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Employing ternary fission of 242Pu as a probe of very neutron-rich matter
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Detailed assessments of the ability of recent theoretical approaches to modeling existing experimental data
for ternary fission confirm earlier indications that the dominant mode of cluster formation in ternary fission is
clusterization in very neutron-rich, very low-density, essentially chemically equilibrated nucleonic matter. An
extended study and comparison of these approaches applied to ternary fission yields in the thermal neutron
induced reaction 241Pu(nth, f) has been undertaken to refine the characterization of the source matter. The
resonance-gas approximation has been improved taking in-medium effects on the binding energies into account.
A temperature of 1.29 MeV, density of 6.7 × 10−5 nucleons/fm3 and proton fraction Yp = 0.035 are found to
provide a good representation of yields of the ternary emitted light particles and clusters. In particular, results for
Z = 1 and 2 isotopes are presented. Isotopes with larger Z are discussed, and the roles of medium and continuum
effects, even at very low density, are illustrated.
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I. INTRODUCTION

In the neutron induced or spontaneous ternary fission of
a heavy isotope a nucleon or light cluster is emitted perpen-
dicular to the fission axis determined by the two separating
large fission fragments [1–11]. 4He, emitted in approximately
1/500 events is the most dominant charged particle but other
charged isotopes with charge number Z = 1 up to Z = 18
have been observed [9,10]. These light charged particles
(LCP) are emitted from the neck region at the time of scission
and may be considered as signals, which describe the state of
nuclear matter in the neck at that time.

To interpret the observed ternary yields, statistical models
have been applied, which assume thermodynamic equilib-
rium at chemical freezeout during scission [12–14]. However,
experimental yields for the heavier elements are typically
overestimated unless some mechanism for suppression of
higher mass products is introduced [13,14]. In Wuenschel
et al. [14], chemical equilibrium is achieved in accordance
with the grand canonical ensemble only for the lightest
isotopes and a time-dependent nucleation process for produc-
tion of heavier LCP is introduced [15,16] so that the LCP
yield becomes increasingly suppressed with increasing mass
number.

Recently, this approach has been explored in more de-
tail and used to determine isotopic equilibrium constants
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for LCP emitted in the ternary fission reaction 241Pu(nth, f)
[17]. Further investigations were then undertaken to better
characterize the ternary fissioning 242Pu source. In Ref. [18],
the simple ideal model of nuclear statistical equilibrium was
improved considering medium effects and continuum cor-
relations [19], e.g., resonances such as 4H, 5He, 8Be (as
known from the virial expansion of the nuclear matter equa-
tion of state). A nearly perfect description of the measured
yields of H and He isotopes for 252Cf(sf) was obtained. In
Ref. [20], several different fission reactions were investigated
within an information entropy approach, and isotopes up to
Z = 6 are included. These investigations showed that the
dominant mode of cluster formation in ternary fission is clus-
terization in very neutron-rich, very low-density, essentially
chemically equilibrated nucleonic matter at temperatures near
1 MeV.

In the present work, an extended study and comparison of
the different approaches applied to modeling ternary fission
yields in the thermal neutron induced reaction 241Pu(nth, f)
[9,10] is undertaken. A more detailed exploration of the
in-medium and continuum effects leads to a more refined
characterization of the source matter. We show that, in par-
ticular, the weakly bound states are strongly influenced by
in-medium effects and provide an alternative observable to
determine the density of the source matter. We find that the
neck matter at scission has a temperature T ≈ 1.29 MeV, a
nucleon density nB ≈ 6.7 × 10−5 nucleons/fm3, and a proton
fraction Yp ≈ 0.035. This work provides a baseline laboratory
test of the low-density nuclear equation of state for conditions,
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which may be encountered in astrophysical sites such as
core-collapse supernova events in which a neoneutron star is
formed, evolves with time and cools down to a neutron star
[21]. Similar neutron-rich matter may also be produced in the
merging of a binary neutron star system. Both systems relax
to a temperature of about 1 MeV in less than a minute. In such
dense, highly excited systems, surface densities of 1011 g/cm3

are typical, but the proton fraction may be different. In β

equilibrium, it depends upon the neutrino density, see, e.g.,
Refs. [22,23]. Even if the proton fraction in astrophysical
scenarios is different from the proton fraction in the neck
matter at scission, the equations of state (for a review see,
e.g., Refs. [24,25]) employed over a wide region of parameter
values may be checked at the special conditions of scission.
Investigations of the correct description of correlations under
scission conditions may also be applied to other regions of the
astrophysical parameter space.

II. YIELDS FROM A QUANTUM STATISTICAL APPROACH

We consider different stages of the fission process. For
the time evolution of the nucleonic system up to scission
we assume a quick relaxation to local thermodynamic equi-
librium. Within the statistical model framework the grand
canonical distribution at scission, where chemical freezeout
takes place, gives the primordial (or primary) yields for the
relevant species. For the time evolution after scission we
assume a reaction kinetics in which populated excited states
decay, and the kinetic energies are determined by the inter-
action between the fission products. The decay of unstable
nuclear states and resonances is described as feed-down pro-
cesses, which transform the primordial distribution of yields
to the final observable yield distribution. This approach to the
time evolution of the fission process may be considered as an
approximation within the systematic approach of nonequilib-
rium statistical operators where both stages of time evolution,
the hydrodynamical and kinetic ones, are unified within an
information theoretical approach [18,20]. This information
theoretical approach allows us to introduce Lagrange pa-
rameters λT (t ), λn(t ), λp(t ), which are the nonequilibrium
generalizations of the temperature and the chemical potentials
of neutrons (n) and protons (p). They depend on time t and, in
general for the hydrodynamical description, also on position.

In the present work, we focus on inferring the correspond-
ing Lagrange parameters λi for the primary distribution at
chemical freezeout from the observed final yield distribution.
For this, we need an accurate solution of the grand canonical
distribution at scission. We employ and compare three succes-
sive approximations:

(i) The resonance-gas approximation (res.gas) known also
as nuclear statistical equilibrium (NSE), see Refs. [25,26]
where the nucleonic system is considered as an ideal mixture
of nuclei in the ground state and in (unstable) excited states
and resonances. A semiempirical improvement is the excluded
volume model [27,28].

(ii) The virial approximation (vir) where binary interac-
tions between the different constituents are taken into account
considering the respective scattering phase shifts [26,29,30].

(iii) Accounting for in-medium corrections (medium) such
as self-energy shifts and Pauli blocking effects [26,31,32].

In particular, we investigate whether the frequently used
nuclear statistical equilibrium model is sufficient to describe
nucleonic systems under the scission conditions in the neck
region or whether continuum correlations and in-medium ef-
fects must be taken into account.

In the quantum statistical (QS) approach, after the cluster
decomposition of the spectral function, the density is decom-
posed into partial densities of different channels characterized
by A, Z [18]. The primordial yields, here denoted as relevant
yields Y rel,approx

A,Z , are calculated in the corresponding approxi-
mation as

Y rel,approx
A,Z ∝ Rapprox

A,Z gA,Z

(
2π h̄2

AmλT

)−3/2

× e(BA,Z +(A−Z )λn+Zλp)/λT , (1)

where BA,Z denotes the (ground-state) binding energy and gA,Z

the degeneracy [33]. The prefactor

Rapprox
A,Z = 1 +

exc∑
i

[gAZ,i/gA,Z ]e−EAZ,i/λT (2)

is related to the intrinsic partition function of the cluster
{A, Z}.

Different approximations are considered for the intrinsic
partition function as discussed above.

(i) In the resonance-gas approximation, the summation for
Rres.gas

A,Z (λT ) is performed over all excited states i, excitation
energy EAZ,i, and degeneracy gAZ,i [33].

(ii) In the virial approximation, Rvir
A,Z (λT ), the summation

in (2) is performed over all excited states i, which are bound.
Also, the continuum contributions are included. For instance,
the Beth-Uhlenbeck formula expresses the contribution of the
continuum to the intrinsic partition function via the scattering
phase shifts, see Refs. [18,19,29–31,34].

(iii) The expression R,medium
A,Z (λT , λn, λp) takes in-medium

effects into account, in particular the shifts of binding energy
values because of self-energy, Pauli blocking effects and the
modification of bound-state wave functions and scattering
phase shifts. Therefore, this term is also dependent on the
densities of neutrons and protons.

A simple statistical equilibrium distribution, where for
each isotope {A, Z} only the ground state is taken into ac-
count, is obtained for Rapprox

A,Z (λT ) = 1, i.e., neglecting the
contribution of all excited states including continuum cor-
relations. Details to evaluate the intrinsic partition function
and Rres.gas

A,Z , Rvir
A,Z , Rmedium

A,Z are presented for Z � 6 in the
Appendix.

As an example we focus on the fission reaction 241Pu(nth, f)
induced by thermal neutrons where good data for the ternary
fission yields are available [9,10]. The observed yields up to
20C are shown in Tables I, II below. Instead of normalizing to
the yield of total α particle emission, assigned to be 10000,
we employ absolute yields per fission. The total α particle
emission yield per fission was taken from Ref. [4].

