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Accounting for nonvanishing net-charge with unified balance functions
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The use of charge balance functions in heavy-ion collision studies was initially proposed as a probe of
delayed hadronization and two-stage quark production in these collisions. It later emerged that general balance
functions can also serve as a probe of the diffusivity of light quarks as well as the evolution of the systems
formed in heavy-ion collisions. In this work, we reexamine the formulation of general balance functions and
consider how to best define and measure these correlation functions in terms of differences of conditional
densities of unlike-sign and like-sign particle pairs. We define general balance functions in terms of associated
particle functions and show that these obey a simple sum rule. We additionally proceed to distinguish between
balance functions expressed as differences of conditional densities valid irrespective of experimental acceptance
boundaries and bound balance functions that explicitly account for the limited acceptance of experiments.
General balance functions are additionally extended to accommodate strange, baryon, as well as charm and
bottom quantum numbers based on the densities of these quantum numbers.
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I. INTRODUCTION

Balance functions (BFs) were introduced in the study of
heavy-ion collisions at the BNL Relativistic Heavy Ion Col-
lider (RHIC) as a tool to investigate the evolution of particle
production with collision centrality [1,2], and, more specifi-
cally, to seek evidence of delayed hadronization and two-stage
quark emission in these collisions. More recently, it was also
shown that BFs may serve as a probe of the diffusivity of
light quarks [3,4] as well as the chemical evolution of the
hot matter formed in A-A collisions [5,6]. The light quark
diffusivity (LQD) was found to impact the shape and width
of azimuthal projections of BFs: the larger the diffusivity is,
the larger the BF become azimuthally (�ϕ) as a result of
light quark scatterings during the short lifetime of the dense
QGP systems formed in heavy-ion collisions [3,4]. However,
the shape of BFs is also influenced by a number of other
phenomena, including the fraction of late (vs early) quark pro-
duction determined by the temperature of the system [1,2,7],
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the presence of strong pressure gradients and the rapid trans-
verse expansion of the QGP matter [8–10], quantum statistic
effects (i.e., Hanbury-Brown–Twiss) [11], as well as feed
down from resonance decays [5]. In spite of these caveats,
measurements of general balance functions do provide a new
and complementary approach towards the determination of
viscous effects and the diffusivity of light quarks [12]. While
studies of flow performed on the basis azimuthal multiparticle
correlations are driven, in large collision systems, by the col-
lision geometry and somewhat hampered by nonflow effects,
the estimation of the diffusivity and viscous effects with bal-
ance functions is less dependent on knowledge of the collision
geometry and relies explicitly on two-particle correlations and
the impact of the medium on these correlations. Conclusions
reached with the two approaches should thus yield mutually
compatible values of these observables [12–14].

Figures 1(a) and 1(b) schematically represent the time
evolution of the system temperature and the abundance of
quarks and gluons commonly assumed to take place in colli-
sions of heavy ions featuring a substantial quark gluon plasma
(QGP) component and an extended isentropic expansion stage
[1,15,16]. Strange (charm, bottom) quarks being heavier, their
production shall preferentially occur at early times featuring
the highest effective temperature whereas lighter up and down
quarks can be abundantly produced at late stages of the col-
lision (as well as early times) as the system hadronizes. The
variable

√
s represents the average effective collision energy

of quarks and gluons at a given time during the collision. In
locally thermalized system,

√
s is determined by the effec-

tive temperature of the system [17,18]. As the temperature
decreases, so does

√
s and the particles created by collisions
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FIG. 1. (a) Schematic evolution of A-A collision system (effective) temperature vs time. The variable
√

s here represents the average
collision energy of quarks and gluons at a given time. In equilibrated systems, it is determined by the temperature and decreases as the system
expands. (b) Schematic abundance of gluons and quarks vs time. (c) Schematic representation of early and late quark production and its impact
of the relative rapidity of particle pairs. (d) Expected evolution of balance functions, plotted as functions of rapidity (pseudorapidity) and
azimuth differences vs collision centrality.

accordingly feature smaller average longitudinal rapidity
differences. Figure 1(c) schematically shows the relative
effects of early and late emission of qq̄ pairs on the rapid-
ity difference of hadrons they eventually produce, whereas
Fig. 1(d) qualitatively illustrates the evolution of the shape
of balance functions on the collision centrality as a result of
changes in the early-late quark emission dominance and the
narrowing effect engendered by radial flow. Not shown are
effects of scattering (diffusivity) of quarks and hadrons, which
are expected to produce a broadening of the �ϕ width of
balance functions [3,4]. In the absence of a QGP component
or with a very-short-lived isentropic expansion stage, all par-
ticles would be produced at about the same time and average√

s and one would thus expect no substantial change of the
balance function widths vs collision centrality. In the other
extreme, i.e., if the system is fully thermalized, memory of
the quark production time and mechanisms is lost, thereby
resulting in very broad and featureless balance functions.

Precise determination of the diffusivity of light quarks and
other properties shall require one properly controls and cor-
rects measurements of the shape and integral of BFs. Indeed,
determining the diffusivity of light quarks and other properties
of the QGP will require careful comparison of high precision
measurements with detailed calculations of the evolution of
nuclear matter and its impact on the shape and strength of
BFs [19]. It should additionally be noted that many heavy-ion

models currently in use in the field, particularly those assum-
ing grand-canonical particle production or a hydrodynamic
expansion phase followed by Cooper-Fry particlization do
not and cannot produce realistic balance functions. Further
development and deployment of balance function measure-
ments shall thus open the door to a better understanding of
the microscopic plasma.

One must also note that the notion of charge balance
function can readily be extended to general (charge) bal-
ance functions involving identified particle species as well as
baryon number and strangeness balance functions, explicitly
discussed for the first time in this work. It is thus important
for theoreticians and experimentalists to clearly define the
correlation functions known as general balance functions and
agree on specific definitions and notations of the theoretical
quantities being measured and their actual implementation in
measurements. It is the purpose of this work to explore def-
inition options and propose specific choices of formulations
and notations of general balance functions as standards for
use by the community. In this work, our goal is to assert
what constitutes, theoretically, the most meaningful definition
of general balance functions, and, experimentally, the best
approach to measure them and their integrals.

Notations for the different components involved in the
elaboration of BFs are defined in Sec. II, whereas the notion
of general balance functions is introduced in Sec. III based on
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integral quantities. The notion of general balance function is
extended to correlation functions of pairs of identified particle
species in Sec. IV. Charge conservation and the presence of
net-charge imply a BF sum rule discussed in Sec. V. This
naturally leads to extensions involving baryon and strangeness
balance functions in Sec. VI. Experimental considerations,
involving, in particular, measurements of balance function
in difference coordinates, e.g., �y and �ϕ, are discussed in
Sec. IX. We also briefly discuss in Sec. X the connection
between balance functions and the ν+−

dyn observable [20]. This
work is summarized in Sec. XI.

II. NOTATION AND DEFINITIONS

Herein, the identity of particle species (e.g., π+, K+, etc.)
is represented with Greek letters α, β, etc., and their respective
antiparticles (e.g., π−, K−, etc.) with barred letters ᾱ, β̄.

