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Directed flow in relativistic resistive magneto-hydrodynamic expansion for symmetric
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We construct a dynamical model for high-energy heavy-ion collisions based on the relativistic resis-
tive magneto-hydrodynamic framework. Using our newly developed (3 + 1)-dimensional relativistic resistive
magneto-hydrodynamics code, we investigate magneto-hydrodynamic expansion in symmetric and asymmetric
collision systems as the first application to high-energy heavy-ion collisions. As a realistic initial condition
for electromagnetic fields, we consider the solutions of the Maxwell equations with the source term of point
charged particles moving in the direction of the beam axis, including finite constant electrical conductivity of
the medium. We evaluate the directed flow in the symmetric and asymmetric collisions at BNL Relativistic
Heavy Ion Collider energy. We find a significant effect of finite electrical conductivity on the directed flow in
the asymmetric collision system. We confirm that a certain amount of energy transfer by dissipation associated
with Ohmic conduction occurs in the asymmetric collision system because of the asymmetry of the electric
field produced by two different colliding nuclei. Because this energy transfer makes the pressure gradient of the
medium flatter, the growth of directed flow decreases.
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I. INTRODUCTION

One of the purposes of high-energy heavy-ion collisions
is an exploration of the phase diagram in quantum chromo-
dynamics (QCD). Since the strongly coupled quark-gluon
plasma (QGP) was discovered at the BNL Relativistic Heavy
Ion Collider (RHIC), a relativistic hydrodynamic model has
been used as description of the space-time evolution of the
hot and dense medium produced after the collisions [1–4]. At
the same time, the lower bound for the dimensionless ratio
of shear viscosity to entropy density is evaluated to be η/s =
1/4π by Anti-de Sitter/conformal field theory correspondence
[5]. This ratio takes the minimum around the critical tempera-
ture and can pinpoint the location of the QCD phase transition
of rapid crossover from hadronic to QGP matter [6]. The
situation triggered the construction and development of rela-
tivistic viscous hydrodynamic models [7–10]. The relativistic
hydrodynamic equation has close relation to the QGP bulk
properties; the equation of state (EoS) and transport coeffi-
cients. For the phase transition between the hadronic phase
and the QGP phase, intensive studies are performed by lattice
QCD and the parametrized EoS based on the analysis is now
available [11–13]. On the other hand, there are no conclusive
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results for the transport coefficients. In this situation, model-
to-data comparison with Bayesian analysis plays an important
role for evaluation of shear and bulk viscosities and the charge
diffusion constant [14,15]. Thus, the present target of the
high-energy heavy-ion collisions is the quantitative study of
QGP bulk properties, which is advanced from search for the
existent of QGP.

In high-energy heavy-ion collisions, ultraintense electro-
magnetic fields are produced by the two colliding positively
charged nuclei. The intensity of the magnetic field in the
event plane becomes large with increasing the center of mass
energy, e.g., |eB| ≈ 1014–1015 T ≈ m2

π in
√

sNN = 200 GeV
Au-Au collisions at RHIC [16]. Also, the electric field inten-
sity is strong, because of large Lorentz factor of positively
charged heavy nuclei in high-energy collisions. Such electro-
magnetic fields can affect the hydrodynamics of the created
medium. The effect of a strong magnetic field on the hy-
drodynamic evolution of the QGP medium has been studied
based on a simplified equation of the relativistic magneto-
hydrodynamics (RMHD) such as reduced MHD [17] and
relativistic ideal MHD with infinite electrical conductivity
[18,19].

The electrical conductivity characterizes the response of
a medium to electromagnetic field. Extracting the value of
electrical conductivity from the experimental data at RHIC
and the CERN Large Hadron Collider (LHC) is an important
subject for a detailed discussion of interesting phenomena un-
der strong electromagnetic fields such as the chiral magnetic
effect [20,21] and vacuum birefringence of photons [22,23].
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Temperature and external magnetic field dependencies on the
electrical conductivity are investigated by the lattice QCD
[24,25]. However, a dynamical model is needed for connec-
tion between the experimental data and the results of the first
principle calculation.

Under some simplification, the effect of electromagnetic
fields such as Lorentz force and Coulomb force on the rel-
ativistic viscous hydrodynamic expansion in the symmetric
collision system has been discussed [17,26–28]. They found
only small effect of electromagnetic fields on observables.
On the other hand, in the asymmetric collision system, a
straightforward estimate of the electrical conductivity has
been presented by focusing on the electric current [29]. In
the context of the relativistic ideal magneto-hydrodynamic
framework, the evolution of the electric field produced by
colliding nuclei is neglected. To handle the electric field pro-
duced by two different colliding nuclei, one needs to construct
the relativistic resistive magneto-hydrodynamic (RRMHD)
model. Hence, we consider the RRMHD framework in which
Maxwell equations with finite electrical conductivity and rel-
ativistic hydrodynamic equations are simultaneously solved.
It is not possible to evaluate the electrical conductivity of
the QGP medium from the analysis of high-energy heavy-ion
collisions without using the RRMHD framework.

In this study, we construct a dynamical model for high-
energy heavy-ion collisions based on the RRMHD framework
in the Milne coordinates and apply it to the symmetric and
asymmetric collision systems. Our model is built in a resis-
tive extension of the relativistic ideal magneto-hydrodynamic
model [18,19]. As a realistic initial condition of elec-
tromagnetic fields, we consider the solutions of Maxwell
equations with the source term of the point charged parti-
cles moving in the direction of the beam axis and constant
electrical conductivity of the medium [30]. We evaluate the di-
rected flow (v1) in the symmetric and asymmetric high-energy
heavy-ion collisions, using our RRMHD model.

