
PHYSICAL REVIEW C 107, 014617 (2023)

Final-state interactions and spin structure in E1 breakup of 11Li in halo effective field theory
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We calculate the E1 breakup of the 2n halo nucleus 11Li in halo effective field theory (Halo EFT) at leading
order. In Halo EFT, 11Li is treated as a three-body system of a 9Li core and two neutrons. We present a detailed
investigation of final-state interactions (FSIs) in the neutron-neutron (nn) and neutron-core (nc) channels. We
employ Møller operators to formulate an expansion scheme that satisfies the non-energy-weighted cluster sum
rule and successively includes higher-order terms in the multiple-scattering series for the FSI. Computing the E1
strength up to third order in this scheme, we observe apparent convergence and good agreement with experiment.
The neutron-neutron FSI is by far the most important contribution and largely determines the maximum value
of the E1 distribution. However, inclusion of nc FSI does shift the peak position to slightly lower energies.
Moreover, we investigate the sensitivity of the E1 response to the spin structure of the neutron-9Li interaction.
We contrast results for an interaction that is the same in the spin-1 and spin-2 channels with one that is only
operative in the spin-2 channel, and find that good agreement with experimental data is only obtained if the
interaction is present in both spin channels. The latter case is shown to be equivalent to a calculation in which
the spin of 9Li is neglected.
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I. INTRODUCTION

Halo nuclei consist of a compact core and one or more
loosely bound valence nucleons. As a consequence, they are
significantly larger than neighboring nuclei in their isotopic
chain. Neutron halos are the most universal halo systems
as their halo structure is not altered by the long-range
Coulomb interaction [1,2]. They were discovered in the 1980s
at radioactive beam facilities by measuring their unusually
large interaction radius [3]. Jonson and Hansen subsequently
showed that this large radius is connected to a small separation
energy of the halo neutrons [4].

The corresponding separation of energy scales forms the
basis for a controlled description of halo nuclei in the frame-
work of halo effective field theory (Halo EFT) [2,5,6], which
systematizes cluster models of halo nuclei. The breakdown
scale Mcore is the lowest momentum scale not explicitly in-
cluded in the theory. This is set by the excitation energy of the
core, or by the size of the core, whichever yields the smaller
momentum scale. The EFT exploits that the momentum scale
of the halo nucleons set by their separation energy is much
smaller, Mhalo � Mcore. Typically Mhalo is of order tens of
MeV for halo nuclei, while the breakdown momentum scale,
Mcore, varies between 50 and 150 MeV. The EFT expansion is
then in powers of Mhalo/Mcore, and for a typical momentum of
order Mhalo the EFT uncertainty is of order (Mhalo/Mcore )n+1
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for a calculation at order n. Halo EFT describes the structural
properties of one- and two-neutron halo nuclei with nucleon-
nucleon and nucleon-core interactions. It has has also been
applied to a number of electromagnetic and weak observables,
including capture reactions, photodissociation processes, and
weak decays (see, e.g., Refs. [2,7–10] for a review and some
recent references).

In this work, we focus on Coulomb dissociation, which is a
powerful tool to study the structure of halo nuclei. The electric
dipole transition strength, which is enhanced at low excitation
energies for halo nuclei, is probed in Coulomb dissociation
experiments by accelerating them to high energies and scat-
tering them peripherally off a high-Z target. This soft dipole
mode has been under intense investigation both in experiment
and in theory since the discovery of halo nuclei in the early
1980s [11]. Halo EFT was first applied to Coulomb dissocia-
tion of the one-neutron halo 11Be [12]. Further work extended
the description to 19C [13]. In Ref. [2], it was shown that the
E1 excitation of one-neutron halo nuclei can be described by
a dimensionless universal function of the energy in units of
the one-neutron separation energy.

The E1 response of a two-neutron halo is also expected
to be governed by a universal function [14], in close analogy
to the one-neutron case discussed above. In this work, we
discuss the E1 response of 11Li. Lithium-11 was previously
considered in Halo EFT in Refs. [15–18]. Both 11Li and the
9Li core have the quantum number JP = 3/2−, while the
unbound 10Li appears to have a low-energy antibound state
with quantum numbers JP = 2− or 1−.
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The two-neutron separation energy of 11Li is 0.369 MeV
and the 10Li s-wave resonance1 is 26(13) keV above the 9Li-n
threshold [19]. The momentum scale Mhalo can be estimated
from these energy scales using M ≈ √

mE as Mhalo = 18.6
MeV. The first excitation energy of the 9Li ground state is
2.69 MeV [20] and its one-neutron separation energy is 4.06
MeV [19], while the charge radius of 9Li is 2.25 fm [21], im-
plying a scale Mcore of 50–90 MeV. This yields an expansion
parameter of, at worst, Mhalo/Mcore ≈ 0.37.

A leading-order Halo EFT calculation of 11Li should there-
fore be able to describe Coulomb dissociation data with
reasonable accuracy. This was indeed found to be the case
in preliminary Halo EFT calculations of this process [22–24]
that showed good agreement with the E1 strength extracted
from Coulomb dissociation data in Ref. [25] at transition
energies within the domain of validity of Halo EFT. These
studies, as well as earlier work within three-body models in
Refs. [26–28], found that, in contrast to the case of Coulomb
dissociation of an s-wave one-neutron halo [23], final-state
interactions (FSIs) play a significant role in determining the
neutron spectrum measured in Coulomb dissociation of 11Li.
This was also observed for other 2n halos such as 22C, see,
e.g., Ref. [29].

In this work, our aim is threefold:

(1) Obtain a description of the experimental E1 breakup
data from Ref. [25] in Halo EFT with theoretical un-
certainties.

(2) Explore in detail the role of the nn and 9Li-n FSIs
in this process, paying particular attention to the con-
straints from the non-energy-weighted cluster sum rule
for E1 breakup.

(3) Investigate the impact of the spin structure of the 9Li-n
interaction, which is nontrivial because the 9Li core
has spin 3/2, and derive the relationship of such a
calculation to the frequent assumption of a spin-0 core.

Before plunging into the details of our calculation we
provide the reader with a list of the three approximations we
make, and the reasons why we see them as not damaging to
our goals:

(1) We perform a leading-order three-body Halo EFT
calculation of 11Li that neglects interactions that are
higher order in the EFT power counting. This power
counting tells us what mechanisms would be included
at the next order and also provides us with an uncer-
tainty estimate based on the scale separation in this
problem.

(2) We include the different final-state interactions using
combinations of Møller operators. Compared to a full
(e.g., Faddeev) calculation of the interacting three-
body continuum this is an approximation. Because we

1Due to the mentioned inconclusive state of the literature this reso-
nance is in many cases also understood as a virtual state. Moreover,
there is some discussion whether 10Li can be a low-energy s-wave
resonance. In principle the effective nuclear 9Li-n interaction could
form a barrier. Thereby 10Li could be a true resonance.

perform calculations with different numbers of Møller
operators, and consider them acting in different se-
quences, we gain some insight into the convergence
of the multiple-scattering series for this problem.

(3) We truncate in the quantum numbers of the final state
in such a way that only states with minor contributions
are neglected. The associated uncertainties are investi-
gated by comparing the results obtained with different
truncations. Moreover, there is also some truncation in
the initial-state wave function components, which is
also quantified. Such truncations are generic in treat-
ments of the quantum-mechanical few-body problem.

Quantitative assessment of each of these approxima-
tions is provided in the body of the paper, and this
list is recapitulated, along with those uncertainties, in the
conclusion.

The fact that this is a leading-order Halo EFT calcula-
tion means that we include only s-wave interactions in our
leading-order calculation—as was also the case in previous
leading-order Halo EFT calculations [15–18]. We are aware
that this is a different strategy to the one typically taken in
three-body cluster models, many of which predict significant
p-wave components in the wave function [30]. There is also
experimental evidence for a mixing of different-parity compo-
nents [31]. However, the different models given in Ref. [32]
showed that already a calculation with only s-wave 9Li-n
interactions can yield momentum distributions in agreement
with experimental data at an acceptable level at low momenta.
More recently, Casal and Moro achieved a reasonable descrip-
tion of the 9Li(d, p) 10Li reaction using 1−/2− s-wave virtual
states and 1+/2+ p-wave resonances around 500 keV [33].
There seems to be no conclusive evidence for a p-wave reso-
nance in the 9Li-n system significantly below 500 keV, despite
many investigations of this system over the years [34–38].
We therefore follow the Halo EFT power counting, which
stipulates that p-wave resonances at energies ≈500 keV, i.e.,
corresponding to momenta of order Mhalo, produce only a
NLO effect in the E1 response, unless they are kinematically
enhanced because the experimental energy is tuned to the
resonance energy.

The paper is structured as follows. In Sec. II we derive
the leading-order wave function of 11Li in Halo EFT. We
write down the Faddeev equations for this system and define
the s-wave interactions that govern its structure at leading
order in Halo EFT. We also elucidate the differences in these
equations that result because 9Li is a spin-3/2 core and not
a spin-0 core and discuss the circumstances under which the
more complex spin situation encountered in this problem re-
duces to the case of a spin-0 core. In Sec. III we present our
calculations of the E1 matrix element of the 11Li ground state
and the noninteracting nnc scattering state and show how to
use Møller operators to incorporate nc and nn final-state inter-
actions. Moreover, we discuss the influence of different-spin
nc interaction channels. In Sec. IV we show how to develop
approximations to the final-state scattering wave function that
preserve the non-energy-weighted sum rule, before conclud-
ing in Sec. V.
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II. 11Li IN HALO EFT

A convenient ingredient for describing 11Li and calculating
observables is its wave function. In our Halo EFT descrip-
tion this is the wave function of a three-body system. The
wave function is a concept commonly known from quantum
mechanics, which can also appear in a nonrelativistic field
theory through its relation to the vertex function that is the
residue of the three-body scattering amplitude at the bound-
state pole (see, e.g., the review [2]). Since the corresponding
half-off-shell amplitude appears in many calculations the
wave function is a useful intermediate step in computations
of observables, and can be seen as a way to modularize the
calculations.