Single and pair densities of species α and β are denoted
and defined according to

ρα
1 (y1, ϕ1, pT,1) ≡ d3Nα

1

dy1dϕ1d pT,1
, (1)

ρ
αβ

2 (y1, ϕ1, pT,1, y2, ϕ2, pT,2) ≡ d6Nαβ

2

dy1dϕ1d pT,1dy2dϕ2d pT,2
,

(2)

where Nα
1 and Nαβ

2 respectively represent numbers of particles
of species α and pairs of particles of species α and β. Vari-
ables y1, ϕ1, pT,1 and y2, ϕ2, pT,2 are the rapidity, azimuth,
and transverse momentum of particles of species α and β,
respectively.

The average number of particles of species α measured per
event and within an acceptance 	 is

〈
Nα

1

〉 =
∫

	

ρα
1 (y, ϕ, pT)dydϕd pT = V ρ̄1, (3)

where V = ∫
	

dydϕd pT is the selected/accepted phase space
volume and ρ̄α

1 the average density across this volume. Simi-
larly, the average number of pairs of particles of species α and
β, measured within 	, is given by〈

Nαβ

2

〉 = 〈
Nα

1

(
Nβ

1 − δαβ

)〉
=

∫
	

dy1dϕ1d pT,1

∫
	

dy2dϕ2d pT,2ρ
αβ

2

× (y1, ϕ1, pT,1, y2, ϕ2, pT,2). (4)

In the following, if a particular variable, e.g., pT, is omitted
from the expression of densities, it is assumed to be integrated
across the fiducial acceptance of the detector. For instance,

ρα
1 (y1, ϕ1) =

∫
	1

d pT,1ρ
α
1 (y1, ϕ1, pT,1), (5)

ρ
αβ

2 (y1, ϕ1, y2, ϕ2) =
∫

	1

d pT,1

∫
	2

d pT,2 ρ
αβ

2

× (y1, ϕ1, pT,1, y2, ϕ2, pT,2), (6)

where 	, with i = 1, 2, represents the pT acceptance of parti-
cles of type α and β, respectively. For the sake of simplicity,

the rapidity acceptance of the measurement shall be assumed
herewith to be the same for all particles species: −y0 � y <

y0.
The averages 〈Nα

1 〉 and 〈Nαβ

2 〉 correspond to first and sec-
ond factorial moments and are hereafter denoted f α

1 and f αβ

2 ,
respectively [21]. It is also useful to consider first- and second-
order factorial cumulants, Fα

1 and Fαβ

2 , computed respectively
as

Fα
1 = f α

1 , (7)

Fαβ

2 = f αβ

2 − f α
1 f β

1 , (8)

as well as normalized second-order cumulants Rαβ

2 defined as

Rαβ

2 = Fαβ

2

Fα
1 Fβ

1

=
〈
Nαβ

2

〉
〈
Nα

1

〉〈
Nβ

1

〉 − 1, (9)

where it is implicitly assumed that all integral quantities are
determined within the measurement acceptance 	.

III. INTEGRAL BALANCE FUNCTIONS

We first consider the definition of general balance functions
(BF) based on integral quantities. Rather than defining BFs
based on combinations of +−, −+, ++, and −− particle
pairs as in Ref. [22], we “split” the definition to consider +−
and −+ pairs relative to −− and ++ pairs, respectively. The
two definitions should evidently be equivalent for symmetric
collision systems. Experimentally, however, instrumental arti-
facts may induce artificial differences between +− and −+
pairs and it is thus of interest to explicitly verify that the two
definitions yield the same value thereby enabling validation of
experimental calibrations and correction methods [23].

Hereafter, we shall use the notation Iαβ̄ for integral balance
functions, which correspond, as we shall see, to integrals
across the measurement acceptance of differential balance
functions denoted Bαβ̄ (y1, y2) defined in Sec. IV.

Let us tentatively define general charge (integral) balance
functions according to

Iαβ̄ =
〈
Nαβ̄

2

〉
〈
N β̄

1

〉 −
〈
N ᾱβ̄

2

〉
〈
N β̄

1

〉 , (10)

I ᾱβ =
〈
N ᾱβ

2

〉
〈
Nβ

1

〉 −
〈
Nαβ

2

〉
〈
Nβ

1

〉 , (11)

which should give us a measure of how many particles of type
α (ᾱ) balance each “trigger” particle β̄ (β). One straightfor-
wardly verifies these expressions converge to unity for α = +,
β̄ = − and ᾱ = −, β = +, i.e.,

I+− → 1, (12)

I−+ → 1, (13)

in the ideal limit of a 4π detection system with full pT cover-
age and collisions involving a vanishing net-charge Q, e.g., pp̄
collisions. Indeed, for α, β = + and ᾱ, β̄ = −, by virtue of
charge conservation, the creation of a particle of type α = +
must be accompanied by the production of a particle of type
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ᾱ = −. If the number of such pair creations (i.e., number of
sources) is Ns in a given event, then the total number of singles
and pairs are

N+
1 = Ns, (14)

N−
1 = Ns, (15)

N+−
2 = N2

s , (16)

N−+
2 = N2

s , (17)

N++
2 = Ns(Ns − 1), (18)

N−−
2 = Ns(Ns − 1). (19)

The expressions (10) and(11) computed over the full 4π ac-
ceptance (all rapidities and transverse momenta) thus indeed
converge to unity:

I−+(4π ) = I+−(4π ) =
〈
N2

s

〉
〈Ns〉 −

〈
N2

s − Ns
〉

〈Ns〉 = 1. (20)

However, the above definitions (10) and (11), do not account
for the presence, ab initio, of a nonvanishing net-charge Q. For
instance, pp collisions feature Q = 2 ab initio and given the
electric charge is a conserved quantity, the event-wise single
and pair yields shall be

N+
1 = Ns + Q, (21)

N−
1 = Ns, (22)

N+−
2 = (Ns + Q)Ns, (23)

N−+
2 = Ns(Ns + Q), (24)

N++
2 = (Ns + Q)(Ns + Q − 1), (25)

N−−
2 = Ns(Ns − 1), (26)

in each event. The definitions (10) and (11) thus yield

I+−(4π ) = 〈(Ns + Q)Ns〉
〈Ns〉 − 〈Ns(Ns + −1)〉

〈Ns〉 = 1 + Q,

(27)

I−+(4π ) = 〈(Ns + Q)Ns〉
〈Ns + Q〉 − 〈(Ns + Q)(Ns + Q − 1)〉

〈Ns + Q〉
= 1 − Q, (28)

where the notation (4π ) indicates that the integral is computed
in full angular and pT acceptance. The presence of the terms
Q and −Q in the above two equations results from charge
conservation and the initial net-charge Q. It implies, for in-
stance, that the integral of the pp̄ BF measured in pp collisions
could amount to +3 or −1 depending on trigger species.
Similarly, Pb–Pb collisions could yield BF integral amounting
to 1 + (82 + 82) = 165 or 1 − (82 + 82) = −163. Evidently,
the impact of the nonvanishing net-charge should be less im-
portant in the central rapidity region when the beam rapidity
is very large (e.g., LHC energies) but could be significant
at low RHIC Beam Energy Scan energies that involve beam
rapidities of order four or smaller. The presence of nonvanish-
ing net-charge may then confuse the interpretation of balance
functions and their integrals. It is then convenient to eliminate
this dependence and modify the definition of integral balance

functions (10) and (11) according to

Iαβ̄ ≡
〈
Nαβ̄

2

〉
〈
N β̄

1

〉 −
〈
N ᾱβ̄

2

〉
〈
N β̄

1

〉 − (〈
Nα

1

〉 − 〈
N ᾱ

1

〉)
, (29)

I ᾱβ ≡
〈
N ᾱβ

2

〉
〈
Nβ

1

〉 −
〈
Nαβ

2

〉
〈
Nβ

1

〉 + (〈
Nα

1

〉 − 〈
N ᾱ

1

〉)
, (30)

which shall, by construction, yield I+− → 1, I−+ → 1 in the
full 4π - and pT-acceptance limit.