This paper is organized as follows. In Sec. II, we briefly
review the formulation and numerical models of the RRMHD
systems in our simulation. We apply our RRMHD simula-
tion code to both Au-Au and Cu-Au collisions in Sec. III.
Numerical results are shown in Sec. IV and a summary is
given at the end in Sec. V. Unless otherwise specified, we use
natural units h̄ = c = ε0 = μ0 = 1, where ε0 and μ0 are the
electric permittivity and the magnetic permeability in vacuum,
respectively. Throughout the paper, the components of the
four-tensors are indicated with greek indices, whereas three-
vectors are denoted as boldface symbols.

II. RELATIVISTIC RESISTIVE
MAGNETO-HYDRODYNAMICS

A. formulations

The RMHD framework is a model of interaction of con-
ducting plasma and the electromagnetic fields [31,32]. In this
paper, we consider the RMHD framework with finite electrical
conductivity with massless particles as the description of the
space-time evolution of the coupled system of QGP with elec-
tromagnetic fields. With the finite electrical conductivity of

the plasma, the system follows the RRMHD equations consti-
tuted by the conservation laws of fluid quantities and Maxwell
equations [33]. The conservation laws for the charged current
Nμ and for the total energy momentum tensor of the plasma
T μν in the dynamics of whole system, are written by

∇μNμ = 0, (1)

∇μT μν = 0, (2)

where ∇μ is the covariant derivative. The electromagnetic
fields follow Maxwell equations

∇μFμν = −Jν, (3)

∇μ
�Fμν = 0, (4)

where Fμν is a Faraday tensor and �Fμν = 1
2εμνρσ Fρσ is its

dual tensor with εμνρσ = (−g)−1/2[μνρσ ], g = det(gμν ), and
[μνρσ ] is a completely antisymmetric tensor. Here, we have
introduced the metric tensor gμν . If the magnetization and
polarization effects are ignored, the energy-momentum tensor
of the electromagnetic fields is known to be

T μν

f = FμλF ν
λ − 1

4 gμνFλκFλκ , (5)

and this tensor follows ∇μT μν

f = JμFμν , from Maxwell equa-
tions. The total energy momentum tensor is sum of the
contribution of matter and electromagnetic fields T μν =
T μν

m + T μν

f . The conservation law of the total system Eq. (2)
gives

∇μT μν
m = −JμFμν. (6)

In the ideal limit of the relativistic viscous hydrodynamics and
the local equilibrium condition, the energy momentum tensor
and the charge current of fluids are written by

Nμ = ρBuμ, (7)

T μν
m = (e + p)uμuν + pgμν, (8)

where uμ (uμuμ = −1) is a single fluid four-velocity, ρB is the
baryon number density, e = T μν

m uμuν is energy density, and
p = 1

3�μνT μν
m is pressure of the fluid. We have introduced the

projection tensor �μν = gμν + uμuν . The Faraday tensor and
its dual tensor are rewritten as

Fμν = uμeν − uνeμ + εμνλκbλuκ , (9)
�Fμν = uμbν − uνbμ − εμνλκbλuκ , (10)

where

eμ = Fμνuν, (eμuμ = 0), (11)

bμ = �Fμνuν, (bμuμ = 0) (12)

are the electric field and the magnetic field measured in the
comoving frame of the fluid. We adopt the simplest form
of Ohm’s law including a constant electrical conductivity to
close the system of equations (1)–(4) [34] although the debate
regarding the generalized Ohm’s law for hot QCD matter is
still open, e.g., Ref. [35]. In the covariant form, Ohm’s law is
written by

Jμ = σFμνuν + quμ, (13)
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where σ is electrical conductivity and q = −Jμuμ is electric
charge density of the fluid in the comoving frame. The pres-
ence of finite electrical conductivity in the plasma induces
anisotropic magnetic dissipation and Joule heating. They af-
fect the topology of the magnetic field line, which is known as
magnetic reconnection discussed in astrophysical applications
[36–38]. The electrical conductivity plays an important role
for the energy transfer from the electromagnetic fields to the
fluid in RMHD.

B. Numerical models

We now represent the equations of motion for the RRMHD
in a suitable form for numerical calculation. We split the
spacetime into 3 + 1 components by space-like hypersurface
defined as the isosurfaces of a scalar time function t with a
metric of the form

ds2 = −dx0dx0 + gi jdxidx j . (14)

We introduce velocity vi, electric fields Ei, and magnetic
fields Bi as measured in the laboratory frame. The fluid four-
velocity is rewritten as

uμ = (γ , γ vi ), (15)

where γ = √
1 − vivi is the Lorentz factor of the fluid’s flow.

