+Flow
−η,p;η,p;ηr ,p = r3(η, ηr )|Flow

−η,p;η,p;ηr ,p × R3,

where

R3 ≈ D

C

[
p2

〈
p2

z

〉
F v2(p,−η) v2(p, ηr )v3(p, η) A − 〈

p2
T

〉
F v3(p, η) v3(p,−η) v3(p, ηr ) C

(
N

〈
p2

z

〉
F + p2 sinh(η) sinh(ηr )

)
p2

〈
p2

z

〉
F v2(p, η) v2(p, ηr ) v3(p,−η) B − 〈

p2
T

〉
F v3(p,−η) v3(p, η) v3(p, ηr ) D

(
N

〈
p2

z

〉
F − p2 sinh(η) sinh(ηr )

)
]
,

where

A = cos[2(ψ2(−η)− ψ2(ηr ))], B = cos[2(ψ2(η)− ψ2(ηr ))], C = cos[3(ψ3(−η)− ψ3(ηr ))], and D = cos[3(ψ3(η)− ψ3(ηr ))].
(21)

In the next section, we will discuss how to obtain the estimates
of 〈p2

z〉F and N from a longitudinally accelerating perfect fluid
system to calculate the effects of GMC on the longitudinal
flow decorrelation coefficients.

IV. ESTIMATE OF KEY PARAMETERS (〈p2
z〉� and N�)

FROM IDEAL HYDRODYNAMICS

The production and anisotropic flow of charged hadrons
have been successfully described in a relativistic hydrody-
namic framework. Both viscous and ideal hydrodynamic
models have been found to provide satisfactory descriptions
of the hadronic yields for various collision systems at the
energies available at the RHIC and LHC. For the present
study, we aim to find the estimates of 〈p2

z〉F and N from
a longitudinally expanding fireball. We follow Ref. [64] to
obtain the pseudorapidity distribution of charged hadrons in
a longitudinally accelerating perfect fluid system in which
the net baryon number and energy-momentum tensor follow
the conservation laws. An approximate parametric relation
for the rapidity distribution of charged hadrons in a perfect

fluid system is as follows:

dNch

dy
≈ N0 cosh− 1

2 α(λ)−1

(
y

α(λ)

)
exp

(
− m

Tf
coshα(λ)

(
y

α(λ)

))
,

(22)

where α(λ) = 2λ−1
λ−1 , and N0, Tf , and λ are three fit parameters.

To obtain the pseudorapidity distribution of charged hadrons
with average mass m̄, we use the relation

dNch

dη
≈ coshη√

D2 + cosh2η

dNch

dy

∣∣∣∣∣
y=y(η)

, (23)

where the parameter D = m̄/[ Teff

1+ σ2
2 (y−ymid )2

] determines the dip

of the pseudorapidity distribution at midrapidity. The other
two fit parameters are Teff and σ . The significance of these
used parameters are listed as follows:

(i) N0 is a normalization constant that fixes the particle
density at midrapidity.

(ii) Tf corresponds to the freeze-out temperature.
(iii) λ determines the longitudinal acceleration of the fluid.
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TABLE I. Fit parameters in Fig. 1 using Eq. (22) for Pb+Pb
collisions at 2.76A TeV [64], where the auxiliary values of Tf = 0.09
GeV and m̄ = 0.24 GeV have been utilized.

dNch
dη

|η=0 λ σ Teff (GeV)

30–40% 422.0 1.04 0.88 0.27
40–50% 259.1 1.04 0.92 0.27
50–60% 147.1 1.04 0.91 0.27
60–70% 74.7 1.04 0.87 0.27

(iv) The effective temperature Teff corresponds to the
inverse slope parameter of mT − m spectra at the
midrapidity.

(v) σ parametrizes the effective temperature gradient.