Experimentally, a full acceptance is not achievable, and
one might be limited to, e.g., −y0 � y < y0 and pT,min �
pT < pT,max, with full azimuthal acceptance.1 One straight-
forwardly verifies that the balance functions (29) and (30)
computed within such limited acceptance 	 shall be smaller
than unity. It is also useful to note that Iαβ̄ and I ᾱβ can also
be expressed in terms of integral cumulants and normalized
integral cumulants (sometimes called reduced cumulants) ac-
cording to

Iαβ̄ = Fα
1 Rαβ̄

2 − F ᾱ
1 Rᾱβ̄

2 , (31)

I ᾱβ = F ᾱ
1 Rᾱβ

2 − Fα
1 Rαβ

2 . (32)

Hereafter, we shall denote the arithmetic average of Iαβ̄ and
I ᾱβ as Iαβ,s:

Iαβ,s = 1
2 (Iαβ̄ + I ᾱβ ). (33)

It is evidently clear, by virtue of Eqs. (27) and (28), that Iαβ,s

shall converge to unity in the full 4π - and pT-acceptance limit,
irrespective of the net-charge Q of the system.

IV. DIFFERENTIAL BALANCE FUNCTIONS

With the definitions (29) and (30) in hand, we consider the
formulation of balance function based on conditional densities
ρ

α|β
2 (y1|y2) [1] computed according to

ρ
α|β
2 (y1|y2) = ρ

αβ

2 (y1, y2)

ρ
β

1 (y2)
. (34)

By construction, ρ
α|β
2 (y1|y2) amounts to the density of a

species α at y1 given a particle of species β is detected at y2.2

To simplify the discussion, we first neglect the net-charge Q
and write differential balance function according to

Bα|β̄ (y1|y2) = ρ
α|β̄
2 (y1|y2) − ρ

ᾱ|β̄
2 (y1|y2) (35)

= ρ
αβ̄

2 (y1, y2)

ρ
β̄

1 (y2)
− ρ

ᾱβ̄

2 (y1, y2)

ρ
β̄

1 (y2)
, (36)

which is to be considered a function of y1 only since y2 is
“given.” Particle β̄, found at y2, is considered the “trigger”
particle whereas particles α and ᾱ, detected at y1, are called
“associated” particles. While it is intuitively tempting to think

1The discussion is formulated in terms of particle rapidities but
readily also applies to pseudorapidities

2Hereafter, for simplicity and without loss of generality, densities
and balance functions are written as functions of rapidity only.
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of the function Bα|β̄ (y1|y2) as the density of particles of type
α at y1 given a particle of type β̄ is found at y2, one must
acknowledge that Bα|β̄ (y1|y2) can in fact be negative across
some fraction of the domain y1 and thus does not amount,
strictly speaking, to a particle density.

Considering once again the basic case of an inclusive
charge balance function, e.g., α = β = +, one writes

B+|−(y1|y2) = ρ+−
2 (y1, y2)

ρ−
1 (y2)

− ρ−−
2 (y1, y2)

ρ−
1 (y2)

. (37)

Since y2 is given, one can then proceed to integrate
B+|−(y1|y2) over y1. The production of a negatively charged
particle must be accompanied by the production of a posi-
tively charged one somewhere in phase space. The integral
of the balance function B+|−(y1|y2), denoted

I+|−(y2|	) ≡
∫

	

dy1B+|−(y1|y2), (38)

thus converges to unity, by construction, in the 4π - and full
pT-acceptance limit:

lim
	→4π

I+|−(y2|	) → 1. (39)

Evidently, in that limit, I+|−(y2|	) has the same value for
all y2. However, for a given y2 and a finite acceptance 	 :
−y0 � y < y0, the integral I+|−(y2) shall in general depend
on y0. Consider that, if the given value is y2 = 0 and the
acceptance of the measurement is symmetric −y0 � y < y0,
it is obviously easier to “catch” the balancing partner than if
the given position is y2 = y0. Indeed, in that case, balancing
partners can only be found on “one side” whereas for y2 = 0,
balancing partners can be found on two sides. One thus con-
cludes the integral I+|−(y2) is a function of y2 which depends
on the shape and width of B+|−(y1|y2). It thus makes sense to
consider the average of I+|−(y2) across the acceptance 	 of
the measurement:3

Ī+−(y0) ≡
∫ y0

−y0

dy2P−
1 (y2)I+|−(y2), (40)

where P−
1 (y2) represents the probability of finding the first

particle at y2. Clearly, this probability is

P−
1 (y2) = 1

〈N−
1 〉(y0)

ρ−
1 (y2), (41)

where 〈N−
1 〉(y0) = ∫ y0

−y0
ρ−

1 (y)dy, and which, by construction,

satisfies
∫ y0

−y0
dy2P−

1 (y2) = 1. The dependence of 〈N±
1 〉 on the

longitudinal acceptance y0 is further omitted for simplicity.
The average sought for is thus

Ī+− = 1

〈N−
1 〉

∫ y0

−y0

dy2

∫ y0

−y0

dy1[ρ+−
2 (y1, y2) − ρ−−

2 (y1, y2)]

= 1

〈N−
1 〉 [〈N+−

2 〉 − 〈N−−
2 〉], (42)

3For simplicity, we assume a symmetric acceptance −y0 � y < y0.

which is identical in form to Eq. (10) for α = +, β̄ = − when
Q = 0. It thus becomes natural to define the BF as a joint
function of y1 and y2 according to

B+−(y1, y2|y0) = 1

〈N−
1 〉 [ρ+−

2 (y1, y2) − ρ−−
2 (y1, y2)], (43)

the integral of which yields Eq. (10). The same reasoning,
repeated for B−+(y1, y2|y0), yields

B−+(y1, y2|y0) = 1

〈N+
1 〉 [ρ−+

2 (y1, y2) − ρ++
2 (y1, y2)]. (44)

The expression (43) was derived based on Eq. (37) and thus
neglects the presence of a nonvanishing net-charge Q. For
Q �= 0, integration of B+|−(y1|y2) over the full phase space
	 → 4π shall then yield 1 + Q rather than 1. However, note
that, by definition, integration of the difference ρ+

1 (y) − ρ−
1 (y)

yields the net-charge Q. To obtain a balance function defini-
tion that integrates to 1, even in the presence of Q �= 0, it thus
suffices to subtract this difference from Eq. (37). Repeating
the same reasoning for B−|+(y1|y2), one thus proceed to define
charge balance functions according to

B+|−(y1|y2) = ρ+−
2 (y1, y2)

ρ−
1 (y2)

− ρ−−
2 (y1, y2)

ρ−
1 (y2)

− [ρ+
1 (y1) − ρ−

1 (y1)], (45)

B−|+(y1|y2) = ρ−+
2 (y1, y2)

ρ+
1 (y2)