The Koester data do not contain values for scission nu-
cleon (n or p) emission. Determination of those yields is
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TABLE I. Observed yields per fission of ternary fission of 241Pu(nth, f), including 0.107 for scission neutrons (col. 4), are compared
to a final-state distribution, calculated in the resonance-gas approximation. The Lestone fit metric [13] is calculated for the isotopes with
Z � 2. The minimum is found for the parameter values given at the end of table. Y rel,res.gas

A,Z denotes primordial yield, Y final,res.gas
A,Z : final yield,

X res.gas
A,Z = AY res.gas

A,Z /
∑

A′,Z ′�2 A′Y res.gas
A′,Z ′ : mass fraction.

isotope A Z Y obs
A,Z Rres.gas

A,Z (1.29) Y rel,res.gas
A,Z Y final,res.gas

A,Z X res.gas
A,Z

1n 1 0 0.107 1 0.1098 0.1098 0.9215
1H 1 1 – 1 4.298 × 10−6 4.298 × 10−6 0.00003414
2H 2 1 8.463 × 10−6 1 8.889 × 10−6 8.889 × 10−6 0.000146
3H 3 1 1.584 × 10−4 1 1.212 × 10−4 1.398 × 10−4 0.00359
4H* 4 1 – 1.579 1.855 × 10−5 [→ 3H] –
3He 3 2 – 1 2.549 × 10−9 2.817 × 10−9 6.163 × 10−8

4He 4 2 2.015 × 10−3 1 1.449 × 10−3 1.911 × 10−3 0.06529
5He* 5 2 – 1 3.999 × 10−4 [→ 4He] –
6He0 6 2 5.239 × 10−5 1 4.322 × 10−5 5.916 × 10−5 0.003232
6He* 6 2 – 1.242 5.407 × 10−5 [→ 4He] –
7He* 7 2 – 1.156 1.594 × 10−5 [→ 6He] –
8He 8 2 3.022 × 10−6 1 2.605 × 10−6 2.898 × 10−6 0.0002249
8He* 8 2 – 0.452 1.193 × 10−6 [→ 4He] –
9He* 9 2 – 1.426 2.929 × 10−7 [→ 8He] –
6Li 6 3 – 1 4.059 × 10−8 4.059 × 10−8 2.085 × 10−6

6Li* 6 3 – 0.5471 2.46 × 10−8 [→ 3H] –
7Li 7 3 1.35 × 10−6 1.345 2.207 × 10−6 2.545 × 10−6 0.0001591
8Li 8 3 8.463 × 10−7 1.281 1.357 × 10−6 1.357 × 10−6 0.00009983
8Li* 8 3 – 0.3151 3.374 × 10−7 [→ 7Li] –
9Li 9 3 1.672 × 10−6 1.062 2.181 × 10−6 2.335 × 10−6 0.0002005
10Li* 10 3 – 1 1.531 × 10−7 [→ 9Li] –
11Li0 11 3 9.068 × 10−10 1 2.785 × 10−8 2.962 × 10−8 3.312 × 10−6

12Li* 12 3 – 1 1.773 × 10−9 [→ 11Li] –
7Be 7 4 – 1.359 2.382 × 10−11 2.382 × 10−11 1.401 × 10−9

8Be* 8 4 – 1.477 1.59 × 10−6 [→ 4He] –
9Be 9 4 8.866 × 10−7 1 1.616 × 10−6 1.616 × 10−6 0.0001325
9Be* 9 4 – 0.5628 1.244 × 10−6 [→ 4He] –
10Be 10 4 9.269 × 10−6 1.367 1.112 × 10−5 1.51 × 10−5 0.001435
10Be0 10 4 – 0.0789 6.553 × 10−7 [→ 10Be] –
11Be0 11 4 1.189 × 10−6 1 2.422 × 10−6 4.313 × 10−6 0.0004634
11Be0 11 4 – 0.7803 1.891 × 10−6 [→ 11Be] –
11Be* 11 4 – 1.343 3.287 × 10−6 [→ 10Be] –
12Be 12 4 5.642 × 10−7 2.149 2.781 × 10−6 3.73 × 10−6 0.0004532
12Be0 12 4 – 0.3657 7.655 × 10−7 [→ 12Be] –
13Be* 13 4 – 1 1.84 × 10−7 [→ 12Be] –
14Be 14 4 5.441 × 10−10 1 3.606 × 10−8 4.117 × 10−8 6.237 × 10−6

15Be* 15 4 – 1 5.114 × 10−9 [→ 14Be] –

experimentally very challenging [6–8]. Experimental scission
proton yields are very small and careful experiments have re-
vealed that secondary processes dominate the apparent yields
reported [6]. In our opinion the best available constraint on
the scission proton yield is that of Ref. [6], where only an
upper limit of 2.9–4.0 × 10−5 is deduced. Interestingly, al-
though the determination of scission neutron emission yield
in the presence of a much larger yield of secondary neutrons
evaporated from the separated fission fragments is inherently
even more difficult, very precise measurements and analyses
of the neutron energy and angular distributions have been
carried out and lead to the conclusion that the scission neutron
yield is 0.107 per fission, approximately one-thirtieth of the
total neutron yield [7,8]. We have adopted this number for
our analysis. It is worth noting that, in an equilibrium picture,

the relative scission neutron and proton yields implied by
these results indicate that the neck matter at scission is ex-
tremely neutron rich. That this must be the case has previously
been inferred from the fact that 3He has not been detected
in ternary fission experiments while the isotope 3H, with a
similar binding energy is the second most abundant ternary
charged fragment observed [3,4].

The standard nuclear statistical equilibrium (NSE) ap-
proach describes matter in the low-density limit where
interaction between the components may be neglected (ideal
gas of nucleons and nuclei in ground and excited states). We
suggest a consistent quantum statistical description of inter-
acting components as done, for instance, for the equation of
state [34]. In particular we take into account continuum corre-
lations and in-medium effects.
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TABLE II. Continuation of Table I. Observed yields per fission of ternary fission of 241Pu(nth, f) (col. 4) are compared to a final-state
distribution, calculated in resonance-gas approximation, including 0.107 for scission neutrons. The Lestone fit metric is calculated for the
isotopes with Z � 2. The minimum is found for the parameter values given at the end of table.

isotope A Z Y obs
A,Z Rres.gas

A,Z (1.29) Y rel,res.gas
A,Z Y final,res.gas

A,Z X res.gas
A,Z

10B 10 5 – 1.363 2.484 × 10−9 2.565 × 10−9 2.295 × 10−7

10B0 10 5 – 0.0443 8.17 × 10−11 [→ 10B] –
11B 11 5 3.224 × 10−7 1.175 8.876 × 10−7 8.876 × 10−7 0.00009106
12B 12 5 2.015 × 10−7 2.251 1.703 × 10−6 1.835 × 10−6 0.0002126
12B0 12 5 – 0.1715 1.32 × 10−7 [→ 12B] –
13B 13 5 – 1 4.367 × 10−6 4.91 × 10−6 0.0006411
14B0 14 5 2.62 × 10−8 1 1.123 × 10−6 1.504 × 10−6 0.0002177
14B0 14 5 – 0.3381 3.809 × 10−7 [→ 14B] –
14B* 14 5 – 0.4803 5.426 × 10−7 [→ 13B] –
15B 15 5 9.269 × 10−9 1 7.523 × 10−7 7.691 × 10−7 0.0001235
16B* 16 5 – 1 1.685 × 10−8 [→ 15B] –
17B 17 5 – 1 2.021 × 10−8 2.26 × 10−8 4.397 × 10−6

18B* 18 5 – 1 2.389 × 10−9 [→ 17B] –
13C 13 6 – 1.358 2.079 × 10−6 2.079 × 10−6 0.0002587
14C 14 6 2.539 × 10−6 1.069 4.479 × 10−5 5.129 × 10−5 0.007177
15C 15 6 8.665 × 10−7 1 2.08 × 10−5 5.606 × 10−5 0.008647
15C0 15 6 – 1.69 3.527 × 10−5 [→ 15C] –
15C* 15 6 – 0.3074 6.501 × 10−6 [→ 14C] –
16C 16 6 1.008 × 10−6 2.272 6.149 × 10−5 9.799 × 10−5 0.01218
16C0 16 6 – 0.885 2.425 × 10−5 [→ 16C] –
17C0 17 6 1.29 × 10−7 1 1.816 × 10−5 4.693 × 10−5 0.008776
17C0 17 6 – 1.582 2.877 × 10−5 [→ 17C] –
17C* 17 6 – 0.6677 1.225 × 10−5 [→ 16C] –
18C 18 6 5.642 × 10−8 3.172 3.515 × 10−5 4.42 × 10−5 0.009127
19C0 19 6 5.038 × 10−10 5.112 1.662 × 10−5 1.662 × 10−5 0.003715
19C* 19 6 – 2.776 9.051 × 10−6 [→ 18C] –
20C 20 6 7.254 × 10−10 2.426 3.743 × 10−6 3.743 × 10−6 0.0009117
λT [MeV] 1.2897
λn [MeV] −3.1486
λp [MeV] −16.273
volume [fm3] 1859.4
nB [fm−3] 0.000064
Yp 0.03486
fit metric 0.005485

III. EXTRACTION OF LAGRANGE PARAMETERS FROM
OBSERVED YIELDS

In this section we demonstrate how the Lagrange param-
eters λi = {λT (t ), λn(t ), λp(t )} may be extracted from the
observed yields. For simplicity, we use in this example only
the simplest approximation for the intrinsic partition func-
tion, i.e., the ideal resonance-gas approximation. Rres.gas

A,Z (λT )
is calculated according (2) where for isotopes {A, Z} all ex-
cited states i are summed over, the excitation energies EAZ,i

and angular momentum degeneracies gAZ,i = 2JAZ,i + 1 are
taken from the nuclear data tables [33]. In the Appendix we
give these values for Z � 6 as well as the ground-state bind-
ing energies and the threshold energies for the continuum
of scattering states E thresh

A,Z . In Tables IV–VIII, we divide the
intrinsic partition function into different parts with respect to
the contribution to the final yields: The summation over all
excited states above the threshold energy is marked by an
asterisk. After freezeout, these excited states are assumed to

decay and feed the yields of daughter isotopes observed in the
final distribution. This process is also explained in Tables I,
II, where in column 7 the respective feed-down channel is
indicated. The other excited states are assumed to γ decay
to the ground state and remain in the same isotope channel.
Furthermore, we indicate by the superscript “0” the states
that have a binding energy smaller than 1 MeV below the
continuum threshold. These weakly bound states are of special
interest when in-medium effects are considered.

We use this subdivision of the intrinsic partition function to
model the kinetic stage of evolution, i.e., the transition from
the primary distribution to the final distribution considering
only decay processes of the excited nuclei. In a more gen-
eral approach, this sharp subdivision should be replaced by
branching ratios describing the feed down to the final yields
or using reaction networks.

For the resonance-gas approximation and the virial ap-
proximation the R factors are functions of the temperaturelike
parameter λT . If in-medium effects are taken into account, the
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R factor depends in addition on the chemical potentials λn, λp.
Within our fit procedure described below, they are determined
self-consistently. With a given set of Lagrange parameters, we
are able to calculate the primary yields and the final yields.
This is shown for the resonance gas approximation in Tables I,
II as well as in Tables IX, X where in-medium effects are
taken into account. In each case the calculated final yields are
compared with the observed yields.