We will calculate the wave function from Faddeev ampli-
tudes determined by Faddeev equations. Our approach for the
ground state is similar to the one of Canham and Hammer in
Ref. [15], where two-neutron halos were described as three-
body systems with s-wave interactions in Halo EFT. However,
we go beyond the treatment of Ref. [15] since we do not
assume that the spin of 9Li and the total angular momentum
of the 11Li bound state are both zero. Instead we analyze the
spin structure of 11Li in detail.

A. Jacobi momenta and Faddeev equations

Before discussing the Faddeev equations through which
we calculate the ground-state wave function and introducing

the different interactions therein, we first summarize how the
different momenta in the three-body system can be described.
Typically Jacobi momenta are employed, whereby the system
is described in terms of a relative momentum within a two-
body subsystem and the momentum between the third particle
and the subsystem. The third particle is called the spectator.
Since there are three different choices of spectator possible
there are three different Jacobi coordinate systems and these
are labeled by the particle chosen as spectator. The definition
of the Jacobi momenta pi and qi with respect to spectator i
in a system with masses {mi, mj, mk} and momenta {ki k j, kk}
reads

pi := μ jk

(
k j

m j
− kk

mk

)
, qi := μi( jk)

(
ki

mi
− k j + kk

Mjk

)
. (1)

The Faddeev equations for the abstract Faddeev compo-
nents |Fi〉 can be written as

|Fi〉 =
∑
j �=i

G0t j |Fj〉, (2)

where G0 is the free Green’s function and t j is the two-body
t matrix for the (ik) subsystem, embedded in the three-body
Hilbert space. The concrete expression in the case of a two-
neutron system with one nn and one nc interaction reads

Fc(q) = (1 + (−1)l (ζc )+s(ξc ) )
∫

dq′Xcn(q, q′)4πτn(q′)c〈ξc|ξn〉nFn(q′), (3)

Fn(q) = n〈ξn|ξc〉c

∫
dq′Xnc(q, q′)4πτc(q′)Fc(q′) − n〈ξn|P (spin)

nn |ξn〉n

∫
dq′Xnn(q, q′)4πτn(q′)Fn(q′). (4)

whereby the functions Fi(q) are related to the abstract com-
ponents |Fi〉 via Fi(q) := ∫

d pgl (ζi )(p)i〈p, q; ζi|Fi〉 with some
orbital angular momentum quantum numbers ζi. The regu-
lators are given by the gl . The Xi j are the so-called kernel
functions originating from the evaluation of free Green’s func-
tions between states differing in the spectator. The expressions
can be found in Ref. [2].2 The functions τi are related to t-
matrix elements and will be defined in Eq. (20). A three-body
force can be included in these Faddeev equations by replacing
Xnn(q, q′) by Xnn(q, q′) + h with h being some three-body

2We use the definition Xi j (q, q′) := ∫
d p

∫
d p′gl (ζi )(p)gl (ζ j )

(p′)i〈p, q; ζi|G0|p′, q′; ζ j〉 j . In the case of sharp-cutoff regularization
via the gl these can be neglected at low momenta. If additionally
the already mentioned interaction channels are s wave, one
can use the expressions from Ref. [2]. The notation is slightly
different, whereby the relation Xnc(q, q′) = −mnX n

00(q, q′; B3) holds.
Moreover, the relation Xcn(q, q′) = Xnc(q′, q) can be employed. The
function Xnn has a P (spatial)

nn in front of the G0. Here the relation
Xnn(q, q′) = −mnX c

00(q, q′; B3) can be used. Alternatively, the
regulator effects on the kernel functions could be explicitly taken
into account by evaluating some of the integrals in the functions
numerically. This is discussed for 6He in Ref. [39].

force parameter, see, e.g., Ref. [2]. Here the multi-index ξn

specifies the spin state of the three-body system seen from
the neutron as spectator when the nc subsystem is in the spin
state of the nc interaction channel. Analogously, ξc specifies
the spin state seen from the core as spectator when the nn
subsystem is the the spin state of the nn interaction channel.3

In the case of a spinless core these overlaps read

n〈ξn|ξc〉c = −1, (5)

n〈ξn|P (spin)
nn |ξn〉n = −1, (6)

and one obtains Faddeev equations equivalent to the ones from
Ref. [15]: the equations are the same apart from a relative

3Note the semantic difference between “specifies the spin state”
and “is the spin state:” e.g., ξc is just a collection of quantum num-
bers, denoted by a subscript c. If applied with the core as spectator,
then this collection specifies the spin state of the nn interaction
channel. That is, |ξc〉c is the spin state of the nn interaction channel.
Nevertheless ξc is just a collection of quantum numbers and can be
also applied by using another spectator, which results in a different
spin state. This means that |ξc〉n is a mathematically valid expression.
However, it is not necessarily an allowed spin state of this system
(e.g., |ξc〉n would require neutrons of spin 3/2).
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minus sign in the definition of Fc from the Fn between our
version and the one from Ref. [15]. If one continues this
comparison to the level of wave functions, one finds that the
total wave functions are equivalent up to overall minus signs
that depend on the spectator and are not observable: in the case
of �c(p, q) there is a relative minus sign, while in the case of
�n(p, q) there is no sign difference.

B. Spin structure of the interactions and of 11Li

Now that we have seen the Faddeev equations and the way
they are influenced by spin states, we want to discuss the spin
structure of the interactions specified as t matrices as well as
the overall spin structure of the two-neutron halo in detail. 11Li
and 9Li have the same nonzero overall angular momentum:
J = sc = 3/2. This makes the nc dynamics more complicated,
since the neutron and 9Li can interact in either the spin-1 or
spin-2 channel.

We treat the core spin in two different ways:

(1) In Appendix A, we show that if the nc interactions
in both the spin-1 and spin-2 channels have the same
strength then the three-body Hamiltonian can be sepa-
rated into two terms. In one the nn system is in a spin-0
configuration and in the other the two neutrons form a
spin-1 pair. The interactions in the first Hamiltonian
are the same as those in the Hamiltonian that treats the
9Li and 11Li as spin-0 particles. Therefore in this case
we can just carry out a calculation that neglects the
core spin, since that quantum number does not play a
role in the dynamics of the system. For the ground state
we explicitly checked the equivalence of the calcula-
tion having two nc spin channels of equal interaction
strength with the spinless calculation4 by verifying that
the numerical results for the wave functions were the
same. Note that this equivalence statement only refers
to the spatial parts. If one wants to assemble the full
state, the spatial solution has to be combined with the
correct spin state.

(2) In the other approach, we take the core spin into ac-
count and assume that the leading-order nc interaction
is only in the sc + 1/2 (spin-2) channel. The interac-
tion in the sc − 1/2 (spin-1) channel is taken to be
subleading.

Previous Halo EFT treatments basically used the first ap-
proach, whereby Appendix A can be seen as a formalization
of an argument given in Ref. [2].

We now describe the spin configurations. We focus on
the case with the nc interaction in the sc + 1/2 channel and
mention the simplifications when the case with two equal nc
interactions is realized through a calculation taking sc = 0.
For specifying the interaction channels in the three-body sys-
tem we use a basis of states of definite L and S but in general
indefinite J . The interaction channel for the nn interaction,

4We will sometimes call this calculation spinless for simplicity.
However, this adjective refers only to the core and the overall halo
nucleus. The spins of the neutrons are always included.

which is given by the conditions l = 0 and s = 0 (seen from
the core) can be written as

|(0, λ)λ,μ〉c

∣∣∣∣(0,
3

2

)
3

2
, MS

〉
c

, (7)

where the core is used as the spectator. Here we have speci-
fied the states in LS coupling, using the following notation:
|(l, λ)L, ML〉i|(s, σ )S, MS〉i, where the total orbital angular
momentum of the three-body system L = l + λ, with l the
orbital angular momentum of the jk subsystem and λ the
orbital angular momentum of particle i relative to the jk pair.
Similarly the total spin S is composed of the spin of the pair
plus the spin of the spectator: S = s + σ. In the case where the
core spin does play a role the nc pair interacts when l = 0 and
s = 2 (seen from the spectator neutron), which can be written
as

|(0, λ)λ,μ〉n

∣∣∣∣(2,
1

2

)
3

2
, MS

〉
n

, (8)

where the neutron is used as spectator. Since for the ground-
state calculation we restrict ourselves to L = 0 it follows that
S = 3/2 has to hold so that the 11Li ground state has the
correct angular momentum. The spins are not affected by
the E1 operator, but, in contrast, the L can change, which
is why we want to consider both L = 0 (bound state) and
L = 1 (scattering state created after action of electric dipole
operator).

In the calculations where the core spin is neglected all the
3/2 have to be replaced by zeros and M = 0 holds. This makes
the transformation of the spin states between the different
spectators simple:

|(0, 0)0, 0〉c = −
∣∣∣∣(1

2
,

1

2

)
0, 0

〉
n

. (9)

Now, if the core spin is taken into account the correspond-
ing relation reads∣∣∣∣(0,

3

2

)
3

2
, MS

〉
c

= −
√

5/2

2

∣∣∣∣(2,
1

2

)
3

2
, MS

〉
n

−
√

3/2

2

∣∣∣∣(1,
1

2

)
3

2
, MS

〉
n

. (10)

Note that the first number inside the round brackets is always
the spin quantum number of the subsystem originating from
the coupling of the subsystem spins. In the case of the core
spectator these are 1/2 and 1/2, while in the case of the
neutron spectator these are 1/2 and 3/2.