− ρ++
2 (y1, y2)

ρ+
1 (y2)

+ [ρ+
1 (y1) − ρ−

1 (y1)]. (46)

These expressions are defined at a given value of y2 and must
thus be averaged over the acceptance 	 to yield a BF defined
for all values of y1 and y2. Proceeding as above, one takes
the averages of B+|−(y1|y2) and B−|+(y1|y2) weighed by the
probabilities Pα

1 (y2) = ρα
1 (y2)/〈Nα

1 〉 of finding a particle of
type α at y2, for α = −,+, respectively. This yields “bound”
balance functions

B+−(y1, y2|y0) = 1

〈N−
1 〉 [ρ+−

2 (y1, y2) − ρ−−
2 (y1, y2)

− ρ+
1 (y1)ρ−

1 (y2) + ρ−
1 (y1)ρ−

1 (y2)], (47)

B−+(y1, y2|y0) = 1

〈N+
1 〉 [ρ−+

2 (y1, y2) − ρ++
2 (y1, y2)

− ρ−
1 (y1)ρ+

1 (y2) + ρ+
1 (y1)ρ+

1 (y2)]. (48)

By construction, these integrate to unity in the 4π (full pT

coverage) limit even in the presence of a nonvanishing net-
charge, i.e., Q �= 0. Noting the presence of terms of the form
ρ

αβ

2 − ρα
1 ρ

β

1 , it is convenient to write the above expressions as

B+−(y1, y2|y0) = 1

〈N−
1 〉 [C+−

2 (y1, y2) − C−−
2 (y1, y2)], (49)

B−+(y1, y2|y0) = 1

〈N+
1 〉 [C−+

2 (y1, y2) − C++
2 (y1, y2)], (50)

where we introduced the differential correlation functions Cαβ

2
defined according to

Cαβ

2 (y1, y2) = ρ
αβ

2 (y1, y2) − ρα
1 (y1)ρβ

1 (y2). (51)
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The expressions Eqs. (45) and (46) were defined for charge
balance functions but their structure does not limit their ap-
plicability to inclusive measurements and we show in Sec. V
they obey a simple sum rule which also conserves charges and
accounts for the net-charge of the system. It is thus appropriate
to introduce general balance functions according to

Bα|β̄ (y1|y2) = Aα|β̄
2 (y1|y2) − Aᾱ|β̄

2 (y1|y2), (52)

Bᾱ|β (y1|y2) = Aᾱ|β
2 (y1|y2) − Aα|β

2 (y1|y2), (53)

where we introduced single “associated” particle functions
according to

Aα|β
2 (y1|y2) = Cαβ

2 (y1|y2)

ρ
β

1 (y2)
= ρ

αβ

2 (y1, y2)

ρ
β

1 (y2)
− ρα

1 (y1). (54)

It should first be noted that Aα|β̄
2 (y1|y2) and Bα|β̄ (y1|y2) are

single-particle and single-variable functions, given the rapid-
ity y2 is considered given and thus not a free variable in the
context of the definitions in Eqs. (52)–(54). Additionally, by
construction, and in the absence of correlations, the density
ρ

αβ

2 (y1, y2) factorizes according to

ρ
αβ

2 (y1, y2) = ρα
1 (y1)ρβ

1 (y2). (55)

The associated particle function Aα|β
2 (y1|y2) then vanishes,

by definition, for independent-particle emission (i.e., no cor-
relations). However, in the presence of correlations, the
pair density ρ

αβ

2 (y1, y2) may be larger or smaller than
ρα

1 (y1)ρβ

1 (y2) over some kinematic domain of y1 and y2. The
function Aα|β

2 (y1|y2) may then be positive, negative, or null
across some portions of the acceptance. It is similarly straight-
forward to observe that the balance functions may also be
negative or null across some portions of the acceptance. As
such, neither Aα|β

2 (y1|y2) nor Bα|β (y1|y2) can be considered
single-particle densities. It should be additionally noted that
the shape and strength of Aα|β

2 (y1|y2) and thus Bα|β (y1|y2) may
depend strongly on y2. For instance, at rapidity y2 near the
beam rapidity yB, one expects the particle production to be
largely dominated by the fragmentation of the beam compo-
nents whereas at central rapidity (y ≈ 0 in a collider mode),
particle production is determined by large

√
s processes. The

widths and shapes of BFs are thus indeed expected to vary
appreciably with the selected rapidity y2.

Experimentally, measurements of (general) balance func-
tions are restricted to finite ranges of rapidity, transverse
momentum, as well as, in some cases, azimuth. The general
balance functions (52) and (53) must then be “averaged” for
the position of the trigger particle: y2, pT,2, and ϕ2. Repeating
the steps leading to Eqs. (49) and (50), one gets the bound
general balance functions defined according to

Bαβ̄ (y1, y2|	) = 1〈
N β̄

1

〉 [Cαβ̄

2 (y1, y2) − Cᾱβ̄

2 (y1, y2)
]
, (56)

Bᾱβ (y1, y2|	) = 1〈
Nβ

1

〉 [Cᾱβ

2 (y1, y2) − Cαβ

2 (y1, y2)
]
, (57)

which are applicable to same, α = β, or mixed, α �= β, parti-
cle species, each carrying a single unit of charge.

It is worth mentioning that Eqs. (56) and (57) are not
applicable to physical systems involving multiply charged
particles, i.e., when particles of type α, β may be multicharge
species, such as �++ or 4He, and so on. In such cases, one
must replace the single and pair particle densities, ρα

1 and ρ
αβ

2 ,
by single and pair electric charge densities defined according
to

ρα
e1 = nα

e ρα
1 , (58)

ρ
αβ

e2 = nα
e nβ

e ρ
αβ

2 , (59)

where nα
e and nβ

e represent the number of elementary charges
of species α and β, respectively. Correspondingly, for cases
where α and β correspond to specific particle species,
Eqs. (47) and (48) transform to

Bαβ̄ (y1, y2|	) = nα
e〈

N β̄

1

〉 [ραβ̄

2 (y1, y2) − ρ
ᾱβ̄

2 (y1, y2)

− ρα
1 (y1)ρβ̄

1 (y2) + ρᾱ
1 (y1)ρβ̄

1 (y2)
]
, (60)

Bᾱβ (y1, y2|	) = nα
e〈

Nβ

1

〉 [ρᾱβ

2 (y1, y2) − ρ
αβ

2 (y1, y2)

− ρᾱ
1 (y1)ρβ

1 (y2) + ρα
1 (y1)ρβ

1 (y2)
]
. (61)

When particles of type α, β include different species with
different number of elementary charges, e.g., +, ++, and
+ + +, the single and pair electric charge densities shall then
be defined according to

ρα
e1 =

∑
γ

nγ
e ρ

γ

1 , (62)

ρ
αβ

e2 =
∑

γ

∑
μ

nγ
e nμ

e ρ
γμ

2 , (63)

where γ (μ) refers to particles of type α (β ) with an ele-
mentary charge of nγ

e (nμ
e ) units. Equations (47) and (48) then

transform to

Bαβ̄ (y1, y2|	) = 1∑
μ̄ nμ̄

e
〈
N μ̄

1

〉 [ραβ̄

e2 (y1, y2) − ρ
ᾱβ̄

e2 (y1, y2)

− ρα
e1(y1)ρβ̄

e1(y2) + ρᾱ
e1(y1)ρβ̄

e1(y2)
]
, (64)

Bᾱβ (y1, y2|	) = 1∑
μ nμ

e
〈
Nμ

1

〉 [ρᾱβ

e2 (y1, y2) − ρ
αβ

e2 (y1, y2)

− ρᾱ
e1(y1)ρβ

e1(y2) + ρα
e1(y1)ρβ

e1(y2)
]
. (65)

V. BALANCE FUNCTIONS SUM RULES

Can the notion of balance function duly apply to mixed
species of particle? Do the definitions (52) and (53) properly
account for charge conservation and the charge of the system?