We also define the electric and magnetic fields

eμ = (γ vkEk, γ Ei + γ εi jkv jBk ), (16)

bμ = (γ vkBk, γ Bi − γ εi jkv jEk ). (17)

Let us rewrite the equations of motion (1)–(4) in a conser-
vative form which is appropriate for numerical integration

∂0(
√−g U) + ∂i(

√−g Fi ) = √−g S, (18)

where U, Fi, and S are sets of conservative variables, nu-
merical fluxes and source terms, respectively. These variables
contain the following components:

U =

⎛
⎜⎜⎜⎜⎝

γ ρB

� j

ε

B j

E j

⎞
⎟⎟⎟⎟⎠, Fi =

⎛
⎜⎜⎜⎜⎝

γ ρBvi

T i
j

�i

ε jikEk

−ε jikBk

⎞
⎟⎟⎟⎟⎠, S =

⎛
⎜⎜⎜⎜⎝

0
1
2 T ik∂ jgik

− 1
2 T ik∂0gik

0
−Ji

⎞
⎟⎟⎟⎟⎠, (19)

where the total momentum �i, the stress tensor Ti j and the
total energy density ε are given by

�i = (e + p)γ 2vi + εi jkE jBk, (20)

Ti j = (e + p)γ 2viv j + (p + pem )gi j − EiEj − BiBj,

(21)

ε = (e + p)γ 2 − p + pem, (22)

where the electromagnetic energy density pem is defined as
pem = 1

2 (E2 + B2). We assume that the fluid follows the ul-
trarelativistic ideal gas EoS, e = p/3.

In our new numerical code for RRMHD simulation, the
time integration of the conservative variables is executed by
the second-order of Runge-Kutta algorithm [33]. The primi-
tive variables are interpolated from cell center to cell surface

by using the second order accurate scheme [39]. The con-
straints ∇ · B = 0 and ∇ · E = q should hold if they are
satisfied at the initial state. For numerical simulation, these
conditions, however, sometimes are violated because of the
numerical error, which leads to unphysical oscillation. In
this paper, we employ the generalized Lagrange multiplier
method to guarantee these conditions [33,40,41]. We note
that timescales of the decay of electric field and diffusion of
magnetic field are typically 1/σ , which are sometimes much
shorter than the dynamical timescale. To avoid the unexpected
small time step in numerical simulation, we adopt the semi-
analytic solutions to integrate Ampere’s law [33]. We will
show the details of our numerical algorithm and test problems
for the verification of our numerical code in a paper to be
published later.

III. APPLICATION TO HIGH-ENERGY
HEAVY-ION COLLISION

We simulate the space-time evolution of the hot and dense
medium with electromagnetic fields produced in high-energy
heavy-ion collisions, utilizing the RRMHD framework in the
Milne coordinates (τ, xT, ηs), which are described by the
specific time τ = √

t2 − z2, the coordinates in the transverse
plane xT = (x, y), and the space rapidity ηs = 1

2 ln t+z
t−z . We

focus on the RHIC energy because of the comparison with
STAR data at symmetric and asymmetric collisions.

A. Initial condition for the medium

Initial conditions for the RRMHD equations are built up
with the optical Glauber model [42]. The parameter selec-
tion for the initial condition of our model is based on the
ECHO-QGP simulation [19]. We assume that the initial en-
ergy density distribution takes the form

e(x⊥, ηs; b) = e0M(x⊥; b) ftilt (ηs), (23)

where e0 = 55 GeV/fm3 [19] is the value of energy density
at x⊥ = 0 and ftilt (ηs) is a longitudinal profile function with
the tilted sources [43]. The energy density distribution in the
transverse plane M(x⊥; b) is written by

M(x⊥; b) = (1 − αH)npart (x⊥; b) + αHncoll(x⊥; b)

(1 − αH)npart (0; 0) + αHncoll(0; 0)
, (24)

where b is an impact parameter, and αH = 0.05 [19] is the col-
lision hardness parameter. We have introduced a participant’s
number density npart (x⊥; b) and the binary nucleon collision
number density ncoll(x⊥; b). We take the inelastic nucleon-
nucleon cross section as σ inel

NN = 40 mb [19]. We consider
the Woods-Saxon distribution as a nucleon density profile of
colliding nuclei.

In the longitudinal direction, we smoothly connect the
energy density distribution from the central rapidity region
to the forward and backward rapidity regions by function
ftilt (ηs) with tilted sources of the directed flow. We adopt
the energy density distribution by the following tilted initial
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TABLE I. The values of parameters in the initial conditions for
both of

√
sNN = 200 GeV Au-Au and Cu-Au collisions.

Parameter Description Value

αH Collision hardness 0.05
e0 Energy density at (ηs, xT) = (0, 0) 55 [GeV/fm3]
ηm Slope of the tilted source 3.36
ηflat Width of the plateau 5.9
wη Width of the gauss function 0.4
τ0 Initial time 0.4 [fm]
σ inel

NN Inelastic cross section 40 [mb]

energy density distribution [43]:

M(x⊥, ηs; b) = (1 − αH)WN (x⊥, ηs; b) + αHncoll(x⊥; b)

(1 − αH)WN (0, 0; 0) + αHncoll(0; 0)
.

(25)
We have defined the wounded nucleon’s weight function
WN (x⊥, ηs; b) as

WN (x⊥, ηs; b) = 2
(
nA

part (x⊥; b) f−(ηs)

+ nB
part (x⊥; b) f+(ηs)

)
, (26)

where

f−(ηs) =
⎧⎨
⎩

1 (ηs < −ηm)
−ηs+ηm

2ηm
(−ηm � ηs � ηm)

0 (ηs > ηm)
(27)

and

f+(ηs) =
⎧⎨
⎩

0 (ηs < −ηm)
ηs+ηm

2ηm
(−ηm � ηs � ηm),

1 (ηs > ηm)
(28)

where ηm = 3.36 [43] is a parameter. We define the tilted
longitudinal profile function ftilt (ηs) as

ftilt (ηs) = exp

(
−(|ηs| − ηflat/2)2

2w2
η

θ (|ηs| − ηflat/2)

)
, (29)

where wη = 4.0 is a parameter as a width of the gauss function
in ftilt (ηs) and ηflat = 5.9 [19] is a width of plateau for the
rapidity distribution.

