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Speed of sound and liquid-gas phase transition in nuclear matter

Wei-bo He,1,2 Guo-yun Shao ,1,* and Chong-long Xie1

1MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics,
Xi’an Jiaotong University, Xi’an 710049, China

2School of Physics, Peking University, Beijing 100871, China

(Received 3 August 2022; accepted 15 December 2022; published 6 January 2023)

We investigate the speed of sound in nuclear matter at finite temperature and density (chemical potential) in the
nonlinear Walecka model. The numerical results suggest that the behaviors of sound speed are closely related
to the the nuclear liquid-gas (LG) phase transition and the associated spinodal structure. The adiabatic sound
speed is nonzero at the critical endpoint (CEP) in the mean-field approximation. We further derive the boundary
of vanishing sound velocity in the temperature-density phase diagram, and point out the region where the sound
wave equation is broken. The distinction between the speed of sound in nuclear matter and that in quark matter
contains important information about the equation of state of strongly interacting matter at intermediate and
high density. We also formulate the relations between differently defined speeds of sound using the fundamental
thermodynamic relations.
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I. INTRODUCTION

Exploring the equation of state (EOS) of strongly inter-
acting matter is an important topic in both theoretical and
experimental nuclear physics [1–25]. During the space-time
evolution of the newly formed matter in heavy-ion collisions,
the speed of sound is one of the crucial physical quantities
to describe the variation of EOS. The dependence of speed
of sound on environment (temperature, density, chemical po-
tential, etc.) carries important information for describing the
evolution of the fireball and final observables. Recently, the
studies in [26–28] show that the speed of sound as a function
of charged particle multiplicity 〈dNch/dη〉 can be extracted
from heavy-ion collision data. In [29] the authors try to build
a connection between the sound velocity and the baryon num-
ber cumulants to study the quantum chromodynamics (QCD)
phase structure.

It is also an interesting topic to study the speed of sound
during the QCD phase transition in the early universe by
observing the induced gravitational wave. Although the prop-
agation of gravitational wave is not sensitive to sound velocity,
the value of sound velocity affects the dynamics of primordial
density perturbations, and the induced gravitational waves
by their horizon reentry can then be an indirect probe on
both the EOS and sound velocity, which can provide use-
ful knowledge of the evolution in the era of QCD phase
transition [30].

Besides heavy-ion collision experiments and the early uni-
verse, the speed of sound in neutron star matter also receives a
lot of attention (e.g., [31–33]). The density dependent behav-
ior of sound velocity influences the mass-radius relation, the
tidal deformability, and provides a sensitive probe of the EOS
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of neutron star matter and the hadron-quark phase transition
in the dense core. To obtain a massive neutron star, some
studies show that it is essential for neutron star matter to
have a density range where the EOS is very stiff and the
corresponding squared speed of sound is significantly larger
than 1/3 [31,32,34–44]. In addition, the study in [45] indicates
that the speed of sound is crucial for the gravitational wave
frequencies induced by the g-mode oscillation of a neutron
star.

As an important quantity in describing the evolution of
strongly interacting matter, the speed of sound in QCD
matter has been calculated, e.g., in lattice QCD (LQCD)
[3,46–49], the (Polyakov–)Nambu–Jona-Lasinio [(P)NJL]
model [24,50–53], the quark-meson coupling model [9,54],
the hadron resonance gas (HRG) model [55,56], the field
correlator method (FCM) [57,58], and the quasiparticle model
[59]. In most studies, the main focus is put on the region of
high temperature and vanishing or small chemical potential.

In Ref. [60], we describe an intensive study on the speed
of sound of QCD matter in the full phase diagram. The nu-
merical results suggest that the dependence of sound speed
on temperature, density, and chemical potential are closely
related to the QCD phase structure. In particular, the value
of adiabatic sound speed is not zero at the critical endpoint
(CEP) in the mean-field approximation. In the region of chiral
crossover, the speed of sound increases quickly with rising
temperature. The value of squared sound speed approaches
1/3 after the chiral restoration at high temperature. Some new
features of speed of sound are also discovered, for example the
hierarchy phenomenon of sound velocity for u(d ) and s quarks
at low temperature with the increasing chemical potential. In
addition to the adiabatic sound velocity, the behaviors of speed
of sound under other conditions are also discussed.