One expects, for instance, that the emission of a negative
pion π− shall be balanced by the production of a positive
(+ve) particle. Such a +ve particle could of course be a π+,
but it does not have to be. Indeed, balancing the charge of the
π− can be accomplished, in part, via the production of a K+, a
proton p, or some other positively charged particle. In general,
particles with masses larger than the mass of the proton tend to
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decay into either π+, K+, p, or some positive weakly decaying
particle. Such weak decays may lead to the production of π+,
K+, p, or positrons e+. The balance function B+|π−

, which
loosely speaking corresponds to the “probability” of finding a
charge balancing partner to the π− shall thus amount to the
sum of balance functions Bα|π−

that involve particle of type α

charge balancing the π−:

B+|π−
(y1|y2) =

∑
α

Bα|π−
(y1|y2), (66)

where the sum on α spans all particle species that poten-
tially balance the production of a π−. It should be noted
that, even though B+|π−

is not necessarily non-negative, and
thus strictly speaking not a probability, the above sum-rule
applies nonetheless, as we demonstrate below. Evidently, if
the sum rule applies to the “theoretical” balance functions
B+|π−

(y1|y2), it shall apply also, by virtue of its derivation, to
the bound (experimental) functions B+π−

(y1, y2). We show, in
the next paragraph, that the sum rule, Eq. (66), does apply, by
construction, to any other types of positive (negative) particle
species β (β̄):

B+|β̄ (y1|y2) =
∑

α

Bα|β̄ (y1|y2), (67)

B−|β (y1|y2) =
∑

α

Bᾱ|β (y1|y2). (68)

Such balance functions sum rules have already been consid-
ered in the context of net proton number fluctuations for a
system with vanishing net-charge [23] but are here extended to
include the presence of nonvanishing net-charge in a collision
system.

In the remainder of this section, which can be omitted in
a first reading, we show that the definitions (45) and (46) and
the charge conservation limit (39) imply

lim
	→4π

I+|β̄ (y2) =
∫

dy1B+|β̄ (y1|y2) → 1, (69)

lim
	→4π

I−|β (y2) =
∫

dy1B−|β (y1|y2) → 1. (70)

The definitions (45) and (46) thus not only account for
charge conservation but also properly handle the presence of
net-charge. The derivation is carried out for B+|β̄ (y1|y2) but
evidently trivially applies to B−|β (y1|y2).

The derivation of the sum rule (67), based on the defini-
tion (45), is accomplished by partitioning the single and pair
densities according to

ρ+
1 =

∑
α

ρα
1 , (71)

ρ−
1 =

∑
α

ρᾱ
1 , (72)

ρ+−
2 =

∑
β

∑
α

ρ
αβ̄

2 , (73)

ρ−−
2 =

∑
β

∑
α

ρ
ᾱβ̄

2 , (74)

where the sums span all species or antispecies as appropriate,
and arguments y1 and y2 are omitted to simplify the notation.
The integral I+−, computed in the full acceptance limit, may
then be written as

1 =
∫

dy1B+−(y1|y2) (75)

=
∫

dy1

{
(ρ+−

2 − ρ−−
2 )

ρ−
1

− ρ+
1 + ρ−

1

}
. (76)

Inserting the decompositions (71)–(74), one gets

1 =
∫

dy1
1∑
β ρ

β̄

1

⎡
⎣∑

β

∑
α

(
ρ

αβ̄

2 − ρ
ᾱβ̄

2

)⎤⎦ −
∑

α

(
ρα

1 − ρᾱ
1

)
.

(77)

Multiplying the first term within brackets by 1 = ρ
β̄

1 /ρ
β̄

1 and

the second term by 1 = ∑
β ρ

β̄

1 /
∑

β ρ
β̄

1 , and rearranging the
sums, one obtains

1 =
∫

dy1
1∑
β ρ

β̄

1

⎧⎨
⎩

∑
β

∑
α

[
ρ

β̄

1

(
ρ

αβ̄

2 − ρ
ᾱβ̄

2

)
ρ

β̄

1

− ρ
β̄

1

(
ρα

1 − ρᾱ
1

)⎤⎦
⎫⎬
⎭. (78)

Extracting ρ
β̄

1 from the sum
∑

α , one gets

1 =
∫

dy1
1∑
β ρ

β̄

1

⎧⎨
⎩

∑
β

ρ
β̄

1

∑
α

[(
ρ

αβ̄

2 − ρ
ᾱβ̄

2

)
ρ

β̄

1

− (
ρα

1 − ρᾱ
1

)⎤⎦
⎫⎬
⎭, (79)

in which one identifies the expression within the square brack-
ets as Bαβ̄ (y1|y2). Swapping the order of the sum and the
integral, one finally gets

1 =
∑

β

ρ
β̄

1∑
β ′ ρ

β̄ ′
1

∫
dy1

{∑
α

Bαβ̄

}
, (80)

which is true, in general, i.e., for any number of partitions α

and β if and only if

1 =
∫

dy1

∑
α

Bαβ̄ =
∑

α

∫
dy1Bαβ̄ . (81)

The sum
∑

α Bαβ̄ , which spans all +ve species, thus indeed
integrates to 1 and the sum rule is proven. Experimentally, in
a limited acceptance, this sum still corresponds to B+|β̄ (y1|y2)
but the functions do not integrate to unity: the components
Bαβ̄ partition the sum B+|β̄ (y1|y2) and their contribution to this
sum is a function of the size of the acceptance and the specific
processes that lead to the joint production of species α and β̄.
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VI. BARYON NUMBER AND STRANGENESS
BALANCE FUNCTIONS

The notion of balance function is readily extended to
baryon, strangeness, and charm balance functions. One must,
however, account for the baryon number, strangeness number,
or charm carried by the particles.

The baryon number of elementary hadrons is nominally
confined to a minimal set of values (−1, 0, 1) and hadrons
with a null baryon number (i.e., mesons) are to be ignored
in the computation of baryon balance functions. The com-
putation of baryon balance functions shall then nominally
be restricted to hadrons with baryons number with B = 1
and antibaryons with B = −1. However, it is well known
that baryons produced in heavy-ion collisions may bind to
form light nuclei (e.g., 2H, 3He, 4He, and their respective
antinuclei). Such B = A and B = −A baryons and antibaryons
should thus nominally be included in the computation and
measurements of baryon balance functions. However, the pro-
duction of light-nuclei and antilight-nuclei at central rapidities
is a relatively rare occurrence. Nuclei and antinuclei may then
likely be neglected, at least in a first approximation, in the
computation of baryon number balance functions.