The parameters, αH, e0,wη, ηflat, τ0 and σ inel
NN in the initial

conditions are taken from the ECHO-QGP simulations [19].
We summarize the parameter set for the initial conditions of
the energy density in Table I. To extract the effects of the
difference of the nucleon and charge distributions between
symmetric and asymmetric collision systems, we take the
same value of the parameters for both of Au-Au and Cu-Au
collisions except for the parameters in the Woods-Saxon dis-
tribution.

Figure 1(a) shows the initial condition of the energy den-
sity in the transverse plane at ηs = 0 for Au-Au collisions
at the impact parameter 10 fm. In Fig. 1(a) and 1(b), the
white lines stand for the isothermal surface at e(ηs, xT) =
0.15 GeV/fm3 which corresponds to the freezeout hyper-
surface at the initial time τ0 = 0.4 fm [19]. The centers of
the Au are located at the points (x, y) = (±5 fm, 0 fm).
The almond shaped hot medium is created by the collision
geometry in Au-Au collisions. The initial condition of the
energy density in the transverse plane for Cu-Au collisions
is shown in Fig. 1(b). The centers of Au and Cu are located
at (x, y) = (−5 fm, 0 fm) and (5 fm, 0 fm), respectively. The
effect of asymmetric collision system appears in deformation
of the freezeout hypersurface. Figures 2(a) and 2(b) represent
the profiles of the initial energy density in the reaction plane
at y = 0 fm for Au-Au and Cu-Au collisions, respectively. In
Cu-Au collisions, the forward rapidity corresponds to the Cu-
going direction. In the both of Au-Au and Cu-Au collisions,
the tilted pressure gradient is the source of the directed flow
[43].

B. The initial electromagnetic field

We compute initial electromagnetic fields based on
Ref. [30]. We consider the electromagnetic fields produced by
the electric charge e moving along parallel to the beam axis (ẑ)
with velocity v in the laboratory frame by an observer located

FIG. 1. The initial spatial distribution of the energy density in the transverse plane at the space rapidity ηs = 0. We display the cases of
Au-Au collisions (a) and Cu-Au collisions (b), respectively. The white line represents the isothermal curve at e = 0.15 GeV/fm3.
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FIG. 2. The initial spatial distribution of the energy density in the reaction plane at y = 0 fm. We show the cases of Au-Au collisions
(a) and Cu-Au collisions (b), respectively. The white line represents the isothermal curve at e = 0.15 GeV/fm3.

at r = zẑ + x⊥ in the Minkowski coordinates. Such a system
follows the Maxwell equations with the source term of point
charged particles moving in the direction of the beam axis (ẑ),

∇ · B = 0, ∇ × E = −∂B
∂t

, (30)

∇ · D = eδ(z − vt )δ(b), (31)

∇ × H = ∂D
∂t

+ σ0E + evẑδ(z − vt )δ(b), (32)

where H = μB and D = εE. In the case of γ0σ0b � 1,
Maxwell equations reduce simple solutions by integration

Er = Bφ = e(h̄c)3/2

2π

bσ0/(h̄c)

4x2±
exp

(
−b2σ0/(h̄c)

4x±

)
,

Ez = −e(h̄c)3/2

4π

x± − b2σ0/(4h̄c)

γ 2
0 x3±

exp

(
−b2σ0/(h̄c)

4x±

)
, (33)

where we define γ0 = 1/
√

1 − v2 and x± = t ± v/z. We as-
sume a constant permittivity ε = 1, a constant permeability
μ = 1, and a constant finite electrical conductivity σ0 =
5.8 MeV [44,45]. To clarify the dimension of electromagnetic
fields, GeV1/2/fm3/2, we explicitly write h̄ and c. We take
the electric charge distribution inside two colliding nuclei as
being uniform and spherical for simplicity. The total electro-
magnetic fields are derived by integration over the interior of
colliding nuclei in each point of our computational grid.

We show the profile of electromagnetic fields in the trans-
verse and reaction planes for Au-Au collisions in Figs. 3 and
4, respectively. In Fig. 3(a), the y component of the magnetic
field inside the freezeout hypersurface (white line) is stronger
than that outside the freezeout hypersurface by the Biot-Savart
law. In Fig. 3(b), the x component of the electric field cre-
ated by the two nuclei cancels each other and becomes zero
around (x, y, ηs) = (0 fm, 0 fm, 0) by the symmetric charge
distribution inside colliding nuclei. Figure 4(a) shows the y
component of the magnetic field in the reaction plane. We can
see that, inside the medium, the y component of the magnetic
field is finite. Figure 4(b) represents the x component of the

electric field in the reaction plane. If we focus on the behavior
of the x component of the electric field as a function of ηs

around x ≈ 0 fm, it has a positive value in the backward
rapidity, decreases with ηs, becomes vanishing at ηs = 0, and
has a negative value in the forward rapidity. This indicates that
the electric field produced by colliding nuclei is canceled out
each other at ηs = 0.