As an approximation we take only the following partial-
wave component of the 11Li ground state into account∣∣∣∣(0, 0)0

(
0,

3

2

)
3

2
;

3

2
, M

〉
c

= |(0, 0)0, 0〉c

∣∣∣∣(0,
3

2

)
3

2
, M

〉
c

,

(11)
which was easily recoupled from jJ coupling into LS
coupling. In jJ coupling we use the following notation:
|(l, s) j(λ, σ )I; J, M〉i. Again, the relation for the spinless case
is obtained by replacing the 3/2 in Eq. (11) by zeros.

In order to refer to certain partial-wave states compactly,
we use multi-indices. We use the following naming conven-
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tion here: multi-indices specifying a full state in jJ coupling
are denoted by 	, multi-indices denoting the pure spatial part
are denoted by ζ , and those denoting the spin part are denoted
by ξ . We introduce the following abbreviations:

	(M )
c := (0, 0)0

(
0,

3

2

)
3

2
;

3

2
, M, (12)

ζc := (0, 0)0, 0, (13)

ξ (M )
c :=

(
0,

3

2

)
3

2
, M. (14)

Using these Eq. (11) can be written as∣∣	(M )
c

〉
c = |ζc〉c

∣∣ξ (M )
c

〉
c. (15)

Moreover, we will use the definition ξ (M )
n := (2, 1

2 ) 3
2 , M for

describing the calculations with only one nc interaction
channel.

C. Spatial structure of the interactions

Now that we have discussed the spin structure of the inter-
actions as well as of 11Li, we have to discuss the general nature
of the interactions. For our EFT calculation it is particularly
useful to use the interactions in the form of t matrices, as in
their denominators the different order terms can be identified.
The leading-order reduced t matrix of the nn interaction reads

τnn(E ) = 1

4π2μnn

1

1/ann + ik
, (16)

whereby ann is the nn scattering length and the relation k =√
2μi jE holds. The relation between the reduced t-matrix

element and the full two-body t-matrix element is

〈p, l, s|ti j (E )|p′, l ′, s′〉
= 4πδl,l ′δs,s′δli j ,lδsi j ,sgli j (p)τi j (E )gli j (p′). (17)

The nc interaction is given at leading order by the s-wave
virtual state5 characterized by the virtual-state energy. The t

5Note that the atomic mass evaluation [19,40] characterizes this
state as an s-wave resonance. In principle the effective nuclear 9Li-
n s-wave potential could have a barrier that produces a low-energy
resonance. However, the main references given by the atomic evalu-
ation in Ref. [40] characterize this state as a virtual state [41,42]. We
follow the original references.

matrix reads

τnc(E ) = 1

4π2μnc

1

γnc + ik
. (18)

The virtual-state momentum γnc is related to the virtual-state
energy Enc according to γnc = −√

2μncEnc.
The embedding of the t matrices in the three-body space is

given by

i〈p, q; ζ , ξ |ti(E3)|p′, q′; ζ ′, ξ ′〉i

= δζ ,ζ ′δξ,ξ ′
δ(q − q′)

q′2

× 〈p, l (ζ ), s(ξ )|t jk (E3 − q2/(2μi ))|p′, l (ζ ′), s(ξ ′)〉.
(19)

with μi := μi( jk). This motivates the introduction of

τi(q; E3) := τ jk

(
E3 − q2

2μi( jk)

)
(20)

for compact notation. The three-body energy E3 is in our case
given by −B3 = −S2n. Sometimes this second argument of τi

is omitted.

D. From the Faddeev amplitudes to wave functions

Now that we have discussed the Faddeev equations and
the effective interactions that appear in them, we turn our
attention to the wave function and how it is obtained from the
Faddeev amplitudes. The starting point is the relation between
the abstract Faddeev amplitudes |Fi〉 and the overall state |�〉.
It is given by

|�〉 =
∑

i

G0ti|Fi〉. (21)

We can now define individual Faddeev components of the
wave function that appear here as

ψi(p, q) = G(i)
0 (p, q; E3)4πτi(q; E3)Fi(q).

By projecting on a reference state and using the representa-
tions of the Faddeev amplitudes one obtains the overall wave
function in a particular partial wave specified in terms of a
spatial multi-index ζ and a spin multi-index ξ as:

�c;ζ ,ξ (p, q) =
∑
M ′

ψc(p, q)δζ ,ζcδξ,ξ
(M′ )
c

+
∑
M ′

(1+ (−1)l−s)δL,0δML,0δλ,l

√
2l+ 1

2
(−1)l

× c
〈
ξ
∣∣ξ (M ′ )

n

〉
n

∫ 1

−1
dx Pl (x)ψn(κcnp(p, q, x), κcnq(p, q, x)). (22)

It turns out that in our case

�c(p, q) := c
〈
p, q; 	(M )

c

∣∣�〉 = c
〈
p, q; ζc, ξ

(M )
c

∣∣�〉
, (23)

with the multi-index defined as in Eqs. (12), is the most impor-
tant partial-wave component of the wave function. Moreover,
the quantum number M is undetermined, as the results are
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independent of M. (The superscript M of the multi-index
	c is therefore omitted hereafter for brevity.) The expression
obtained from Eq. (22) for this piece of the wave function is

�c(p, q) = ψc(p, q) + c〈ξc|ξn〉n

×
∫ 1

−1
dx P0(x)ψn(κcnp(p, q, x), κcnq(p, q, x)).

(24)

This is the piece of the wave function considered by Canham
and Hammer in Ref. [15].

We also checked the importance of wave function compo-
nents corresponding to higher angular momenta for both the
nn pair and the core relative to that pair, i.e.,

� (l )
c (p, q) := c

〈
p, q; ζ (l )

c , ξc

∣∣�〉
, (25)

with the multi-index ζ (l )
c := (l, l )0, 0 . Our calculations show

that � (2)
c is typically suppressed by a factor of 100 or more

compared to �c in terms of their respective maxima. This
means that here, as was done in Ref. [15], we will use only
the l = 0 states as reference states.

Moreover, all these equations are under the assumption that
only L = 0 states appear in the bound-state wave function.
Because the core has spin 3/2 it is in principle possible for
L = 2 components to also be present in the J = 3/2− 11Li
ground state. However, the leading-order three-body force in
Halo EFT is operative only for L = 0: three-body forces that
mix angular momenta or are operative in other L channels
occur in Halo EFT, but only at higher orders. Therefore Halo
EFT predicts a 11Li state with only L = 0 (at leading order).
In the case of L = 0 and only s-wave interactions it is no loss
of generality to assume that ti projects also on L = 0 and on
λ = 0. In the spin space, we project not only in s but also in σ

with no loss of generality.
Before presenting our results, we briefly discuss the

parameters and renormalization conditions applied in our cal-
culation. The 9Li-n virtual state, whose nature was already
discussed, is characterized by an energy of Enc = 26(13)
keV [19]. We use it to calculate a virtual-state momentum
γnc = −√

2μncEnc. This parameterizes the nc interaction. The
corresponding scattering length anc amounts to −29.8 fm.
The nn interaction is parameterized by ann = −18.7 fm [43].
Meanwhile, we use the two-neutron separation energy S2n =
0.369 MeV [19] to renormalize the three-body energy. The
mass of the 9Li core is approximated by Amn with the neutron
mass mn and A = 9. The two-body systems as well as the
three-body system are regulated using sharp cutoffs. More-
over, the three-body cutoff � is chosen to be equal to the
two-body cutoff, � = 400 MeV. In order to check the conver-
gence of the results, we compare to calculations with � = 300
MeV and two-thirds of the mesh points for discretizations and
integrations.

E. Radius of 11Li

The matter radius rc, which is the distance between the core
and the halo’s center of mass, can be extracted as the root-
mean-square (rms) radius from the so-called form factor Fc

via 〈
r2

c

〉 = −6
dFc(k2)

dk2

∣∣∣∣
k2=0

(
2

A + 2

)2

. (26)

The factor 2/(A + 2) stems from the conversion between the
distance yc, which corresponds to the momentum qc, and rc.
The expression for the form factor reads [2]

Fc(k2) =
∫

dp dq p2q2�∗
c (p, q)�c(p, q + k). (27)

We use only the l = 0 component of the wave function in
our calculations, since, as discussed above, other components
are suppressed by at least a factor of 100. This way we
obtain

√〈r2
c 〉 = 0.87 fm with an numerical uncertainty of

roughly 0.02 fm and LO EFT uncertainty of approximately√〈r2
c 〉

√
S2n/E∗ ≈ 0.32 fm. Hereby, the two-neutron separa-

tion energy of 11Li is given by S2n and the excitation energy
of 9Li is given by E∗. In order to compare our value with
experimental data we use the experimental values for the
rms charge radii of 9Li and 11Li,

√
〈r2

9〉 and
√

〈r2
11〉 from

which 〈r2
c 〉 can be obtained. These can be obtained from

isotope shift measurements. The first values were obtained in
Ref. [44], while we use the more current ones from Ref. [21].
These yield6

√
〈r2

c 〉 =
√

〈r2
11〉 − 〈r2

9〉 = 1.04 ± 0.14 fm. If we
also include the mean-square neutron charge radius, 〈r2

n〉 =
−0.1161 ± 0.0022 fm2 [45], we obtain

√〈r2
c 〉 = 1.08 ± 0.14

fm by using the formula from Ref. [46]. Our theoretical result
is in good agreement with both values.

Furthermore, it is interesting to use our
√〈r2

c 〉 together with

the
√

〈r2
9〉 from experiment to calculate an

√
〈r2

11〉. We obtain√
〈r2

11〉 =
√

〈r2
c 〉 + 〈r2

9〉 = 2.41 ± 0.13 fm (including the rms
neutron charge radius changes the result by less than 0.02 fm).
Our value is not far from the experimental result of 2.48 ±
0.04 fm and agrees within uncertainties. This means that a
LO EFT three-body description of 11Li is able to describe
the charge radius without explicitly including core excitation.
It will be interesting to see if this persists at NLO. Finally,
we want to mention that rc is related to the neutron-pair-to-
core distance rc(nn) by 11 rc/2 = rc(nn). Thereby we obtain for
〈r2

c(nn)〉1/2 a value of 4.8 fm with an LO EFT uncertainty of 1.8
fm. This large nn − c distance is another strong manifestation
of the halo structure of 11Li.