Nominally, sum rules of the form (67) and (68) should
apply to baryon balance functions. Unfortunately, the detec-
tion of neutrons remains a significant challenge at collider
energies. Contributions of the form Bn|β̄ , where β̄ represent a
specific antibaryon (e.g., antiproton), shall thus be hard to as-
sess. However, partial balance functions Bp| p̄, Bn|p̄, B�|p̄, B|p̄,
B�|p̄, and B	|p̄ should nearly exhaust balancing contributions
to the production of p̄. The balance function sum rule (67)
shall then enable estimation of Bn|p̄, which, in turn, could be
used to estimate cumulants of the neutron fluctuations [24].

The situation with strangeness balance functions is read-
ily more complicated. First, one notes that multiply strange
baryons, s > 1, and antistrange baryons, s < −1, may be
produced in elementary-particle or nucleus-nucleus collisions.
Accounting for the produced strangeness (or antistrangeness)
must then be based on strangeness densities rather than num-
ber densities. Assuming the labels α and β identify specific
(unique) species, we define single- and pair-strangeness den-
sities according to

ρα
s1 = nα

s ρα
1 , (82)

ρ
αβ

s2 = nα
s nβ

s ρ
αβ

2 , (83)

in which nα
s and nβ

s are the number of strange quarks (an-
tiquarks) in particles of type α and β, respectively. If the
definitions of the labels α and β each span several particle
species, then one must sum across these species as in Eqs. (62)
and (63) defined for electric charges to obtain single and pair
densities.

Strangeness (unbound) balance functions can then be nom-
inally computed as

Bα|β̄ (y1|y2) = Ãα|β̄
2 (y1|y2) − Ãᾱ|β̄

2 (y1|y2), (84)

Bᾱ|β (y1|y2) = Ãᾱ|β
2 (y1|y2) − Ãα|β

2 (y1|y2), (85)

where we introduced strange “associated” particle functions
according to

Ãα|β
2 (y1|y2) = ρ

α|β
s2 (y1, y2)

ρ
β

s1(y2)
− ρα

s1(y1). (86)

The second and more fundamental difficulty arises from the
kaon sector. Nominally, particle production yields charged
kaons, K±, as well as neutral kaons, K0, and antikaons, K̄0.
K0 and K̄0 are, however, known to readily mix and yield weak
eigenstates K0

s and K0
l . The strangeness number of K0

s and
K0

l is undefined (e.g., it is neither positive nor negative). It is
thus not possible to include the contributions of K0 and K̄0 in
balance functions to account for the production of strange and
antistrange quarks. Strange BFs shall thus be forever blind to
the production of these two particles, which experimentally
materialize as either K0

s or K0
l . Measurements of strange bal-

ance functions in heavy-ion collisions remain nonetheless of
great interest given the production of s or s̄ quarks is generally
thought to feature a time evolution distinct of that of lighter
quarks [1]. Quantitative comparisons of strange and charge
balance functions may then enable better understanding and
modeling of the collision dynamics and the properties of the
QGP formed in A-A collisions.

Clearly, the notion of balance function can also be ap-
plied to charmness or bottomness. Recent measurements have
shown that measurements of correlation functions of charmed
hadrons are in fact possible but it remains to be established
whether such observations can be formulated as genuine
charm balance functions [25–28].

The existence of a gluon dominated phase at very early
time of the evolution of A-A collisions could provide sig-
nificant insights and help distinguish the light and heavy
quark evolution dynamics. Light quarks are more likely to
be produced late in collisions. The light hadrons they form
are thus accordingly less sensitive to early time dynamics.
By contrast, the production of heavy quarks (strange, charm,
bottom) requires higher

√
s elementary collisions and is thus

likely limited to early times. One expects that charm and
bottom quarks being the heaviest, their production should be
limited to very early times. Balance functions of open charm
(bottom) particles should then reflect early time production
and possibly heavy quark scattering within the QGP. However,
given the mass of charm and bottom quarks are considerably
heavier than those of strange, up, and down quarks, they
should be subjected to smaller diffusivity effects [3]. The
balance function of charm might be then truly representative
of early time collisions and one might expect a gradation of
sensitivity to early times, that of charm and bottom being
the largest, followed by strangeness, and much less sensitivity
from the lighter u and d quarks.

VII. BALANCE FUNCTIONS AND NORMALIZED
CORRELATION FUNCTIONS

Rather than conducting measurements of balance functions
(and their integral) in terms of densities ρ

αβ

2 (y1, y2), it is also
of interest to consider measurements based on normalized
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differential two-particle cumulants defined according to

Rαβ

2 (y1, y2) ≡ Cαβ

2 (y1, y2)

ρα
1 (y1)ρβ

1 (y2)
= ρ

αβ

2 (y1, y2)

ρα
1 (y1)ρβ

1 (y2)
− 1, (87)

where the functions Cαβ

2 (y1, y2) are defined by Eq. (51).
Analyses in terms of such normalized cumulants are of par-
ticular interest, experimentally, because this observable is
robust against particle losses (efficiency) and thus, nominally,
reduces the need for complicated efficiency correction pro-
cedures. The (unbound) balance functions (45) and (46) may
then be written as

Bα|β̄ (y1|y2) = ρα
1 (y1)Rαβ̄

2 (y1|y2) − ρᾱ
1 (y1)Rᾱβ̄

2 (y1|y2), (88)

Bᾱ|β (y1|y2) = ρᾱ
1 (y1)Rᾱβ

2 (y1|y2) − ρα
1 (y1)Rαβ

2 (y1|y2), (89)

in which the normalized correlation functions R2 are written
with arguments of the form (y1|y2) to emphasize they are
functions of y1 given a value y2. However, given a specific
acceptance 	, one can operationally define symmetric balance
functions, i.e., functions of two parameters y1 and y2 by av-
eraging the integral of Bα|β̄ (y1|y2) and Bᾱ|β (y1|y2) across the
acceptance of y2. This is achieved by averaging the integrals
across the acceptance by weighing them with the probability
to measure specific values of y2. Proceeding as in Sec. IV, one
then obtains bounded balance functions of the form

Bαβ̄ (y1, y2) = 1〈
N β̄

1

〉 [ρα
1 (y1)ρβ̄

1 (y2)Rαβ̄

2 (y1, y2)

− ρᾱ
1 (y1)ρβ̄

1 (y2)Rᾱβ̄

2 (y1, y2)
]
, (90)

Bᾱβ (y1, y2) = 1〈
Nβ

1

〉 [ρᾱ
1 (y1)ρβ

1 (y2)Rᾱβ

2 (y1, y2)

− ρα
1 (y1)ρβ

1 (y2)Rαβ

2 (y1, y2)
]
, (91)

in which the R2 are now written with arguments of the form
(y1, y2) to indicate they they are indeed functions of two
parameters.