The nuclear liquid-gas (LG) phase transition was discov-
ered in experiments many years ago, and the experimental
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phenomenon was explained with the spinodal decomposition
mechanism [61–69]. Recently, there were some interesting
investigations on baryon number fluctuations induced by the
presence of the nuclear LG phase transition [70,71]. Since
the nuclear LG transition and quark chiral first-order phase
transition belong to the same universality class, it is interesting
to study whether the speeds of sound in quark matter and in
nuclear matter behave in a similar way. Moreover, the study
on the parameter dependence of the speed of sound in nuclear
matter is crucial for investigating the transport phenomenon
of hadronic matter [24]. In this study, we will explore in detail
the behavior of sound speed in nuclear matter and compare it
with that in quark matter. It is expected that the correlation
between the behaviors of speed of sound and nuclear LG
phase transition can be revealed.

The paper is organized as follows. In Sec. II, we introduce
briefly the nonlinear Walecka model and the formulas of speed
of sound under different definitions. In Sec. III, we present
the numerical results of squared sound speed and discuss the
relations with the nuclear LG transition. A summary is given
in Sec. IV.

II. THE NONLINEAR WALECKA MODEL
AND SPEED OF SOUND

The Lagrangian density for the nucleons-meson system in
the nonlinear Walecka model [72] is

L =
∑

N

ψ̄N [iγμ∂μ − (mN − gσ σ ) − gωγμωμ]ψN

+ 1

2

(
∂μσ∂μσ − m2

σ σ 2
) − 1

3
bmN (gσ σ )3 − 1

4
c (gσ σ )4

+ 1

2
m2

ωωμωμ − 1

4
ωμνω

μν, (1)

where ωμν = ∂μων − ∂νωμ. The interactions between nucle-
ons are mediated by σ, ω mesons. The ρ meson is not
included since in this work we only consider the behavior
of speed of sound in symmetric nuclear matter. The model
parameters, gσ , gω, b, and c are fixed in the mean-field ap-
proximation with the compression modulus K = 240 MeV,
the symmetric energy asym = 31.3 MeV, the effective nucleon
mass m∗

N = mN − gσ σ = 0.75mN (mN is the nucleon mass
in vacuum), and the binding energy B/A = −16.0 MeV at
nuclear saturation density with ρ0 = 0.16 fm−3.

The thermodynamic potential derived under the mean-field
approximation is


 = −β−1
∑

N

2
∫

d3k
(2π )3

[ln(1 + e−β[E∗
N (k)−μ∗

N ] )

+ ln(1 + e−β[E∗
N (k)+μ∗

N ] )] + 1

2
m2

σ σ 2 + 1

3
bmN (gσ σ )3

+ 1

4
c(gσ σ )4 − 1

2
m2

ωω2, (2)

where β = 1/T , E∗
N =

√
k2 + m∗2

N . The effective chemical
potential μ∗

N is defined as μ∗
N = μN − gωω for nucleons.

By minimizing the thermodynamical potential

∂


∂σ
= ∂


∂ω
= 0, (3)

the meson field equations are derived as

gσ σ =
(

gσ

mσ

)2[
ρs

p + ρs
n − bmN (gσ σ )2 − c(gσ σ )3

]
, (4)

gωω =
(

gω

mω

)2

(ρp + ρn). (5)

In Eqs. (4) and (5), the nucleon number density for proton
or neutron is

ρN = 2
∫

d3k
(2π )3

[ f (E∗
N (k) − μ∗

N ) − f̄ (E∗
N (k) + μ∗

N )], (6)

and the scalar density

ρs
N = 2

∫
d3k

(2π )3

m∗
N

E∗
N (k)

[ f (E∗
N (k) − μ∗

N ) + f̄ (E∗
N (k) + μ∗

N )],

(7)

where f (E∗
N (k) − μ∗

N ) and f̄ (E∗
N (k) + μ∗

N ) are the fermion
and antifermion distribution functions.

The pressure p and energy density ε can be derived using
the thermodynamic relations in the grand canonical ensemble
as

p = −
, ε = −p + T s +
∑

μNρN , (8)

where s is the entropy density. The general definition of speed
of sound is

c2
X =

(
∂ p

∂ε

)
X

. (9)

A specific constant quantity X is required to describe the
propagation of the compression wave through a medium. To
indicate the different profiles of the EOS of nuclear matter, X
can be chosen as s/ρB, s, ρB, T, μB.