The profiles of electromagnetic fields for Cu-Au collisions
are shown in Figs. 5 and 6. In Fig. 5(a), the distribution
of the y component of the magnetic field is similar to that
in Au-Au collisions. However, because of a difference be-
tween the charge density of Cu and that of Au, the magnetic
field in the x > 5 fm region is smaller than that in x <

−5 fm. In Fig. 5(b), we observe the asymmetric profile of the
x-component of the electric field which is different from sym-
metric profile in Au-Au collisions in Fig. 3(b). The nonzero
x component of the electric field exists inside the freezeout
hypersurface. The magnitude of the electric field on the Cu
side (x > 0 fm) is larger than that on the Au side (x < 0 fm).
Figures 6(a) and 6(b) show the y component of the magnetic
field and the x component of the electric field in the reaction
plane, respectively. The y component of the magnetic field
on the Au side (x > 7 fm) is larger than that on the Cu side
(x < −7 fm) as shown in Fig. 5(a). In Fig. 6(b), the initial
electric field in the Au-going (ηs < 0) side is larger than that
in the Cu-going (ηs > 0) side because the electric field created
by the Au is dominated. The characteristic features of the
initial electromagnetic field in Cu-Au collisions may affect
collective flows, in particular, asymmetric flows.

IV. NUMERICAL RESULTS

A. Relativistic resistive magneto-hydrodynamic expansion

The RRMHD simulation is performed for the tilted initial
conditions with electromagnetic fields in Au-Au and Cu-Au
collisions at

√
sNN = 200 GeV. We start the RRMHD simula-

tion at initial time τ0 = 0.4 fm. The initial time is determined
from comparison with the STAR data of the directed flow
in Au-Au collisions [46]. The value is consistent with that
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FIG. 3. The initial electromagnetic field in the transverse plane at the space rapidity ηs = 0 for Au-Au collisions. We display the y
component of the magnetic field (a) and the x component of the electric field (b), respectively. The white line represents the isothermal
curve at e = 0.15 GeV/fm3.

FIG. 4. The initial electromagnetic field in the reaction plane at y = 0 fm for Au-Au collisions. We show the y component of the magnetic
field (a) and the x component of the electric field (b), respectively. The white line represents the isothermal curve at e = 0.15 GeV/fm3.

FIG. 5. The initial electromagnetic field in the transverse plane at the space rapidity ηs = 0 for Cu-Au collisions. We show the y component
of the magnetic field (a) and the x component of the electric field (b), respectively. The white line represents the isothermal curve at e =
0.15 GeV/fm3.
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FIG. 6. The initial electromagnetic field in the reaction plane at y = 0 fm for Cu-Au collisions. We display the y component of the magnetic
field (a) and the x component of the electric field (b), respectively. The white line represents the isothermal curve at e = 0.15 GeV/fm3.

in Ref. [43]. The initial time is related to the thermalization
and hydrodynamization process in the pre-equilibrium stage
of the heavy-ion collisions. Since it is not determined within
a framework of hydrodynamic model, usually a phenomeno-
logical or parametrized initial condition is used. Hence, in
this calculation, we also deal with it as one of the model
parameters.

Figures 7(a) and 7(b) show the velocity profile (〈vx〉) as a
function of ηs in the cases of σ = 0, 1, and 100 fm−1 at time
τ = 3.0 fm. The definition of 〈vx〉 is given by

〈vx〉 =
∫

dydxγ e(x, y, ηs)vx(x, y, ηs)∫
dydxγ e(x, y, ηs)

. (34)

The blue solid, red dashed, and black dotted lines stand for
〈vx〉 in the cases of σ = 100, 1, and 0 fm−1, respectively. Our
simulation with zero electrical conductivity is equivalent to
the relativistic ideal hydrodynamics simulation.

The Au-Au collision system case is shown in Fig. 7(a). The
ηs dependence of velocity appeared in |ηs| < 3 is reflected
from the tilted sources in the initial conditions. There are

only small differences of the profile of the velocity among the
electrical conductivities. However, if we focus on the rapidity
region |ηs| < 2, the fluid velocity is slightly suppressed in
the forward and backward rapidity regions by existence of
the electromagnetic fields with finite electrical conductivity.
For example, 〈vx〉 with σ = 100 fm−1 is less than that with
σ = 0 fm−1. The difference of 〈vx〉 is evaluated by |�〈vx〉| :=
|〈vx〉σ=100 fm−1 − 〈vx〉σ=0 fm−1 | ∼ 0.7 × 10−3c at ηs = −1.0.

As shown in Fig. 4(b), the xcomponent of the electric
field is finite in the forward and backward rapidity regions
inside the freezeout hypersurface. The energy of this elec-
tric field is converted to the fluid energy by the dissipation
associated with Ohmic conduction σE · E. After just one
time step of RRMHD simulation (�τ = 0.02 fm) from the
initial condition in Fig. 2(a), this dissipation makes the pres-
sure gradient of the medium around (ηs, x) = (−1.0, 2.5 fm)
with σ = 100 fm−1 flatter (≈0.8 × 10−3 GeV/fm4) than that
with σ = 0 fm−1. If we ignore the Maxwell’s stress tensor,
the RRMHD equations part in Eq. (18) contain the equa-
tion ∂τ ux = − 1

e+p∂x p. This means that �〈vx〉 is proportional

FIG. 7. The space averaged flow in the x direction as a function of space rapidity ηs at τ = 3.0 fm. The blue solid, red dashed, and black
dotted lines show σ = 100, 1, and 0 fm−1, respectively. We show the cases of Au-Au collisions (a) and Cu-Au collisions (b) at

√
sNN =

200 GeV.
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to the difference of the pressure gradient. Therefore, the
reduction of the fluid velocity is in the same order of the dif-
ference of the pressure gradient between σ = 100 and 0 fm−1

cases. We note that the contribution of the Maxwell’s stress
force is very small because of the large value of plasma β

(β ≈ 1000) in the freezeout hypersurface. Here, the plasma β

is defined by the ratio of bulk pressure to magnetic pressure
β = p/pem.