VIII. BALANCE FUNCTIONS VS
INVARIANT MOMENTUM

The particle pair separation in momentum space is nomi-
nally determined by the energy of the process that produces a
particular correlated pair. However, transport processes such
as longitudinal and radial flow may affect the separation
measured in term of angular separation, e.g., azimuth angle
pair separation, �ϕ. The shape and strength of balance func-
tions thus measured are influenced by both production and
transport processes. To reduce this causal ambiguity, it may
then be advantageous to carry out the BF measurements in
terms of a relative momentum invariant, Pinv, which is primar-
ily determined by production processes and less affected by
transport phenomena such as radial or longitudinal collective
flow. To this end, Pratt et al. proposed BF measurements shall
be carried in terms of particle pairs relative four-momentum
computed in the reference frame of the two-particle center of

mass according to [29]

qμ = (
pμ

a − pμ

b

) − Pμ P · (pa − pb)

P2

= (
pμ

a − pμ

b

) − Pμ m2
a − m2

b

s
, (92)

in which μ = 0, x, y, z, P is the total four-momentum of
the two particles Pμ = pμ

a + pμ

b , and the invariant
√

s =
[(pa + pb)2]1/2 represents the center-of-mass (COM) en-
ergy of the pair. The square of the invariant momentum
difference of the particles computed in the pair COM
frame is

P2
inv = −q2 = −(pa − pb)2 +

(
m2

a − m2
b

)2

P2
. (93)

Denoting the two-particle transverse momentum, PT =
(P2

x + P2
y )1/2, it is convenient, as suggested by Pratt et al.

[29], to define three projections of the relative momentum
according to

Plong = 1√
s + P2

T

(P0qz − Pzq0), (94)

Pside = Pxqy − Pyqy

PT
, (95)

Pout =
√

s

s + P2
T

Pxqx + Pyqy

PT
, (96)

and such that

P2
inv = P2

long + P2
side + P2

out. (97)

As illustrated in Fig. 2, �Plong is the pair momentum difference
along the beam axis (longitudinal separation), �Pout is along the
two-particle transverse momentum �PT (outwards separation),
and �Pside points in the sidewards direction, i.e., in a direction
perpendicular to both Plong and Pout. The pair density in terms
of Plong, Pout, Pside is

ρ
αβ

2 (Plong, Pout, Pside ) = d3Nαβ

2

dPlong dPout dPside
. (98)

Following a similar reasoning as that leading to Eqs. (56) and
(57), general balance functions may be written:

Bαβ̄ (Plong, Pout, Pside|	) = 1〈
N β̄

1

〉 [Cαβ̄

2 (Plong, Pout, Pside )

−Cᾱβ̄

2 (Plong, Pout, Pside )
]
, (99)

Bᾱβ (Plong, Pout, Pside|	) = 1〈
Nβ

1

〉 [Cᾱβ

2 (Plong, Pout, Pside )

−Cαβ

2 (Plong, Pout, Pside )
]
, (100)

in which

Cαβ

2 (Plong, Pout, Pside ) =ρ
αβ

2 (Plong, Pout, Pside )

− [
ρα

1 ρ
β

1

]
(Plong, Pout, Pside ), (101)
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FIG. 2. Schematic diagram of the pair differences Plong, Pout , Pside defined based on the particle momenta �pa and �pb with respect to the beam
axis and the total pair momentum �P introduced in the text.

where the notation [ρα
1 ρ

β

1 ](Plong, Pout, Pside ) stands for[
ρα

1 ρ
β

1

]
(Plong, Pout, Pside )

=
∫ y0

−y0

ρα
1 (y1, φ1, pT,1)ρα

1 (y2, φ2, pT,2)

× δ(Plong − flong(y1, φ1, pT,1, y2, φ2, pT,2))

× δ(Pout − fout (y1, φ1, pT,1, y2, φ2, pT,2))

× δ(Pside − fside(y1, φ1, pT,1, y2, φ2, pT,2))

× dy1dφ1d pT,1dy2dφ2d pT,2, (102)

in which functions flong, fout, fside map variables y1, φ1, pT,1,
y2, φ2, pT,2 onto Plong, Pout, Pside according to Eqs. (92)–(96).

The determination of BFs based on Eqs. (99) and (100)
requires that measured-pair yields Nαβ

2 (Plong, Pout, Pside|	)
be fully corrected for efficiency losses to obtain
densities ρ

αβ

2 (Plong, Pout, Pside ) and correlation functions
Cαβ

2 (Plong, Pout, Pside ). Alternatively, experimentally, it may
be preferable to compute the BFs in terms of normalized
cumulants

Rαβ

2 (Plong, Pout, Pside ) = Cαβ

2 (Plong, Pout, Pside )[
ρα

1 ρ
β

1

]
(Plong, Pout, Pside )

, (103)

because these are approximately robust against particle (effi-
ciency) losses.

IX. ACCEPTANCE AVERAGING
OF THE BALANCE FUNCTION

At RHIC and LHC, the systems produced in A-A collisions
feature large longitudinal and transverse pressure gradients.
It is then of interest to carry measurements as a function of
differences �y = y1 − y2 and �ϕ = ϕ1 − ϕ2 simultaneously.
The realization of such measurements in individual particle
coordinates requires the handling of four-dimensional (4D)
histograms. Even when using a relatively small number of
bins along each dimension, one ends up, computationally,
with very large objects that may challenge the capacity of
computing nodes used for the data analysis. One additionally
also faces a statistical accuracy challenge: the measured pairs
are spread across a vast number of bins and it may become

difficult to achieve sufficient statistical accuracy across the
entire phase space. It is then often desirable to ab initio reduce
the dimensionality of the measurement by projecting this 4D
space onto a two-dimensional (2D) space �y vs �ϕ. One
must then consider how such projections impact the balance
functions B and their integrals Iα|β̄ in measurements featuring
a limited acceptance −y0 � y < y0.

To carry out computations in �y and �ϕ coordinates, one
first considers the transformations

y1, y2 → �y ≡ y1 − y2, ȳ ≡ (y1 + y2)/2, (104)

ϕ1, ϕ2 → �ϕ ≡ ϕ1 − ϕ2, ϕ̄ ≡ (ϕ1 + ϕ2)/2, (105)

which both feature a Jacobian J = 1. Densities
ρ

αβ

2 (y1, y2, ϕ1, ϕ2) thence transform to ρ
αβ

2 (�y, ȳ,�ϕ, ϕ̄)
according to

ρ
αβ

2 (�y, ȳ,�ϕ, ϕ̄)

=
∫

dy1

∫
dy2ρ

αβ

2 (y1, y2, ϕ1, ϕ2)δ

× (�y − y1 + y2)δ(ȳ − (y1 + y2)/2.0)

× δ(�ϕ − ϕ1 + ϕ2)δ(ϕ̄−(ϕ1 + ϕ2)/2.0). (106)

Measurements of Bα|β (�y,�ϕ) can be carried out as sim-
ple projections of the 4D space spanned by y1, ϕ1, y2, ϕ2

or averages across the acceptances ȳ = (y1 + y2)/2 and ϕ̄ =
(ϕ1 + ϕ2)/2. Obtaining simple projections is trivial, given it
suffices to fill histograms of the two densities in terms of the
�y and �ϕ coordinates, e.g.,

ρ
αβ

2 (�y) ≡
∫

	

dȳραβ

2 (�y, ȳ). (107)

However, such projections emphasize small values of �y, e.g.,
�y ≈ 0, of the two-particle phase space at the expense of re-
gions with �y ≈ 2y0 near the edge of the acceptance. It is thus
advantageous to consider averages across the ȳ acceptance as
follows:

ρ̄
αβ

2 (�y) ≡ 1

	(�y)

∫
	

dȳραβ

2 (�y, ȳ) = 1

	(�y)
ρ

αβ

2 (�y),

(108)
where the overbar in ρ̄ represents the averaging across ȳ and
	(�y) is the width of the acceptance in ȳ at the given �y. For

014902-10



ACCOUNTING FOR NONVANISHING NET-CHARGE … PHYSICAL REVIEW C 107, 014902 (2023)

FIG. 3. Definition of the pair acceptance used in the definition of
bound balance functions.

a square and symmetric two-particle acceptance, −y0 � y1,
y2 < y0, as illustrated in Fig. 3, the value of 	(�y) amounts
to

	(�y) = 2y0 − |�y|. (109)

The function 	(�y) is often called the acceptance factor.
It should be clear, however, that its use does not constitute
an acceptance “correction” but involves acceptance averaging
along ȳ.