III. E1 COULOMB DISSOCIATION

In this section, we investigate the E1 strength function
without final-state interactions (FSIs) as well as the impact
that nn and nc FSI separately have on this strength func-
tion. Before showing and discussing the results, we give a

6The commonly used relation 〈r2
c 〉 + 〈r2

9 〉 = 〈r2
11〉 can be explained

in terms of the factorization of the halo’s electric form factor into
the electric form factors of 9Li itself and of 9Li relative to the
two neutrons with the latter then calculated with a point core. This
factorization will break at higher orders in the EFT expansion when
two- and higher-body currents enter. The size of such corrections is
also governed by the power counting of Halo EFT.
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FIG. 1. Diagrammatic representation of the E1 matrix elements of distributions differing in the included FSIs. The neutrons are represented
by blue solid lines and the 9Li core is represented by an orange dashed line. The first row describes the matrix element without FSI, whereby
the ellipse with the external line on the left side represents the complete matrix element resulting from the action of the E1 operator on the
ground state. On the right-hand side of the first row this is made more explicit: The E1 photons are represented by wiggly lines and the ground
state is composed from its Faddeev amplitudes represented by ellipses with corresponding labels. The nn and nc t-matrices are represented by
circles. The second row shows the contributions for the matrix element that includes nn FSI, while the third row describes the matrix element
with nc FSI.

diagrammatic overview of these calculations in terms of the
Feynman diagrams for the matrix elements of the E1 operator.
The diagrams are shown in Fig. 1. Final-state interactions are
those interactions happening after the E1 breakup of the halo
nucleus. (In this section, only one FSI will be included at a
time. The inclusion of multiple interactions at once will be
discussed in the following section.)

While they modify the shape of the E1 distribution, the
integral over the distribution, i.e., the overall E1 strength, is
conserved according to a sum rule and therefore is not affected
by FSIs. First we explain how this sum rule comes about.

A. Non-energy-weighted sum rule

The cumulative E1 strength B(E1)(E ) is defined as the
integral of the E1 strength up to an energy E .

B(E1)(E ) :=
∫ E

0
dE ′ dB(E1)

dE ′ . (28)

According to the non-energy-weighted sum rule (see, e.g.,
Ref. [47]) the total strength, i.e., integrated all the way to
infinite energy, is related to the RMS radius

√〈r2
c 〉 by

lim
E→∞

B(E1)(E ) = 3

4π
Z2

c e2
〈
r2

c

〉
. (29)

This sum rule is derived using only the identity r2
c = �rc · �rc

and the completeness of the intermediate states. Therefore any
approximate treatment of FSI should produce a cumulative
distribution that has the same asymptotic value as that ob-
tained when FSI is neglected, and that value should also be
consistent with the 〈r2

c 〉 computed using the bound-state wave
function.

B. E1 strength distribution without FSI

Our explicit expression for obtaining the E1 strength of the
2n halo nucleus with the ground state |�〉 reads

dB(E1)

dE
= e2Z2

c

∑
μ

∫
d p dq p2q2

∣∣
c
〈
p, q; ζ (1,μ)

c , ξc

∣∣rcY1μ(rc)P	c |�〉∣∣2
δ

(
E − p2

2μnn
− q2

2μc(nn)

)
, (30)

where we applied the approximation of using only the |	c〉c partial-wave component. This is realized by inserting the
corresponding projection operator P	c . It results in the omission of the l �= 0 components [see Eq. (25)]. This should be a good
approximation since, as discussed above, the higher-l components are suppressed by a factor of at least 100. The orbital angular
momentum quantum numbers after the breakup are collected in the multi-index ζ (1,μ)

c , which is given by ζ (1,μ)
c = (0, 1)1, μ.

Note that we do not have to explicitly average over M in Eq. (30) as the initial state is independent of it. Working in the c
representation for the wave function |�〉 and retaining only the dominant component c〈p, q; ζc, ξc|�〉 it is straightforward to
evaluate the operator rcY1μ(rc) in the plane-wave basis. This produces the concrete relation that is implemented:

dB(E1)

dE
= 3e2Z2

c

4π

(
2

A + 2

)2 ∫ √
2μcE

0
dqq2

√
2μ3

nn

√
E − q2

2μc

∣∣∣∣∣∣∂q′�c

⎛⎝√
2μnn

(
E − q2

2μc

)
, q′

⎞⎠∣∣∣∣∣
q′=q

∣∣∣∣∣∣
2

, (31)
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where A is the mass number of the core and μc := μc(nn) holds. The wave function �c(p, q) is obtained from the Faddeev
amplitudes as described in the previous section.

C. Including nn FSI

The dipole strength can also be calculated straightforwardly with nn final-state interactions (FSI) taken into account. This is
done by inserting the Møller [48,49] operator of the nn interaction �†

nn right before the final state:

dB(E1)

dE
= e2Z2

c

∑
μ

∫
d p dq p2q2

∣∣
c
〈
p, q; ζ (1,μ)

c , ξc

∣∣�†
nnrcY1μ(rc)P	c |�〉∣∣2

δ

(
E − p2

2μnn
− q2

2μc

)
. (32)

The Møller operator �†
nn is given by

�†
nn = 1 +

∫
d p dq p2q2(|p, q〉cc〈p, q| ⊗ 1(orbital) ⊗ 1(spin))tnn(Ep)G(nn)

0 (Ep). (33)

It converts the free state c〈p, q; ζ (1,μ)
c , ξc| into the product of

an nn distorted wave and a plane wave associated with the
Jaocbi momentum of the core relative to the nn pair at t = 0.
The time-evolved version of the resulting three-body state has
c〈p, q; ζ (1,μ)

c , ξc|eiH0t as an asymptotic state for t → ∞.7 The
inclusion of �†

nn therefore ensures that the state obtained after
the action of the E1 operator is overlapped with the three-
body scattering state that includes nn FSI, so leading to an E1
distribution in which the effects of nn FSI are included.

Since �†
nn is an identity in the momentum of the spectator,

q, and in the associated parts of the partial wave states, it
commutes with the E1 operator rcY1μ(rc). This means that this
calculation is an easy extension of the one described in the
previous section. One obtains Eq. (31) where �c is replaced
by the wave function including nn FSI:

� (wFSI)
c (p, q) := c〈p, q; ζc, ξc|

(
1 + tnn(Ep)G(nn)

0 (Ep)
)|�〉.

(34)
An explicit expression is given in Eqs. (35) and (36) of
Ref. [50]. While the nucleus considered in Ref. [50] is 6He,
the corresponding equations apply here as well, as they only
describe the inclusion of nn FSI.

D. Including nc FSI

The distribution with nc FSI can be obtained in a similar
fashion as the distribution with nn FSI. The Møller operator
�†

nn has to be replaced by �†
nc, which is given by

�†
nc = 1 +

∫
d p dq p2q2(|p, q〉nn〈p, q|

⊗ 1(orbital) ⊗ 1(spin)
)
tnc(Ep)G(nc)

0 (Ep). (35)

However, because �†
nc does not commute with the E1 opera-

tor, multiple three-body bases have to be used in the evaluation
of Eq. (35). An explicit expression for the distribution with nc
FSI will be given below.

7The Møller operator thus makes use of the asymptotic condition,
which requires that every state in the Hilbert space H of solutions of
a Schrödinger equation can form the asymptote of some scattering
state, see, e.g., Ref. [48].

E. Results

We now show our results for the E1 strength distributions
from calculations with the two nc interaction channels (s = 1
and s = 2). For the spatial part of the solution, we employed
the equivalence statement described in Appendix A, i.e., we
did a calculation with core spin and overall spin set to zero.

The results for the E1 distributions with no FSI as well
with either a single nn or nc FSI are shown in the left-hand
panel of Fig. 2. In the right panel, we show the cumulative
distribution B(E1)(E ).

It can be seen that the nn FSI influences the shape of
the strength distribution significantly, producing a strong en-
hancement at low energies, and a continuing depletion of the
strength at higher energies. nc FSI (and n′c FSI) also increase
the strength at low energy, but their influence is markedly less
than that of the nn FSI.

In the case of the cumulative distributions a common
asymptotic value can be observed, in accordance with the
sum rule. We expect that the agreement would become even
better if we continued the calculation to higher energies. The
asymptotic values are also in approximate agreement with the
overall E1 strength value calculated from 〈r2

c 〉 computed in
Sec. II E.

F. Role of nc interaction channels in 11Li

Now that we have assessed the impact of FSI on the
results, we want to compare the calculation with two nc
interaction channels to that with only one nc interaction
channel. The parameter describing the nc interaction Enc

was in both cases the same, the difference is that when
only the s = 2 nc spin channel is active the interaction is
switched off in the s = 1 nc spin channel. The results of
the calculations are shown in Fig. 3. While the left panel
contains the theoretical curves, the right panels contains the
same distributions but folded with the detector resolution
and compared with the experimental data. More information
on the folding and the experimental data can be found in
Sec. IV D.