The pseudorapidity distribution of all particles (i.e.,
charged + neutral = dN

dη
) at any pseudorapidity bin η can be

further approximated as dN
dη

≈ 1.5 dNch
dη

. Finally, the average

of the variable p2
z for all particles, 〈p2

z〉� , over a phase space
region � ∈ {−η, η} (in terms of pseudorapidity range) is ob-
tained by performing the following integral:

〈
p2

z

〉
�

=
∫
�

p2
z

dN
dη

dη∫
�

dN
dη

dη
. (24)

The total number of particles N within the phase-space region
� ∈ {−η, η} can be calculated by

N� =
∫

�

dN

dη
dη. (25)

V. RESULTS AND DISCUSSION

A. 〈p2
z〉� and N� for Pb+Pb collisions at 2.76A TeV at the LHC

In Sec. III, we have shown that the longitudinal momentum
distribution of particles plays a crucial role in determining
the effects of GMC on the longitudinal flow decorrelation.
How can one determine phase space volume for the global
momentum conservation in relativistic heavy-ion collisions?
Ideally, the full phase-space volume should be considered.
In reality, some particles might reside at the high η region
of the pseudorapidity distribution (i.e., large longitudinal mo-
mentum) originating from the spectators far away from the
collision zone. Such particles should not be considered as they
are not the products of the collision zone. Therefore, we only
consider a finite phase space region for global momentum
conservation to mimic the real case.

We use the relativistic hydrodynamical framework de-
scribed in Sec. IV to fit the experimental data of charged
particle pseudorapidity distributions for four different cen-
trality bins (i.e., 30–40%, 40–50%, 50–60%, and 60–70%)
of Pb + Pb collisions at 2.76A TeV at ALICE [65]. Conse-
quently, we evaluate various needed quantities to determine
the effects of GMC on longitudinal decorrelation parameters
rn. We use the fit parameters shown in Table I (obtained
from Ref. [64]) to reproduce the pseudorapidity distribution
of charged hadrons from Pb + Pb collisions at 2.76A TeV.
The average mass (m̄) of all charged hadrons is taken as 0.24
GeV, and the value of freeze-out temperature (Tf ) is taken as

FIG. 1. Charged particle pseudorapidity density distributions for
30–40%, 40–50%, 50–60%, and 60–70% centrality bins in Pb + Pb
collisions at 2.76A TeV, where the charged particle pseudorapidity
distributions for four centrality bins from ALICE are fitted with the
parameters presented in Table I.

0.09 GeV. The central pseudorapidity density (dNch/dη|η=0)
for 30–40%, 40–50%, 50–60%, and 60–70% centrality bins
in Pb + Pb collisions at 2.76A TeV are taken as 422.0, 259.1,
147.1, and 74.7, respectively. As shown in Fig. 1, the param-
eter set presented in Table I can satisfactorily describe the
pseudorapidity distributions of charged hadrons for all four
centrality bins. We further approximate the total number of
particles as 1.5 times the charged hadron multiplicity.

In Fig. 2, we show the 〈p2
z〉� and 〈N〉� of all particles

as a function of phase-space interval � (i.e., pseudorapidity
range) for Pb + Pb collisions at 2.76A TeV at the LHC. The
〈p2

z〉� over a phase-space interval � ∈ {−η, η} is computed
by using Eq. (25). In Fig. 2(a), the 〈p2

z〉� as function of �

for four centrality 30–40%, 40–50%, 50–60%, and 60–70%
in Pb + Pb collisions at 2.76A TeV are presented. We find that
the value of 〈p2

z〉� first increases slowly up to � ∈ {−6, 6},
then it starts to increase exponentially and finally saturates
above � ∈ {−12, 12}. The values of 〈p2

z〉� for all four cen-
trality bins are close to each other. In Fig. 2(b), the 〈N〉�
as a function of � for the above centrality bins are shown.
Considering a larger phase-space region, the average number
of particles inside first increases sharply. Finally, it saturates
above the pseudorapidity window � ∈ {−8, 8}. We also see
that the average number of particles for the 30–40% centrality
bin is almost 1.7, 3, and 6 times as large as 40–50%, 50–60%,
and 60–70% centrality bins, respectively.