For an ideal fluid, it evolves with a constant entropy density
per baryon, s/ρB, under the adiabatic evolution. This conclu-
sion can be drawn in hydrodynamics with the conservation of
energy and baryon number, therefore it is most meaningful to
calculate the speed of sound along the isentropic curve

c2
s/ρB

=
(

∂ p

∂ε

)
s/ρB

. (10)

The dependence of c2
s/ρB

on parameters, e.g., temperature,
density, and chemical potential, can indicate the variation
of sound speed during the evolution and provide important
knowledge of interaction, phase transition, and the EOS.

The definitions of sound velocity under other conditions
are also taken in literature in dealing with different problems.
The speed of sound with constant baryon number density
or entropy density are taken in describing the intermediate
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process of hydrodynamic evolution [24,73],

c2
ρB

=
(

∂ p

∂ε

)
ρB

(11)

and

c2
s =

(
∂ p

∂ε

)
s

. (12)

For example, the space-time derivatives of temperature and
chemical potential are functions of c2

ρB
and c2

s with

∂0μB = −c2
s μB ∇ · u (13)

and

∂0T = −c2
ρB

T ∇ · u, (14)

where u denotes the space component of four-velocity.
It is also interesting to calculate the sound velocity with a

fixed temperature or chemical potential with

c2
T =

(
∂ p

∂ε

)
T

(15)

and

c2
μB

=
(

∂ p

∂ε

)
μB

. (16)

c2
T is widely used in calculating the sound speed in neutron

star matter. In [29] the authors make a connection between
the logarithmic derivative of c2

T with respect to baryon density
and baryon number fluctuations, which can be measured in
experiment.

In this study, we will explore the speed of sound in nuclear
matter under different definitions in the full temperature-
density and temperature-chemical potential spaces. Since the
general definitions given above can only be used to calculate
the speed of sound along special trajectories, it is necessary to
derive the corresponding formulas as functions of T and μB

(ρB) to perform the calculation for any given temperature and
density (chemical potential).

Using the fundamental thermodynamic relations, we derive
the sound speed formulas under different conditions in terms
of T and μB as

c2
s/ρB

=
sρB

(
∂s

∂μB

)
T

− s2
(

∂ρB

∂μB

)
T

− ρ2
B

(
∂s
∂T

)
μB

+ sρB
(

∂ρB

∂T

)
μB

(sT + μBρB)
[(

∂s
∂μB

)
T

(
∂ρB

∂T

)
μB

− (
∂s
∂T

)
μB

(
∂ρB

∂μB

)
T

] ,

(17)

c2
ρB

=
s
(

∂ρB

∂μB

)
T − ρB

(
∂ρB

∂T

)
μB

T
[(

∂s
∂T

)
μB

(
∂ρB

∂μB

)
T − (

∂s
∂μB

)
T

(
∂ρB

∂T

)
μB

] , (18)

c2
s =

s
(

∂s
∂μB

)
T − ρB

(
∂s
∂T

)
μB

μB
[(

∂ρB

∂T

)
μB

(
∂s

∂μB

)
T − (

∂s
∂T

)
μB

(
∂ρB

∂μB

)
T

] , (19)

c2
T = ρB

T
(

∂s
∂μB

)
T

+ μB
(

∂ρB

∂μB

)
T

, (20)

c2
μB

= s

T
(

∂s
∂T

)
μB

+ μB
(

∂ρB

∂T

)
μB

. (21)

The corresponding sound speed formulas derived in terms
of T and ρB are

c2
s/ρB

=
s2 + ρ2

B

[(
∂μB

∂ρB

)
T

(
∂s
∂T

)
ρB

− (
∂μB

∂T

)
ρB

(
∂s
∂ρB

)
T

] + sρB
[(

∂μB

∂T

)
ρB

− (
∂s
∂ρB

)
T

]
(T s + μBρB)