The task is then to find values for the Lagrange parameters,
which reproduce the observed yield in an optimum way. We
have previously observed [14,18,20] that yields of isotopes
with large mass number are suppressed because of nucleation
kinetics or size effects. For the fission process 241Pu(nth, f) this
suppression with respect to the grand canonical distribution
is observed for A > 10. To avoid this effect we use only the
charged particles up to Z = 2, i.e., the observed yields of
1n, 2H, 3H, 4He, 6He, 8He to find values for the Lagrange
parameters. As shown in Ref. [20], the inclusion of further
isotopes with A � 10 gives approximately identical Lagrange
parameters λi.

As in Ref. [14], we use for the fit metric that of Lestone
[13], defined by

M2 = 1

N
N∑
A,Z

(
ln

[
Y final,approx

A,Z

] − ln
[
Y obs

A,Z

])2
, (3)

where N is the number of fitted experimental data points.
As shown in Table II, the values λT = 1.29 MeV, λn =

−3.149 MeV, and λn = −16.273 MeV are obtained from the
minimum of the fit metric for the resonance-gas approxima-
tion. The fit metric is also given in Table II. From the yields
per fission, we can also derive a volume. The baryon density
nB is obtained from the observed yields per fission nB =∑

A,Z AY obs
A,Z divided by the volume, it is mainly determined

by the neutron density. The proton fraction Yp is obtained as∑
A,Z ZY obs

A,Z /nB, it is mainly determined by the yield of 4He.
There is an uncertainty because the free proton density is not
included in the fit, but the calculated values Y1,1 are small so
that no large effect is expected if the contribution of 1H is
dropped.

The observed values 1nobs, 2Hobs, 3Hobs, 4Heobs, 6Heobs,
and 8Heobs are well reproduced, the deviation of about 10%
is within the experimental error limits. Below, in the next
section, we will also discuss the isotopes with Z > 2.

The value for temperature is consistent with values previ-
ously obtained for thermal neutron and spontaneous fission
[35,36]. The proton fraction is directly determined from sum-
mation of the ternary product scission yields, primarily from
the yields of neutrons and 4He. The value of the baryon
density is debated, in our work it is to be determined as
optimum to reproduce the measured yields. We calculate the
composition assuming different values for the density to show
that there is a strong variation of the composition and a sharp
minimum of the fit metric.

A main result is the low value of the density nB =
6.4 × 10−5/fm3 in resonance-gas approximation. We per-
formed the fit considering the isotopes with Z � 2. Larger
LCP (metals) will be included below in Sec. IV. To
show how sharp the fit value for the density is, we per-
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FIG. 1. Calculated light isotope yields (resonance-gas approx-
imation) as a function of baryon density nB (fixed temperature
T = 1.289 MeV and proton fraction Yp = 0.0349) for Z = 1, 2 iso-
topes (represented by symbols) are compared with the observed
experimental yields represented by horizontal dotted lines. Optimum
agreement based on a fit metric proposed by Lestone (3) is found at
a density of nB = 6.4 × 10−5 fm−3 (dashed line). See Fig. 2.

formed calculations for the composition, mass fraction X̃A,Z =
AYA,Z/

∑
A′,Z ′�2 A′YA′,Z ′ , for fixed values of λT and proton

fraction Ỹp = ∑
A,Z�2 ZYA,Z/

∑
A,Z�2 AYA,Z but variable den-

sity ñB = ∑
A,Z�2 AYA,Z , divided by the volume, see Fig. 1,

where we compare the calculated values (final,res.gas) with
the observed values (obs). (Note that the densities and proton
fractions are calculated in the present section from the yields
of n, H, and He isotopes, dropping the contributions of the
metals.)

As indicated above, all calculations presented in this
section were performed for the ideal resonance-gas approxi-
mation, the simplest of the three cases considered. The same
calculations can be performed for the other approximations of
the intrinsic partition function as shown below. With respect
to the results discussed in the present section, no signifi-
cant changes in the Lagrange parameters will be observed.
However the successive approaches do reveal evidence for
continuum and medium effects that even at this very low den-
sity, particularly for weakly bound and/or very neutron-rich
isotopes.

The quality of the fit is expressed by the Lestone fit metric
(3), see Fig. 2.

IV. INCLUSION OF HEAVIER ISOTOPES

We now consider the yields of isotopes with 2 <

Z � 6. For these elements, accurate values for observed
yields of ternary fission are available for 241Pu(nth, f)
[9,10]. For heavier elements Z > 6 calculations can be per-
formed, but observed data become incomplete and less
accurate.

For this purpose, we again calculate the relevant, pri-
mary distribution within a quantum statistical approach using
the several different approximations proposed. In a first
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FIG. 2. Fit metric (3) vs. baryon density nB for T = 1.289 MeV
and Yp = 0.0349.

approximation of the ideal resonance gas, for each A, Z not
only the ground state, but also all excited states are considered,
which will give the intrinsic partition function. We take the
excited states from the data tables [33] together with their
degeneracy, see the Appendix, Tables IV–VIII. The possible
decay to other isotopes is also indicated. For this, the threshold
energy E thresh

AZ is given where the decay channels open, in
general the separation energy Sn for neutrons, but also other
possible decay channels such as for 7Li to 4He + 3H or 8Be
to 2 × 4He. In this resonance-gas approximation, all known
excited states are considered, and states above the threshold
energy are assumed to decay and to feed other isotopes in the
final distribution.

The second approximation takes the states in the con-
tinuum more accurately into account. The virial expansion
implements continuum correlations in a systematic way. This
virial approximation is also known from the nuclear matter
equation of state [26,29,30].

In the third approximation, in-medium modifications are
taken into account. These are the shifts of binding energies
owing to Pauli blocking and possible dissolution of bound
states if they are shifted to the continuum [19,31,32].

A. Excited states and resonance-gas approximation

Data for excited states are shown in the Appendix,
Tables IV–VIII. In addition, the threshold energy E thresh

AZ is
shown for the continuum of scattering states. As indicated
above, this is in general the neutron separation energy Sn,
but other decay channels (e.g. triton, α) are also possible.
For each isotope of the primary distribution, different final
states are possible if excited, unstable states are considered.
A branching ratio would indicate the ratio to final-state transi-
tions during the expansion after freezeout.

We use the simple approximation that all excited states
below the continuum edge decay to the ground state of the
same isotope. States above the continuum edge decay to other
final isotopes. The same happens also with the unbound nuclei
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FIG. 3. Ternary fission of 241Pu(nth, f): Ratios Y obs
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A,Z

(bold symbols) and Y obs
A,Z /Yfinal,vir

A,Z (full lines) as function of the
mass number A. Isotopes with Z � 6 are shown. Data from
Table III.

such as 4H, 5He. These states, which feed down to other
isotopes, are marked with an asterisk (*), and the process is
indicated (→ 3H for 4H, etc.). Weakly bound states within 1
MeV below the threshold energy are marked with “0”. In the
present approximation of the ideal resonance gas, we assume
that these states contribute to the ground-state final yield of
the same isotope after deexcitation. The corresponding factors
Rres.gas

A,Z (λT ), which are related to the intrinsic partition func-
tion, are calculated for λT = 1.29 MeV in Tables IV–VIII.
These partition function multipliers are also shown in Tables I,
II, together with the relevant, primary yields Y rel,res.gas

A,Z , and the

final yields Y final,res.gas
A,Z .

To compare with the observed yields, results for the ra-
tio Y obs

A,Z /Y final,res.gas
A,Z for this resonance-gas approximation are

shown in Table III as well as in Fig. 3. The global behavior
can be described as follows: Up to A = 10 the observed yields
are rather well reproduced by the grand canonical equilibrium
calculations, for larger A we see a strong suppression, as
has already been discussed in Refs. [14,18,20]. Individual
isotopes show deviations from the global behavior, which
may be caused by the approximations in calculating the final
distribution, i.e., neglecting interaction effects. This clearly
bears further investigation.

B. Virial expansion and continuum correlations

As previously indicated we have improved the equilibrium
calculations in two successive steps. First we consider the
virial expansion, which accounts for continuum contributions.
In the subsequent section, in-medium effects are also taken
into account. Results for the virial approximation are shown
in Table III and Fig. 3.

The cluster-virial expansion considers continuum correla-
tions of two constituents of nuclear matter in terms of the
scattering phase shifts, as obtained in correspondence to the
Beth-Uhlenbeck formula. For instance, 4H is considered as
resonance in the t − n channel, where scattering phase shifts
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TABLE III. Observed yields per fission of ternary fission of 241Pu(nth, f) are compared to a final-state distribution, obtained from feeding
of a relevant (primary) distribution. The primary distribution was calculated in the ideal resonance-gas approximation (res.gas), as well as for
the virial form (vir) and including medium effects (medium). Lagrange parameters and other properties are given at the bottom of the table,
the fit metric refers to all isotopes with Z � 2. Units: MeV for BA,Z , E thresh

AZ , λi, fm3 for volume, and for nB fm−3.