B. R2 and R3 for Pb+Pb collisions at 2.76A TeV at the LHC

With the above information about 〈N〉� and 〈p2
z〉� , we

present the behavior of modification factor R2 as a function of
η for Pb + Pb collisions at 2.76A TeV in Fig. 3. In Fig. 3(a),
we show the η dependence of R2 for 60–70 % centrality bin for
three selected phase volumes (i.e., � ∈ {−η, η}). We see that
R2 is greater than one and increases with η due to the con-
straint of the GMC effect. Among three chosen phase space
regions, i.e., � ∈ {−8, 8}, {−7, 7}, and {−6, 6}, the effects on

014905-6



EFFECT OF GLOBAL MOMENTUM CONSERVATION ON … PHYSICAL REVIEW C 107, 014905 (2023)

FIG. 2. (a) 〈p2
z〉� and (b) N� as a function of phase space region � ∈ {−η, η} for 30–40%, 40–50%, 50–60%, and 60–70% centrality bins

in Pb + Pb collisions at 2.76A TeV.

R2 are found to be largest for the � ∈ {−6, 6}. It indicates that
the effect of GMC on R2 tends to increase if the phase space
volume with the GMC constraint gets smaller. These features
can be understood according to the modification factor R2

shown in Eq. (20). Note that the recent ALICE result sup-

ports that the baryon number follows a global baryon number
conservation in Pb + Pb collisions at the LHC [66].

In Fig. 3(b), we show R2 as a function of η for various
centrality bins for Pb + Pb collisions at 2.76A TeV, where we
assume that the GMC constraint is valid within � ∈ {−7, 7}

FIG. 3. The modification factor of longitudinal decorrelation R2 as a function of η for (a) different phase-space volumes with GMC
constraint, (b) different centrality bins, (c) different momenta, and (d) different reference pseudorapidities in Pb + Pb collisions at 2.76A TeV.
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FIG. 4. The ratio of r2(η1, ηr = 3.5) over r2(η1, ηr = 4.7) as a function of η for (a) 30–40%, (b) 40–50%, and (c) 50–60% centrality bins
in Pb + Pb collisions at 2.76A TeV.

for all the centrality bins. We see that GMC impacts the
peripheral collisions more than the central collisions due to
the smaller number of particles N in peripheral collisions.
In Fig. 3(c), we show the η dependence of R2 for the dif-
ferent transverse momenta p of particles for the centrality
bin of 60-70% in Pb + Pb collisions at 2.76A TeV, where
we choose p1 = p2 = p3 = p. For p = 1.5 GeV, the GMC
effect is the largest compared to the same obtained from the
smaller momentum values. It indicates that the effect of GMC
increases with the transverse momenta of particles. It should
be pointed out that so far, we have computed the momentum-
dependent observable with fixed momentum values; however,
in experiments, the longitudinal decorrelation was measured
for all charged particles within the momentum range, e.g.,
0.3 GeV < p < 3.0 GeV. We expect that the behavior of
the momentum-integrated decorrelation under the influence of
GMC is similar to that shown here (see the Appendix please).

In Fig. 3(d), we show the η dependence of R2 for different
reference pseudorapidity (ηr) for the centrality bin of 60–70 %
in Pb + Pb collisions at 2.76A TeV. We find that the effect
of GMC increases as ηr gets further away, resulting in a
smaller longitudinal decorrelation in the larger ηr case. A
similar reference pseudorapidity dependence of rn(η, ηr ) has

been observed for Pb + Pb and p+Pb collisions at the LHC,
where the decorrelation effect is weaker if a larger reference
pseudorapidity bin is applied [43].