In the zero electrical conductivity case, the fluid is com-
pletely decoupled with electromagnetic fields. The profile of
velocity with zero electrical conductivity (black dotted line)
is consistent with the result of the relativistic ideal hydrody-
namic simulation in the initial condition with the tilted sources
which corresponds to Fig. 6 in Ref. [43].

The Cu-Au collision system case is shown in Fig. 7(b).
The electrical conductivity dependence of 〈vx〉 is clearly ob-
served around ηs = 0; the amplitude of 〈vx〉 decreases with
electrical conductivity. In particular, at ηs = 0, 〈vx〉 with σ =
100 fm−1 is less than that with σ = 0 fm−1. The difference
between 〈vx〉 with σ = 100 fm−1 and that with σ = 0 fm−1

is |�〈vx〉| ≈ 0.0025c. As shown in the initial condition of
the electric field in Fig. 5(b), the electric current is induced
in the x direction. The Ohm’s law converts the energy from
the electric field to the fluid. After just one time step from
the initial condition, the pressure gradient of QGP medium
around (ηs, x) = (0, 1.5 fm) with σ = 100 fm−1 becomes
flatter (≈0.003 GeV/fm4) than that with σ = 0 fm−1. The
difference of the pressure gradient is in the same order of the
reduction of the fluid flow. Furthermore, the contribution of
Maxwell’s stress force is not visible since the plasma β is
also large in the asymmetric collision system. The electrical
conductivity dependence is the result of the energy transfer
from electromagnetic fields to the fluid by the dissipation.
This reduction is larger than that of Au-Au collisions. This
reason is that, inside the freezeout hypersurface in Fig. 5, the
electric field in Cu-Au collisions has larger value than that in
Au-Au collisions. It indicates that the large Ohmic conduction
is induced in asymmetric collisions.

However, one can see that the small sensitivity to changes
in electrical conductivity during two orders. The electric field
relaxes as (E⊥ + v × B)/(E⊥0 + v × B) ∝ exp(−τ/σγ ) and
E‖/E‖0 ∝ exp(−γ τ/σ ) by Ohm’s law, where E⊥ and E‖ are
perpendicular and parallel components of the electric field
with respect to the fluid velocity. The suffix 0 represents the
initial value of E. In other words, the timescale of dissi-
pations is determined by 1/σ . If freezeout time is satisfied
with τ f � 1/σ , the energy of the electric field is completely
consumed. In our calculation, the freezeout time is τ f ≈ 5 fm,
while the dissipation time is 1/σ ∼ O(10−1). Thus, the clear
electrical conductivity dependence does not appear for a long
time evolution. To make it clear that the energy transfer from
electromagnetic fields to the fluid occurs, we introduce the
dissipation measure D(u) GeV/fm4 [47] defined as

D(u) = jμeμ

= γ [ j · (E + v × B) − q(v · E )]. (35)

The dissipation measure was first introduced in Ref. [47]
to detect the dissipation region in collisionless magnetic re-

connection. This quantity represents the conversion rate of
the energy from the electromagnetic field to the fluid by the
dissipation.

Figure 8(a) shows the weighted spatial distributions of
the dissipation measure D(u) as a function of x in Au-Au
collisions at initial time τ0 = 0.4 fm,

〈D(u)〉(x) =
∫

dydηsγ e(x, y, ηs)D(u)(x, y, ηs)∫
dydηsγ e(x, y, ηs)

. (36)

The blue solid, red dashed, and black dotted lines stand for
〈D(u)〉 in the cases of σ = 100, 1, and 0 fm−1, respectively.
Since the dissipation measure is proportional to the electri-
cal conductivity, the amplitude of 〈D(u)〉 with σ = 1 fm−1

is 10−2 times smaller than that with σ = 100 fm−1. The
timescale of the energy transfer by dissipation is determined
by the electrical conductivity, τσ ∼ 1/σ . In other words, the
energy transfer instantaneously occurs in the high conduct
ive case, whereas it gradually occurs in the resistive case.
The 〈D(u)〉 has a symmetric structure for the positive x and
the negative x. It becomes small in the region of |x| < 3 fm,
which is reflected from the small initial electric fields around
x ≈ 0 in Fig. 3(b). Near the freezeout hypersurface around
|x| ≈ 5 fm, there are two peaks. Outside the medium, |x| ≈ 10
fm, two large peaks exist, however they do not give influence
the time evolution of the fluid. The symmetric structure of
〈D(u)〉 suggests that the converted electromagnetic energy
may not affect the directed flow, but may change the amplitude
of elliptic flow. However, we do not observe the electrical con-
ductivity dependence of the elliptic flow of Au-Au collisions
as well as Cu-Au collisions. The reason is that the amplitude
of the elliptic flow is determined mainly by the pressure gra-
dient of initial geometry where the plasma beta is large and
the initial profile of energy density has large eccentricity. The
contribution of dissipations of electromagnetic fields is neg-
ligible on the elliptic flow. In Fig. 8(b), the weighted spatial
distributions of the dissipation measure D(u) as a function
of ηs,

〈D(u)〉(ηs) =
∫

dydxγ e(x, y, ηs)D(u)(x, y, ηs)∫
dydxγ e(x, y, ηs)

, (37)

are shown. The profile of 〈D(u)〉 is understood by integration
of the initial electric fields over x in Fig. 4(b).