isotope A Z BA,Z
A gA,Z E thresh

AZ Y obs
A,Z Y obs

A,Z /Y final,res.gas
A,Z Y obs

A,Z /Y final,vir
A,Z Y obs

A,Z /Y final,medium
A,Z

1n 1 0 0 2 – 0.107 0.9742 0.9555 0.9551
1H 1 1 0 2 – – – – –
2H 2 1 1.112 3 2.224 8.463 × 10−6 0.952 0.92 0.917
3H 3 1 2.827 2 6.257 1.584 × 10−4 1.133 1.179 1.223
4He 4 2 7.073 1 20.577 2.015 × 10−3 1.055 1.049 1.042
6He 6 2 4.878 1 0.975 5.239 × 10−5 0.8856 0.8753 0.8903
8He 8 2 3.925 1 2.125 3.022 × 10−6 1.043 1.04 1.03
7Li 7 3 5.606 4 2.461 1.35 × 10−6 0.5305 0.4964 0.4523
8Li 8 3 5.160 5 2.038 8.463 × 10−7 0.6235 0.5669 0.5211
9Li 9 3 5.038 4 4.062 1.672 × 10−6 0.7164 0.6363 0.5814
11Li 11 3 4.155 4 0.396 9.068 × 10−10 0.03061 0.02936 0.2992
9Be 9 4 6.462 4 1.558 8.866 × 10−7 0.5488 0.4908 0.3191
10Be 10 4 6.497 1 6.497 9.269 × 10−6 0.6149 0.5343 0.5285
11Be 11 4 5.953 2 0.502 1.189 × 10−6 0.2756 0.2584 0.4202
12Be 12 4 5.721 1 3.17 5.642 × 10−7 0.1513 0.1362 0.1385
14Be 14 4 4.994 1 1.264 5.441 × 10−10 0.01321 0.01326 0.0121
11B 11 5 6.928 4 8.674 3.224 × 10−7 0.3632 0.3015 0.2257
12B 12 5 6.631 3 3.369 2.015 × 10−7 0.1098 0.09418 0.08358
14B 14 5 6.102 5 0.97 2.62 × 10−8 0.01742 0.01552 0.01793
15B 15 5 5.880 4 2.78 9.269 × 10−9 0.01205 0.01005 0.008624
14C 14 6 7.520 1 8.176 2.539 × 10−6 0.0495 0.04598 0.02229
15C 15 6 7.100 2 1.218 8.665 × 10−7 0.01546 0.01353 0.01464
16C 16 6 6.922 1 4.25 1.008 × 10−6 0.01028 0.009781 0.007721
17C 17 6 6.558 4 0.734 1.29 × 10−7 0.002748 0.00241 0.005271
18C 18 6 6.426 1 4.18 5.642 × 10−8 0.001276 0.001078 0.0006891
19C 19 6 6.118 2 0.58 5.038 × 10−10 0.00003031 0.00002647 0.0002309
20C 20 6 5.961 1 2.98 7.254 × 10−10 0.0001937 0.0001578 0.0001285
λT – – – – – – 1.2897 1.2913 1.2924
λn – – – – – – −3.1486 −3.1425 −3.087
λp – – – – – – −16.273 −16.236 −16.189
volume – – – – – – 1859.4 1876.4 1796.3
nB – – – – – – 0.000064 0.0000645 0.00006741
Yp – – – – – – 0.03486 0.03486 0.03479
fit metric – – – – – – 0.005485 0.009384 0.009574

have been measured, see Refs. [19,30]. For details see the
Appendix C. Data for Rvir

A,Z (T ) are shown in the Appendix,
Tables IV–VIII. The resulting ratios Y obs

A,Z /Y final,vir
A,Z are also

shown in Table III.
We see that the changes are small in general, so that the

influence of the continuum correlations on the final yield
distribution is not essential. This may be attributed to the
low temperature so that the contribution of scattering states
is small for binding energies larger than T . At higher T , the
contribution of scattering states would become more impor-
tant. As shown by the partition function multipliers given
in Table IV in Appendix A, the most important changes are
obtained for 4H so that the feed down to the final 3H is
reduced. Some He isotopes are also reduced. The optimum
fit of Lagrange parameters is also slightly changed. However,
for several of the isotopes considered, strong deviations from
the global behavior remain.

As discussed in the case of 6He [20], weakly bound states
are more sensitive to medium effects. The threshold en-
ergy of 11Li is low, and the yield is strongly overestimated
within the ideal gas and virial approaches. Obviously, the
measured yield of 11Li is not well described in the approx-
imations where the interaction between the components is
neglected.

Low yields of other exotic nuclei (19C, etc.) are also known,
and are observed in ternary fission of other actinides (Am, Cf,
etc.). For the carbon isotopes, the spectrum of excited states
is rather complex and feeds different final states. In particu-
lar, isotopes with excited states above the neutron separation
energy feed the yield of isotopes with A − 1. Calculations of
the yields, see Figs. 3 and 4 in Ref. [37], cannot explain the
low yield for 19C. As seen there, the authors offer no expla-
nation for the low yield of these exotic neutron-rich, halolike
nuclei.
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TABLE IV. Data of nucleons/nuclei Z � 2 [units: MeV for BA,Z , E thresh
AZ , Ei]. Feed down to other final isotopes indicated by →A Z. Mass

number A, charge number Z . Ground-state binding energy BA,Z and degeneracy gA,Z = 2J + 1, continuum threshold energy E thresh
AZ , excitation

energy Ei, and degeneracy gi according to Ref. [33]. Partition function multiplier Rres.gas
A,Z (T ) according to (C5). The contribution of excited

states above the continuum threshold is denoted by “*”, the contribution of states within 1 MeV below the threshold is denoted by “0” (weakly
bound states).

isotope feed down A Z BA,Z/A gA,Z E thresh
AZ Ei [gi] Rres.gas

A,Z (1.29) Rvir
A,Z (1.29) Rmedium

A,Z (1.29)

1n – 1 0 0 2 – – 1 1 1
1H – 1 1 0 2 – – 1 1 1
2H – 2 1 1.112 3 2.224 – 1 0.974 0.9306
3H – 3 1 2.827 2 6.257 – 1 0.999 0.9138
4H* → 3H 4 1 1.720 5 −1.6 0.31 [3], 2.08 [1], 2.83 [3] 1.579 0.09404 0.03564
3He – 3 2 2.573 2 5.494 – 1 0.9979 0.9545
4He – 4 2 7.073 1 20.577 20.21 [1] 1 1 0.915
5He* → 4He 5 2 5.512 4 −0.735 – 1 0.6906 0.5029
6He0 [→ 4He] 6 2 4.878 1 0.975 – 1 0.9343 0.7723
6He* → 4He 6 2 4.878 1 0.975 1.797 [5] 1.242 0.7919 0.4617
7He* → 6He 7 2 4.123 4 −0.410 2.92 [6] 1.156 0.9313 0.6577
8He – 8 2 3.925 1 2.125 – 1 0.972 0.7383
8He* → 4He 8 2 3.925 1 2.125 3.1 [5] 0.452 0.2334 0.06923
9He* → 8He 9 2 3.349 2 −1.25 1.1 [2] 1.426 0.364 0.04882

TABLE V. Data of lithium nuclei [units: MeV for BA,Z , E thresh
AZ , Ei]. Feed down to other final isotopes indicated by →A Z. Mass number A,

charge number Z . Ground-state binding energy BA,Z and degeneracy gA,Z = 2J + 1, continuum threshold energy E thresh
AZ , excitation energy Ei,

and degeneracy gi according to Ref. [33]. Partition function multiplier Rres.gas
A,Z (T ) according to (C5) for λT = 1.29 MeV. 7Li: E thresh

AZ for decay
to 4He + 3H; excited states at 4.630 MeV [8], 6.680 MeV [6] decay this way, but also γ decay.

isotope feed down A Z BA,Z/A gA,Z E thresh
AZ Ei [gi] Rres.gas

A,Z (1.29) Rvir
A,Z (1.29) Rmedium

A,Z (1.29)

6Li – 6 3 5.332 3 1.475 – 1 0.9544 0.83
6Li* → 3H 6 3 5.332 3 1.475 2.186 [7], 3.563 [1], 4.312 [5], 5.366 [5], 5.65 [3] 0.5471 0.3847 0.2842
7Li – 7 3 5.606 4 2.461 0.478 [2] 1.345 1.316 1.097
8Li – 8 3 5.160 5 2.038 0.980 [3] 1.281 1.242 0.9877
8Li* → 7Li 8 3 5.160 (5) 2.038 2.255 [7], 3.210 [3], 5.4 [3], 6.1 [7] 0.3151 0.2646 0.1975
9Li – 9 3 5.038 4 4.062 2.691 [2], (4.301) [?] 1.062 1.055 0.8069
10Li* → 9Li 10 3 4.531 (3) −0.032 – 1 0.863 0.5866
11Li0 [→ 9Li] 11 3 4.155 4 0.396 (1.266) [?] 1 0.9003 0.6026
12Li* → 11Li 12 3 3.792 (3) −0.201 – 1 0.8422 0.4697

TABLE VI. Data of beryllium nuclei [units: MeV for BA,Z , E thresh
AZ , Ei]. Feed down to other final isotopes indicated by →A Z. Mass number

A, charge number Z . Ground-state binding energy BA,Z and degeneracy gA,Z = 2J + 1, continuum threshold energy E thresh
AZ , excitation energy

Ei, and degeneracy gi according to Ref. [33]. Partition function multiplier Rres.gas
A,Z (T ) according to (C5) for λT = 1.29 MeV. Weakly bound

isotopes 10Be0, 11Be0, and 12Be0 are separated, they will merge with the continuum at higher densities.

isotope feed down A Z BA,Z/A gA,Z E thresh
AZ Ei [gi] Rres.gas

A,Z (1.29) Rvir
A,Z (1.29) Rmedium

A,Z (1.29)

7Be – 7 4 5.372 4 1.585 0.429 [2] 1.359 1.302 1.1324
8Be* → 4He 8 4 7.062 1 −0.088 3.03 [5] 1.477 1.266 1.0192
9Be – 9 4 6.462 4 1.558 – 1 0.9572 0.7585
9Be* → 4He 9 4 6.462 (4) 1.558 1.684 [2], 2.429 [6], 2.78 [2], 3.049 [6] 0.5628 0.4796 0.3629
10Be – 10 4 6.497 1 6.497 3.368 [5] 1.367 1.366 1.0462
10Be0 [→ 9Be] 10 4 6.497 (1) 6.497 5.958 [5], 5.959 [3] 0.0789 0.07181 0.05348
11Be0 [→ 10Be] 11 4 5.953 2 0.502 – 1 0.9076 0.6422
11Be0 [→ 10Be] 11 4 5.953 (2) 0.502 0.320 [2] 0.7803 0.6894 0.4802
11Be* → 10Be 11 4 5.953 (2) 0.502 1.783 [6], 2.654 [4], 3.4 [4], 3.889 [4], 3.955 [4] 1.343 0.308 0.03957
12Be – 12 4 5.721 1 3.170 2.109 [5], 2.251 [1] 2.149 2.122 1.4798
12Be0 [→ 10Be] 12 4 5.721 (1) 3.170 2.715 [3] 0.3657 0.3307 0.222
13Be* → 12Be 13 4 5.241 2 −0.510 – 1 0.7806 0.3144
14Be – 14 4 4.994 1 1.264 – 1 0.9468 0.5897
15Be* → 14Be 15 4 4.541 6 −1.800 – 1 0.02241 0.0005243
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TABLE VII. Data of boron nuclei [units: MeV for BA,Z , E thresh
AZ , Ei]. Feed down to other final isotopes indicated by →A Z. Mass number A,

charge number Z . Ground-state binding energy BA,Z and degeneracy gA,Z = 2J + 1, continuum threshold energy E thresh
AZ , excitation energy Ei

and degeneracy gi according to Ref. [33]. Partition function multiplier Rres.gas
A,Z (T ) according to (C5) for λT = 1.29 MeV.