Also shown there is a recent calculation of Hongo and Son
for 2n halo nuclei [51]. In this context, it is important to note
that the universal curve from Hongo and Son is derived in
an EFT picture of 2n halo nuclei in which they are bound by
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FIG. 2. The left panels (a) shows E1 strength distributions of 11Li with different FSIs included. The right panel (b) shows the corresponding
cumulative E1 strength distributions. Numerical uncertainties are indicated by bands, which are very narrow here. They were obtained by
comparing the calculations with ones having roughly two-thirds as many mesh points and a cutoff of three-fourths of the original one.

the nn interaction and a three-body force: the nc interaction
is taken to be an NLO effect there. It therefore applies to
2n halo nuclei where S2n and εn = h̄2/(2μnna2

nn) are smaller
than all other energy scales, and in particular smaller than
εnc. This is not the case in 11Li due to the near-threshold
resonance in 10Li, and Hongo and Son themselves say the
applicability of their results to 11Li is “doubtful.” Figure 3
shows that the Hongo and Son calculation predicts a much
lower E1 strength than any of the calculations in which
a low-energy nc virtual state plays a role in the structure
of 11Li.

Since nn FSI is included in all curves, they can directly be
compared. It is clear that the low-energy strength increases
with the number of nc interaction channels. The result by
Hongo and Son [51] (blue curve) has too little strength for
E ≈ 0.5 MeV. The calculation with one channel (orange
curve) has already more strength, while using two channels
(green curve) results in the highest strength. Since the nc
interaction does not appear in any of the final-state-interaction
treatments used here all the differences between the different
results stem from effects in the initial-state 11Li nucleus. Cru-
cially, all three calculations are adjusted to the same S2n. It is
then quite striking that the E1 strength increases appreciably
depending on the fraction of nc pairs that interact with a large

nc scattering length: 0 of them, 5/8 of them, or all of them.
[The factor of 5/8 is the ratio of the spin multiplicity of the
nc interaction channel and the sum of multiplicities of all
possible nc spin couplings, see Eq. (10).]

The description using two nc interaction channels, in which
all the nc pairs in 11Li can scatter via a large anc, yields a much
better description of the data in this leading-order calculation.
Therefore we will use it for the investigations of the next
section, where we seek to include effects due to both nn and
nc FSI.

IV. SUM-RULE PRESERVING APPROXIMATION
SCHEMES FOR FSI

In this section, we explore different approximation
schemes for the FSI in detail. Our goals are

(1) derive accurate approximation schemes for practical
calculations, and

(2) understand the role of different FSI channels and or-
ders in the multiple-scattering series.

For this purpose, we make use of Møller operators, which
were already briefly discussed in Sec. III C. The full final state

FIG. 3. E1 strength distributions with nn FSI included and different numbers of nc interaction channels for the ground state. We show
the result by Hongo and Son [51] (blue), which corresponds to no nc interaction spin channels, in comparison with our results using one spin
channel (orange) and two spin channels (green). The left panel (a) shows the theoretical curves. In the right panel (b) these distributions have
been folded with the detector resolution and compared to the experimental data from Nakamura et al. [25] (adjusted to the current S2n value).
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can be written as

c〈p, q; 	 f |�†
nn+nc+n′c, (36)

where 	 f is some set of orbital angular momentum and spin
quantum numbers and �

†
nn+nc+n′c is the Møller operator con-

taining all the two-body final-state interactions:

�nn+nc+n′c = 1 +
∫

d p dq p2q2

×
∑
	

1

Ep,q − H0 − Vnn − Vnc − Vn′c − iε

× (Vnn + Vnc + Vn′c)|p, q; 	〉cc〈p, q; 	|. (37)

Calculating the action of this operator on a plane-wave state
is challenging due to the presence of three different two-body
potentials, Vnn,Vnc,Vn′c. To obtain the three-body scattering
state, we would have to solve the Faddeev (or equivalent)
equations above three-body breakup. Therefore we are inter-
ested in approximation strategies, especially since comparing
different approximations can lead to additional insights into
the final-state dynamics. Note, however, that there are also
calculations based on full three-body scattering states of 11Li
available, see, e.g., Ref. [28].

We continue by analyzing the final scattering state in order
to obtain approximations. Using the Faddeev equations for
scattering states as an intermediate step produces

c〈p, q; 	 f |�†
nn+nc+n′c

= c〈p, q; 	 f |
⎛⎝1 +

∑
i

tiG0 +
∑

i

tiG0

∑
j �=i

t jG0 + · · ·
⎞⎠,

(38)

where we omitted the arguments of the t matrices and Green’s
functions for brevity. From this the following approximation
can be obtained:

c〈p, q; 	 f |
(

1 +
∑

i

tiG0

)
. (39)

This treatment, which keeps the first-order terms in the
multiple-scattering series, is not unitary. In contrast the Møller
operators introduced in the previous section are isometric and
unitary (since neither the nn nor the nc subsystem supports a
bound state). Nonunitarity can lead to unphysical gains and
losses of probability, which are manifest as violations of the
non-energy-weighted sum rule.

In order to ensure we have a sum-rule-preserving ap-
proximation scheme, we propose to use products of Møller
operators, whereby the single Møller operators correspond to
single types of interactions (nn or nc or n′c). This ensures
that we keep unitarity-preserving combinations of terms in
the multiple-scattering series. Of course, in doing so we do
not truncate the multiple-scattering series at a given order in t
matrices, because it is not possible to do that and also maintain
unitarity. Unitarity is only obtained in such a scheme if the
multiple-scattering series is summed to infinite order.

A. Organization of FSI calculations

We will now work out how to efficiently organize calcula-
tions of E1 distributions with FSIs based on combinations of
Møller operators. We will identify ingredients that different
distributions have in common and describe the calculation of
the different matrix elements on this basis. The procedure to
obtain the final distributions from the matrix elements is then
basically independent of included FSIs.

In proceeding in this way, it is useful to specify the initial
and final states and to discuss their partial-wave structure.
The initial state used in the calculations of this section is that
obtained by acting with the E1 operator on the 	c := ζc, ξc

partial-wave component of the ground state:

|i〉 := M(E1, μ)P	c |�〉. (40)

After this E1 transition (FSIs not yet included) the system is
in the partial-wave state ∣∣ζ (1,μ)

c , ξc
〉
c. (41)

In order to compactly specify the final states after FSIs,
which can be in various partial waves due to recoupling, we
introduce multi-indices for the spatial and for the spin part:∣∣ζ (l̄,λ̄;μ)

f

〉
c

∣∣ξ (s̄;M )
f

〉
c

:= |(l̄, λ̄)1, μ〉c

∣∣∣∣(s̄,
3

2

)
3

2
, M

〉
c

. (42)

For illustrative purposes, we put the multi-indices directly into
kets, since they are usually used with the core as spectator. The
quantum numbers here have bars on top in order to distinguish
them from the ones characterizing the ground state. While
overall spin and orbital angular momentum are conserved, the
subsystem quantum numbers are in general not conserved.

In the case of the two nc interaction channels (sc + 1/2 and
sc − 1/2), the Hamilton operator decouples into one with the
nn system in spin 0 configuration and one with the nn system
in spin 1 configuration. Therefore, the initial state with s = 0
will remain in this configuration and we have s̄ = 0.

On this basis we define the following ingredients:

A(1)
l̄,λ̄;μ;s̄,M

(p, q) := c
〈
p, q; ζ (l̄,λ̄;μ)

f , ξ
(s̄;M )
f

∣∣(�†
nc − 1)|i〉, (43)

A(2)
l̄,λ̄;μ;s̄,M

(p, q) := c
〈
p, q; ζ (l̄,λ̄;μ)

f , ξ
(s̄;M )
f

∣∣(�†
n′c − 1)

× (�†
nc − 1)|i〉. (44)

To evaluate these matrix elements we must recouple the
partial-wave states (momenta, angular momenta, and spins)
from the c-spectator basis to the n′-spectator basis in the case
of A(1)

l̄,λ̄;μ;s̄,M
(p, q), and then, additionally from the n′-spectator

basis to the n-spectator basis in the case of A(2)
l̄,λ̄;μ;s̄,M

(p, q).
In both cases the final state is specified using the core as
spectator implying another recoupling. The details of those
calculations, together with explicit expressions for these ma-
trix elements, are given in Appendixes B and C, respectively.

Once A(1)
l̄,λ̄;μ;s̄,M

(p, q) and A(2)
l̄,λ̄;μ;s̄,M

(p, q) have been cal-

culated the related matrix elements Ã(1)
l̄,λ̄;μ;s̄,M

(p, q) and

Ã(2)
l̄,λ̄;μ;s̄,M

(p, q) in which the roles of the two neutrons, n and
n′, have been interchanged, can be found using the properties

014617-10



FINAL-STATE INTERACTIONS AND SPIN STRUCTURE … PHYSICAL REVIEW C 107, 014617 (2023)

of the permutation operators P (spatial)
nn and P (spin)

nn . These yield
the following relations between the A and Ã functions:

Ã(1)
l̄,λ̄;μ;s̄,M

(p, q) = (−1)l̄ (−1)−s̄A(1)
l̄,λ̄;μ;s̄,M

(p, q), (45)

Ã(2)
l̄,λ̄;μ;s̄,M

(p, q) = (−1)−l̄ (−1)−(1−s̄)(−1)A(2)
l̄,λ̄;μ;s̄,M

(p, q),

(46)

i.e., the tilde matrix elements are the same as the unbarred
ones up to phase factors stemming from nn permutations.

Another important ingredient is the overlap of final and
initial state with no FSI operator in between:

A(0)
μ (p, q)δl̄,0δλ̄,1 := c

〈
p, q; ζ (l̄,λ̄;μ)

f , ξ (M )
c

∣∣i〉. (47)

This was already evaluated as part of the calculation of
Eq. (31). This function depends on μ but not on l̄ , λ̄, and s̄,
since the overlap on the right is nonvanishing only if l̄ = 0
and λ̄ = 1 and s̄ = 0. Using these ingredients, and the defi-
nition �̃i j := �i j − 1, we can obtain comparatively compact
expressions for the matrix elements of different combinations
of Møller operators.