Figure 9(a) represents the weighted dissipation measure as
a function of x in the case of Cu-Au collisions. In contrast
to the symmetric collision, the symmetric structure for the
positive x and the negative x is broken. There is the QGP
medium in the region of −2 < x < 5 fm where 〈D(u)〉 has
only one peak around x ≈ 3 fm in side of Cu. In addition, the
magnitude of the peak of 〈D(u)〉 is larger than the two peaks in
the symmetric collision. The profile of the dissipation measure
suggests that the energy transfer by Ohm’s law alters behav-
ior of the directed flow. The ηs dependence of the weighted
dissipation measure has the asymmetric profile as represented
in Fig. 9(b). The largest peak of the dissipation measure is
located at ηs ∼ −1.
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FIG. 8. The weighted dissipation measure as a function of x (a) and as a function of the space rapidity ηs (b) for Au-Au collisions at initial
time (τ = 0.4 fm). The blue solid, red dashed, and black dotted lines show σ = 100, 1, and 0 fm−1, respectively.

B. The directed flow

We investigate the effect of electromagnetic fields on the
observables. We focus on the directed flow of hadrons,

v1(η) =
∫

d pTdφ cos(φ) dN
d pTdφ∫

d pTdφ dN
d pTdφ

, (38)

where pT =
√

p2
x + p2

y and φ is transverse momentum and
an azimuthal angle with respect to the transverse plane,
respectively. We terminate the hydrodynamic expansion at
e = 0.15 GeV/fm3. To extract the purely hydrodynamic re-
sponse of electromagnetic fields, we neglect the final state
interactions. We adopt the Cooper-Frye formula [48] for
calculation of the hadron distribution from the freezeout
hypersurface.

Figure 10 shows the directed flow for the charged π in
Au-Au and Cu-Au collisions. The blue solid, red dashed,
and black dotted lines show the cases of σ = 100, 1, and
0 fm−1, respectively. In Fig. 10(a), our results of the directed

flow in Au-Au collisions are consistent with the STAR data
in 30–60% centrality class [46]. The electrical conductivity
dependence of the directed flow is not clearly observed. Our
calculation in the high conductive case is equivalent to the
ECHO-QGP simulation with the magnetic field. In the zero
conductivity case, the fluid and electromagnetic fields evolve
independently. The directed flow with the zero conductivity
case is consistent with that in the relativistic ideal hydrody-
namic calculation [43] and that without electromagnetic fields
in ECHO-QGP simulations [19].

We show the directed flow for charged π in Cu-Au col-
lisions in Fig. 10(b). The directed flow of our RRMHD
simulation exhibits the clear dependence of the electrical
conductivity of the QGP. The amplitude of the directed flow
decreases with the electrical conductivity. This is a conse-
quence of the reduction of the velocity in Fig. 7(b). In other
words, the mechanism of the reduction of the directed flow
is the same as the suppression of the velocity by the energy
transfer from the electric field to the fluid as shown in the
dissipation measure.

FIG. 9. The weighted dissipation measure as a function of x (a) and as a function of the space rapidity ηs (b) for Cu-Au collisions at the
initial time (τ = 0.4 fm). The blue solid, red dashed, and black dotted lines show σ = 100, 1, and 0 fm−1, respectively.
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FIG. 10. The directed flow as a function of rapidity for different electrical conductivities σ . The blue solid, red dashed, and black dotted
lines show σ = 100, 1, and 0 fm−1. We display the cases of Au-Au collisions (a) and Cu-Au collisions (b) at

√
sNN = 200 GeV.

We comment on the parameters of the initial condition
of the medium in Cu-Au collisions. To perform the simple
comparison between the symmetric and asymmetric collision
systems, we employ the same parameters of the initial condi-
tion as shown in Table I. The parameter e0 which is the energy
density at the ηs = 0 and xT = 0 is larger than that expected in
the realistic simulation for Cu-Au collisions. Also, the plasma
β in our simulation is larger than that in the realistic case.
This means that effects of electromagnetic fields and roles of
dissipation in asymmetric collision system are underestimated
in this calculation. Moreover, since we assume the constant
electrical conductivity in the initial electromagnetic fields,
the intensity of initial magnetic fields at the collision time is
smaller than that estimated in vacuum, |eBy| ∼ 3m2

π at RHIC
energy [26,49–51]. For the construction of the realistic initial
electromagnetic fields, we need to solve the early dynamics of
QCD matter and electromagnetic fields produced by the col-
liding nuclei. We expect to observe the larger dependence of
the electrical conductivity of the QGP with realistic parameter
sets. Even though, we show that the impact of electromagnetic
response on the directed flow is the same order of the viscous
effect [52]. Thus, the electromagnetic field and the strength
of the dissipation are important to understand phenomena in
high-energy heavy-ion collision.