(
∂s
∂T

)
ρB

, (22)

c2
ρB

=
s + ρB

(
∂μB

∂T

)
ρB

T
(

∂s
∂T

)
ρB

, (23)

c2
s =

ρB
[(

∂s
∂T

)
ρB

(
∂μB

∂ρB

)
T − (

∂s
∂ρB

)
T

(
∂μB

∂T

)
ρB

] − s
(

∂s
∂ρB

)
T

μB
(

∂s
∂T

)
ρB

, (24)

c2
T =

ρB
(

∂μB

∂ρB

)
T

T
(

∂s
∂ρB

)
T + μB

, (25)

c2
μB

=
s
(

∂μB

∂ρB

)
T

T
[(

∂s
∂T

)
ρB

(
∂μB

∂ρB

)
T

− (
∂μB

∂T

)
ρB

(
∂s
∂ρB

)
T

] − μB
(

∂μB

∂T

)
ρB

. (26)

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present the phase structure of symmetric
nuclear matter and the numerical results of the speed of sound
under different definitions at finite temperature and baryon

density (chemical potential), and discuss the relations between
the speed of sound and nuclear LG phase transition. Symmet-
ric nuclear matter is considered in this study to describe the
essential behavior of speed of sound.
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FIG. 1. Phase diagram of nuclear liquid-gas transition and the isentropic curves for different values of s/ρB. (a) Spinodal structure of LG
phase transition the in T -μB plane. (b) Phase structure of LG phase transition in T -ρB plane. (c) Isentropic trajectories in the T -μB phase
diagram; the black dashed line is derived with ( ∂μB

∂T )s/ρB = 0.

A. Nuclear liquid-gas phase transition and speed
of sound at constant s/ρB

First, we demonstrate in Fig. 1 the phase structure of
nuclear LG phase transition and the isentropic curves for
different values of s/ρB. Figures 1(a) and 1(b) show the details
of nuclear LG phase transition and the corresponding spinodal
structure. The black solid line is the first-order phase transition
line, and the blue dashed line is the boundary of spinodal
structure associated with the nuclear LG phase transition.
Fiure 1(b) shows clearly that the two curves separate the phase
diagram into the stable, metastable, and unstable phases. The
spinodal phase decomposition plays a dominant role in the
experimental exploration of the first-order nuclear LG tran-
sition [67,71]. It has also inspired the anticipation to identify
the first-order chiral phase transition in high-energy heavy-ion
collisions through the spinodal phase separation [74–83].

The first-order transition line and the spinodal line meet at
the CEP. The isentropic curves in Fig. 1 indicate the evolution-
ary trajectories of an ideal fluid under the adiabatic condition.
Figure 1(b) shows that for smaller s/ρB the evolutionary tra-
jectories pass through the stable, metastable, and unstable
phases. It is expected that important information on the phase
transition is carried by the speed of sound. Figiure 1(c) shows
the nuclear LG transition and isentropic trajectories in the full
T − μB phase diagram. In Fig. 1(c), we also plot the boundary
of ( ∂μB

∂T )s/ρB = 0 (black dashed curve), which is closely related
to the behavior of sound speed at constant entropy density.

We present the squared speed of sound c2
s/ρB

as functions of
baryon chemical potential for different temperatures in Fig. 2
and the contour map in Fig. 3. Figure 2 shows that c2

s/ρB
grows

with the increase of chemical potential for each temperature. It
also indicates that, for μB < 1320 MeV, c2

s/ρB
at a higher tem-

perature is larger than that at a lower temperature, because the
pressure and energy density is mainly driven by temperature
for small chemical potential. For μB > 1320 MeV, the oppo-
site happens, which is mainly attributed to the density-driven
effect with the decrease of dynamic mass of the nucleon. For
T = 10 MeV, a small jump of c2

s/ρB
appears on the boundary

of the first-order phase transition.

The contour map in Fig. 3 demonstrates the profiles of c2
s/ρB

in the full T -μB phase diagram with the nuclear LG phase
transition. In this figure we also plot the fitted chemical freeze-
out line. The parametrized formula of the freeze-out line is
taken from Ref. [20] with

μB(
√

sNN ) = 1.477

1 + 0.343
√

sNN
(27)

and

T (μB) = a − bμ2
B − cμ4

B, (28)

where a = 0.158 GeV, b = 0.14 GeV−1, and c varies from
0.04 to 0.12. The chemical freeze-out curve in Fig. 3 is plotted
for the intermediate value of c = 0.08. The value of c2

s/ρB

along the freeze-out line is given in Fig. 4. It shows that c2
s/ρB

on the freeze-out line changes slightly for collision energy
larger than 10 GeV. A small peak appears at

√
sNN � 6 GeV,

and c2
s/ρB

decreases with the decline of collision energy.