In Fig. 4, we further elaborate on the reference pseudora-
pidity dependence of the GMC-induced results by comparing
the ratio of two longitudinal decorrelation coefficients at sepa-
rate reference pseudorapidity bins [r2(η, ηrA)/r2(η, ηrB)] with
the CMS data [43]. Here, we calculate the ratio of r2 with
different ηr for different centrality bins in Pb + Pb collisions
and compare our findings with the results obtained from the
experimental measurements. In this way, we hope to can-
cel the flow contribution to show a more evident effect of
GMC. Surprisingly, by invoking the effect of GMC, we can
describe the reference pseudorapidity dependence of the data.
In Fig. 4 (a), (b), and (c), we compare the experimental ratios
of r2(η, ηr = 3.5)/r2(η, ηr = 4.7) with our theoretical results
for 30–40%, 40–50%, and 50–60% centrality bins in Pb + Pb
collisions at 2.76A TeV, respectively. Our results with mo-
mentum p ∼ 1.0 ± 0.1 GeV can satisfactorily describe the
data for all three centrality bins. We also find that such ref-
erence pseudorapidity dependence is even enhanced if GMC
is considered for a smaller region of phase space. On the
other hand, Figs. 4(a)–4(c) show that the GMC effect on
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FIG. 5. The ratio of r2(η1, ηr = 2.35) over r2(η1, ηr = 3.4) as a
function of η for 30–40% and 40–50% Pb + Pb collisions at 2.76A
TeV and Au + Au collisions at 0.2A TeV.

the reference pseudorapidity dependence is sensitive to the
transverse momentum p. The higher the transverse momen-
tum, the further the ratio is from one. We notice that the
reference pseudorapidity dependence of the longitudinal flow
decorrelation can be observed in a hydrodynamic model if the
initial flow is included, which has been argued to be caused by
the nonthermalized minijets in the initial state [67]. Since the
slope of the transverse momentum spectra is increased by the
initial flow [68], our results are consistent with the hydrody-
namic finding in fact. Therefore, we suggest studying a more
significant GMC effect on the longitudinal flow decorrelation
at higher transverse momentum.

The pseudorapidity dependence of r2(η, ηrA)/r2(η, ηrB) ra-
tio is further explored for Au + Au collisions at the RHIC
energy in Fig. 5. We simultaneously compare the ratios
of r2(η, ηr = 2.35)/r2(η, ηr = 3.4) for 30–40 % and 40–
50 % centrality bins in Pb + Pb collisions at 2.76A TeV and

FIG. 6. The modification factor R2 corresponding to the inte-
grated longitudinal decorrelation coefficient for 60–70% Pb + Pb
collisions at 2.76A TeV at the LHC, in comparison with the differen-
tial R2 corresponding to p ≈ 0.87 GeV.

Au + Au collisions at 0.2A TeV. We find that the ratio is
more significantly affected in Au + Au collisions at the RHIC
energy than in Pb + Pb collisions at the LHC energy. We also
observe a larger ratio for more peripheral collisions at RHIC.
Note that the two results for two centrality bins in Pb + Pb
collisions at 2.76A TeV are almost overlapping and consistent
with one for this ηr selection. We notice that the STAR collab-
oration is analyzing the longitudinal correlation coefficients in
isobar collisions at 0.2A TeV. It is a good potential collision
system to verify the characteristics of the GMC effect since
the multiplicity in isobar collisions is much smaller than in
Au + Au collisions.

In addition, we follow Eq. (21) to explore the behavior
of R3 in Pb + Pb collisions at 2.76A TeV. We find that R3

behaves similarly to R2 because the dominant contribution
comes from the terms which consist of v3 only (if with the v3

only terms, R3 ≡ R2). We further check the contribution of v2

terms in Eq. (21). By assuming 〈cos[n(ψn(ηa) − ψn(ηr ))]〉 ≈
e−Fn|ηa−ηr | (for n = 2 and 3) and the values of F2, F3, v2 and
v3 to be 0.02, 0.04, 0.05, and 0.025, respectively, we find that
the inclusion of v2-involving terms introduces a reduction in
R3 by 10–15%.