The amplitude of the directed flow in our calculation is
larger than the data of STAR experiment. Also, in −0.75 <

η < 0.5, our v1 slightly increases with η, which is opposite
tendency of v1(η) in the experimental data [53]. One of the
reasons for the larger value is that our calculation neglects
the viscous effects and the final state interactions. However,
the viscous effect itself may not be enough to reduce the
amplitude of the directed flow to the STAR data [52]. As a
result, the directed flow in RRMHD simulation with finite
viscosity may get close to the experimental data. The final
state interactions such as the hadron scattering and the res-
onance decay may smear the hydrodynamic response to the
hadron distributions. For the opposite tendency of v1(η), we
may find the reason in our parameter choice for ηm and ηflat

which determines the rapidity profile of initial energy density
and governs behavior of the directed flow in the rapidity
direction. For simplicity, we set them to be the same values
in Au-Au collisions. For the quantitative comparison with the
STAR data, we need to adjust the parameters more carefully.
These remain subjects for our future works. We conclude
that the effects of the electromagnetic fields in asymmetric
collision systems are sizable enough to be extracted from the
experimental data.

V. SUMMARY

We have studied the consequences of the electromagnetic
fields produced by the two colliding nuclei in the symmetric
and asymmetric collision systems, using the RRMHD frame-
work. In this paper, we constructed the RRMHD model for
high-energy heavy-ion collisions based on the newly devel-
oped RRMHD simulation code and investigated the directed
flow in symmetric and asymmetric collision systems.

Initial conditions for the RRMHD equations are built up
with the optical Glauber model [42]. In the longitudinal direc-
tion, we smoothly connected the energy density distributions
from the central rapidity region to the forward and backward
rapidity regions with tilted sources of the directed flow [43].
For the realistic initial condition for electromagnetic fields,
we have considered the solutions of Maxwell equations with
the source term of the point charged particles moving in the
direction of the beam axis and constant electrical conductivity
of the medium [30]. The parameters of the initial condition
in Au-Au collisions are taken from ECHO-QGP simulation
[19], except for ηm = 3.36 [43]. We employed the same pa-
rameters in Cu-Au collisions to extract the pure difference of
the nucleon and charge distribution between symmetric and
asymmetric collision systems. We ignored the viscous effect
and the final state interactions in order to make it clear the
RRMHD response to observables.

We found that the evolution of velocity is sensitive to
electromagnetic fields in asymmetric collisions. The electric

014901-10



DIRECTED FLOW IN RELATIVISTIC RESISTIVE … PHYSICAL REVIEW C 107, 014901 (2023)

current is induced by the electric field produced by the two
different colliding nuclei because of the Ohm’s law with finite
electrical conductivity. We introduced the dissipation measure
[47] and confirmed that a certain amount of energy transfer
from the electric field to the fluid occurs in the asymmetric
collision system which is not clearly observed in the symmet-
ric collision system.

A sizable reduction of the directed flow by the dissipa-
tion has been observed. Its magnitude is the same order of
the viscous effect [52] in the asymmetric collision at RHIC
energy. The viscous effect itself may not be enough to reduce
the amplitude of the directed flow to the STAR data [52]. The
directed flow in the RRMHD with finite viscosity may get
close to the experimental results. For quantitative analysis, we
need to determine the initial parameters in Cu-Au collisions
more carefully and introduce the viscous effect and the final
state interactions in our model. The directed flow decreases in
the presence of the energy transfer from the electromagnetic
fields to the medium. We conclude that the effects of electro-
magnetic fields and the electrical conductivity in asymmetric
collision systems are large enough to be detected from analy-
sis of the experimental data.

This work can be extended in several directions. In the
presence of ultraintense electromagnetic fields, the electric
charge density is induced. It affects the charge dependent
flow of hadrons [29]. One of the promising probes of electro-
magnetic fields produced in high-energy heavy-ion collisions
is the charge dependent azimuthal flow [51]. It is possible
to determine the initial electromagnetic fields. Furthermore,
photons are one of important observables to probe elec-
tromagnetic fields. In particular, the thermal photons carry
detailed information of electromagnetic fields in the QGP
phase, since photons are not affected by the strong interac-
tions. The calculation of directed and elliptic flows of photons
in electromagnetic fields is an important subject. However
we would like to leave it for future work, because photon
production rate with background of electromagnetic fields in
QCD matter is needed for estimate of thermal radiation.

Our model is applicable to smaller and larger energy
of heavy-ion collisions than the RHIC energy. Since the

collision-energy dependences of the energy density of the
fluid and electromagnetic fields are proportional to the square
of Lorentz factor of colliding nuclei, plasma β is approxi-
mately constant to different collision energy. The contribution
of dissipations to the fluid velocity in the smaller and larger
energy is expected to be the same as that at RHIC. On the
other hand, in the low energy collisions, the observation of
� polarization at STAR experiments indicates that the fluid
vorticity can be produced by the two colliding nuclei [54]. It
may induce nontrivial phenomena such as magnetorotational
instability from the coupling of the fluid vorticity and electro-
magnetic fields. As a result, its effect can be observed in the
behavior of the directed flow. However, to apply our model
to the lower energy collisions, we need to construct the initial
condition with vorticity and to include finite baryon density in
the EoS.

Another direction is extension of our model to the anoma-
lous hydrodynamics. In high-energy heavy-ion collisions, the
chiral charge density may fluctuate by the initial strong color
fields. It induces the electric current along with the mag-
netic field, which is discussed as the chiral magnetic effect
[20,21]. The chiral magnetic effect leads to the separation
of electrical charge density. Within the anomalous hydrody-
namic calculation, the chiral magnetic effect can be observed
in azimuthal anisotropy of charged hadrons [55]. The initial
electromagnetic fields with the chiral magnetic effect are also
investigated in Refs. [56,57]. These theoretical predictions
will give us more stringent constraints of the evolution of
initial electromagnetic fields and bulk properties of QGP.
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