isotope feed down A Z BA,Z/A gA,Z E thresh
AZ Ei [gi] Rres.gas

A,Z (1.29) Rvir
A,Z (1.29) Rmedium

A,Z (1.29)

10B – 10 5 6.475 7 4.466 0.718 [3], 1.740 [1], 2.154 [3] 1.363 1.357 1.086
10B0 – 10 5 6.475 (7) 4.466 3.587 [5] 0.0443 0.04117 0.0324
11B – 11 5 6.928 4 8.674 2.124 [2], 4.445 [6], 5.020 [4], 6.741 [8] 1.175 1.175 0.9
12B – 12 5 6.631 3 3.369 0.953 [5], 1.674 [5] 2.251 2.227 1.626
12B0 [→ 11B] 12 5 6.631 3 3.369 2.621 [3], 2.723 [1] 0.1715 0.1582 0.1127
13B – 13 5 6.496 4 4.879 3.482 [?], 3.535 [?], 3.681 [?], 3.712 [?], 4.131 [?] 1 0.9966 0.6976
14B0 – 14 5 6.102 5 0.970 – 1 0.9341 0.6065
14B0 [→ 13B] 14 5 6.102 (5) 0.970 0.740 [3] 0.3381 0.3001 0.188
14B* → 13B 14 5 6.102 (5) 0.970 1.38 [7] 0.4803 0.387 0.1801
15B – 15 5 5.880 4 2.78 (?) 1 0.983 0.6246
16B* → 15B 16 5 5.507 1 −0.082 (?) 1 0.8574 0.4311
17B – 17 5 5.270 4 1.39 (?) 1 0.9515 0.5399
18B* → 17B 18 5 4.977 5 −0.005 (?) 1 0.8659 0.3832

C. In-medium effects

We now consider two medium effects, which might modify
the yield distributions: self-energy shifts and Pauli blocking.
Self-energy shifts act on all nucleons and can be accounted
for by a renormalization of the chemical potentials λ̃n, λ̃p if
they are not momentum dependent. Ratios of yields are not
influenced by these shifts. In contrast, Pauli blocking acts
individually for each isotope and leads to strong deviations
of the yield distribution.

Self-energy of nucleons has been treated, for instance,
within the relativistic mean-field approximation. The well-
established parametrization of DD2-RMF [38] gives for the
parameter values T = 1.29 MeV, nB = 0.000067 fm−3, Yp =
0.035 the self-energy shifts �SE

n = −0.03934 MeV, �SE
p =

−0.09936 MeV. For a cluster {A, Z} the self-energy shift
is �ESE

A,Z = (A − Z )�SE
n + Z�SE

p . We then have λ̃n = λn −
�SE

n , λ̃p = λp − �SE
p .

In all our earlier fits [20], the yields of 6He are
overestimated, whereas the yields of 8He are underesti-
mated. One possible explanation is that 6He is only weakly
bound (E thresh = 0.975 MeV) compared to 8He (E thresh =
2.125 MeV). In the dense medium, binding energies are
shifted, and weakly bound states are more affected than
strongly bound states.

More visible in Fig. 3 is the strong suppression of weakly
bound isotopes such as 11Li and 19C. These isotopes are near
to the continuum edge so that the shift owing to Pauli blocking
may lead to dissolution (the Mott effect [26]). This suggests
the use of yields of weakly bound states as test probes to infer
the free neutron density. The observation of such Mott effects
would provide us with an independent test of the free neutron
density at scission.

To quantify this effect, we consider the bound-state contri-
bution to the intrinsic partition function, which contains the

TABLE VIII. Data of carbon nuclei [units: MeV for BA,Z , E thresh
AZ , Ei]. Feed down to other final isotopes indicated by →A Z. Mass number

A, charge number Z . Ground-state binding energy BA,Z and degeneracy gA,Z = 2J + 1, continuum threshold energy E thresh
AZ , excitation energy

Ei, and degeneracy gi according to Ref. [33]. Partition function multiplier Rres.gas
A,Z (T ) according to (C5) for λT = 1.29 MeV.

isotope feed down A Z BA,Z/A gA,Z E thresh
AZ Ei [gi] Rres.gas

A,Z (1.29) Rvir
A,Z (1.29) Rmedium

A,Z (1.29)

13C – 13 6 7.469 2 4.946 3.089 [2], 3.684 [4], 3.853[6] 1.358 1.353 0.9905
14C – 14 6 7.520 1 8.176 6.093 [3], 6.589 [7] 1.069 1.069 0.7491
15C – 15 6 7.100 2 1.218 – 1 0.945 0.6169
15C0 [→ 14C] 15 6 7.100 (2) 1.218 0.740 [6] 1.69 1.532 0.9775
15C* → 14C 15 6 7.100 (2) 1.218 3.103 [2], 4.220 [6], 4.657 [4], 4.780 [4] 0.3074 0.004482 0.000206
16C – 16 6 6.922 1 4.250 1.766 [5] 2.272 2.26 1.445
16C0 [→ 15C] 16 6 6.922 (1) 4.250 3.986 [5], 4.089 [7], 4.142 [9] 0.885 0.7875 0.4683
17C0 [→ 16C] 17 6 6.558 4 0.734 – 1 0.9218 0.5379
17C0 [→ 16C] 17 6 6.558 (4) 0.734 0.217 [2], 0.332 [6] 1.582 1.438 0.8288
17C* → 16C 17 6 6.558 (4) 0.734 2.15 [8], 2.71 [2], 3.085 [10] 0.6677 0.09067 0.002612
18C – 18 6 6.426 1 4.18 1.588 [5], 2.515 [5] 3.172 3.153 1.843
19C0 [→ 18C] 19 6 6.118 2 0.580 0.209 [4], 0.282 [6] 5.112 4.665 2.431
19C* → 18C 19 6 6.118 (2) 0.580 0.653 [6], 1.46 [6] 2.776 2.383 0.9985
20C – 20 6 5.961 1 2.98 1.618 [5] 2.426 2.391 1.268
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FIG. 4. Ternary fission of 241Pu(nth, f): Ratios Y obs
A,Z /Yfinal,res.gas

A,Z

(bold symbols) and Y obs
A,Z /Yfinal,medium

A,Z (full lines) as function of the
mass number A. Isotopes with Z � 6 are shown. Data from Tables III,
IX, X.

factor e−E0
A,Z /T − 1 [18]. If the bound-state energy is shifted

owing to in-medium effects, this factor is also changed and
goes to zero at the Mott density where bound states disappear.

The Pauli blocking shift of bound states in dense matter
and the Mott effect has previously been considered in detail
for individual isotopes [19,26,31]. We will give here only a
general estimate applicable to bound states of all nuclei. The
shift of bound-state energies EA,Z (T, nB,Yp) − E0

A,Z in a dense
medium (Pauli blocking) has been estimated in Ref. [19],
Eq. (22), for nucleons in the 1s and 1p orbits as

�EPauli
A,Z = 1064(A − Z )nBe−0.0513 T/[MeV]MeV fm3, (4)

where we assume that the proton contribution is negligible
because of its very low density. With the baryon density
nB = 6.7 × 10−5 fm−3 (which should be determined self-
consistently), the shifts of the binding energy of the different
isotopes are given in Tables IX and X. These shifts may
become important for weakly bound states. For instance, for
11Li the shift is larger than the threshold energy so that the
bound state is dissolved. This is also reflected in the low
observed yield of this isotope. In a more detailed calculation
[39] not considered here, the Pauli blocking shift depends
on the center-of-mass momentum P of the cluster. Because
the shift becomes smaller for larger total momentum P, and
continuum correlations may be present, a small yield of this
isotope remains. The same happens also with 19C where the
shift is also larger than the threshold energy so that the Mott
effect leads to a significant reduction of the observed yields.
This is also seen in Fig. 4. The yields of other isotopes with a
low threshold energy (E thresh

AZ < 1 MeV) will be significantly
influenced too. The excited states 11Be0, 14B0, 15C0 − 17C0 be-
come dissolved because of Pauli blocking. The corresponding
calculations are seen in Tables IX, X.

As shown from Table III and Fig. 4, the observed yields
are, in fact, sensitive to in-medium effects. Suppression effects
owing to Pauli blocking seem to be visible. This allows an
independent second determination of the baryon density, and

the densities at which such isotopes, which are dissolved,
are consistent with the inferred value nB = 6.7 × 10−5 fm−3.
Note that a fully ab initio calculation of the Pauli blocking
effects is very involved, and we gave here only exploratory
calculations to illustrate the effect of suppression.

V. GENERALIZED RELATIVISTIC
MEAN-FIELD APPROACH

As discussed above, important in-medium effects are self-
energy shifts and Pauli blocking. If the self-energy shifts are
not dependent on the nucleon momentum, they can be ab-
sorbed into the chemical potential thus creating an effective
chemical potential. Different approximations may be used to
describe the in-medium self-energy shifts, for instance, the
Skyrme or the relativistic mean-field approaches.

In Ref. [40], Pais et al. reported a generalized relativis-
tic mean-field (RMF) approach formulated for the study
of in-medium modifications on light cluster properties. Ex-
plicit binding energy shifts and a modification of the scalar
cluster-meson coupling were introduced in order to take these
medium effects into account. The interactions of the clus-
ters i = 2H, 3H, 3He, 4He with the surrounding medium are
described with a phenomenological modification, xs, of the
coupling constant to the σ meson, gσi = xsAigσ , where gσ is
the nucleon scalar coupling, and Ai the number of nucleons in
cluster i.

Using the FSU Gold EoS [41], and requiring that the
cluster fractions exhibit the correct behavior in the low-
density virial limit [42,43], they obtained a universal scalar
cluster-meson coupling fraction, xσi = 0.85 ± 0.05, which
could reproduce both this limit and the equilibrium constants
extracted from reaction ion data [44] reasonably well. We note
that the vector cluster-meson coupling is defined as gv j =
Ajgv . Later this work was generalized to include clusters
up to A = 12 [45]. A recent analysis of the deuteron-meson
coupling at zero temperature was presented by Burrello and
Typel [46], and suitable parameterizations of the cluster mass
shift at zero temperature were derived for all baryon densities.