First, we see that, with A(0)
μ (p, q) in hand, the matrix element of the nn Møller operator, implicitly worked out in the previous

section, is easily written as:8

c
〈
p, q; ζ (l̄,λ̄;μ)

f , ξ
(s̄;M )
f

∣∣�†
nn|i〉 = c

〈
p, q; ζ (l̄,λ̄;μ)

f , ξ
(s̄;M )
f

∣∣(1 +
∫

d p̃ dq̃ p̃2q̃2
∑
�

| p̃, q̃; �〉cc〈...|tnn(Ep̃)G(nn)
0 (Ep̃)

)
|i〉 (48)

= δl̄,0δλ̄,1δs̄,0

(
A(0)

μ (p, q) + 2

π
g0(p)τnn(p)

∫
dp′g0(p′)(p2 − p′2 + iε)−1A(0)

μ (p′, q)

)
(49)

=: Bμ(p, q)δl̄,0δλ̄,1δs̄,0. (50)

Then, since we also have a result for Ã(1)
l̄,λ̄;μ;s̄,M

(p, q), if we notate the action of the nn Møller operator to be the Bμ(p, q)
defined in Eq. (50), we can write the matrix element of the product of the nn and nc Møller operators as:

c
〈
p, q; ζ (l̄,λ̄;μ)

f , ξ
(s̄;M )
f

∣∣�†
nn�

†
nc|i〉

= c
〈
p, q; ζ (l̄,λ̄;μ)

f , ξ
(s̄;M )
f

∣∣(�†
nn + �̃†

nc + �̃†
nn�̃

†
nc)|i〉 (51)

= δl̄,0δλ̄,1δs̄,0Bμ(p, q) + A(1)
l̄,λ̄;μ;s̄,M

(p, q) + δl̄,0δλ̄,1δs̄,0
2

π
g0(p)τnn(p)

∫
dp′g0(p′)(p2 − p′2 + iε)−1A(1)

0,1;μ;0,M (p′, q). (52)

Finally, we can write the matrix element of a product of three Møller operators

c
〈
p, q; ζ (l̄,λ̄;μ)

f , ξ
(s̄;M )
f

∣∣�†
nn�

†
n′c�

†
nc|i〉 = δl̄,0δλ̄,1δs̄,0Bμ(p, q) + (1 + (−1)l̄+s̄)A(1)

l̄,λ̄;μ;s̄,M
(p, q)

+ 2δl̄,0δλ̄,1δs̄,0
2

π
g0(p)τnn(p)

∫
dp′g0(p′)(p2 − p′2 + iε)−1A(1)

0,1;μ;0,M (p′, q)

+ A(2)
l̄,λ̄;μ;s̄,M

(p, q) + δl̄,0δλ̄,1δs̄,0
2

π
g0(p)τnn(p)

×
∫

dp′g0(p′)(p2 − p′2 + iε)−1A(2)
0,1;μ;0,M (p′, q), (53)

where we also used Eq. (45). In the case of Eq. (53) the relation

�†
nn�

†
n′c�

†
nc = (1 + �̃†

nn)(1 + �̃
†
n′c)(1 + �̃†

nc) (54)

= �†
nn + (�̃†

n′c + �̃†
nc) + �̃†

nn(�̃†
n′c + �̃†

nc) + �̃
†
n′c�̃

†
nc + �̃†

nn�̃
†
n′c�̃

†
nc (55)

was employed. Note that, with a result for the product of three Møller operators in hand, the expression for the matrix element
of �

†
n′c�

†
nc can be obtained from Eq. (53) by replacing Bμ(p, q) by A(0)

μ (p, q) and setting the τnn in this formula to zero for all
momenta.

In each of these expressions integrals stemming from taking the t-matrix elements have to evaluated. Limiting ourselves to
the case of sharp-cutoff regularization at � in the subsystems, i.e.,

gl (p) := pl�(� − p), (56)

8Note that τ , which is the reduced t-matrix element takes sometimes a momentum and sometimes an energy as its argument in this paper.
This variation stems from the context and there is no other reason. τk (E ) can be read as τk (

√
2μi jE ).
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TABLE I. Overview of different FSI schemes specified in terms of the used combinations of Møller operators.

operator max. order in ti jG0 commutes with Pnn unitary all two-body interactions included

1 0
√ √

✗

(�(fo) )† 1
√

✗
√

�†
nn 1

√ √
✗

�†
nc 1 ✗

√
✗

�†
n̄c := 1

2 (�†
nc + �†

n′c ) 1
√

✗ ✗

�†
nn�

†
nc 2 ✗

√
✗

�†
nn�

†
n̄c 2

√
✗

√
�†

3 := �†
nn�

†
n′c�

†
nc 3 ✗

√ √
�̄†

3 := 1
2 �†

nn(�†
n′c�

†
nc + �†

nc�
†
n′c ) 3

√
✗

√
(�′

3)† := �†
n′c�

†
nc�

†
nn 3 ✗

√ √
(�̄′

3)† := 1
2 (�†

n′c�
†
nc + �†

nc�
†
n′c )�†

nn 3
√

✗
√

we can use the relation∫
dp′ g0(p′) f (p′, q)

p2 − p′2 + iε
=

∫ �

0
dp′ p′2 f (p′, q) − p2 f (p, q)

p2 − p′2 −
(

iπ

2
− 1

2
ln

(
� + p

� − p

))
g0(p)p f (p, q). (57)

For a derivation see the supplemental material of Ref. [50].

B. Physical properties of approximation schemes
Now we are in a position to calculate the E1 strength

distribution for all these additional combinations of Møller
operators. The combinations we are interested in are listed
in Table I. In the third, fourth, and fifth columns some
desirable properties of the resulting matrix element are listed.
A particularly important one is the unitarity of the approach:
the physical FSIs are norm preserving, because there is no
probability flow into bound states in our problem. That means
that any violation of unitarity represents a defect of our
approximation scheme. Another relevant aspect is if the FSI
operator commutes with the nn permutation operator Pnn.
The full FSI operator commutes with Pnn, so that the nn
antisymmetry is not broken by FSI. Also here, any violation
of nn antisymmetry must result from approximations we have
introduced. Additional characteristics are the order of the
expression in the t matrices, as well as whether all different
two-body interactions up to that order are taken into account.
Note that in the table also some abbreviations for the different
combinations of operators are introduced: a bar over the sub-
script n means that the operator has been averaged between the
two identical neutrons, so as to ensure nn antisymmetry. The
bar over �

†
3 in �̄

†
3 indicates that the two different orderings of

the Møller operators �†
nc and �

†
n′c have been averaged. And

in both (�′
3)† and (�̄′

3)† the prime indicates that the nc and
n′c interactions come after the nn interaction, rather than
before it.

The table makes it clear that the different combinations
have different advantages. The expression using all t matrices
up to first order, i.e., the expression using (�(fo) )†, has the ad-
vantage that nn antisymmetry is preserved and all interactions
are taken into account. However, it is not necessarily unitary.
The combination of all three different Møller operators �

†
3

has the advantages of taking all interactions into account and
of being unitary. However, it does not commute with Pnn. It is
possible to produce a commutative variant of this combination

called �̄
†
3 at the price of losing guaranteed unitarity. In terms

of this selection of features it is thereby on a par with (�(fo) )†.
However, on a quantitative level there might be significant
differences: It might be that the violation of unitarity of �̄

†
3

is much smaller than in the case of (�(fo) )†.
Before showing the results, we want to mention that in the

calculation of the E1 distributions from the matrix elements
sums over final-state quantum numbers are involved. In the
case of some terms truncations are necessary. A detailed dis-
cussion of these sums and the convergence of the truncation
can be found in Appendix D.

C. Numerical results

The E1 distributions based on (�(fo) )†, �
†
3, �̄

†
3, (�′

3)†,
and (�̄′

3)† are shown in Fig. 4. Numerical uncertainties are
indicated by bands, which are very narrow here. They were
obtained by comparing the calculations with ones having
roughly two-thirds as many mesh points and a cutoff of three-
fourths of the original one. The right panel of Fig. 4 contains
the cumulative distributions. Some of the distributions already
shown in Fig. 2 are also included for comparison.

A striking feature of Fig. 4 is how much the distribution
using (�(fo) )† (green dashed curve) differs from all the others:
it has much more strength than any of them. It violates the
non-energy-weighted sum rule by a significant margin, attain-
ing an asymptotic value that is roughly twice as large as it
should be. The deviation is not totally surprising, as this FSI
operator is only an approximation to a unitary Møller operator.

In contrast, there is no large difference between the dis-
tribution using �

†
3 (crimson dot-dashed curve) and the one

just having nn FSI (orange dashed curve). This combination
of Møller operators includes the same first-order terms in the
multiple-scattering series as (�(fo) )† but is explicitly unitary. It
does preserve the sum rule. Including n′c and nc interactions
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FIG. 4. The left panel (a) shows E1 strength distributions of 11Li with different FSIs including higher-order schemes. The right panel
(b) shows the corresponding cumulative E1 strength distributions. The small horizontal band again shows the expected asymptotic value for the
cumulative E1 strength distribution, based on 〈r2

c 〉 extracted from Fc(k2). Note that the results for �†
nn�

†
n′c�

†
nc and for 1

2 �†
nn(�†

n′c�
†
nc + �†

nc�
†
n′c )

are on top of each other. The same is true for �†
n′c�

†
nc�

†
nn and 1

2 (�†
n′c�

†
nc + �†

nc�
†
n′c )�†

nn.

via a product of Møller operators moves the peak of the E1
strength distribution to slightly lower energy and increases the
peak height slightly. This observation might show that taking
products of increasing numbers of Møller operators forms a
convergent approximation to the multiple-scattering series at
low energies.

�̄
†
3 does not need to be unitary, but it gives a result that is

indistinguishable from that of �
†
3. This implies both that �̄

†
3

is approximately unitary (and indeed, it fulfills the sum rule
well) and that the violation of antisymmetry in �

†
3 is small.