FIG. 2. Squared sound speed c2
s/ρB

as functions of chemical po-
tential for several fixed temperatures.
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FIG. 3. Contour map of c2
s/ρB

in the T -μB plane.

We can also see that the chemical freeze-out line at low
temperature is close to the nuclear LG phase transition. We
display the value of c2

s/ρB
on the boundary of the nuclear LG

phase transition in Fig. 5. The blue solid line is the value
along the low-density side of the first-order phase transition
and the black solid line is the result on the high-density side.
The dash-dotted line is the “crossover” line, which is derived
with ∂σ/∂μB (or ∂m∗

N/∂μB) taking the extremum for a given
temperature. This is inspired by the description of quark chiral
phase transition in quark models. The aim of plotting the
“crossover” line is to show that some thermodynamic prop-
erties are sensitive to this line. Such a description is also used
to discuss the net baryon number fluctuations induced by the
nuclear LG phase transition [71].

Figure 5 indicates that the square of sound speed is not
zero but a small value at the CEP. It is a feature of the mean-
field approximation. A similar behavior exists for the quark
chiral phase transition in the PNJL model with the mean-field
assumption [60]. Figure 5 also suggests that the value of c2

s/ρB

is small near the first-order transition region. Since only the

FIG. 4. Values of c2
s/ρB

along the chemical freeze-out line as a
function of collision energy.

FIG. 5. Values of c2
s/ρB

on the boundary of first-order transition
and the “crossover” line.

stable phase is considered in the above discussion, it cannot
give a complete demonstration of sound speed along the isen-
tropic trajectories. Therefore, we further present in Fig. 6 the
contour map of c2

s/ρB
in the full T -ρB plane, including all the

stable, metastable, and unstable phases.
In Fig. 6, besides the first-order phase transition line (black

solid line) and the spinodal line (red dashed line), we also de-
rive the boundary of vanishing sound speed, which is plotted
with the yellow dashed line. At each point of this boundary,
it fulfills the condition of ( ∂ p

∂ε
)s/ρB = 0. Inside this boundary

(grey area), the value of c2
s/ρB

= ( ∂ p
∂ε

)s/ρB is negative. The
sound wave equation is broken in this situation, and becomes
a decay function. It means that a disturbance cannot be prop-
agated in this region.

FIG. 6. Contour map of c2
s/ρB

in the T -ρB plane. The black solid
line is the first-order phase transition line. The red dashed line is the
spinodal line. The yellow dashed line is the boundary of vanishing
sound speed. Both the red dashed line and the yellow dashed line are
located near the origin of the coordinate system (bottom left of the
figure).
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FIG. 7. 3D map of p/ε as a function of temperature and chemical
potential.

From Figs. 2, 3, and 6, we can see that the square of
sound speed is quite larger than 1/3 at high density (large
chemical potential), about 0.8 being approached at very large
chemical potential. However, the value of c2

s/ρB
in quark

matter approaches 1/3 at high density [60]. To understand
the variation of speed of sound in nuclear matter, we plot
the three-dimensional (3D) map of p/ε as a function of the
temperature and chemical potential in Fig. 7. It indicates that
the behavior of p/ε is responsible for the growing speed of
sound from low to high chemical potential.

The interaction measurement or trace anomaly is defined
as ε − 3p, which can effectively describe the interaction in
a thermal system. We demonstrate the value of (ε − 3p)/ε
of symmetric nuclear matter in Fig. 8. Comparing it with the
phase transition line, we find that the behavior of (ε − 3p)/ε
is related to the nuclear phase transition. The behavior of

FIG. 8. 3D map of (ε − 3p)/ε as a function of temperature and
chemical potential. The black solid line is the nuclear LG phase
transition line. The black dashed line is the “crossover” line [71].

FIG. 9. Contour map of c2
ρB

in the T -ρB plane. The black solid
line is the first-order phase transition line. The red dashed line is the
spinodal line located near the origin of the coordinate system (bottom
left of the figure).

(ε − 3p)/ε reflects the variation of nucleon mass or the σ me-
son field, i.e., the interaction between nucleons. Moreover, we
can see that (ε − 3p)/ε in nuclear matter does not approach
zero at large chemical potential, quietly different from that of
quark matter.