Projections of balance functions Bα|β̄ (y1, y2) onto �y are
carried in the same way, and one distinguishes straight and
acceptance averaged projections denoted

Bα|β̄ (�y) ≡
∫

	

dȳBα|β̄ (�y, ȳ), (110)

B̄α|β̄ (�y) ≡ 1

	(�y)
Bα|β̄ (�y), (111)

respectively, with similarly formed expressions for Bᾱ|β (�y)
and B̄ᾱ|β (�y1). Evidently, these expressions can be used to
compute balance functions based on correlation functions,
e.g., Cᾱ|β

2 (�y), given by Eqs. (49) and (50), or normalized
cumulants, represented in Eqs. (90) and (91). By construc-
tion, integrals of Bα|β̄ (�y), Bᾱ|β (�y), yield results identical
to those obtained with densities and correlation functions
Cᾱ|β

2 (y1, y2). However, integrals of acceptance averaged bal-
ance functions B̄α|β̄ (�y), B̄ᾱ|β (�y) do not given they feature
the acceptance factor 	(�y) in their definition. Balance func-
tion integrals can nonetheless be recovered by inserting this
acceptance factor explicitly in the BF integral as follows:

Iα|β̄ (	) =
∫

	

	(�y)B̄α|β̄ (�y)d�y. (112)

X. BALANCE FUNCTIONS AND THE νdyn OBSERVABLE

The νdyn observable was initially developed and used for
the study of net-charge fluctuations [20]. As such, it corre-
sponds to the “dynamical” or nonstatistical components of
net-charge fluctuations. It can, however, also be used for
the study of the relative abundance fluctuations of particles

species α and β. In that context, it is most succinctly written
as a combination of normalized cumulants, according to

ν
αβ

dyn = Rαα
2 + Rββ

2 − 2Rαβ

2 , (113)

with Rαβ

2 correlators defined and computed according to
Eq. (9). In the context of studies of net-charge fluctuations
within the acceptance 	 : −y0 � y < y0, the above reduces to

ν+−
dyn (	) = R++

2 (	) + R−−
2 (	) − 2R+−

2 (	), (114)

with

R++
2 (	) = 〈N+(N+ − 1)〉

〈N+〉2
− 1, (115)

R−−
2 (	) = 〈N−(N− − 1)〉

〈N−〉2
− 1, (116)

R+−
2 (	) = 〈N+N−〉

〈N+〉〈N−〉 − 1, (117)

in which 〈N+(N+ − 1)〉, 〈N−(N− − 1)〉, and 〈N+N−〉 corre-
spond, respectively, to average number of positive particle
pairs ++, average number of negative particle pairs −−, and
average number of unlike sign pairs +− detected with the
acceptance 	 : −y0 � y < y0.

We next verify that the above expression for ν+−
dyn (	) is

approximately equal to charge BFs computed with Eqs. (29)
and (30). To this end, we write BF integrals I (	) according to

I (	) = 1
2 [F+

1 R+−
2 + F−

1 R−+
2 − F−

1 R−−
2 − F+

1 R++
2 ]. (118)

Defining ω(	) = F−
1 /F+

1 , and acknowledging that R+−
2 =

R−+
2 , we divide the above expression by −F+

1 /2 and get

− 2Is

F+
1

= [ωR−−
2 + R++

2 − (1 + ω)R+−
2 ], (119)

where we have omitted the dependence on 	 to simplify
the notation. This expression reduces to −ν+−

dyn , given by
Eq. (114), in the limit ω(	) → 1 is approximately valid at
high collision energy for light particles. Denoting the to-
tal average charged particle multiplicity 〈N〉 ≡ F+

1 + F−
1 =

〈N+
1 〉 + 〈N−

1 〉, one thus recovers the known result

Is = −〈N〉
4

ν+−
dyn , (120)

valid in that limit [20]. It is important to note that, at energies
of the CERN Super Proton Synchrotron (SPS) and RHIC, or
even at LHC energy, the limit 〈N+

1 〉 = 〈N−
1 〉 is not perfectly

achieved. The precision of the approximation (120), predi-
cated on ω(	) → 1, must thus be explicitly verified, relative
to the correct expression (119).

XI. SUMMARY

We examined the nominal definition of general charge bal-
ance function [1,2] and found that it is advantageous to define
two complementary balance functions based on differences of
conditional densities of like-sign and unlike-sign pairs of par-
ticles. We first proceeded to define integral balance functions
and showed that, in order to account for a system’s charge, the
balance functions must include a term equal to the difference
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of positively and negatively charged particle multiplicities.
We next showed that differential balance functions B+|− and
B−|+ defined from differences of conditional densities can
also properly account for the system’s net-charge provided
one adds the difference of positive and negative densities to
their definitions. We further showed that such charge balance
functions can be generalized to any combinations of species α

and β. We showed, in particular, that such general balance
functions also account for finite net-charge of the collision
system being considered provided they include the density
difference ρα

1 (y) − ρᾱ
1 (y). We derived the simple sum rules

(67), (68), and (81) that show that the sum of BFs of particle
pairs α|β̄ feature an integral across the full phase space that
converges to unity.

Additionally, we also showed charge BFs can be straight-
forwardly extended to baryon, strangeness, and charm BFs
provided one accounts for the baryon, strangeness, and charm
density rather than the particle density. As such, general bal-
ance functions could provide a path to a better and deeper
understanding of the evolution of systems formed in pp, p-A,
and A-A collisions. Moreover, although not explicitly dis-
cussed in this work, it is clear that measurements of balance
functions within jets could potentially also yield a better un-
derstanding of the structure of jets and their modification in
A-A collisions relative to those observed in pp collisions.

Finally, we derived expressions for bounded balance
functions, i.e., balance functions measured in a specific accep-
tance, based on either densities ρ

αβ

2 or normalized correlation
functions Rαβ

2 . We showed that balance functions based on
difference variables �y and �ϕ may be computed as straight

projections from 4D space {y1, ϕ1, y2, ϕ2} or as weighted aver-
ages across the pair rapidity average ȳ = (y1 + y2)/2. We also
derived a general formula that connects the integral of charge
balance functions and the ν+−

dyn observable.
We have shown that general BFs B+|− and B−|+ must

include the density difference ρα
1 (y) − ρᾱ

1 (y) to yield integrals
that properly account for the net-charge of the collision sys-
tem considered. But given ratios of particle and antiparticle
yields tend towards unity in the central rapidity region, at
top RHIC energy and at LHC, one may wonder, however,
whether the inclusion of this term is absolutely essential and
whether measurements based on the nominal conditional den-
sity difference would constitute reasonable approximations of
the correct results. We have also shown that measurements
of general balance functions based on Rαβ

2 may be carried
out based on various experimentally driven approximations.
The impact of the omission of the density difference and Rαβ

2
based approximations shall be explored in detail in future
works.
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