In the present paper, we keep the same model as in
Ref. [40], the FSU Gold EoS [41], instead of the model used
in the previous section, the DD2 EoS [38], but we note that
both parametrizations yield approximately the same values for
the quasiparticle energy shifts at the very low densities con-
sidered here. However, under such dilute-matter conditions,
other models may be more suitable [47,48].

In a more recent work [49], Pais et al. compared results of
an analysis, where in-medium effects are included, to experi-
mental equilibrium constants measured in intermediate energy
Xe + Sn collisions. This comparison required a higher scalar
cluster-meson coupling constant xs = 0.92 ± 0.02. With this
higher assumed value of the coupling constant, the in-
medium effects are reduced, and the clusters melt at larger
densities.

In the top panel of Fig. 5, we show the mass fractions of the
clusters with Z = 1, 2 and also the fraction of the free neutron
gas, calculated using the RMF formalism with xs = 0.85, as a
function of the density for the temperature and proton fraction
found in the QS approach with in-medium effects described in
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TABLE IX. Calculated yields per fission of ternary fission of 241Pu(nth, f), in-medium effects included. For the fit of the 241Pu(nth, f) data,
the Lagrange parameter values are λT = 1.29, λ̃n = −3.09, λ̃p = −16.19 MeV, volume 1796 fm3, fit metric 0.0095 for all nuclei Z � 2.
Baryon density nB = 6.7 × 10−5, Yp = 0.035. Bold figures: Mott effect, the Pauli blocking shift exceeds the ground state binding energy so
that the bound state is dissolved. For illustration of this effect, a branching ratio 0.1 is assumed to remain as final yield (denoted by superscript
“+”) whereas 0.9 is assumed to feed down the yields of other isotopes. [Units: MeV for BA,Z , E thresh

AZ , �EPauli
A,Z ].

isotope A Z BA,Z
A gA,Z E thresh

AZ Rvir
A,Z (1.29) �EPauli

A,Z Rmedium
A,Z (1.29) Y rel,medium

A,Z Y final,medium
A,Z Y obs

A,Z /Y final,medium
A,Z

1n 1 0 0 2 – 1 – 1 0.11203 0.11203 0.9551
1H 1 1 0 2 – 1 – 1 4.563 × 10−6 4.563 × 10−6 –
2H 2 1 1.112 3 2.224 0.9739 0.057 0.9306 9.226 × 10−6 9.226 × 10−6 0.9173
3H 3 1 2.827 2 6.257 0.9988 0.114 0.9138 1.289 × 10−4 1.342 × 10−4 1.223
4H∗ 4 1 1.720 5 −1.6 0.09404 0.172 0.03564 5.146 × 10−6 [→ 3H] –
3He 3 2 2.573 2 5.494 0.9979 0.057 0.9545 2.948 × 10−9 2.948 × 10−9 –
4He 4 2 7.073 1 20.577 1 0.114 0.915 1.639 × 10−3 1.935 × 10−3 1.042
5He∗ 5 2 5.512 4 −0.735 0.6906 0.172 0.5029 2.622 × 10−4 [→ 4He] –
6He0 6 2 4.878 1 0.975 0.9343 0.2291 0.7723 4.575 × 10−5 5.884 × 10−5 0.8903
6He∗ 6 2 4.878 1 0.975 0.7919 0.2291 0.4617 2.735 × 10−5 [→ 4He] –
7He∗ 7 2 4.123 4 −0.410 0.9313 0.2864 0.6577 1.309 × 10−5 [→ 6He] –
8He 8 2 3.925 1 2.125 0.972 0.3437 0.7383 2.919 × 10−6 2.935 × 10−6 1.029
8He∗ 8 2 3.925 1 2.125 0.2332 0.3437 0.06923 2.737 × 10−7 [→ 4He] –
9He∗ 9 2 3.349 2 −1.25 0.364 0.4009 0.04882 1.605 × 10−8 [→ 8He] –
6Li 6 3 5.332 3 1.475 0.9545 0.172 0.83 4.78 × 10−8 4.78 × 10−8 –
6Li∗ 6 3 5.332 3 1.475 0.3847 0.172 0.2842 1.417 × 10−8 [→ 3H] –
7Li 7 3 5.606 4 2.461 1.3159 0.2291 1.0972 2.66 × 10−6 2.985 × 10−6 0.4523
8Li 8 3 5.160 5 2.038 1.2424 0.2864 0.9877 1.624 × 10−6 1.624 × 10−6 0.5211
8Li∗ 8 3 5.160 (5) 2.038 0.2647 0.2864 0.1975 3.247 × 10−7 [→ 7Li] –
9Li 9 3 5.038 4 4.062 1.0553 0.3437 0.8069 2.694 × 10−6 2.876 × 10−6 0.5814
10Li∗ 10 3 4.531 3 −0.032 0.863 0.4009 0.5866 1.539 × 10−7 [→ 9Li] –
11Li+ 11 3 4.155 4 0.396 0.9003 0.4582 0.6026 3.03 × 10−8 × 0.1 3.03 × 10−9 0.2992
11Li0 11 3 4.155 4 0.396 0.9003 0.4582 0.6026 3.03 × 10−8 × 0.9 [→ 9Li] –
12Li∗ 12 3 3.792 3 −0.201 0.8422 0.5155 0.4697 1.585 × 10−9 [→ 9Li] –
7Be 7 4 5.372 4 1.585 1.3015 0.172 1.1324 3.058 × 10−11 3.058 × 10−11 –
8Be∗ 8 4 7.062 1 −0.088 1.2657 0.2291 1.0192 1.722 × 10−6 [→ 4He] –
9Be 9 4 6.462 4 1.558 0.9572 0.2864 0.7585 2.03 × 10−6 2.778 × 10−6 0.3191
9Be∗ 9 4 6.462 4 1.558 0.4796 0.2864 0.3629 9.712 × 10−7 [→ 4He] –
10Be 10 4 6.497 1 6.497 1.366 0.3437 1.0462 1.464 × 10−5 1.752 × 10−5 0.5285
10Be0 10 4 6.497 (1) 6.497 0.07181 0.3437 0.05348 7.482 × 10−7 [→ 9Be] –
11Be 11 4 5.953 2 0.502 0.9076 0.4009 0.6422 2.829 × 10−6 2.829 × 10−6 0.4202
11Be0 11 4 5.953 2 0.502 0.6894 0.4009 0.48015 1.141 × 10−6 [→ 10Be] –
11Be∗ 11 4 5.953 (2) 0.502 0.308 0.4009 0.03957 3.341 × 10−9 [→ 10Be] –
12Be 12 4 5.721 1 3.170 2.1223 0.4582 1.4798 3.957 × 10−6 4.074 × 10−6 0.1385
12Be0 12 4 5.721 (1) 3.170 0.3307 0.4582 0.222 5.937 × 10−7 [→ 10Be] –
13Be∗ 13 4 5.241 2 −0.510 0.7806 0.5155 0.3144 1.164 × 10−7 [→ 12Be] –
14Be 14 4 4.994 1 1.264 0.9468 0.5728 0.5897 4.497 × 10−8 4.498 × 10−8 0.01209
15Be∗ 15 4 4.541 6 −1.800 0.02241 0.6301 0.0005243 5.994 × 10−12 [→ 14Be] –

the previous section. In the bottom panel, the mass fractions
of light particles are plotted against the density, for different
values of the scalar cluster-meson coupling. We observe that
the abundances shown in the top panel are quite similar to the
ones in the resonance-gas approximation (see Fig. 1). Also,
from the bottom panel, we see that the medium effects are
almost negligible because the densities are very small. As it
was shown in Table III, the effect of the medium is more
relevant when considering clusters with higher Z .

In Fig. 6, we present the calculated fit metrics derived with
different values of the scalar cluster-meson coupling constant,
and we observe a minimum at about the same density as in the
QS approach, nB ∼ 6.7 × 10−5 fm−3.

VI. CONCLUSIONS

We have considered the modeling of ternary fission yields
within a systematic quantum statistical approach and a gen-
eralized relativistic mean-field approach. We consider our
quantum statistical approach as a first step in a strict nonequi-
librium approach. As an example, we have analyzed the
observed yields for 241Pu(nth, f).

We assume that the light charged fragments are emitted
from the neck region at scission. We have first considered
partial chemical equilibrium for clusters Z � 2. During the
further expansion, feed-down processes were considered. This
leads to the final yields, which are compared to the observed
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TABLE X. Continuation of Table IX.