The calculation in the Walecka model and PNJL model
indicate that the speed of sound in nuclear matter is quite
larger than that in quark matter at high density. Theoretically,
in the Walecka model, the ω meson interaction is proportional
to the baryon density, leading to a steady increase in the
speed of sound, with the limiting value of 1 at ρB → ∞.
In the (P)NJL model, the value of the sigma mean field,
and therefore of the corresponding interaction, decreases with
density. In view of this the (P)NJL model looks like a gas of
noninteracting relativistic particles at ρB → ∞. To the extent
that the Walecka model can be thought to describe nuclear
matter and the (P)NJL model can give one some insight of
high-density quark matter. If a phase transition from nuclear
matter to quark matter takes place with growing density, the

FIG. 10. Contour map of c2
ρB

in the T -μB plane.
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FIG. 11. Contour map of c2
s in the T -ρB plane. The black solid

line is the first-order phase transition line. The red dashed line is the
spinodal line located near the origin of the coordinate system (bottom
left of the figure). The yellow dashed line marked with 0.0 is the
boundary where the value of c2

s vanishes. c2
s = (∂ p/∂ε)s is negative

inside the yellow dashed line.

value of speed of sound will have a peak at a certain density.
It is interesting that recent neutron star research suggests that
the value of the speed of sound first increases sharply with ρB,
exceeding the conformal value of 1/3, then falls again below
1/3, and finally approaches 1/3 at infinity from below. It is
anticipated to give a further analysis on the speed of sound of
neutron star matter with different phase transition mechanism
and observation constraints.

B. Speed of sound at constant ρB or s

We plot the contour map of the squared speed of sound c2
ρB

in the T -ρB plane in Fig. 9 and the T -μB plane in Fig. 10. The
numerical results indicate that the value of c2

ρB
lies in the range

of 0–1. For most temperatures, c2
ρB

shows a nonmonotonic
behavior with the increase of density or chemical potential. In
particular, a peaklike structure exists at intermediate density
(chemical potential).

We present the squared speed of sound c2
s at constant en-

tropy density in Figs. 11 and 12. The two figures indicate that
the contour of c2

s has a relatively complicated structure. The
value of c2

s are divided into two parts by the yellow dashed
curve. Outside the curve, the value of c2

s is positive and smaller
than 1. Inside the curve (gray area), c2

s is negative. The value
of c2

s vanishes on the boundary given by the yellow dashed
curve. Such a feature is possibly general for a first-order phase
transition in a interacting system with temperature and density
dependent fermion mass, and a similar structure for the speed
of sound in quark matter is found in Ref. [60].

In fact, the boundary (yellow dashed line) in Figs. 11 and
12 is just the curve shown in Fig. 1(c). This can be proved
with the thermodynamics formula

(
∂μB

∂T

)
s/ρB

= μB

T

(
∂ p
∂ε

)
s(

∂ p
∂ε

)
ρB

= μB

T

c2
s

c2
ρB

. (29)

FIG. 12. Contour map of c2
s in the T -μB plane. The yellow

dashed line is the boundary where the value of c2
s vanishes. c2

s =
(∂ p/∂ε)s is negative inside the yellow dashed line.

Using Eqs. (29) we can obtain the boundary of vanishing c2
s

by taking ( ∂μB

∂T )s/ρB = 0. This is the physical condition used
to derive the dashed curve in Fig. 1(c). Moreover, when the
condition ( ∂μB

∂T )s/ρB < 0 is fulfilled, one of the two physical
quantities c2

s and c2
ρB

takes a negative value. There indeed
exists such a region in the phase diagram, as shown in Fig. 1(c)
(inside the black dashed curve). Since c2

ρB
is always positive,

c2
s = (∂ p/∂ε)s is negative in this situation. The blue areas in

Figs. 11 and 12 indicate the negative region.
Comparing the result with that of quark matter in the PNJL

model (Fig. 1 in Ref. [60]), we find there are three regions
in which ( ∂μB

∂T )s/ρB < 0 for quark matter, including the lower
left of the T -μB phase diagram and a small neighboring area
of chiral-crossover transformation near the CEP, as well as a
part of the region where the chiral symmetry of u, d quarks is
restored but the Polyakov loop is still confining. Correspond-
ingly, c2

s or c2
ρB

is negative in the these regions. One can refer
to Ref. [60] for details.