We also consider the operator (�′
3)†, which differs from

�
†
3 only in the position of �†

nn. In �
†
3 it is the first factor in

the product of operators, in (�′
3)† it is the last one. We also

note that results for (�′
3)† and (�̄′

3)† agree excellently. Since
one is unitary and the other respects nn antisymmetry this
again suggests that violations of these symmetries are small
in either approximation scheme. However, (�′

3)† and �
†
3 give

somewhat different results. That difference can be taken to
be an estimate of the remaining uncertainty in the FSI. This
suggests that our approximation to the multiple-scattering se-
ries is not fully converged, although the uncertainty due to the
approximations used for computing the FSI here is certainly
smaller than the uncertainty due to NLO effects.

Any of these combinations of three Møller operators can
thus be used for a comparison with experimental data, since
they are either exactly, or to a high degree, nn antisymmetric
and norm preserving. Note that this scheme can not be easily
extended to order 4 in the three-body system, since then at
least one Møller operator, which we will call �

†
i j , would need

to appear two times in the product. Even if there are other
Møller operators between the two occurrences, this would
also generate an factor of ti jG

(i j)
0 ti jG

(i j)
0 in some term9 due

9The full factor written more formally reads∫
dp dq p2q2

(|p, q〉k k〈p, q| ⊗ 1(o) ⊗ 1(s)
)
ti j (Ep)G(i j)

0 (Ep)

×
∫

dq′ d p′ q′2 p′2(|p′, q′〉k k〈p′, q′|⊗ 1(o)⊗ 1(s)
)
ti j (Ep′ )G(i j)

0 (Ep′ )

to the identity terms in the Møller operators between the two
occurrences. This would be unphysical, as ti j fully iterates
the i j interaction and therefore the same t matrix should not
be applied two times directly subsequently with only Green’s
functions in between. That such a doubling is not allowed can
also be seen from the expression for the multiple-scattering
series in Eq. (38).

D. Comparison with other theoretical results
and with experimental data

We proceed by comparing our results with experimental
data from Ref. [25]. Figure 5 shows our results with differ-
ent implementations of FSI through combinations of Møller
operators. In the left panel the results of our calculations are
plotted, in the right panel these theoretical distributions folded
with the detector response are shown in comparison with the
experimental data.10 The three results differing in FSIs all
have in common that nn FSI, which turned out to be rather
important, is taken into account: the orange dashed line is
the result for nn FSI alone, while the light green and dark
green dot-dashed curves are two different orderings of the
three possible Møller operators for this system. The difference
between the light and dark green curves can thus be taken
as an estimate of the uncertainty in our approach. Bands
indicating the uncertainties due to truncating the EFT at lead-
ing order are also shown. We estimated those uncertainties

with ‘o’ in the superscript meaning “orbital” and ‘s’ meaning “spin”.
10Within the folding the finite energy resolution as well as the finite

angular resolution reported in Ref. [25] are taken into account. More-
over note that the extraction of the E1 strength from the differential
cross section depends on the virtual photon number (cf. Ref. [52])
and thereby also a dependency on the two-neutron separation energy
S2n enters. Reference [25] from 2006 used S2n = 300 keV. The cur-
rent value is approximately 369 keV [19]. Therefore, we reextracted
the E1 curve using the current value. This reextraction is mainly
relevant in E < 1 MeV region, where it changes the peak height by
approximately 10%.
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FIG. 5. The left panel (a) shows our results for the E1 strength distribution in comparison with the universal curve by Hongo and Son [51].
The right panel (b) shows our results and the result of Hongo and Son folded with the detector resolution in comparison with the experimental
data from Nakamura et al. [25] (adjusted to the current S2n value). The uncertainty bands show the estimated uncertainties of the leading-order
EFT results. The uncertainty stemming from approximations of the multiple-scattering series by products of Møller operators can be estimated
by comparing the curve using �†

nn�
†
n′c�

†
nc with the one using �†

n′c�
†
nc�

†
nn.

using

�

(
dB(E1)

dE

)
= dB(E1)

dE

√
E

E∗(9Li)
, (58)

where by E∗(9Li) = 2.7 MeV is the excitation energy
of the 9Li core, which is the lowest scale of omitted physics.
The figure clearly shows that, in this leading-order calcula-
tion, the EFT uncertainties are larger than the uncertainties
due to the treatment of FSI.

The prediction of Hongo and Son [51] agrees well with ex-
perimental data and our results at higher energies, but has far
too little strength at low energies. The doubtful applicability of
it to this halo nucleus thereby manifests itself in a low-energy
discrepancy from experimental data.

Our different distributions, which all take nn FSI into
account, show qualitative agreement with the experimental
values. In the case of the height and width of the low-energy
peak there are some discrepancies, which depend also on the
concrete FSI approximation scheme. That using solely nn FSI
can lead to good agreement11 with experimental data can be
also seen in Refs. [25,27].

We conclude that our leading-order calculation of the
E1 strength distribution of 11Li agrees reasonably well with
experimental data. The FSI approximation technique based
on products of Møller operators has proven to be useful, in
particular because it provides insight into the role of different
FSIs.

V. CONCLUSION

In this work we calculated the E1 strength distribution
of the two-neutron halo nucleus 11Li using a three-body de-
scription in halo effective field theory (Halo EFT) at leading

11However, note that the model of 11Li from Ref. [26] employed
along with others in Ref. [27] yields an S2n of 200 keV in contrast to
the current experimental value of 369 keV.

order. We investigated the role of the final-state interactions
(FSIs) and found that they influence the shape of the distribu-
tion significantly. The results show that nn FSI is the most
important single FSI. We also investigated approximations
to the full multiple-scattering series that determines the FSI.
Including all possible FSIs via a first-order treatment of their
t matrices leads to large unitarity violations, which become
manifest in large violations of the non-energy-weighted sum
rule. Therefore, we propose a unitary approximation scheme
based on products of Møller scattering operators. We were
able to verify the expected compliance with the sum rule. In
computations up to third order in the t matrix, the dominance
of nn FSI was confirmed.

We have provided expressions for the E1 distribution with
FSI included that are suitable for application to other Bor-
romean 2n halos. In future studies these could be computed
in this framework and compared with experimental data.
Moreover, the convergence pattern of the FSI approximations
would be an interesting aspect for further studies. These pat-
terns should also be compared to exact calculations of the
three-body scattering state as in Ref. [28] and alternative ap-
proaches including full FSI effects such as the Lorentz integral
transform method [53].

We also assessed the uncertainty of our calculation. This
comes, as explained in Sec. I, from: (i) the fact that EFT
effects beyond leading order are not included; (ii) the treat-
ment of the final state via two-body Møller operators; and (iii)
basis truncations. The EFT error is, according to the power
counting, about 30% at the E1 peak. We assess the FSI error
in this region as about 15%. Taking different combinations
of Møller operators at third order changes the distribution
by ±15%. The FSI error is much smaller to the right of the
peak, and there the EFT error dominates. Errors from trunca-
tions are generally smaller than both, and are assessed to be
smaller than 5%. The uncertainties can be reduced in future
calculations by going to next-to-leading order in the EFT
expansion and by switching from a perturbative calculation of
the final state to a full computation of the three-body (9Li -n-n)
continuum.
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The comparison of the results with experimental data
showed good agreement, given that we carried out the calcu-
lation only to leading order in Halo EFT. At next-to-leading
order (NLO) the impact of low-energy p-wave resonances
in 10Li will appear as perturbative corrections to both the
initial-state bound 11Li wave function and the FSI. The nn and
nc effective ranges are also both an NLO effect.

This control over final-state interactions allows us to inves-
tigate the impact of different assumptions about the 9Li-nn
dynamics on the E1 strength distribution. We showed that
a description taking all spins into account and using both
s-wave nc interaction channels (sc − 1/2 and sc + 1/2) at
the same strength yields a good leading-order description of
the E1 strength. Conveniently, such a calculation is equiv-
alent to a calculation with only neutron spins included and
therefore can be recast as a calculation with a spinless core.
We also provided the formalism for a calculation in which
only the (sc + 1/2) channel has the low-energy enhancement
that leads to the 10Li virtual state. Such a calculation signif-
icantly underpredicts the data. Finally, we compared to the
EFT calculation of Hongo and Son [51], which is based on
different assumptions about the underlying scales of the nnc
system. In particular, it assumes that the neutron-9Li inter-
action is subleading. The corresponding prediction disagrees
with data in the range from E = 0–1 MeV by a factor of three
to four. Since all calculations are adjusted to have the same
S2n of 11Li, the differences in the E1 distribution genuinely
reflect the different assumptions about the nc subsystem
dynamics.
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APPENDIX A: MAPPING THE CALCULATION
WITH TWO nc INTERACTION CHANNELS ONTO

THE SPINLESS CALCULATION

In this Appendix we consider 2n halos where the core as
well as the whole halo have spin sc. We show that a leading-
order description of these systems using two nc interaction
channels (sc − 1/2 and sc + 1/2) is equivalent to a description
with only the neutron spins taken into account and thereby
having necessarily only one nc interaction channel.

Definitions. The spin states describing such a system seen
from the core as spectator or a neutron as spectator are

given by∣∣ξ (σ ;sc,M )
c

〉
c =

∣∣∣∣(1

2
,

1

2

)
σ, sc; sc, M

〉
c

σ ∈ {0, 1}, (A1)

∣∣ξ (τ ;sc,M )
n

〉
n =

∣∣∣∣(1

2
, sc

)
sc + τ

1

2
,

1

2
; sc, M

〉
n

τ ∈ {−1,+1}.