isotope A Z BA,Z
A gA,Z E thresh

AZ Rvir
A,Z (1.29) �EPauli

A,Z Rmedium
A,Z (1.29) Y rel,medium

A,Z Y final,medium
A,Z Y obs

A,Z /Y final,medium
A,Z

10B 10 5 6.475 7 4.466 1.357 0.2864 1.086 3.547 × 10−9 3.547 × 10−9 –
11B 11 5 6.928 4 8.674 1.175 0.3437 0.9 1.261 × 10−6 1.428 × 10−6 0.2258
12B 12 5 6.631 3 3.369 2.227 0.4009 1.626 2.411 × 10−6 2.411 × 10−6 0.08358
12B0 12 5 6.631 (3) 3.369 0.1582 0.4009 0.1127 1.671 × 10−7 [→ 11B] –
13B 13 5 6.496 4 4.879 0.9966 0.4582 0.6976 6.209 × 10−6 7.096 × 10−6 –
14B 14 5 6.102 5 0.970 0.9341 0.5155 0.6065 1.461 × 10−6 1.461 × 10−6 0.01793
14B0 14 5 6.102 (5) 0.970 0.3001 0.5155 0.188 4.53 × 10−7 [→ 13B] –
14B∗ 14 5 6.102 (5) 0.970 0.387 0.5155 0.1801 4.338 × 10−7 [→ 13B] –
15B 15 5 5.880 4 2.78 0.9829 0.5728 0.6246 1.058 × 10−6 1.075 × 10−6 0.008624
16B∗ 16 5 5.507 1 −0.082 0.8574 0.6301 0.4311 1.723 × 10−8 [→ 15B] –
17B 17 5 5.270 4 1.39 0.9515 0.6873 0.5399 2.723 × 10−8 2.964 × 10−8 –
18B∗ 18 5 4.977 5 −0.005 0.8659 0.7446 0.3832 2.407 × 10−9 [→ 17B] –
13C 13 6 7.470 2 4.946 1.353 0.4009 0.9905 3.134 × 10−6 3.137 × 10−6 –
14C 14 6 7.520 1 8.176 1.069 0.4582 0.7491 6.769 × 10−5 1.139 × 10−4 0.02229
15C 15 6 7.100 2 1.218 0.9449 0.5155 0.6169 2.916 × 10−5 5.92 × 10−5 0.01464
15C0 15 6 7.100 (2) 1.218 1.5315 0.5155 0.9775 4.621 × 10−5 [→ 14C] –
15C∗ 15 6 7.100 (2) 1.218 0.004482 0.5155 0.000206 9.728 × 10−9 [→ 14C] –
16C 16 6 6.922 1 4.250 2.259 0.5728 1.445 9.266 × 10−5 1.305 × 10−4 0.007721
16C0 16 6 6.922 (1) 4.250 0.7875 0.5728 0.4683 3.004 × 10−5 [→ 15C] –
17C 17 6 6.558 4 0.734 0.9218 0.6301 0.5379 2.447 × 10−5 2.447 × 10−5 0.005271
17C0 17 6 6.558 (4) 0.734 1.438 0.6301 0.8288 3.77 × 10−5 [→ 16C] –
17C∗ 17 6 6.558 (4) 0.734 0.09067 0.6301 0.002612 1.188 × 10−7 [→ 16C] –
18C 18 6 6.426 1 4.18 3.153 0.6873 1.843 5.329 × 10−5 8.188 × 10−5 0.0006891
19C+ 19 6 6.118 2 0.580 4.665 0.7446 2.431 2.181 × 10−5 × 0.1 2.181 × 10−6 0.0002309
19C0 19 6 6.118 2 0.580 4.665 0.7446 2.431 2.181 × 10−5 × 0.9 [→ 18C] –
19C∗ 19 6 6.118 (2) 0.580 2.383 0.7446 0.9985 6.858 × 10−6 [→ 18C] –
20C 20 6 5.961 1 2.98 2.391 0.8019 1.268 5.646 × 10−6 5.646 × 10−6 0.0001285

yields. Higher mass clusters are suppressed by nucleation
kinetics and/or size effects.

We are interested in an optimal description of the primary
equilibrium distribution at scission. Within a quantum statisti-
cal approach, excited bound states and continuum correlations
are taken into account. In particular, we have searched for
in-medium effects going beyond a simple statistical model
of noninteracting components (ideal gas). These in-medium
effects are determined by the thermodynamic parameters
of matter in the scission region. For all nuclei Z � 2, the
Lagrange parameter values are: λT = 1.29, λn =
−3.09, λp = −16.19 MeV, volume 1796 fm3, neutron
density nn = 6.7 × 10−5 fm−3. We showed that for those
parameter values, density effects are expected and are
manifested by the experimental data.

In particular we find evidence for the Mott effect for the
weakly bound states 11Li and 19C, and also the suppression
of the yields for weakly bound nuclei 6He, 11Be, 14B, and
15C − 17C (excited states). This shows the consistency of our
approach: the nucleon density 6.7 × 10−5 fm−3 inferred from
composition is also seen in the in-medium shifts, the weakly
bound clusters serving as test probes. We identify the strong
suppression of 11Li and 19C as a signature of the Mott effect
and find that other isotopes are not dissolved so that we find
an estimate for the Pauli blocking effect and the corresponding
interval of density.

We also considered a generalized relativistic mean-field ap-
proach to study the in-medium modifications on light cluster

properties, introducing a modification on the scalar cluster-
meson coupling. At the low nucleon densities considered here,
no significant changes in the yield distribution of isotopes and
the nuclear-matter parameter values have been observed. This
underlines the validity of the parameter values for tempera-
ture, nucleon density, and proton fraction, presented in this
paper, to describe nuclear matter in the neck region at scission.

The improved description of nuclear matter at scission
conditions is of interest for the properties of neutron-rich
astrophysical systems [21,23,25,50–55], for instance, the
equation of state, heat capacity, and the neutrino opacity at
similar thermodynamic parameter values.
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APPENDIX A: EXCITED-STATE MULTIPLIER
AND INTRINSIC PARTITION FUNCTION

The contribution of excited states to the intrinsic partition
function of a particular channel {A, Z}, which after expansion
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FIG. 5. (Top) Mass fractions as a function of the density for the
Z = 1, 2 isotopes and the free neutron gas in a RMF calculation with
in-medium effects (xs = 0.85) for the FSU model with a fixed tem-
perature of T = 1.29 MeV, and a proton fraction of Yp = 0.035. The
observed experimental yields are represented by horizontal dotted
lines. (Bottom) Mass fractions of the light particles as a function of
the density in a RMF calculation employing different values of the
scalar cluster-meson coupling constant.
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FIG. 6. Fit metric (3) vs. baryon density for T = 1.29 MeV
and Yp = 0.035, using different values of the scalar cluster-meson
coupling.

(feed down) decays to a different final isotope, observed in
experiment (branching ratio), is denoted by “*”. We separate
also the weakly bound states, which are within 1 MeV below
the edge of continuum. We denote it by “0” below. Sometimes
we separate the ground state so that “0” appears twice.

The threshold energy E thresh
AZ is generally given by the

neutron separation energy, but lower threshold energies may
appear for other decompositions, for instance 6Li → α + d
and 7Li → α + t , see Ref. [56]. This defines feed-down
channels and the corresponding subdivisions of the intrinsic
partition function.

The corresponding partition function multipliers
Rres.gas

A,Z (λT ) and Rvir
A,Z (λT ) are calculated for λT = 1.29 MeV.

Rmedium
A,Z (λT ) is calculated for λT = 1.29 MeV, λn = −3.09

MeV, and λp = −16.19 MeV, we indicate only the value for
λT . See also the Supplemental Material of Ref. [20].

1. Z � 2: n, H, He

Excited states and intrinsic partition function multipliers R
of H and He isotopes are shown in Table IV. The contribution
of excited states, which, after freezeout, decays to a different
channel {A, Z} (feed down) is denoted by “∗”. At low temper-
atures considered in this work, the subnuclear excitations of
the nucleons n, p are neglected so that R1,0 = R1,1 = 1.

2. Lithium

The yields of Li isotopes are shown in Table V. We con-
sider 6 � A � 12 The degeneracy is not known for 10Li and
12Li, the value 3 was assumed, but is not of relevance for
the discussion here. The same holds also for some excited
states. The threshold energy E thresh

AZ is given in general by the
neutron separation energy, but lower threshold energies appear
for 6Li → α + d and 7Li → α + t , see Ref. [56].

3. Beryllium

Results for Be isotopes are shown in Table VI. For the
relevant, primary distribution we have to consider also the
unstable, excited states. Excited states above the continuum
edge, which emit a neutron or other nuclei, are taken sepa-
rately, their contribution to the intrinsic partition function is
denoted by an asterisk. Also excited states little below the
continuum edge (1 MeV) may become dissolved in a dense
medium if the binding energy is reduced owing to Pauli block-
ing, their contribution is denoted by “0”.

4. Boron

Results for B isotopes are shown in Table VII. As before,
we denoted the weakly bound part of the intrinsic partition
function with 10B0, 12B0, and 14B0. 16B feeds 15B, and 18B
feeds 17B. It is expected that continuum correlations and in-
medium effects may give further corrections to describe the
final yields of the isotopes.

5. Carbon

For carbon, several states are close to the edge of the con-
tinuum, see Table VIII. In particular, 19C is weakly bound, as
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is 17C, with the threshold of the continuum below 1 MeV. We
expect that these weakly bound nuclei are stronger influenced
by in-medium modifications, in particular Pauli blocking.

APPENDIX B: ESTIMATE FOR THE PAULI
BLOCKING SHIFT

There are two contributions to the in-medium shift of
quasiparticles, the self-energy contribution and the Pauli
blocking effects. Self-energy shifts are calculated, e.g., by
the relativistic mean-field approximation. If the momentum
dependence of the shift is neglected, each nucleon suffers the
same shift so that it can be implemented in the chemical po-
tential. The composition is not influenced. For a more detailed
discussion see Refs. [31,39].

We give an estimate for the Pauli blocking
�EPauli

A,Z (P; T, nB,Yp) as function of total momentum h̄P
and the thermodynamic variables T, μn, μp, respectively,
T, nB,Yp as

�EPauli
A,Z (P; T, nB,Yp) = e− h̄2P2

2A2mT 2 (Nnn + Znp)aA,Z e−bA,Z T

(B1)

according to Eq. (21) in Ref. [19], where also values for the
parameters aA,Z , bA,Z are given. An average value for 10 �
A � 16 is ā = 532.0 MeV fm3 and b̄ = 0.05103 MeV−1. The
P dependence is according to Eq. (43) of Ref. [31].

Within an exploratory calculation, we use the average value
to estimate the Pauli blocking shift. Values for �EPauli

A,Z (P =
0; T, nB,Yp) = �EPauli

A,Z (0) are shown in Tables IX, X. The
Mott condition where the Pauli blocking shift exceeds the
binding energy is fulfilled for 11Li and 19C, but also for excited
states of 11Be, 14B, 15C, 16C, and 17C. Further ground states
and excited states, denoted by “0”, are also approaching the
continuum edge and partially suppressed.

The Mott condition does not mean that all clusters of the
corresponding state are dissolved. The transition to the contin-
uum gives also a contribution like a resonance, see the case of
2H. An important point is that the Pauli blocking depends on
the total momentum h̄P, see Ref. [39]. For �EPauli

A,Z (0) � BA,Z ,
the Mott momentum follows as

PMott =
{

2A2 T m

h̄2 ln

[
�EPauli

A,Z (0)

BA,Z

]}1/2

. (B2)

Not only the high-momentum bound states but also part
of the continuum states may evolve to the ground state in
the final distribution. However, this leads to the discussion
of branching ratios for the reaction network describing the
evolution from freezeout to the final observed yields, which
is beyond the scope of the present work.