C. Speed of sound at constant T or μB

In the following, we study the speed of sound derived at
constant T or μB. Recently, the density dependent c2

T has been
discussed for neutron star matter under the equilibrium of
weak interaction. The data from observations support a large
value of c2

T (larger than 1/3) at a few times nuclear saturation
density. In [29] the authors also try to estimate c2

T at chemical
freeze-out of quark-gluon plasma using the baryon number
fluctuations of the beam energy scan experiments at the BNL
Relativistic Heavy Ion Collider (RHIC). We explore here the
behavior of c2

T and c2
μB

in nuclear matter in the full T -ρB and
T -μB phase diagram.

Figures 13 and 14 demonstrate the contour maps of c2
T

in the T -ρB and T -μB planes, respectively. The two fig-
ures show that the value of c2

T increases with the rising density
or chemical potential in the stable phase, and causality is
always satisfied with c2

T < 1. The value of c2
T is close to

c2
s/ρB

at low temperature, since the isentropic trajectories are
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FIG. 13. Contour map of c2
T in the T -ρB plane. The yellow

dashed curve located near the origin of the coordinate system (bottom
left of the figure) is the spinodal line and the boundary of c2

T = 0.
c2

T = (∂ p/∂ε)T is negative inside the boundary.

approximately parallel to the density or chemical potential
axis as indicated in Fig. 1. The behavior of c2

T in nuclear
matter at low temperature is to some extent similar to that of
neutron star matter under β equilibrium. Combined with the
behavior of c2

T in quark matter, if a hadron-quark phase tran-
sition happens at high density, the value of c2

T will decrease in
the mixed phase or pure quark phase. A detailed study of the
speed of sound in neutron star matter is in progress.

Figure 13 also demonstrates that there exists a region (gray
area) where c2

T = ( ∂ p
∂ε

)T < 0. This region is just the unstable
phase derived with the thermodynamic stability conditions.
On the boundary of spinodal line including the CEP of the
first-order transition, the value of c2

T is zero. c2
T is positive in

both the stable and metastable phases.
We display the contour map of c2

μB
in Figs. 15 and 16.

Similarly to Fig. 13, the contour map in Fig. 15 indicates that
c2
μB

= (∂ p/∂ε)μB < 0 inside the spinodal line. c2
μB

is positive
in the metastable and stable phases. The contour maps in
Figs. 15 and 16 also indicate that the value of c2

μB
has a

peaklike structure in the phase diagram.

FIG. 14. Contour map of c2
T in the T -μB plane.

FIG. 15. Contour map of c2
μB

in the T -ρB plane. The yellow
dashed curve located near the origin of the coordinate system (bottom
left of the figure) is the spinodal line and the boundary of c2

μB
= 0.

c2
μB

= (∂ p/∂ε)μB is negative inside the boundary.

Finally, we note that the numerical results at high tem-
perature should be treated with caution, since more hadronic
degrees of freedom will appear at high temperature. In this
study, we show the numerical results in the full phase diagram
in order to demonstrate the whole changing trend of speed of
sound.

IV. SUMMARY

In this work, we studied the speed of sound in symmetric
nuclear matter at finite temperature and density (chemical
potential) in the nonlinear Walecka model. We derived the
speed of sound under different definitions in the complete
phase diagram including the stable, metastable, and unstable
phases associated with the first-order phase transition. We
systematically discussed the relations between the speed of
sound and nuclear LG phase transition.

The numerical results indicate that the behavior of the
speed of sound in the phase diagram is closely related the
phase structure of nuclear matter. From the perspective of

FIG. 16. Contour map of c2
μB

in the T -μB plane.
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ideal fluid evolution, we focus on exploring the behavior of
adiabatic sound velocity at constant s/ρB. The calculation in-
dicates that the sound speed c2

s/ρB
is nonzero at the CEP under

the mean-field approximation, and the boundary of vanishing
sound velocity is derived. We also found that the value of c2

s/ρB

is much larger than 1/3 at high density, different from that
in quark matter where c2

s/ρB
approaches 1/3 at high density

and/or high temperature.
We also explored the behaviors of sound speed under

different physical conditions, and analyzed the correlations
with the nuclear LG phase transition, as well as the relations

between different definitions. The calculation shows that it is
natural in nuclear matter to have a sound speed larger than√

1/3 at a few times nuclear saturation density. A further
study on the speed of sound in neutron star matter with a
hadron-quark phase transition and observation constraints will
be performed in the future.
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