(A2)

The corresponding projection operators are

P(σ )
c =

∑
M

∣∣ξ (σ ;sc,M )
c

〉
cc

〈
ξ (σ ;sc,M )

c

∣∣, (A3)

P(τ )
n =

∑
M

∣∣ξ (τ ;sc,M )
n

〉
nn〈ξ (τ ;sc,M )

n

∣∣. (A4)

Statement. Having these definitions at hand we can now
state that the mapping can be made if the Hamilton operator
has the structure

H0 = H (spatial)
0 ⊗ 1(spin) = H (spatial)

0 ⊗ (
P(0)

c + P(1)
c

)
,

(A5)

Vnn = V (spatial)
nn ⊗ P(0)

c , (A6)

Vnc + Vn′c = (
V (spatial)

nc + V (spatial)
n′c

) ⊗ (P(−)
n + P(+)

n ) (A7)

and

P(0)
c + P(1)

c = P(−)
n + P(+)

n (A8)

holds. Equation (A7) means that the spatial/momentum-space
part of the nc interaction has to be the same in sc − 1/2 and
sc + 1/2.

More specifically, in this case the Schrödinger equation can
be decoupled into one in the P(0)

c space and one in the P(1)
c

space12

H = H (0) + H (1) = H (spatial;0) ⊗ P(0)
c + H (spatial;1) ⊗ P(1)

c .

(A9)
While the P(1)

c space Schrödinger equation misses an nn inter-
action, the P(0)

c space one is equivalent to a calculation with
sc = 0. This equivalent equation has the Hamilton operator

H (0) = H (spatial;0) ⊗ P(0)
c , (A10)

H (spatial;0) = H (spatial)
0 + V (spatial)

nc + V (spatial)
n′c + V (spatial)

nn .

(A11)

Sketch of the proof. The relation for the projection operators
given in Eq. (A8) can be verified by inserting∣∣ξ (σ ;sc,M )

c

〉
= √

2σ + 1
√

2sc

{
1/2 sc sc − 1/2
sc 1/2 σ

}∣∣ξ (−;sc,M )
n

〉
+ √

2σ + 1
√

2sc+ 2

{
1/2 sc sc + 1/2
sc 1/2 σ

}∣∣ξ (+;sc,M )
n

〉
(A12)

12This is because Vnc + Vn′c = (V (spatial)
nc + V (spatial)

n′c ) ⊗ (P(0)
c + P(1)

c )
holds then.
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into P(0)
c + P(1)

c and using the orthonormality relations for the
Wigner-6j symbols, as they can be found in Ref. [54]. The
other pillar of the proof is to show that in a leading-order
calculation with sc = 0 the Hamilton operator has indeed the
form

H = H (spatial) ⊗ P(0)
c , (A13)

H (spatial) = H (spatial)
0 + V (spatial)

nc + V (spatial)
n′c + V (spatial)

nn . (A14)

This can be shown by introducing the spin states |ξc〉c for the
nn interaction channel and |ξn〉n for the nc interaction channel.
As the core has here spin zero and the overall spin is zero, the
only allowed nn spin configuration is zero. Thereby the two

states are equal up to a sign and the Hamilton operator for
sc = 0 takes indeed this form.

APPENDIX B: EXPLICIT RELATIONS FOR A(1)

In the following we give equations suitable for evaluating
A(1), which is defined in Eq. (43):

A(1)
l̄,λ̄;μ;s̄,M

(p, q) = −
√

2l̄ + 1
√

2λ̄ + 1

(
λ̄ 1 l̄
0 0 0

)
× √

π

(
p f̄λ̄(p, q) − 1

2
q f̄l̄ (p, q)

)
×

c

〈(
s̄,

3

2

)
3

2
, M

∣∣∣∣Pξn

∣∣∣∣ξ (M )
c

〉
c

, (B1)

whereby the round brackets with six arguments denote a Wigner-3j symbol. Equations for f̄ and its ingredients are given below:

f̄ (p, q, x := cos (θp,q)) := 1

κcnq(p, q, x)

∫
d p̃′ p̃′2g0(κcnp(p, q, x))τnc(κcnp(p, q, x))g0( p̃′)G(nc)

0 ( p̃′; Eκcnp(p,q,x) )

×√
π

(
−p̃′ f̃1( p̃′, q̃′) − A

A + 1
q̃′ f̃0( p̃′, q̃′)

)∣∣∣∣∣
q̃′=κcnq (p,q,x)

, (B2)

f̃ ( p̃′, q̃′, x̃′ := cos (θp̃′,q̃′ )) := f (κncp( p̃′, q̃′, x̃′), κncq( p̃′, q̃′, x̃′))
κncq( p̃′, q̃′, x̃′)

, (B3)

f (p, q) = i

√
1

4π
eZc

2

A + 2
(∂q̃�c(p, q̃))

∣∣
q̃=q, (B4)

whereby the functions κi jk (i, j ∈ {n, c} and k ∈ {p, q}) are
defined in Ref. [39]. Furthermore, we used the following
generic definition of a function fi(p, q) via

fi(p, q) :=
∫

dxPi(x) f (p, q, x). (B5)

The ith Legendre polynomial is denoted by Pi.
In order to obtain these expressions inter alia the following

relations and techniques were employed:

(1) relation for expressing Yl,m(a + b) using Yl,m(a) and
Yl,m(b) (see, e.g., Ref. [55]),

(2) relations for recoupling the Jacobi momenta (see, e.g.,
Ref. [39]),

(3) expansion of functions in terms of Legendre polyno-
mials and expressing Legendre polynomials in terms
of Y0,0

l,l (see, e.g., Ref. [55]),
(4) relation for the integral of three spherical harmonics

(see, e.g., Ref. [54]).

APPENDIX C: EXPLICIT RELATIONS FOR A(2)

We give an expression for A(2), which is defined in Eq. (44):

A(2)
l̄,λ̄;μ;s̄,M

(p, q) = (−1)l̄√π
√

2λ̄ + 1
√

2l̄ + 1

(
λ̄ 1 l̄
0 0 0

)(
p f

(2)
λ̄ (p, q) − 1

2
q f

(2)
l̄ (p, q)

)
c

〈(
s̄,

3

2

)
3

2
, M

∣∣∣∣P (spin)
nn PξnP (spin)

nn

∣∣∣∣ξ (M )
c

〉
c

.

(C1)

Also here Eq. (B5) applies. The function f
(2)

is given by

f
(2)

(p, q, x := cos θp,q) := 2π

κcnq(p, q, x)

∫
d p̃′ p̃′2τ̃nc(κcnp(p, q, x))g0( p̃′)G(nc)

0 ( p̃′; Eκcnp(p,q,x) )

×
(

p̃′ f
(2)

1 ( p̃′, κcnq(p, q, x)) − κcnq(p, q, x)

A + 1
f

(2)

0 ( p̃′, κcnq(p, q, x))

)
, (C2)
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whereby the shorthand notation τ̃nc(p) := g0(p)τnc(p) is used. Furthermore the definition

f
(2)

(p, q, x := cos θp,q) := τ̃nc(κ ′
nnp(p, q, x))

∫
d p̃′′ p̃′′2g0( p̃′′)G(nc)

0 ( p̃′′, Eκ ′
nnp(p,q,x) )

×
√

π

κ ′
nnq(p, q, x)

(
−p̃′′ f̃1( p̃′′, κ ′

nnq(p, q, x)) − A

A + 1
κ ′

nnq(p, q, x) f̃0( p̃′′, κ ′
nnq(p, q, x))

)
(C3)

holds. Also for obtaining these expressions the relations and techniques listed in Appendix B were employed.

APPENDIX D: SUMS OVER THE QUANTUM NUMBERS
OF THE FINAL STATE AND THEIR CONVERGENCE

In this Appendix we briefly discuss the handling of
the partial waves of the final states. Equations (50), (52),
and (53) show that only those terms directly proportional
to A(1)

l̄,λ̄;μ;s̄,M
(p, q) or A(2)

l̄,λ̄;μ;s̄,M
(p, q) are nonzero for mul-

tiple combinations of final-state quantum numbers l̄ , λ̄. In
contrast to that, other terms are only nonzero for l̄ = 0 to-
gether with λ̄ = 1. The expressions for A(1)

l̄,λ̄;μ;s̄,M
(p, q) and

A(2)
l̄,λ̄;μ;s̄,M

(p, q) in Appendixes B and C show that these are

already nonvanishing if λ̄ − 1 � l̄ � λ̄ + 1. Using this condi-
tion restricts the sum over l̄ for a given λ̄ to a finite number
of terms, while the sum over λ̄ stays in principle unrestricted.
Therefore we truncate the sum over λ̄ at λ̄max (inclusive). We
usually use λ̄max = 5, because the relative changes between
the results based on λ̄max = 3 and those based on λ̄max = 5
are smaller than 5% measured in terms of the former. (In fact,
in the E < 3 MeV region, which we show in most plots, the
relative change is below 2.5%.) In the case of the quantum
number μ the sum runs from −1 to 1, and we use the fact
that the matrix element is independent of μ in order to reduce
the numerical costs. The spin of the nn system in the final
state can generally be 0 or 1, while in the case of some
terms only 0 is possible. Moreover, sometimes cancellations
emerge for certain values naturally because of the nature of

the equations. For example, in the case of �
†
3 the partial wave

s = 1 ∧ l = 0 has in principle a nonvanishing contribution,
as �

†
3 does not commute with Pnn, while in the case of �̄

†
3 this

contribution is vanishing due to the nn antisymmetry of the
operator.

Finally, we present numerical data on the error originating
from the truncation in the quantum number λ̄ at λ̄max. Figure 6
shows the quotients of distributions obtained with λ̄max = 5
and λ̄max = 3.

In the case of the shown distributions the relative changes
are smaller than 5%. Given the significant EFT uncertainty
bands at leading order this is sufficient precision.

FIG. 6. Quotients of E1 strength distributions with λ̄max = 5 and
with λ̄max = 3 differing in the FSI treatment.
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