APPENDIX C: EVALUATION OF THE INTRINSIC
PARTITION FUNCTION MULTIPLIERS R:

VIRIAL APPROXIMATION

In (1), the intrinsic partition function multiplier was intro-
duced as a correction to the simple ideal gas approximation
where for each isotope {A, Z} only the ground state was con-
sidered. However, for each channel we have to consider the

intrinsic partition function, in particular the account of all
excited states. The resonance-gas approximation (2) considers
all excited, including unstable, states, also resonances in the
continuum.

A systematic description of correlations in the continuum
is given by the virial approximation. We repeat: we perform a
cluster expansion for the interacting system [19], and partial
densities of different clusters {A, Z} are introduced. The rel-
evant yields Y rel,vir

A,Z in the virial approximation are calculated
as

Y rel,vir
A,Z ∝ gA,Z

(
2π h̄2

AmλT

)−3/2

e(BA,Z +(A−Z )λn+Zλp)/λT Rvir
A,Z (λT )

(C1)

(nondegenerate limit), where BA,Z denotes the (ground-state)
binding energy and gA,Z the degeneracy [33]. The factor

Rvir
A,Z (λT ) = 1 +

exc∑
i

[gAZ,i/gA,Z ]e−EAZ,i/λT (C2)

is related to the intrinsic partition function of the cluster
{A, Z}. The index i characterizes further quantum numbers of
the excited state such as angular momentum. The summation
is performed over all excited states of excitation energy EAZ,i

and degeneracy gAZ,i [33].
As already discussed for H, He, we have also to con-

sider the scattering states. This leads to a change in the
contributions obtained for bound states, and, in particular,
for the unbound states. We use the Beth-Uhlenbeck rela-
tion, see Ref. [18] to perform the sum over the continuum
states,

Cvir
AZ,i(λT ) = [

1 − e−(E thresh
A,Z −EAZ,i )/λT

]
	

(
E thresh

A,Z − EAZ,i
)

+ 1

πλT
e−(E thresh

A,Z −EAZ,i )/λT

∫ ∞

0
dEe−E/λT δAZ,i(E ),

(C3)

as prefactor for the contribution of the different channels
{A, Z, i}, degeneracy gAZ,i. E thresh

A,Z is the difference of the bind-
ing energy of the ground state and the binding energy of the
components of the lowest continuum, the 	 function is 1 if a
bound state occurs. If a channel has no common bound state,
we have EAZ,i = 0, all excited states are in the continuum.
The intrinsic partition function multiplier Rvir

A,Z (λT ) (C2) can
be rewritten as

Rvir
A,Z (λT ) =

exc∑
i

gAZ,i

gA,Z
e−EAZ,i/λT Cvir

A,Z (λT , EAZ,i ). (C4)

As in the case of the resonance-gas approximation, the sum
over all states i can be subdivided into different contributions
α,

Rvir
A,Z (λT ) =

∑
α

Rvir,α
A,Z (λT ). (C5)

We divided it into the contribution of well-bound nuclear
states with binding energy larger than 1 MeV (R) and weakly
bound states, (R0), both decaying to the ground state, and in
unbound states (R∗), which feed down to other channels. The
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same subdivision has been performed also for the intrinsic
partition function multiplier Rres.gas

A,Z (λT ). We perform this sub-
division to calculate the feed-down process from freezeout to
the final yields.

We are not able here to evaluate the integral over the
scattering phase shifts for all channels of interest. We give
only an estimate in analogy of the cases 2H, 4H, 5He, which
have been discussed in Ref. [19]. The relation Rvir

AZ (T ) =
e(E thresh

A,Z −E eff (T ))/T was given there. We use the effective energy
E eff (T ) given there and have for 4H (Sn = −1.6 MeV) the
value Rvir

4H(1.29) = 0.057, and for 5He for Sn = −0.735 MeV
the value Rvir

5He(1.29) = 0.731. Together with the known virial
coefficient in the deuteron channel, in Ref. [18] the interpola-
tion formula (in units of MeV)

Cvir
A,Z (λT , EAZ,i ) = 1

e−(E thresh
A,Z −EAZ,i+1.129)/0.204 + 1

× 1

e−(E thresh
A,Z −EAZ,i+2.45)/λT + 1

(C6)

has been introduced, which reproduces the values for 2H, 4H,
and 5He at λT = 1.29 MeV. If we have multiple contributions
within a group α we replace Cvir

AZ,i(λT , EAZ,i ) by its value
for the lowest excitation energy EAZ,α of the group, and can
extract this factor from the summation so that

Rvir,α
A,Z (λT ) = Cvir

A,Z (λT , EAZ,α )Rres.gas,α
A,Z (λT ). (C7)

We used this expression to calculate the multipliers Rvir,α
A,Z (λT )

shown in the Tables.

APPENDIX D: EVALUATION OF THE INTRINSIC
PARTITION FUNCTION MULTIPLIERS R:

MEDIUM MODIFICATIONS

The virial expression uses the bound-state energies and
scattering phase shifts of the free clusters, neglecting in-
teraction effects. The most important in-medium effects are
self-energy and Pauli blocking. Self-energy effects are well
known and are parametrized, for instance, as Skyrme forces
or relativistic mean-field approximation. If we neglect the
momentum dependence of the single-particle mean-field shift,
this self-energy shift �SE

τ for neutron and protons, which
occurs also in the bound states may be included in the effective
chemical potentials λ̃τ = λτ − �SE

τ . Values for �SE
τ have been

given in Sec. IV C. Thus, it has no influence on the composi-
tion at given temperature and densities.

In contrast, the Pauli blocking shift occurs only for in-
teracting nucleons in a cluster and depends strongly on
the quantum state, as discussed above. Therefore we take
this shift of energy levels explicitly into account. In prin-
ciple, also the scattering phase shifts are modified. See
Ref. [29] for the two-nucleon case, where a generalized Beth-
Uhlenbeck approach is given, which accounts for in-medium
effects.

The Pauli blocking has different consequences. (i) In (C1),
(C2), the energy shift of the bound states �EPauli

A,Z,i has to be
added to the binding energies Bmedium

A,Z = BA,Z − �EPauli
A,Z for

the ground state, but also for all excitation energies Emedium
AZ,i =

EAZ,i + �EPauli
AZ,i − �EPauli

A,Z , which are taken relatively to the
ground state. In principle, the Pauli blocking depends on the
wave function of the bound state as well as the total momen-
tum P of the cluster, but for simplicity we assume that we can
neglect this and approximate these different Pauli blocking
shifts by �EPauli

A,Z . Then, a common factor can be extracted so

that e−�EPauli
A,Z /λT Rvir

A,Z (λT ) appears.
(ii) The medium modifications will also result in a density

dependence of the intrinsic partition function or the corre-
sponding factors Rmedium,α

A,Z (T, nB,Yp) in the decomposition
corresponding to Eq. (C7). We use the virial expression (C7)
but replace in Cvir

A,Z (λT , EAZ,α ) the excitation energy EAZ,α by
EAZ,α + �EPauli

A,Z ,

Rmedium,α
A,Z (λT , λn, λp) = Cvir

AZ

(
λT , EAZ,α + �EPauli

A,Z

)
× Rres.gas,α

A,Z (λT )e−�EPauli
A,Z /λT . (D1)

The shift of the bound states gives a decrease of the
binding energy. which may vanish (Mott effect). The dissolu-
tion of bound states opens additional channels for feed-down
processes.

We discuss three different cases: well bound states with
binding energy larger than T ≈ 1 MeV are shifted but not
dissolved. Because the temperature is low, the effect of con-
tinuum correlations and the threshold energy is small for
the strongly bound isotopes so that, in addition to the self-
energy shift �SE

A,Z , the factor exp[−�EPauli
A,Z /λT ] determines

the influence of the medium. The contribution of scattering
states has been approximated by Eq. (C6), replacing EAZ,i by
EAZ,i + �EPauli

AZ,i .
Of special interest are the weakly bound states where the

shift brings it above the continuum edge, EAZ,i + �EPauli
A,Z −

E thresh
AZ > 0 so that the bound state will be dissolved and feed

down other final states. We estimate these contributions also
according to Eq. (C6) as done above for the scattering states.
Instead to feed down the ground state after deexcitation, we
assume that they feed down other isotopes as indicated in
Tables IX, X.

This simplified picture to describe the reaction processes
after freezeout has to be improved in future treatments within
a systematic nonequilibrium approach. As known from reac-
tion networks describing expanding matter in astrophysics,
branching ratios may be introduced to describe the evolution
of the primary distribution to the final distribution, which
allow for different final states of an excited state. For our
considerations this is not of relevance as long as the contri-
bution of excited states (including continuum states) is small,
and the main contribution to the yield of isotopes is deter-
mined by the strongly bound states. Another situation appears
for the weakly bound final states such as 11Li and 19C in
our calculation, see Tables IX, X. Because they are shifted
to the continuum, in our simple treatment of the feed-down
process they will feed other isotopes, and the final yield for
both isotopes will be zero. A more detailed description would
allow that some of the primary states may remain in the
bound state. For instance, the Pauli blocking is momentum
dependent, and clusters with large momentum remain bound
because Pauli blocking is effective only within the Fermi
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sphere, as discussed in Sec. B and Sec. IV C. There is also
a finite probability that continuum contributions according
to the Beth-Uhlenbeck formula will deexcite to the ground
state according to a coalescence model. For this one has to
introduce branching ratios, which allow feed down to different
final states. Even being small, special feed-down processes
become visible if they are the only process to form a final
bound state.

We are not able in this work to derive a microscopic expres-
sion for the branching ratios during expansion after freezeout.
They are of relevance when they are the only process to popu-
late the final yield, for instance, of the dissolved isotopes 11Li
and 19C in Tables IX, X. To give an example, we assumed in
both cases a branching ratio 0.1 that the primary yield remains

at the same isotope to form the final yield. As shown in Fig. 4,
this branching ratio would fit the yield of 19C to the general
behavior of the calculated yields. This example is only for
illustration, the derivation of the branching ratio goes beyond
the frame of the present work.

Another issue that needs further considerations is the
threshold energy E thresh

A,Z , which is taken in this work from the
data tables. It is possible that this quantity is also changed
in a dense medium. For this, a nonequilibrium approach to
the reaction processes is necessary, which finally will pro-
vide us with in-medium branching ratios discussed above.
Our description of the reactions during the expansion process
after freezeout remains a semiempirical one with a simplified
reaction network as shown in Tables IX, X.
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