We would like to point out that our employed paramet-
ric form of the rapidity distribution is for an ideal fluid
system. However, a small specific shear viscosity has been
extracted from the experimental data collected in heavy-ion
collision experiments at RHIC and LHC [17,18]. In general,
the longitudinal fluid evolution is decelerated due to the shear
viscosity [70,71], which may cause a decrease in 〈p2

z〉� . On
the other hand, the shear viscosity can lead to higher trans-
verse velocities (radial flow), which increases the transverse
momenta of particles [72]. Since both factors help enhance
the GMC effect, we expect that the GMC effect on the longi-
tudinal flow decorrelation increases when the shear viscosity
effect is taken into account.

VI. SUMMARY

In summary, we explore the effect of the global momentum
conservation on the longitudinal flow decorrelation coeffi-
cients. We first present the analytic forms of two-particle
azimuthal cumulants and the decorrelation coefficients in the
presence of hydro-like flow and the GMC constraint. Sub-
sequently, we explore the modification effect of GMC on
the longitudinal flow decorrelations in Pb + Pb collisions at
the LHC energy and Au + Au collisions at the RHIC en-
ergy. The modification factors R2 and R3 of the second-order
and third-order longitudinal flow decorrelation coefficients
weaken the longitudinal flow decorrelation due to the presence
of GMC. We find that the modification factors are sensitive
to the total number of involved particles (N), the average
longitudinal momentum (〈p2

z〉F ), the transverse momentum
(p), and the reference pseudorapidity (ηr). Our results of
r2(η, ηrA)/r2(η, ηrB) ratios are consistent with the experimen-
tal measurements. We also predict that the modification effect
is stronger for RHIC than for the LHC. Our finding suggests
that the effect of GMC constraint should be taken into account
when studying the longitudinal flow decorrelation in relativis-
tic heavy-ion collisions.
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APPENDIX

In this Appendix„ we present the integrated longitudinal
decorrelation coefficient, i.e., r2(η, ηr ), under the influence of

GMC. F (p) is the single-particle distribution function having
a form as shown in Eq. (10). Considering the A + A collision
system to be symmetric, we further assume the following
forms of the pseudorapidity and momentum-dependent func-
tion g(p, η) and v2(p, η) [69]:

g(p, η) = 1

T 2
exp

(
− p

T

)
h1(η),

v2(p, η) = p h2(η), (A1)

where h1(η) and h2(η) are two even functions of pseudorapid-
ity. Now, introducing the above forms of the single and joint
probability distribution functions into Eq. (17), and perform-
ing a momentum p integration over pl to ph, we finally obtain
the integrated form of r2(η, ηr ):

r2(η, ηr )|GMC+Flow = r2(η, ηr )|Flow × R2,

R2 ≈
[

N
〈
p2

z

〉
F

(
x(ph, T )epl /T − eph/T x(pl , T )

)2 + sinh(η) sinh(ηr )
(
y(ph, T )epl /T − eph/T y(pl , T )

)2

N
〈
p2

z

〉
F

(x(ph, T )epl /T − eph/T x(pl , T ))2 − sinh(η) sinh(ηr )(y(ph, T )epl /T − eph/T y(pl , T ))2

]

where x(p, T ) = p2 + 2pT + 2T 2 and y(p, T ) = p3 + 3p2T + 6pT 2 + 6T 3. (A2)

In Fig. 6, we show the η dependence of R2 corresponding to the transverse momentum integrated longitudinal decorrelation
coefficient for 60–70% Pb + Pb collisions at 2.76A TeV at the LHC. The integration limit has been chosen as 0.3 GeV < p < 3.0
GeV [43]. Subsequently, we compare our result with the differential R2 obtained using Eq. (20) for the same collision system,
and we observe that the result for p ≈ 0.87 GeV/ agrees with the integrated longitudinal decorrelation coefficient. This further
proves that the above results at a mean p value are reasonable to predict the behaviors of the integrated longitudinal decorrelation
coefficients.
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